
   

 

 
Bioengineering 2022, 9, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/bioengineering 

Limitations of reconstructing Pentacam rabbit corneal tomogra- 1 

phy by Zernike polynomials 2 

Mohamed Baraya1, Jessica Moore2, Bernardo T Lopes2,3, Richard Wu4, FangJun Bao5, XiaoBo Zheng5, Alejandra 3 

Consejo6, and Ahmed Abass1,7* 4 

1 Department of Production Engineering and Mechanical Design, Faculty of Engineering, Port Said Univer- 5 
sity, Egypt 6 

2 Department of Civil Engineering and Industrial Design, School of Engineering, University of Liverpool, 7 
Liverpool, UK 8 

3 Department of Ophthalmology, Federal University of Sao Paulo, Sao Paulo, Brazil 9 
4 Brighten Optix Corporation, Shilin District, Taipei, Taiwan 10 
5 Eye Hospital, WenZhou Medical University, Wenzhou, China 11 
6 Department Applied Physics, University of Zaragoza, Zaragoza, Spain 12 
7 Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of 13 

Liverpool, Liverpool, UK 14 
* Correspondence: A.Abass@liverpool.ac.uk 15 

Abstract: The study aims to investigate the likelihood of Zernike polynomial being used for recon- 16 

structing rabbit corneal surfaces as scanned by the Pentacam segment tomographer, and hence eval- 17 

uate the accuracy of corneal power maps calculated from such Zernike fitted surfaces. The study 18 

utilised a data set of both eyes of 21 rabbits using a reverse engineering approach for deductive 19 

reasoning. Pentacam raw elevation data were fitted to Zernike polynomials of orders 2 to 20. The 20 

surface fitting process to Zernike polynomials was carried out using randomly selected 80% of the 21 

corneal surface data points, and the root means squared fitting error (RMS) was determined for the 22 

other 20% of the surface data following the Pareto principle. The process was carried out for both 23 

the anterior and posterior surfaces of the corneal surfaces that were measured via Pentacam scans. 24 

Raw elevation data and the fitted corneal surfaces were then used to determine corneal axial and 25 

tangential curvature maps. For reconstructed surfaces calculated using the Zernike fitted surfaces, 26 

the mean and standard deviation of the error incurred by the fitting were calculated. For power 27 

maps computed using the raw elevation data, different levels of discrete cosine transform (DCT) 28 

smoothing were employed to infer the smoothing level utilised by the Pentacam device. The RMS 29 

error was not significantly improved for Zernike polynomial orders above 12 and 10 when fitting 30 

the anterior and posterior surfaces of the cornea, respectively. This was noted by the statistically 31 

non-significant increase in accuracy when the order was increased beyond these values. The corneal 32 

curvature calculations suggest that a smoothing process is employed in the corneal curvature maps 33 

outputted by the Pentacam device; however, the exact smoothing method is unknown. Addition- 34 

ally, the results suggest that fitting corneal surfaces to high-order Zernike polynomials will incur a 35 

clinical error in the calculation of axial and tangential corneal curvature of at least 0.16±01 D and 36 

0.36±0.02 D, respectively. Rabbit corneal anterior and posterior surfaces scanned via the Pentacam 37 

were optimally fitted to orders 12 and 10 Zernike polynomials. This is essential to get stable values 38 

of high-order aberrations that are not affected by Zernike polynomial fittings, such as comas for 39 

Intracorneal Ring Segments (ICRS) adjustments or spherical aberration for pre-cataract operations. 40 

Smoothing was necessary to replicate the corneal curvature maps outputted by the Pentacam to- 41 

mographer, and fitting corneal surfaces to Zernike polynomials introduces errors in the calculation 42 

of both the axial and tangential corneal curvatures. 43 
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1. Introduction 47 

The topography of both the anterior and posterior corneal surfaces can be indirectly 48 

measured by capturing cross-sectional images using a corneal tomographer. The process 49 

includes edge detection and surface reconstruction in order to generate three-dimensional 50 

(3D) surfaces from two-dimensional (2D) images. Since what is being measured is not ex- 51 

actly what is being offered by the tomography machine end-user software, digital signal 52 

processing (DSP) methods are usually used to reconstruct the eye surface from a finite 53 

number of 2D images. The process could also include surface fitting, smoothing and many 54 

other approximations. In this context, the Pentacam rotating camera system employs a 55 

Scheimpflug system to provide non-invasive images of the anterior and posterior surface 56 

raw elevation as cross-sectional views [1]. There are 25 images with a 14.4° gap in standard 57 

settings and 50 images with a 7.2° gap in high-resolution (HR) settings. Once images are 58 

acquired, these gaps are bridged. Hence, surfaces are processed into corneal feature maps 59 

that describe the anterior surface, posterior surface, corneal thickness (pachymetry) and 60 

axial/tangential (sagittal) curvatures that vary across the cornea [2]. It is not apparent to 61 

the end-user how surface data gaps are bridged and as maps are calculated from the 62 

bridged posterior and anterior surfaces, it is key that both researchers and users utilising 63 

this device understand the processes that may have been employed. Then researchers will 64 

be able to consider the effect of impeded DSP processes when using tomography-based 65 

corneal surface measurements in treatment plans. Additionally, corneal tomography 66 

measurements are vital in the diagnosis of keratoconus, monitoring of ectasia progression, 67 

and pre and post-surgical assessments [3]. It is, therefore, important that DSP approxima- 68 

tions and possible associated induced errors are fully understood. 69 

When a corneal surface is fitted to a Zernike polynomial of any order, it is expected 70 

to achieve a fit with residuals unless the surface was already fitted to one of the same 71 

orders. As an example, when a right rabbit corneal surface was fitted to a 3rd order Zernike 72 

polynomial as in Figure 1, not all surface components were fitted, and considerable resid- 73 

uals remained. This is because adding up the Zernike polynomial terms for this fit (Figure 74 

2) does not fully represent the original surface perfectly.  75 

 
  

(a) (b) (c) 

Figure 1. Example of reconstructing anterior corneal surface (a) by using third order Zernike poly- 76 
nomial to get the fitted surface in (b); however, a surface residual remains without fit in (c). Arith- 77 
metically, the height of the anterior surface (a) equals the height of the fitted surface (b) plus the 78 
height of the residual surface (c). 79 
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 80 

Figure 2. The process of fitting the anterior corneal surface, shown in Figure 1, using 3rd order Zer- 81 
nike polynomial with ten terms. When these terms are added, they reconstruct the surface in Figure 82 
1b. 83 

In our previous work, Wei et al. [4] conducted an assessment of the capability of Zer- 84 

nike polynomials to correctly reconstruct human corneal surfaces measured by different 85 

anterior eye tomography measurement devices, including Pentacam. Their results sug- 86 

gested that Zernike polynomials of orders 12 and 10 provided optimal fitting to the ante- 87 

rior and posterior surfaces, respectively, for healthy and keratoconic human corneas.  88 

In this animal-based study, in addition to investigating the optimal Zernike polyno- 89 

mial fitting orders on rabbit eyes, further analysis was conducted to improve understand- 90 

ing of any assumptions that are used in the calculation of the corneal curvature maps out- 91 

putted by the Pentacam corneal tomographer. The potential loss in accuracy that is in- 92 

curred when Zernike polynomial fitted surfaces are used in the calculation of corneal 93 
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curvature maps was then investigated. This work further improves understanding of the 94 

inner digital signal processing workings of the Pentacam device, and the limitations of 95 

Zernike fitted surfaces, which will directly enhance both the clinician and the researcher's 96 

ability to use the data appropriately. 97 

2. Materials and Methods 98 

2.1. Animal subjects 99 

Twenty-one Japanese white rabbits (2–3 kg) from the Animal Breeding Unit at Wen- 100 

zhou Medical University were used in this study in the presence of a veterinarian. All 101 

rabbits were treated in agreement with the Association for Research in Vision and Oph- 102 

thalmology (ARVO) Statement for the use of Animals in Ophthalmic and Vision Research 103 

and with the approval of the Laboratory Animal Ethics Committee of Wenzhou Medical 104 

University (code: wydw2021-0065). The rabbits had their IOP assessed (mean ± SD = 12.4 105 

± 1.7 mmHg) after capturing the Pentacam corneal images, using a Tono-pen tonometer 106 

(Reichert, Inc., New York, USA) to ensure the eyes were not subjected to elevated IOP. 107 

Pentacam measurements were performed in a dim-light room using an adjustable height 108 

table and manual positioning to control the rabbit eye location during the eye scanning 109 

process, Figure 3. 110 

 111 

Figure 3. Positioning of a rabbit eye during the Pentacam eye scanning process at Wenzhou Medical 112 
University. 113 

2.2. Data collection 114 

Clinical tomography data has been collected from both eyes of rabbits using Pen- 115 

tacam (OCULUS Optikgeräte GmbH, Wetzlar, Germany). Raw elevation data collected by 116 

the Pentacam for the anterior and posterior surfaces were analysed using a custom-built 117 

MATLAB code (MathWorks, Natick, USA). Data were extracted in a cloud of 3D points at 118 

locations on a squared mesh grid in both nasal-temporal and superior-inferior directions. 119 

The grid considers locations from -7 to 7 mm in both of the principal directions. Raw ele- 120 

vation values that were not part of the cornea were disregarded in this study.   121 

2.3. Corneal surface fitting 122 

The quality of fitting Zernike polynomials to a corneal surface was quantified by the 123 

root mean squared (RMS) error; the less error, the more accuracy. The term "error" in this 124 

context signified the difference in the raw elevation between the clinically measured cor- 125 

neal surface elevation and the Zernike polynomial fitted surface. Consider a surface grid 126 

centred around the corneal apex, then the radius of each point on this grid, 𝜌𝑔, is calcu- 127 

lated as 128 
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𝜌𝑔 = √𝑋𝑔
2 + 𝑌𝑔

2,   (Eq.1) 

where 𝑋𝑔 and 𝑌𝑔 represent the coordinates of each of the grid points.  129 

A normalised form 𝜌 of the radius 𝜌𝑔 is required for Zernike fit, and can be calcu- 130 

lated as  131 

𝜌 =
𝜌𝑔

𝜌𝑚𝑎𝑥
, (Eq.2) 

where 𝜌𝑚𝑎𝑥 is the maximum radius observed in the data, which in this case was set 132 

to 5 mm to ensure that the data were in the Pentacam's most reliable measurement area, 133 

as peripheral measurements are less reliable. Any surface data beyond this maximum ra- 134 

dius were disregarded in these analyses. The Zernike raw elevation 𝑍𝑛
𝑚(𝜌, 𝜑) is given by 135 

[5] 136 

𝑍𝑛
𝑚(𝜌, 𝜑) = {

𝑅𝑛
𝑚 cos(𝑚𝜑) 𝑚 > 0

𝑅𝑛
𝑚 sin(𝑚𝜑) 𝑚 < 0

 , (Eq.3) 

where 𝜑 is the azimuthal angle of the coordinates 𝑋𝑔 and 𝑌𝑔, 𝑛 is the radial order 137 

of the polynomial, 𝑚 an azimuthal integer index that varies from - 𝑛 to 𝑛 for even (𝑚 - 138 

𝑛) and equals 0 for odd (𝑛 - 𝑚) and 𝑅𝑛
𝑚  is a radial polynomial, defined as 139 

𝑅𝑛
𝑚(𝜌) = ∑

(−1)𝑘(𝑛 − 𝑖)! 𝜌𝑛−2𝑘

𝑘! ((𝑛 + 𝑚)/2 − 𝑘)! ((𝑛 − 𝑚)/2)!

𝑛−𝑚
2

𝑘=0

        (0 ≤ 𝜌 ≤ 1), (Eq.4) 

Zernike raw elevation (height) term 𝑍𝑛
𝑚(𝜌, 𝜑) was fitted to the anterior and posterior 140 

corneal surfaces exported by the Pentacam software. The RMS error was calculated for 141 

every fit as,  142 

𝑅𝑀𝑆 = √∑ (𝑍𝑖 𝑓𝑖𝑡 − 𝑍𝑖 𝑠𝑢𝑟𝑓)
2𝑞

𝑖=1

𝑁
, (Eq.5) 

where 𝑍𝑓𝑖𝑡is the Zernike fitted surface height and 𝑍𝑠𝑢𝑟𝑓 is the measured raw eleva- 143 

tion surface height and 𝑁 is the total number of data points considered in the RMS cal- 144 

culation. Pentacam surface data grid is 141 by 141 spaced by 0.1 mm with around 8840 145 

valid measured data points (depending on the quality of measurement) out of the total of 146 

19881 grid points (44.5%). During the fitting process, 80% of the data points were ran- 147 

domly selected for polynomial fitting, and the other 20% were used for the RMS error 148 

calculation following the Pareto principle [6]. Using a different set of data points in vali- 149 

dation is essential as validating on the original set used in the fitting process overfits this 150 

set and leads to misleading small RMS values. Right and left eyes were always treated 151 

separately to avoid any possible bias in the results [7, 8], and no superior-inferior mirror- 152 

imaging data merging techniques were applied in the current study. 153 

It was previously identified that the optimal Zernike order for the anterior surface 154 

was 2 orders higher than for the posterior surface [4]. This was considered in this analysis 155 

by maintaining a two-order difference between the Zernike polynomials of the anterior 156 

surface when compared to the posterior. For example, when fitting the anterior surfaces 157 

to an order 5 Zernike polynomial, the posterior surface was fitted to one of order 3. Whilst 158 

maintaining this rule, the order of the anterior surface was increased from 3 to 20 and for 159 

each order, both the axial and tangential refractive power maps were calculated and com- 160 

pared to the power of the original unfitted maps. 161 

In order to evaluate the effect of fitting order selection in clinical practice, three high- 162 

order aberration terms' coefficients were selected for further investigation. Vertical and 163 

horizontal commas are both being used in Intracorneal Ring Segments (ICRS) selection 164 

for Keratoconus patients [9], and spherical aberration is being used for pre-cataract oper- 165 

ations [10]. 166 
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2.4. Corneal refractive power estimates 167 

The corneal refractive power 𝑃 was calculated using the Gaussian optics formula 168 

[11, 12]: 169 

P =
ncornea − nair

Ranterior
+

naqueous − ncornea

Rposterior
−

Tc

ncornea
×

ncornea − nair

Ranterior
×

naqueous − ncornea

Rposterior
 (Eq.6) 

where the refractive indices of the air, 𝑛𝑎𝑖𝑟 , cornea, 𝑛𝑐𝑜𝑟𝑛𝑒𝑎, and aqueous humour, 170 

𝑛𝑎𝑞𝑢𝑒𝑜𝑢𝑠 , were set to  1.0, 1.376 and 1.336, respectively,[13, 14]; Ranterior and Rposterior 171 

represent the instantaneous radii of curvatures of the anterior and posterior surfaces, re- 172 

spectively; and Tc is the central corneal thickness. When analysing the raw Pentacam 173 

data, the central corneal thickness, Tc, the value measured by the Pentacam Scheimpflug 174 

system was employed. When Zernike fitted corneal surfaces were considered, Tc was cal- 175 

culated by subtracting the Z-axis value of the fitted corneal posterior surface from the 176 

fitted anterior surface at the corneal apex. To find the overall refractive power, both the 177 

axial and tangential versions of the radii of curvature were considered. Axial curvature 178 

𝐾𝑎 =
1

𝑅𝑎
 and tangential curvature 𝐾𝑡 =

1

𝑅𝑡
 were determined using a custom-built 179 

MATLAB (MathWorks, Natick, USA) program following Klein's methods [15] as in Eq 7 180 

and Eq 8, respectively; 181 

𝐾𝑎 =
1

𝑅𝑎
=

1

𝜌𝑔
∫ 𝐾𝑡𝑑𝜌𝑔

𝜌

0

=
𝑑𝑍𝑔 𝑑𝜌𝑔⁄

𝜌𝑔 (1 + (𝑑𝑍𝑔 𝑑𝜌𝑔⁄ )
2

)

1
2

, 
(Eq.7) 

𝐾𝑡 =
1

𝑅𝑡
= 𝐾𝑎 + 𝜌𝑔

𝑑𝐾𝑎

𝑑𝜌𝑔
=

𝑑2𝑍𝑔 𝑑𝜌𝑔
2⁄

(1 + (𝑑𝑍𝑔 𝑑𝜌𝑔⁄ )
2

)

3
2

. 
(Eq.8) 

Corneal 𝑅𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟  and 𝑅𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  in Eq 6 were substituted by either axial radius of 182 

curvature 𝑅𝑎 or tangential radius of curvature 𝑅𝑡 depending on the type of the calcu- 183 

lated refractive power map. Z-coordinates were substituted by those of the anterior or 184 

posterior surface, depending on the corneal surface where the curvature was being deter- 185 

mined. Refractive power errors due to surface Zernike polynomial fittings were calculated 186 

for the central optic zone of the cornea up to 3 mm diameter, the average pupil size among 187 

normal adults in daylight [16, 17]. 188 

2.5. Smoothing 189 

The axial and tangential power maps were smoothed using the robust discretised 190 

smoothing spline method [18]. Different degrees of smoothing were applied using a pos- 191 

itive scaling parameter 𝑆, with higher 𝑆 providing a smoother map. The method, which 192 

is based on the discrete cosine transform (DCT), works with equally spaced data in two 193 

dimensions. As the degree of smoothing is influenced by the smoothing parameter 𝑆, it is 194 

appropriate to adjust the value of 𝑆 to achieve the best smooth estimate of the original 195 

data whilst also avoiding over-smoothing, where some data features disappear, or under- 196 

smoothing, where the digital noise affects the quality of the data. In the current study, 𝑆 197 

was fixed to 5 with axial maps and 15 with tangential maps, based on the preliminary 198 

investigations carried out in [19, 20]. 199 

3. Statistical analysis 200 

Statistics and Machine Learning Toolbox of MATLAB (MathWorks, Natick, USA) 201 

was used to perform the statistical analysis. The null hypothesis probability (p-value) at a 202 

95% confidence level was calculated to compare each set of RMS errors obtained when a 203 

corneal surface was fitted to Zernike polynomials of successive orders. Initially, the one- 204 

sample Kolmogorov-Smirnov test was used to make sure that each set of RMS errors fol- 205 

lowed a normal distribution, and then the two-sample t-test was used to investigate the 206 
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significance between pairs of data to check whether they were significantly different. Us- 207 

ing the Pentacam squared grid of 141 points, nominally 19881 points were tested for each 208 

fitting order. As t-tests require independence of the measures, and fellow eyes were not 209 

analysed together in the current study, the two-sample t-test was deemed suitable to de- 210 

termine whether there is a significant difference between the means of two data groups 211 

[21]. The test was used several times in this study to evaluate the differences in RMSs for 212 

different fitting orders when corneal surfaces and their refractive power were investi- 213 

gated. 214 

4. Results 215 

Zernike polynomials of different orders were fitted to the anterior and posterior sur- 216 

faces of the rabbit corneas, and the corresponding RMS was computed. The Kolmogorov- 217 

Smirnov test, Figure 4, confirmed that p-values were under 0.05, indicating that the re- 218 

sulting fitting RMSs form normal distributions. From Figure 5, the anterior and posterior 219 

surfaces of the rabbit cornea are best fitted to order 12 and 10 Zernike polynomials, re- 220 

spectively. This is demonstrated in the RMS, which converges to a value close to 0 µm for 221 

orders greater than these. The significance was computed for the RMS of successive pol- 222 

ynomial orders. This further highlighted the suggested Zernike polynomial orders, as for 223 

orders higher than those aforementioned, the difference between consecutive order RMS 224 

values became insignificant at a confidence level of 5% (p>0.05). Following convergence 225 

of the RMS error, there were residual errors of 0.54 and 0.49 µm for the anterior and pos- 226 

terior surfaces, respectively, in the right eye population and 0.52 and 0.49 µm, respec- 227 

tively, in the left eye population. 228 
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 229 

Figure 4. The probability (p-value) of the null hypothesis indicates whether the data comes from a 230 
standard normal distribution as a result of the Kolmogorov-Smirnov test. 231 

 232 
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 233 

Figure 5. RMS errors for surfaces fitted to different orders of Zernike polynomials are displayed in 234 
the first row. Results are shown separately for the right and left eyes. Statistical significance between 235 
successive fitting orders RMS values are demonstrated in the second row where the two samples t- 236 
test were used.  The transient state orders show significant changes in power differences; however, 237 
steady state orders show a stable change in power differences. 238 

Refractive corneal power maps were produced by computing both the axial and tan- 239 

gential curvature from the raw Pentacam elevation data and then smoothed using varying 240 

degrees of smoothing, Figure 6 and Figure 7. When applying different degrees of smooth- 241 

ing to the axial curvature maps, it was noted that moving up to 𝑆 = 6 gave a good repre- 242 

sentation of the surface without missing any important features, as can be seen by visually 243 

comparing smoothed maps to those produced by the corneal tomographer software, Fig- 244 

ure 8. If the same logic is applied to the tangential curvature maps, a smoothing degree of 245 

𝑆 = 16 was visually identified to achieve a similar smoothness to that which is shown in 246 

the maps generated using the corneal tomographer software, Figure 6. 247 
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 248 

Figure 6. Axial refractive power map of a rabbit's left eye smoothed to different ranges with the 249 
scaler 𝑆 changing from 𝑆 = 0, which represents no smoothing, up to 𝑆 = 22, which represents 250 
high smoothing. Not much change was observed beyond 𝑆 = 6. 251 
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 252 

Figure 7. Tangential refractive power map of a rabbit's left eye smoothed to different ranges with 253 
the scaler 𝑆 changing from 𝑆 = 0, which represents no smoothing, to 𝑆 = 22, which represents 254 
high smoothing. Not much change was observed beyond 𝑆 = 16. 255 

 256 

Figure 8. Curvature maps, as outputted by the Pentacam tomographer, for the same rabbit eye re- 257 
ported in Figure 5 (yellow dashed rectangle) and Figure 7 (pink dashed rectangle). 258 

Average central axial and tangential power differences were computed for posterior 259 

and anterior corneal elevation data fitted to Zernike polynomial with different orders, 260 

Figure 9. Average errors of the calculated power within the 3 mm central optic zone and 261 

their standard deviations were then computed. The average errors in axial and tangential 262 

refractive powers showed convergence at and after fitting order 12. Beyond this order, the 263 
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errors converged to 0.16±0.01 D, 0.37±0.02 D in the right eyes and 0.16±0.01 D, 0.36±0.03 D 264 

in left eyes for the axial and tangential curvature maps, respectively. 265 

 266 

Figure 9. The average difference between axial and tangential power for surfaces was generated 267 
using different Zernike polynomial orders, and the power values were computed using the original 268 
elevation data. Results only consider the central optic zone of the cornea (central 3 mm diameter). 269 
The transient state orders show significant changes in power differences; however, steady state or- 270 
ders show a stable change in power differences. 271 

When vertical, horizontal commas and spherical aberration coefficients were tested 272 

against the Zernike order fitting, fluctuations were observed on the values in low orders 273 

(transient state), but once the order of fitting is equal or passes 12 and 10 for the anterior 274 

and posterior surfaces, the values were stalled (steady state), (see Figure 10 and Figure 275 

11). Right eyes aberrations were settled at 4.22±0.33 µm, 3.71±0.3 µm, and 7.89±0.43 µm 276 

while left eyes were settled at 3.74±0.31 µm, 3.43±0.29 µm and 7.42±0.41 µm. Rates of 277 

change in fitted values of Zernike cototients were observed by the first derivative of these 278 

values, and the steady state was recognised when the rate of change was close to zero. 279 
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(a) (b) (c) 

Figure 10. Right eyes set, (a) Vertical coma Zernike coefficient (top) and its rate of change with the 280 
fit order (bottom), (b) Horizontal coma Zernike coefficient (top) and its rate of change with the fit 281 
order (bottom), (c) Spherical aberration Zernike coefficient (top) and its rate of change with the fit 282 
order (bottom). 283 
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(a) (b) (c) 

Figure 11. Left eyes set, (a) Vertical coma Zernike coefficient (top) and its rate of change with the fit 284 
order (bottom), (b) Horizontal coma Zernike coefficient (top) and its rate of change with the fit order 285 
(bottom), (c) Spherical aberration Zernike coefficient (top) and its rate of change with the fit order 286 
(bottom). 287 

5. Discussion 288 

Rabbit eyes are frequently used for animal-based investigations of various ocular ap- 289 

plications because of their similarity in size to the human cornea, in addition to producing 290 

consistent and repeatable results at a low cost [22] due to the ease of manipulation [23]. 291 

They have been successfully used for assessing the implantation of intraocular lenses 292 

(IOL) [24], inlay implantation [25], corneal stromal opacity [26], laser-based vision correc- 293 

tion [27, 28], the complication of refractive surgery [29] and approving the safety of in- 294 

trastromal laser ablation [30, 31]. Zernike polynomials are widely used to describe the 295 

shape of the corneal surface through their terms and coefficients [5, 32-34]. Using Zernike 296 

polynomial fitting, rabbit eyes were reported to have lower refractive errors, when com- 297 

pared to human eyes, but larger higher-order aberrations [35]. Geometrically, through the 298 

use of Zernike polynomials, the corneal surface can be reconstructed from the combina- 299 

tion of terms that have a physical meaning directly connected to the characteristics of the 300 

ocular surface [36]. Optically, a light wavefront at a specific time instance is a surface that 301 

perpendicularly joins all light rays' points generated by the same source and have the 302 

same phase. Ideally, the wavefront must be a perfect sphere centred on the source point 303 

if the light is not refracted. Zernike polynomials are widely used to describe the light 304 

wavefront over the surface of a circular pupil, hence used in showing the eye's behaviour 305 

in spread-out light rays or the so-called eye's aberrations. Zernike polynomials have the 306 
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ability to dismantle the optical aberrations to individual components, hence, the ability to 307 

help to determine vertical and horizontal commas in addition to spherical aberration. 308 

When measuring corneal tomography, the Pentacam uses a Scheimpflug system to 309 

take elevation measurements at several equally spaced meridians around the eye [1]. To 310 

obtain values for points in between these meridians, surface fitting or interpolation must 311 

be used. In this study, corneal tomography data measured using Pentacam were obtained 312 

from twenty-one rabbits and analysed in order to identify the optimal order of Zernike 313 

polynomials. The current study confirms the Pentacam-based measurement findings of 314 

Wei et al.'s earlier study [4] by showing that the anterior and posterior elevation data out- 315 

putted by the Pentacam tomography device are optimally fitted to Zernike polynomials 316 

of order 12 and 10, respectively. This behaviour has been previously reported with both 317 

healthy and keratoconic eyes with human participants [4], and now in animal eyes as re- 318 

ported in this study.  319 

When compared to the raw elevation data, even with optimal polynomial fitting, 320 

there were residual errors of 0.54 µm and 0.49 µm for the anterior and posterior surfaces, 321 

respectively, in the right eye population and 0.52 µm and 0.49 µm, respectively, in the left 322 

eye population. For a 10 mm diameter fit of the cornea, these errors are far lower than 323 

those achieved when using a conic-fit, which was reported as 21.18±11.1 µm by [37, 38] 324 

performed a similar study whereby they investigated the effect of varying the order of 325 

meridional polynomial fitting on the RMS error. For a 10.7 mm diameter, their data sug- 326 

gested that optimal fits are obtained with fit orders of 8 or higher. These orders were able 327 

to achieve an RMS of roughly 0.08 µm, far lower than observed in this study. These results 328 

suggest that, despite the usefulness of Zernike polynomials when describing corneal 329 

shape, meridional polynomials provide the greatest accuracy, relative to the raw elevation 330 

data.  331 

Axial and tangential power maps computed using the raw elevation data contain 332 

noise and require smoothing for effective visualisation. Digital noise is systematically gen- 333 

erated while processing discrete data collected during the eye scanning process. For this 334 

reason, an investigation into the impact of smoothing the resulting refractive power maps 335 

was conducted, to reduce the noise, whilst ensuring no key information is lost in the pro- 336 

cess. This analysis highlighted that the tangential curvature maps were far more sensitive 337 

to digital noise than axial refractive power maps (Figure 6 and Figure 7). Tangential cur- 338 

vature is calculated using the second derivative of the raw elevation data; however, axial 339 

curvature is calculated using the first derivative. This exercise demonstrated that the sec- 340 

ond derivative creates more digital noise (less signal-to-noise ratio) than the first deriva- 341 

tive and, as a result, tangential maps need more smoothing than axial maps. The data 342 

suggests that the curvature map displayed by the tomographer software is smoothed. This 343 

is evident in the maps with minimal smoothing where the digital noise, systematically 344 

generated during the calculations, drastically reduces the practicality of using them for 345 

diagnosis. 346 

Axial and tangential power maps were then computed using corneal surface data 347 

obtained from Zernike polynomials of varying order.  The results show that reconstruct- 348 

ing the corneal surface through the use of Zernike polynomials induces errors in the cal- 349 

culation of corneal refractive power. This is due to the loss of accuracy during the fitting 350 

process itself and the existence of the systematic digital noise associated with calculating 351 

both axial and tangential curvatures. Therefore, getting the same refractive corneal power 352 

from a Zernike reconstructed surface cannot be achieved. Users need to acknowledge that 353 

reconstructing refractive power maps through Zernike polynomials will incur a loss in a 354 

portion of these powers as a residual error. However, they can minimise these residual 355 

powers by using Zernike polynomials with orders of at least 12 and 10 when fitting the 356 

anterior and posterior surfaces, respectively. Even with these optimal Zernike orders, 357 

there will still be errors of around 0.16 D and 0.36 D when computing the axial and tan- 358 

gential power, respectively, although these errors are not clinically significant.  359 
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6. Conclusion 360 

The current study evaluated Zernike fitting in rabbit corneas using a reverse engi- 361 

neering approach in attempts to utilise deductive reasoning to understand how Pentacam 362 

device software performs. The result confirms that the optimal Zernike orders for fitting 363 

to Pentacam-measured tomography data are 12 and 10 for the anterior and posterior sur- 364 

faces, respectively. Axial and tangential power maps were computed using raw elevation 365 

and Zernike polynomial fitted data. In doing so, the necessity of smoothing for practical 366 

purposes was demonstrated. It was also demonstrated that reconstructing corneal sur- 367 

faces using Zernike polynomials induces a residual error in the calculation of axial and 368 

tangential refractive power. The aforementioned optimal Zernike polynomial orders were 369 

able to minimise this error, although residual errors of 0.16 and 0.36 D were still present 370 

for the axial and tangential curvature maps, respectively. Each of these results is important 371 

when considering the precision of the tomographic or power map data, something that is 372 

influential in several clinical applications, such as keratoconus progression and ectasia 373 

screening [39, 40].  374 

Ultimately, the Pentacam utilises the Scheimpflug principle by taking either 25 375 

(standard settings) or 50 (high resolution (HR) settings) scans in two seconds as its camera 376 

rotates around its axis, dealing with potential eye movement and discrete images requires 377 

full reconstruction of the surface raw elevation. As the calculation of curvatures from re- 378 

constructed elevation has severe resolution requirements, polynomial-based smoothing 379 

appeared to be a proper option. The current study findings support the hypothesis that 380 

Pentacam eye anterior and posterior surfaces are fitted to order 12 and 10 Zernike poly- 381 

nomials respectively within the DSP implemented in the Pentacam software, as rabbit 382 

eyes showed an identical fit performant that is similar to the human eyes [4]. This identi- 383 

cality was observed regardless of the systematic misalignment errors associated with cap- 384 

turing rabbit eyes' tomography. Finally, to get stable values of high-order aberrations that 385 

are not affected by Zernike polynomials, such as commas for ICRS adjustments [9] or 386 

spherical aberration for pre-cataract operations [10], the current study recommends using 387 

order 12 and 10 Zernike polynomials specifically to fit corneal anterior and posterior sur- 388 

faces, respectively, as long as the Pentacam is being used as a tomographer in the meas- 389 

urement process. This conclusion should not be applied interchangeably with other eye 390 

tomography or topography instruments due to variations in their measurement methods 391 

and associated DSP procedures. 392 
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