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Abstract

Background and Objectives: Chronic post-stroke laigg impairment is typically warse in older
individuals or those with large stroke lesions. Heer, there is unexplained variance that likely
depends on intact tissue beyond the lesion. Biggnsian emerging concept which is partially
independent from chronological age. Advanced bagmis associated with'cognitive decline in
healthy older adults, therefore we aimed to ingedé the relationship with stroke aphasia. We
hypothesized that advanced brain age is@a signiffeetor associated with chronic post-stroke
language impairments, above and beyond chronolioggsaand lesion characteristics.

Methods: This cohort study retrospectively evaldatarticipants from the POLAR clinical trial
(NCT03416738), recruited through local advertisenmeiSouth Carolina (US). Primary
inclusion criteria were left-hemisphere stroke ahtbnic aphasia>(l2 months post-stroke).
Participants completed baseline behavioral testiclgding the Western Aphasia Battery-
Revised (WAB-R), Philadelphia Naming Test (PNT)rdgids and Palm Trees Test (PPTT),
and the Wechsler Adult Intelligence Scale matrsdstest, before completing 6-weeks of
language therapy. The PNT was repeated 1-monthktipeistpy. We leveraged modern
neuroimaging technigues to estimate brain age ampuated a proportional difference between
chronological age and estimated brain age. Multipkar regression models were used to
evaluate the relationship between proportionalrbagje difference and behavior.

Results: Participants (N=93, 58 males, 35 femalestage age=61 years) had estimated brain
ages ranging from 14-years younger to 23-years tthd@ chronological age. Advanced brain
age predicted performance on semantic tasks (P&1d )anguage tasks (WAB-R). For

participants with advanced brain aging (n=47),ttremt gains (improvement on the PNT) were
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independently predicted by proportional brain aiffeince (T=-2.0474p=0.0468, 9% of

variance explained).

Discussion: Through the application of modern nenaging techniques, advanced brain aging
was associated with aphasia severity and perforenansemantic tasks. Notably, therapy
outcome scores were also associated with propaitlimain age difference, albeit only among
participants with advanced brain aging. These figdicorroborate the importance of brain age
as a determinant of post-stroke recovery and undexghe importance of personalized health
factors in determining recovery trajectories, whstiould be considered during the planning or

implementation of therapeutic interventions.

I ntroduction

Stroke-related damage to peri=sylvian languagatediregions is often associated with
varying types and degrees of aph&siaAlthough some individuals with aphasia spontarséo
recover in the first few months after the strokenystroke survivors experience persistent long-
term disabling language and communication problémsion size and location are important
predictors of long-term language disabflityhowever, these factors only account for a
proportion of the variance in aphasia severity (apimately 20-50%°). In addition to lesion
factors, there is considerable evidence that lagguapairment following stroke is more severe
in older adulté Emerging data also supports the idea that stigkds associated with greater
long-term decline, with older individuals showingqper trajectories than their younger
counterparts The degree of chronic aphasic impairment is edstarkably variable across
individuals, and factors which determine likelihcad severity of long-term deficits remain
incompletely understood. No current model of apdnaswerity is capable of accurately
predicting impairment in this heterogeneous pojpurtat

It is well documented that there are declines udtiple cognitive skills in typical aging,
but there are substantial differences in the ttajgof age-related decline across individtas
This led to the emerging ideas of cognitive resawvan explanation for why some individuals

may be more resilient to the detrimental effectagind™. Stern and colleagues described this
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theory but suggest the underlying mechanisms bghwhiain and cognitive reserve enable
individuals to maintain cognitive performance otigre are still uncleaf. Similarly, recent
research suggests advanced brain aging is an iampdaictor related to declining cognitive skills
among adults in genefaf Brain age can be estimated by comparing neurditgageasures
(e.g., regional tissue volume from gray and whitgtar) from one individual against a large
normative database of healthy individuals. The pryynmeasure of advanced brain aging is the
difference between an individual’s chronologica¢ @md the same individual’s predicted brain
age based on brain tissue integrity. Advanced kaging (higher estimated brain age than
chronological age) is now being increasingly recoggh as an important factor related to lower
cognition among older adults, as well as amongviddals with dementia or with risk-factors
for neurocognitive disordel'® It may be that advanced brain aging is associattrdpoor
cognitive reserve, and conversely, delayed braimgadower estimated brain age than
chronological age) may be associated with.-a resiéego age-related cognitive changes.

Given the known relationship between cognition BfRi-based brain aging metric, we
hypothesized that brain age may be related to Eggimpairments after a stroke beyond the
effects of chronological age and characteristiahefstroke lesion. By controlling for these
known factors, our analysis-sought to measurertiependent predictive power of brain age in a
large sample of adults with chronic stroke aphadie brain age measure used quantifies the
structural integrity of brain tissue, irrespectofehe stroke lesion, i.e., not taking into context
the stroke-related tissue loss, but the overalcsiral integrity of brain tissue that remains afte
the stroke.

Measuring brain age in the context of stroke catelshnically challenging since existing
approaches rely on tissue segmentation, whiclhurm tlepends on the quality of normalization
(i.e., warping each individual brain into standspdce). Existing approaches to brain
normalization are typically designed to work witttact brains. When these methods are applied
to brains with large lesion, they can fail catgshioally, providing outputs which dramatically
displace relatively proximate voxel locatioh<One potential solution to this problem, which has
been used successfully by multiple groups studgtrakeé 2 is to apply an enantiomorphic
‘healing’ algorithm’ to damaged brains prior to normalization thatafely mimics healthy

brains. This healing process relies on the fadtlihains are generally left/right symmetrical to
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replace damaged left hemisphere tissue with a mimrage of homologous healthy right
hemisphere tissue.

In this study, we tested the hypothesis that clerpost-stroke aphasia severity is
negatively influenced by advanced brain age. Westigated data from a cohort of stroke
survivors with chronic aphasia, leveraging moderarnimaging techniques (i.e.,
enantiomorphic healing) to adequately infer braja &#om individuals with large stroke lesions

and test their relationship with chronic deficitgldreated recovery.

Materialsand M ethods

Study design and participants

We retrospectively evaluated an existing longnadlidataset from participants with a
history of one or more chronic (>12 months prioetwollment) left hemisphere strokes.
Participants were part of the POLAR (Predictingutes of Language Rehabilitation in
Aphasia}®?°clinical trial (NCT03416738). As part of the POLATRotocol, all participants
underwent a baseline battery,of language and neucbplogical testing at the time of
enroliment. The baseline battery included the WasAg@hasia Battery-Revised (WAB-R)
Philadelphia Naming Test (PNf) Pyramids and Palm Trees Test (PP,1and the Wechsler
Adult Intelligence Scale matrices subtest (WAIS)ebattery was administered by American
Speech-Language-Hearing Assaociation certified dpaed language pathologists with
experience working with individuals with aphasia.

Following the baseline behavioral battery, papeits underwent 6-weeks of semantic
and phonological treatment using the following time 3-weeks of treatment, 4-weeks of rest,
then 3-weeks of the alternative treatment. Treatragter was randomized, with half the
participants receiving semantic treatment first treother half receiving phonological
treatment first. The PNT was the primary outcomasnee and was completed again 1-month
following treatment (see Kristinsson and oth&fsr a more detailed description of the
procedure). The primary goal of POLAR was to previtformation about neurobiological and
demographic factors associated with aphasia tredtowgcomes.

The following inclusion/exclusion criteria applidéarticipants were included in the

study if they i) incurred a left-hemisphere ischemmi hemorrhagic stroke to the middle cerebral
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artery, ii) had chronic aphasial2 months post-stroke), iii) were 21-80 years @,ag) spoken
English was their primary language &0 years, and v) could provide written or verbal
consent. Participants were excluded if they hagwerely limited verbal output (measured by a
WAB-R Spontaneous Speech score of 0-1), ii) seyemgbaired auditory comprehension
(measured by a WAB-R Auditory Comprehension scoi@ b), iii) bilateral or cerebellar stroke,
iv) contra-indications to testing with magneticarance imaging (MRI), or v) history of
neurological disorders. Individuals with multiplkeakes were eligible if all lesions were

confined to left supratentorial territory.

Standard Protocol Approvals, Registrations, and Patient Consents

All participants were recruited through local-adisament at the University of South
Carolina (Columbia) or at the Medical University@duth Carolina (Charleston). The study was
approved by the Institutional Review Boards of bio#titutions. Participants were
retrospectively evaluated from an existing longmadiclinical trial; POLAR (Predicting

Outcomes of Language Rehabilitation in. Aphasiaicdiltrials.gov ID: NCT03416738).

Neuroimaging acquisition and preprocessing

All participants underwent research MRI scannin@diemens Trio 3T scanner
equipped with a 20-channel head coil. In this stuayy T1-weighted images were used for
brain age estimation, and T2-weighted images weee or stroke lesion identification. These
were acquired using the following parameters: Tigied imaging (MP-RAGE) sequence with
1mm isotropic voxels; a 256x256 matrix size, aip“ingle, and a 92-slice sequence with
repetition time (TR)=2250ms, inversion time (T1)&2s, and echo time (TE)=4.11ms. T2-
weighted scans were acquired using a 3-dimensiiyaeighted SPACE sequence covering the
whole head with a resolution of 1mmnd a field of view=256x256mm, 160 sagittal slices
variable degree flip angle, TR=3200ms, TE=212ms.

Chronic stroke lesions were manually drawn usirdngrarticipant’s T2-weighted image
in native space. All lesion tracings were perforrogdan expert neurologist (author LB) or by a
trained study staff member (author RNN) and weinredeld to the behavioral data.
Enantiomorphic normalization was then conductedgienii_preprocesgipeline
(https://github.com/neurolabusc/nii_preproé8ssa set of Matlab-based (R2017b, The
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MathWorks) scripts that leverage multiple best-ofdal programs (SPM12; Functional Imaging
Laboratory, Wellcome Trust Centre for Neuroimagiimgtitute of Neurology
[www.fil.ion.ucl.ac.uk/spm], FSL v6.0%8 ASLtbx
[http://www.cnf.upenn.edu/~zewang/ASLtbx.php], aiRItrix [https://www.mrtrix.org/]) in

order to normalize and process MRI data acquireah individuals with lesioned brains. These
scripts utilized enantiomorphic normalizattén

To create chimeric images (i.e., ‘healed’ brainsyhich the damaged portion of the left
hemisphere was temporarily replaced with the mimage of intact areas from the healthy right
hemisphere (using the SPM12’s Clinical Toolbox wHeverages SPM12’s unified
segmentation-normalizatiGhmethod to warp this chimeric image to standard [Migace, and
the resulting spatial transform was then appliethéonative-space T1 scan as well as the native-
space versions of the hand-drawn lesion map. Tddgianal step (enantiomorphic
normalization) ensures that segmentation-normaizahethods designed for intact brains do

not incorrectly warp scans with large lesions ® [#ft hemisphere.

Brain age estimation

Brain age estimation'was-performed based solell/leweighted images using the
BrainAgeR analysis pipeline (github.com/james-dmigihageR)’. However, since the
BrainAgeR analysis pipeline involves the iteratbagimentation-spatial normalization routines
(described below) designed to handle‘healthy nsimited brains, we used the enantiomorphic
healing approach described above to remove thkestesions from the MRI scans to allow for
adequate tissue estimation before the images wput into the BrainAgeR pipeline. By
removing the stroke lesion, we ensured that thernedid not affect the brain age calculation,
and that brain‘age was based on the intact bissoedioutside the lesion.

As such, the lesion maps in native T1-weighted spegre smoothed with a 3mm full-
width half maximum Gaussian kernel to remove slegigees and to include the peri-lesional
tissue. The enantiomorphic segmentation-normatinatias then employed using SPM12 and
custom MATLAB scripts (publicly available at:
https://github.com/neurolabusc/nii_preproé&ssThe enantiomorphic approach creates a
mirrored image of the right hemisphere, which isrtayed onto the left hemisphere that

contains the stroke lesion. A chimeric image isitbeeated in which the lesioned tissue is fully
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replaced by tissue from the contralateral hemispHarother words, the stroke-related damaged
area is substituted by the homologue tissue iptaserved right hemisphere. This ‘healed’ brain
does not include the stroke lesion, and it wasith&ge that was input into the BrainAgeR
pipeline described below.

The BrainAgeR pipeline was applied using the defardtocof’?® First, T1-weighted
images were segmented into gray matter and whiteermzefore being normalized using non-
linear spatial registratiGhand SPM12's DARTEL toolb3% The BrainAgeR analysis pipeline
uses a customized version of FSL slicesdir to gagaex directory of images and corresponding
index.html files for quality controlling in a welsdwser (github:com/james-cole/brainageR).
These probabilistic tissue maps were visually inggakeby an expert neurologist (author LB) to
ensure quality of the segmentation. The cerebrasfiuid tissue was removed, and the gray and
white matter probabilistic tissues were vectorizaahcatenated, and subjected to a principal
component analysis to reduce dimensionality. Thepmnents explaining the top 80% of the
variance were used for brain age prediction. Ahm@eelearning algorithm using a pretrained
Gaussian regression model implemented in' R padkagdab was used to estimate brain age.
This pretrained model was based on scans of 3,8&[fhy individuals from 7 publicly available
datasets and tested on 611different scans ofhyeatiividuals aged between 18 and 90 y&ars
See Cole and colleagues for more detail on thenBgeR pipeliné”?® The image processing
steps are shown in Figure 1.

The relative difference between the estimated kaaththe participant’s chronological
brain age was determined using the formula:

(estimated brain age - chronological age)/chroriol@ge.

As such, for each participant, a proportional beage difference was calculated
representing the proportion of the participant’sociological age accounted for by the difference
between brain age and chronological age. More Bpalty, proportional brain age difference
(PBAD) is the measure of advanced (or delayednltage beyond chronological age, adjusted
proportionally for chronological age. Positive vedusuggest that the predicted brain age is older
than the chronological age of the participant,(eelvanced brain aging), and negative values
suggest chronological age is older than predictathlage (i.e., delayed brain aging). This
measure is hereafter referred to asptoportional brain age difference
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Statistical analyses

Normality of primary behavioral variables used &malysis were tested using a one-
sample Kolmogorov-Smirnov test. The relationshimeen continuous demographic variables
were assessed using Pearson’s or Spearman’s tiomsléor parametrically or non-
parametrically distributed variables, respecti@y indicated in the results section).

To assess the relationship between PBAD and layggoagnitive measures, we
performed two main sets of analyses. First, weuatal the relationship between the
proportional brain age difference and baselinequarince (pre-treatment assessments) using
multiple linear regression models in which the hatval variable was set as the dependent
variable, and the following variables were usethdspendent variables: PBAD, chronological
age, and lesion volume.

Second, we evaluated the relationship between PBADPOLAR treatment outcomes,
where the relative gain in language function wdsaseéhe dependent variable in multiple linear
models. More specifically, relative gain‘in langadgnction was evaluated as fportion of
maximal gainsaccording to the formula: (correct items post-&lpgr— correct items pre-therapy)
/ (maximum score — correct items pre-therapy).

The same independent variables were used to assasaent outcomes: chronological
age, PBAD, and lesion volume. Additionally, baselperformance (correct items pre-therapy)
was also included as an independent variable.

It should/'be noted that PBAD used in all analysesi¢erning baseline behavioral
measures or post-treatment recovery) were comaseld on the MRI obtained at baseline, i.e.,

before language treatments.

Data Availability

The conditions of our ethics approval do not peshdring of the raw MRI data supporting this
study with any individual outside the author teamler any circumstances. However,
anonymized data not published within this articl# ke made available by request from any

qualified investigator.
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Results

Participants

We retrospectively evaluated an existing longitatiolataset from participants (N=109)
with a history of one or more chronic (>12 monthispto enrollment) left hemisphere strokes.
After confirming participants met our inclusion/é&xsion criteria, the results cohort comprised

of 93 participants. Demographics information ddsng this sample are provided in Table 1.

Brain Age

The estimated brain age difference ranged froryebgs younger to 23 years older than
the participant’s chronological age. The mean diffiee between brain age and chronological
age was 2.18+/-7.6 years. The PBAD was 0.04+/-G-ifuire 2 demonstrates two examples
highlighting (A) a participant whose estimated hrage differed substantially from the
participant’s chronological age, and (B) a participwhose estimated brain age and
chronological age were similar.

There was a significant relationship between padrtts’ chronological age and the
estimated brain age (Spearmar¥§.7190p<0.0001). Older participants had a lower difference
between brain age and chronological age (Spearmafd2775,p=0.007), as well as a smaller
PBAD (Spearman’s=-0.3317p=0.001)., These results are shown in Figure 3.

There was not a significant relationship betweemmblogical age and lesion volume
(Spearman’s=-0.1524,p=0.15), between brain age and lesion volume (Spaaiar=-0.1757,
p=0.1), or between the PBAD and lesion volumes (8paa’sr=-0.006,p=0.96).

Baseline cognitive and language variables

Pyramids and Palms Trees Test (PPTT): Models ceatpof chronological age, PBAD,
and lesion volume significant predicted performaocghe PPTT (F=7.9078=0.0001).
Chronological age was not significantly associatgt the PPTT scores (T=-0.643#0.5223),
but higher PBAD (T=-2.5174=0.0136) and larger lesion volumes (T=-4.283¢).0001) were
associated with worse performance on this test.

WAIS Matrix Reasoning: A similar model showed sfgant associations between

WAIS Matrix Reasoning scores, chronological ageABEnd lesion volume (F=4.1546,
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p=0.0084). Chronological age (T=-3.12@30.0024) and lesion volumes (T=-2.03p%0.0452)
were associated with lower WAIS scores, with olpirticipants having significantly worse
behavioral scores. However, PBAD was not an indépeipredictor (T=-1.2833~0.2027).

Western Aphasia Battery-Revised (WAB): Linear mbdglrevealed that all WAB
scores were significantly associated with chroniglaigage, PBAD, and lesion volume. PBAD
was an independent predictor of worse scores fonedsures, except for comprehension. All
models are summarized in Table 2 and Figure 4.réi§udemonstrates the relationship between
the WAB scores and PBAD scores after regressingangnce dueto chronological age and
lesion volume.

Philadelphia Naming Test (PNT): We observed a fiamt relationship with the
prediction model (F=8.0514 Modg#=0.0001), with higher chronological age (T=-2.4007,
p=0.0187) and larger lesion volume (T=-4.49@360.0000) as predictors of worse scores. PBAD
was not an independent predictor (T=-1.5197, PBAD.1326). Of note, the PNT was available

for only a subset (n=82) of all participants.

L anguage ther apy outcomes

The PNT was available for 78 participants at dagikeline testing and testing
conducted 1-month after/therapy. At baseline tgsparticipants had an average PNT score of
80.83 6D=61.77, min=0, max=172). At.one month follow upe tiverage PNT score was 86.76
(SD=63.73, min=0, max=173). The average change in 8d¢fe between baseline and one
month was 5.938D=9.20, min=-12, max=43.5). The average proportiomaximal gains score
was 0.138D=0.17, min=-0.11, max=0.625).

Language improvement as proportion of maximal gj@rcorrectly named items in the
PNT was associated with the linear model not indgdaseline performance (F=6.1530,
p=0.0009), in whichthe chronological age (T=-2.52450.0138) and lesion volumes (T=-
3.8274,p=0.0003) were independent predictors of recoveBAIP was not a significant
predictor (T=-1.2824p=0.2037).

In the model with baseline performance includedragndependent variable, there was

also a significant relationship with improvement2£97.90940<0.0001) but only baseline
performance was a significant predictor (T=83.796%).0001).
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Forty-seven participants had an estimated bragnvwagchwas equal or higher than the
participant’s chronological agef-or these participants the average baseline PNE seas 80.42
(SD=61.85, min=0, max=169). At one month follow upe tiverage PNT score was 86.15
(SD=63.98, min=0, max=171). In these participants aerage change in PNT score between
baseline and one month was 5.88%9.19, min=-12, max=43.5). The average proportion o
maximal gains score was 0.1300.18, min=-0.11, max=0.625). Among participants
estimated brain ag®as equal or higher than the participant’s chrorgilcal age(n=47), the
improvement in the PNT was independently associatdda lower PBAD. Specifically, not
including baseline performance in the model, tr@prtion of maximal gains.in correctly named
items in the PNT was significantly associated (E284,p=0.0361) and.independently predicted
by a lower PBAD (T=-2.0474=0.0468, 9% of variance explained) and lesion vesifT=-
2.3682,p=0.0224). Chronological age was nearing statissigalificance but not an independent
predictor (T=-1.9985p=0.0520, 8% of variance explained).

Importantly,including baseline performance in the mqd&NT improvement was
associated (F=1362.002850.0002) and independently predicted by PBAD (13025,
p=0.0259, 11.2% of variance explained).

Discussion

In this study, we evaluated the hypothesis thabmicrpost-stroke aphasia severity is
influenced by brain age. We tested this by invesitng the contribution of brain age (in addition
to typical explanatory variables such as chron@algage and lesion volume) using regression
models designed to predict behavioral scores &adnrent trajectories. This was made possible
through the application of modern neuroimaging téghes (i.e., enantiomorphic healing),
which enabled us to'apply brain age estimationrélgos to non-standard (i.e., lesioned) brains.
Specifically, we used output from the brain ageatgm to compute a proportional brain age
difference (PBAD) score. Using this metric, we fduhat the PBAD was associated with
performance on both the PPTT and well-known languagks including WAB subscores
(naming, spontaneous speech, repetition), and bepfzasia severity (WAB-AQ). Notably,

therapy outcome scores between baseline and 1-ma@mnéhalso associated with PBAD, albeit
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only among participants whose estimated brain aggequal to or higher than their

chronological age.

Challenges of Computing Brain Agein Stroke

Brain age predictions have been used previoustiiniical population®’, including
schizophreni&, and epilepsy. However, computing brain age within clinical p&ions with
brain lesions or resections poses additional chgéi§' > The presence of large lesions is not
only methodologically cumbersome, but the largaunad of damaged tissue is known to
influence behavioral and cognitive outcomes suldistéyf . This phenomenon is highlighted by
the current study in which lesion volume was fotm8e significantly related to all behavioral
scores. These results may indicate that more seffélets of advanced brain aging are not as
prominent as in otherwise healthy populations wither smaller or perhaps more diffuse brain
lesions (e.g., atrophy). Further, the strong reteghip between stroke lesion volume and
behavioral performance may explain why we did mal fissociations between PBAD and
general cognition (measured by the WAIS), a findimat has been previously descrilfed
Thus, the current results highlight the importaoteonsidering brain age in stroke aphasia, as it
was a predictor of language abilities even whemactng for lesion volume and chronological

age.

The Role of Brain Agein Language Performance

The results from this study demonstrate a relatignbetween PBAD and aphasia
severity (measured by the WAB). While chronologiagé and lesion volume were also
predictors of aphasia severity, PBAD was able fga®r some of the previously unexplained
(additional) variance. Although lesion volume iseof reported as a reliable predictor of post-
stroke aphasia severity, the contribution of othealth and demographic factors is less
consistent. One possibility is that specific conalbions of health and demographic factors
influence brain age, and therefore, brain age neslihe relationship between these factors and
overall aphasia severity. The association betw@&&Pand PPTT scores is particularly
interesting, as chronological age was not a sigguifi predictor in this case. This finding
suggests the intriguing possibility that advancgitt@ as defined in the current study, may
preferentially impact participants’ ability to assesemantic information. As accessing semantic
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information is typically associated with the vehtemguage streafri>and the bilateral temporal
lobes** it may be that advanced brain aging particulaffgcts these connections and regions.
Future studies could investigate the spatial distion of advanced age-related changes to

identify the brain regions most affected.

The Role of Brain Agein Language Recovery

Our results demonstrating that PBAD independentdyigts therapy gains is of clinical
relevance and has clear clinical implications. Anamon view suggests that aphasia recovery is
limited in the chronic stag® with outcome largely predicted by initial impaient®. However,
recent research casts doubt on these conclisSioighile measures of aggregate performance
may appear to plateau, this may reflect differextigmt trajectories based on factors related to
brain health (cognitive reserve), environment, gedetic&® . This suggests that personalized
patterns in aphasia impairments are highly varijedote the factors that influence who shows
therapy gains are not completely underst@abhis view suggests that understanding these
factors may prove valuable in providing accuratgposis, recommending bespoke treatment
and compensation regimes, and improving statigtoaler in clinical trials by matching
individuals for predictable gains. Although recgrtealth factors have been considered in
models of language recov&i)** brain age has not yet been considered in theseelso
However, the significance of the health and intggyf the spared tissue in populations with
cortical damage, such as stroke survivors, is beapimcreasingly clear within the
literaturé®*2 The results of the current study are consistétht recent reports that the integrity
of the spared tissue is related to cognitive reséand capacity for therapy gafié? as well as
the finding that diffuse neuronal diseases, suctnad| vessel disease (which can result in
leukoaraiosis) is associated with worse strokeam&s>, post-stroke cognitive decliffe and
poorer language recovéfy’? As advanced aging is thought to represent redceogital
integrity, it is perhaps not surprising that thisuld affect a complex cognitive skill such as
language. Notably, the lack of a relationship betwtherapy outcome scores when including
participants with a younger brain age than chrogickl age suggests that there are other factors
influencing therapy outcomes, particularly in othise healthy individuals. These factors might

include things like age at the time of stroke, clative amount of therapy received since stroke,
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and other systemic health measures. There isieatmieed to investigate these factors in

combination with brain age in future research.

Association with Cardiovascular Risk Factors

In this study, estimated brain age ranged from d4ry younger to 23-years older than
chronological age, but no associations were foletdiden lesion volume and chronological age
or PBAD. Although brain age and chronological agge\positively correlated, we observed
considerable variation in brain age within parteifs with the same chronological age. Previous
studies have suggested that brain age in strokenpais higher than that of chronologically age-
matched controfS at 6-weeks, 3-months, and 12-months post-stroketéTare several factors
which may influence brain age, including educati@md physical activitlf, and it is possible
that brain age itself is a biomarker for stroké&¥isChronological aging is both a risk factor for
stroké”” and is associated with poorer stroke outcdnashighlighted by the consistent negative
relationship found between age and language saoths current study. Similarly, since
cardiovascular risk factors such as-BMI; hypertemsand diabetes are associated with both
poorer brain healffi and increased tisk of stroKethese factors may also be related to advanced
aging. Future studies could'combine measures af‘age with other markers of overall brain
health (e.g., small vessel disease) to determmediative influence of each of these in
determining severity of post-stroke aphasia as agtreatment outcomes. Furthermore, future
studies could investigate which health’'or demogafatttors may predict who is likely to have
delayed/advanced brain aging.

Vascular mechanisms are also one of the majoribaititrg factors to dementia in the
elderly, and vascular dementia is common post-strdk brain age is a measure of cortical
integrity, advanced brain aging may be directlated to mild cognitive impairment or
subclinical Alzheimer’s disease. Among individuaish aphasia, the ascertainment of cognitive
impairment can be limited by language barriers\aad not something that was directly tested in

this study but is an important avenue for futuseesch.
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Limitations and Future Directions

Although using enantiomorphic ‘healing’ enabled #stimation of brain age
in individuals with large stroke lesions, the natyhysiological asymmetry in brain
hemispheres is therefore lost and this is a limoitedf this approach.

Furthermore, this is a retrospective study andtgiti@ee participants constitutes a
relatively small sample size for studies usingieage estimations, however, to.our knowledge,
this is the first application of the BrainAgeR dipe to individuals with stroke aphasia and
included participants had a broad distribution lmonological age (29-80 years), time post-
stroke (12-241 months), education (12-20 years),aminasia severity (WAB-AQ: 20.1-92.6)
across 6 different aphasia subtypes.

It is important to note that it is likely that adlgions of the brain do not age at the same
rate, and therefore regional distributions of agmgphasia (and healthy aging) would be an
important avenue for future research. The BrainAgefthodology uses principal components of
voxel ensembles that are responsible for mosteéiplained variance and are not necessarily
associated with specific regions (i.e., they mayiwe more than one region, or parts of
regions). Therefore, future research could focutherdevelopment of region based aging

methodologies which would allow the identificatiohregion-specific premature brain aging.

Conclusions

Overall, the current study supports the theory linain age is an important factor for
language deficits post-stroke, highlighting the artipnce of personalized health factors beyond
the characteristics of chronological age and trakstlesion in determining post-stroke
impairment and treatment response. Future studiglsl focus on integrating measures of brain
age with other markers of brain health to bettetaustand potential interactions between various

factors affecting language outcomes post-stroke.
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Tables
Table 1. Demographic information of all participants (n=93)
Demographic Variables Value

Stroke age, mean (SD) 56.81 (11.95)
Test age, mean (SD) 61.00 (11.37)
Education, mean (SD) 15.54 (2.26)
Sex (males:females), count 58:35
Handedness (leftiright), count 9:84
Months post-stroke, mean (SD) 49.32 (52.47)
Fluency (fluent:nonfluent), count 45:48
Western Aphasia Battery Aphasia Quotient, mean (SD) 58.87 (22.38)
Aphasia Types (count)

Anomic 25

Broca's 44

Conduction 13

Global 4

Transcortical Motor

Wernicke's 6
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Table 2. Summary of prediction models

Test WAB WAB WAB WAB WAB-AQ
Naming Spontaneous Repetition | Comprehensiof
Speech
Model statistics F=9.8275 | F=17.2809 | F=12.3260 | F=11.6551 F=16.4073
p<0.0001 | p<0.0001 |p<0.0001 |p<0.0001 p < 0.0001
Chronological age | T=-3.1649 T =-3.6159 | T =-2.6299| * Not T =-3.1828
p=0.0021 | p = 0.0005 p = 0.0101 | significant p=0.0020
Variance | Variance Variance T =-0.4878 Variance
explained =| explained = | explained =| p = 0.6269 explained =
10.1% 12.8% 7% Variance 10.2%
explained =
0.2%
Proportional brain | T=-2.0310, | T =-3:5747 | T =-2.3492| * Not T =-2.9847
age difference p=0.0452 | p=0.0006 | p=0.0210 | significant p = 0.0037
Variance ~| Variance Variance T=-1.7117 Variance
explained =| explained = | explained =| p = 0.0904 explained =
4.4% 12.5% 5.8% Variance 9.1%
explained =
3.2%
Lesion volume T=-4.6939| T =-6.1931 | T =-5.5982| T =-5.7210 T =-6.3333
p<0.0001 | p<0.0001 |p<0.0001 |p<0.0001 p < 0.0001
Variance | Variance Variance Variance Variance
explained =| explained = | explained =| explained = explained =
19.8% 30.1% 26% 26.9% 31.1%
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Figure Legends

Figure 1. Steps used to estimate brain age.

This figure illustrates the steps used to estirhedén age. Images from two representative
participants are shown. The T1-weighted images thighstroke lesion (A) were segmented
using an enantiomorphic process to “heal’ the locatf the stroke lesion. The resulting images
(B) were then processed using BrainAgeR. Probaibilissue maps (C), i.e:; gray matter (red),
white matter (orange) and CSF (teal) were usedaohime learning models trained with a large

dataset of healthy individuals to estimate eackigpant’s brain age.
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Figure 2. Example of brain ages.
Examples of two participants whose estimated bages were substantially higher (A) or similar

(B) to the participant’s age. The box outlinestioéiceable gray and matter atrophy in the
participant with a large the brain age differenempared with the other participant. Notice that

the size of the lesion pre-enantiomorphic correctias overall similar.

A Chronological age = 46 years old; Brain age = 69.9 years old
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Figure 3. Scatterplots to show therelationship between chronological age and brain age.

The size of each data point in the scatterplotapg@rtional to lesion volume.
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Figure5. Scatterplots to show to the relationship between WAB scores and proportional
brain age difference.
The relationship between WAB scores and the reBmhdhproportional brain age difference

from chronological age and lesion volume. WAB coeffgnsion is not shown since it was not

significantly associated with proportional braireatifference.
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