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Abstract 

Background and Objectives: Chronic post-stroke language impairment is typically worse in older 

individuals or those with large stroke lesions. However, there is unexplained variance that likely 

depends on intact tissue beyond the lesion. Brain age is an emerging concept which is partially 

independent from chronological age. Advanced brain age is associated with cognitive decline in 

healthy older adults, therefore we aimed to investigate the relationship with stroke aphasia. We 

hypothesized that advanced brain age is a significant factor associated with chronic post-stroke 

language impairments, above and beyond chronological age and lesion characteristics. 

 

Methods: This cohort study retrospectively evaluated participants from the POLAR clinical trial 

(NCT03416738), recruited through local advertisement in South Carolina (US). Primary 

inclusion criteria were left-hemisphere stroke and chronic aphasia (≥12 months post-stroke). 

Participants completed baseline behavioral testing including the Western Aphasia Battery-

Revised (WAB-R), Philadelphia Naming Test (PNT), Pyramids and Palm Trees Test (PPTT), 

and the Wechsler Adult Intelligence Scale matrices subtest, before completing 6-weeks of 

language therapy. The PNT was repeated 1-month post-therapy. We leveraged modern 

neuroimaging techniques to estimate brain age and computed a proportional difference between 

chronological age and estimated brain age. Multiple linear regression models were used to 

evaluate the relationship between proportional brain age difference and behavior.  

 

Results: Participants (N=93, 58 males, 35 females, average age=61 years) had estimated brain 

ages ranging from 14-years younger to 23-years older than chronological age. Advanced brain 

age predicted performance on semantic tasks (PPTT) and language tasks (WAB-R). For 

participants with advanced brain aging (n=47), treatment gains (improvement on the PNT) were 
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independently predicted by proportional brain age difference (T=-2.0474, p=0.0468, 9% of 

variance explained).  

 

Discussion: Through the application of modern neuroimaging techniques, advanced brain aging 

was associated with aphasia severity and performance on semantic tasks. Notably, therapy 

outcome scores were also associated with proportional brain age difference, albeit only among 

participants with advanced brain aging. These findings corroborate the importance of brain age 

as a determinant of post-stroke recovery and underscore the importance of personalized health 

factors in determining recovery trajectories, which should be considered during the planning or 

implementation of therapeutic interventions.  

 

 

 

Introduction 

 Stroke-related damage to peri-sylvian language-related regions is often associated with 

varying types and degrees of aphasia1–3.  Although some individuals with aphasia spontaneously 

recover in the first few months after the stroke, many stroke survivors experience persistent long-

term disabling language and communication problems. Lesion size and location are important 

predictors of long-term language disability2,4, however, these factors only account for a 

proportion of the variance in aphasia severity (approximately 20-50%5,6). In addition to lesion 

factors, there is considerable evidence that language impairment following stroke is more severe 

in older adults7. Emerging data also supports the idea that stroke age is associated with greater 

long-term decline, with older individuals showing poorer trajectories than their younger 

counterparts8. The degree of chronic aphasic impairment is also remarkably variable across 

individuals, and factors which determine likelihood and severity of long-term deficits remain 

incompletely understood. No current model of aphasia severity is capable of accurately 

predicting impairment in this heterogeneous population.  

 It is well documented that there are declines in multiple cognitive skills in typical aging, 

but there are substantial differences in the trajectory of age-related decline across individuals9,10. 

This led to the emerging ideas of cognitive reserve as an explanation for why some individuals 

may be more resilient to the detrimental effects of aging11. Stern and colleagues described this 
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theory but suggest the underlying mechanisms by which brain and cognitive reserve enable 

individuals to maintain cognitive performance over time are still unclear11. Similarly, recent 

research suggests advanced brain aging is an important factor related to declining cognitive skills 

among adults in general12,13. Brain age can be estimated by comparing neuroimaging measures 

(e.g., regional tissue volume from gray and white matter) from one individual against a large 

normative database of healthy individuals. The primary measure of advanced brain aging is the 

difference between an individual’s chronological age and the same individual’s predicted brain 

age based on brain tissue integrity. Advanced brain aging (higher estimated brain age than 

chronological age) is now being increasingly recognized as an important factor related to lower 

cognition among older adults, as well as among individuals with dementia or with risk-factors 

for neurocognitive disorders14,15. It may be that advanced brain aging is associated with poor 

cognitive reserve, and conversely, delayed brain aging (lower estimated brain age than 

chronological age) may be associated with a resilience to age-related cognitive changes.  

 Given the known relationship between cognition and MRI-based brain aging metric, we 

hypothesized that brain age may be related to language impairments after a stroke beyond the 

effects of chronological age and characteristics of the stroke lesion. By controlling for these 

known factors, our analysis sought to measure the independent predictive power of brain age in a 

large sample of adults with chronic stroke aphasia. The brain age measure used quantifies the 

structural integrity of brain tissue, irrespective of the stroke lesion, i.e., not taking into context 

the stroke-related tissue loss, but the overall structural integrity of brain tissue that remains after 

the stroke. 

 Measuring brain age in the context of stroke can be technically challenging since existing 

approaches rely on tissue segmentation, which, in turn, depends on the quality of normalization 

(i.e., warping each individual brain into standard space). Existing approaches to brain 

normalization are typically designed to work with intact brains. When these methods are applied 

to brains with large lesion, they can fail catastrophically, providing outputs which dramatically 

displace relatively proximate voxel locations16. One potential solution to this problem, which has 

been used successfully by multiple groups studying stroke17,18, is to apply an enantiomorphic 

‘healing’ algorithm17 to damaged brains prior to normalization that effectively mimics healthy 

brains. This healing process relies on the fact that brains are generally left/right symmetrical to 
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replace damaged left hemisphere tissue with a mirror image of homologous healthy right 

hemisphere tissue.  

In this study, we tested the hypothesis that chronic post-stroke aphasia severity is 

negatively influenced by advanced brain age. We investigated data from a cohort of stroke 

survivors with chronic aphasia, leveraging modern neuroimaging techniques (i.e., 

enantiomorphic healing) to adequately infer brain age from individuals with large stroke lesions 

and test their relationship with chronic deficits and treated recovery. 

 

Materials and Methods 

 

Study design and participants 

 We retrospectively evaluated an existing longitudinal dataset from participants with a 

history of one or more chronic (>12 months prior to enrollment) left hemisphere strokes. 

Participants were part of the POLAR (Predicting Outcomes of Language Rehabilitation in 

Aphasia)19,20 clinical trial (NCT03416738). As part of the POLAR protocol, all participants 

underwent a baseline battery of language and neuropsychological testing at the time of 

enrollment. The baseline battery included the Western Aphasia Battery-Revised (WAB-R)21, 

Philadelphia Naming Test (PNT)22, Pyramids and Palm Trees Test (PPTT)23, and the Wechsler 

Adult Intelligence Scale matrices subtest (WAIS). The battery was administered by American 

Speech-Language-Hearing Association certified speech and language pathologists with 

experience working with individuals with aphasia. 

 Following the baseline behavioral battery, participants underwent 6-weeks of semantic 

and phonological treatment using the following timeline: 3-weeks of treatment, 4-weeks of rest, 

then 3-weeks of the alternative treatment. Treatment order was randomized, with half the 

participants receiving semantic treatment first and the other half receiving phonological 

treatment first. The PNT was the primary outcome measure and was completed again 1-month 

following treatment (see Kristinsson and others20 for a more detailed description of the 

procedure). The primary goal of POLAR was to provide information about neurobiological and 

demographic factors associated with aphasia treatment outcomes.  

 The following inclusion/exclusion criteria applied: Participants were included in the 

study if they i) incurred a left-hemisphere ischemic or hemorrhagic stroke to the middle cerebral 



 

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited 

artery, ii) had chronic aphasia (≥12 months post-stroke), iii) were 21-80 years of age, iv) spoken 

English was their primary language for ≥20 years, and v) could provide written or verbal 

consent. Participants were excluded if they had i) severely limited verbal output (measured by a 

WAB-R Spontaneous Speech score of 0-1), ii) severely impaired auditory comprehension 

(measured by a WAB-R Auditory Comprehension score of 0-1), iii) bilateral or cerebellar stroke, 

iv) contra-indications to testing with magnetic resonance imaging (MRI), or v) history of 

neurological disorders. Individuals with multiple strokes were eligible if all lesions were 

confined to left supratentorial territory. 

 

Standard Protocol Approvals, Registrations, and Patient Consents 

All participants were recruited through local advertisement at the University of South 

Carolina (Columbia) or at the Medical University of South Carolina (Charleston). The study was 

approved by the Institutional Review Boards of both institutions. Participants were 

retrospectively evaluated from an existing longitudinal clinical trial; POLAR (Predicting 

Outcomes of Language Rehabilitation in Aphasia, clinicaltrials.gov ID: NCT03416738). 

 

Neuroimaging acquisition and preprocessing 

All participants underwent research MRI scanning on a Siemens Trio 3T scanner 

equipped with a 20-channel head coil. In this study, only T1-weighted images were used for 

brain age estimation, and T2-weighted images were used for stroke lesion identification.  These 

were acquired using the following parameters: T1-weighted imaging (MP-RAGE) sequence with 

1mm isotropic voxels, a 256x256 matrix size, a 9°flip angle, and a 92-slice sequence with 

repetition time (TR)=2250ms, inversion time (TI)=925ms, and echo time (TE)=4.11ms. T2-

weighted scans were acquired using a 3-dimensional T2-weighted SPACE sequence covering the 

whole head with a resolution of 1mm3 and a field of view=256x256mm, 160 sagittal slices, 

variable degree flip angle, TR=3200ms, TE=212ms.  

Chronic stroke lesions were manually drawn using each participant’s T2-weighted image 

in native space. All lesion tracings were performed by an expert neurologist (author LB) or by a 

trained study staff member (author RNN) and were blinded to the behavioral data. 

Enantiomorphic normalization was then conducted using the nii_preprocess pipeline 

(https://github.com/neurolabusc/nii_preprocess24), a set of Matlab-based (R2017b, The 
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MathWorks) scripts that leverage multiple best-of-breed programs (SPM12; Functional Imaging 

Laboratory, Wellcome Trust Centre for Neuroimaging, Institute of Neurology 

[www.fil.ion.ucl.ac.uk/spm], FSL v6.0.325, ASLtbx 

[http://www.cnf.upenn.edu/~zewang/ASLtbx.php], and MRItrix [https://www.mrtrix.org/]) in 

order to normalize and process MRI data acquired from individuals with lesioned brains. These 

scripts utilized enantiomorphic normalization17 

To create chimeric images (i.e., ‘healed’ brains) in which the damaged portion of the left 

hemisphere was temporarily replaced with the mirror image of intact areas from the healthy right 

hemisphere (using the SPM12’s Clinical Toolbox which leverages SPM12’s unified 

segmentation-normalization26 method to warp this chimeric image to standard (MNI) space, and 

the resulting spatial transform was then applied to the native-space T1 scan as well as the native-

space versions of the hand-drawn lesion map. This additional step (enantiomorphic 

normalization) ensures that segmentation-normalization methods designed for intact brains do 

not incorrectly warp scans with large lesions to the left hemisphere. 

 

Brain age estimation 

Brain age estimation was performed based solely on T1-weighted images using the 

BrainAgeR analysis pipeline (github.com/james-cole/brainageR)27. However, since the 

BrainAgeR analysis pipeline involves the iterative segmentation-spatial normalization routines 

(described below) designed to handle healthy non-lesioned brains, we used the enantiomorphic 

healing approach described above to remove the stroke lesions from the MRI scans to allow for 

adequate tissue estimation before the images were input into the BrainAgeR pipeline. By 

removing the stroke lesion, we ensured that the lesion did not affect the brain age calculation, 

and that brain age was based on the intact brain tissue outside the lesion. 

As such, the lesion maps in native T1-weighted space were smoothed with a 3mm full-

width half maximum Gaussian kernel to remove sharp edges and to include the peri-lesional 

tissue. The enantiomorphic segmentation-normalization was then employed using SPM12 and 

custom MATLAB scripts (publicly available at: 

https://github.com/neurolabusc/nii_preprocess24). The enantiomorphic approach creates a 

mirrored image of the right hemisphere, which is overlayed onto the left hemisphere that 

contains the stroke lesion. A chimeric image is then created in which the lesioned tissue is fully 
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replaced by tissue from the contralateral hemisphere. In other words, the stroke-related damaged 

area is substituted by the homologue tissue in the preserved right hemisphere. This ‘healed’ brain 

does not include the stroke lesion, and it was this image that was input into the BrainAgeR 

pipeline described below.  

The BrainAgeR pipeline was applied using the default protocol27,28. First, T1-weighted 

images were segmented into gray matter and white matter before being normalized using non-

linear spatial registration27 and SPM12's DARTEL toolbox26. The BrainAgeR analysis pipeline 

uses a customized version of FSL slicesdir to generate a directory of images and corresponding 

index.html files for quality controlling in a web browser (github.com/james-cole/brainageR). 

These probabilistic tissue maps were visually inspected by an expert neurologist (author LB) to 

ensure quality of the segmentation. The cerebrospinal fluid tissue was removed, and the gray and 

white matter probabilistic tissues were vectorized, concatenated, and subjected to a principal 

component analysis to reduce dimensionality. The components explaining the top 80% of the 

variance were used for brain age prediction.  A machine-learning algorithm using a pretrained 

Gaussian regression model implemented in R package Kernlab was used to estimate brain age. 

This pretrained model was based on scans of 3,377 healthy individuals from 7 publicly available 

datasets and tested on 611 different scans of healthy individuals aged between 18 and 90 years27. 

See Cole and colleagues for more detail on the BrainAgeR pipeline27,28. The image processing 

steps are shown in Figure 1. 

The relative difference between the estimated brain and the participant’s chronological 

brain age was determined using the formula:  

(estimated brain age - chronological age)/chronological age.  

As such, for each participant, a proportional brain age difference was calculated 

representing the proportion of the participant’s chronological age accounted for by the difference 

between brain age and chronological age. More specifically, proportional brain age difference 

(PBAD) is the measure of advanced (or delayed) brain age beyond chronological age, adjusted 

proportionally for chronological age. Positive values suggest that the predicted brain age is older 

than the chronological age of the participant (i.e., advanced brain aging), and negative values 

suggest chronological age is older than predicted brain age (i.e., delayed brain aging). This 

measure is hereafter referred to as the proportional brain age difference.  
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Statistical analyses 

 Normality of primary behavioral variables used for analysis were tested using a one-

sample Kolmogorov-Smirnov test. The relationship between continuous demographic variables 

were assessed using Pearson’s or Spearman’s correlations for parametrically or non-

parametrically distributed variables, respectively (as indicated in the results section).  

 To assess the relationship between PBAD and language/cognitive measures, we 

performed two main sets of analyses. First, we evaluated the relationship between the 

proportional brain age difference and baseline performance (pre-treatment assessments) using 

multiple linear regression models in which the behavioral variable was set as the dependent 

variable, and the following variables were used as independent variables: PBAD, chronological 

age, and lesion volume.  

 Second, we evaluated the relationship between PBAD and POLAR treatment outcomes, 

where the relative gain in language function was set as the dependent variable in multiple linear 

models. More specifically, relative gain in language function was evaluated as the proportion of 

maximal gains according to the formula: (correct items post-therapy – correct items pre-therapy) 

/ (maximum score – correct items pre-therapy). 

The same independent variables were used to assess treatment outcomes: chronological 

age, PBAD, and lesion volume. Additionally, baseline performance (correct items pre-therapy) 

was also included as an independent variable.  

It should be noted that PBAD used in all analyses (concerning baseline behavioral 

measures or post-treatment recovery) were computed based on the MRI obtained at baseline, i.e., 

before language treatments. 

 

Data Availability 

The conditions of our ethics approval do not permit sharing of the raw MRI data supporting this 

study with any individual outside the author team under any circumstances. However, 

anonymized data not published within this article will be made available by request from any 

qualified investigator.  
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Results 

Participants 

We retrospectively evaluated an existing longitudinal dataset from participants (N=109) 

with a history of one or more chronic (>12 months prior to enrollment) left hemisphere strokes. 

After confirming participants met our inclusion/exclusion criteria, the results cohort comprised 

of 93 participants. Demographics information describing this sample are provided in Table 1. 

 

Brain Age  

 The estimated brain age difference ranged from 14 years younger to 23 years older than 

the participant’s chronological age. The mean difference between brain age and chronological 

age was 2.18+/-7.6 years. The PBAD was 0.04+/-0.14. Figure 2 demonstrates two examples 

highlighting (A) a participant whose estimated brain age differed substantially from the 

participant’s chronological age, and (B) a participant whose estimated brain age and 

chronological age were similar. 

There was a significant relationship between participants’ chronological age and the 

estimated brain age (Spearman’s r=0.7190, p<0.0001). Older participants had a lower difference 

between brain age and chronological age (Spearman’s r=-0.2775, p=0.007), as well as a smaller 

PBAD (Spearman’s r=-0.3317, p=0.001). These results are shown in Figure 3.  

There was not a significant relationship between chronological age and lesion volume 

(Spearman’s r=-0.1524, p=0.15), between brain age and lesion volume (Spearman’s r=-0.1757, 

p=0.1), or between the PBAD and lesion volumes (Spearman’s r= -0.006, p=0.96). 

  

Baseline cognitive and language variables 

 Pyramids and Palms Trees Test (PPTT): Models composed of chronological age, PBAD, 

and lesion volume significant predicted performance on the PPTT (F=7.9079, p=0.0001). 

Chronological age was not significantly associated with the PPTT scores (T=-0.6424, p=0.5223), 

but higher PBAD (T=-2.5174, p=0.0136) and larger lesion volumes (T=-4.2830, p<0.0001) were 

associated with worse performance on this test. 

 WAIS Matrix Reasoning: A similar model showed significant associations between 

WAIS Matrix Reasoning scores, chronological age, PBAD and lesion volume (F=4.1546, 
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p=0.0084). Chronological age (T=-3.1200, p=0.0024) and lesion volumes (T=-2.0311, p=0.0452) 

were associated with lower WAIS scores, with older participants having significantly worse 

behavioral scores. However, PBAD was not an independent predictor (T=-1.2832, p=0.2027). 

Western Aphasia Battery-Revised (WAB): Linear modelling revealed that all WAB 

scores were significantly associated with chronological age, PBAD, and lesion volume. PBAD 

was an independent predictor of worse scores for all measures, except for comprehension. All 

models are summarized in Table 2 and Figure 4. Figure 5 demonstrates the relationship between 

the WAB scores and PBAD scores after regressing out variance due to chronological age and 

lesion volume.  

Philadelphia Naming Test (PNT): We observed a significant relationship with the 

prediction model (F=8.0514 Model, p=0.0001), with higher chronological age (T=-2.4007, 

p=0.0187) and larger lesion volume (T=-4.4976, p=0.0000) as predictors of worse scores. PBAD 

was not an independent predictor (T=-1.5197, PBAD p=0.1326). Of note, the PNT was available 

for only a subset (n=82) of all participants. 

 
Language therapy outcomes 

 The PNT was available for 78 participants at both baseline testing and testing 

conducted 1-month after therapy. At baseline testing, participants had an average PNT score of 

80.83 (SD=61.77, min=0, max=172). At one month follow up, the average PNT score was 86.76 

(SD=63.73, min=0, max=173). The average change in PNT score between baseline and one 

month was 5.93 (SD=9.20, min=-12, max=43.5). The average proportion of maximal gains score 

was 0.13 (SD=0.17, min=-0.11, max=0.625). 

 Language improvement as proportion of maximal gains in correctly named items in the 

PNT was associated with the linear model not including baseline performance (F=6.1530, 

p=0.0009), in which the chronological age (T=-2.5217, p=0.0138) and lesion volumes (T=-

3.8274, p=0.0003) were independent predictors of recovery. PBAD was not a significant 

predictor (T=-1.2824, p=0.2037).  

In the model with baseline performance included as an independent variable, there was 

also a significant relationship with improvement (F=2197.9094 p<0.0001) but only baseline 

performance was a significant predictor (T=83.7965, p<0.0001).  
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 Forty-seven participants had an estimated brain age which was equal or higher than the 

participant’s chronological age. For these participants the average baseline PNT score was 80.42 

(SD=61.85, min=0, max=169). At one month follow up, the average PNT score was 86.15 

(SD=63.98, min=0, max=171). In these participants, the average change in PNT score between 

baseline and one month was 5.73 (SD=9.19, min=-12, max=43.5). The average proportion of 

maximal gains score was 0.13 (SD=0.18, min=-0.11, max=0.625). Among participants whose 

estimated brain age was equal or higher than the participant’s chronological age (n=47), the 

improvement in the PNT was independently associated with a lower PBAD. Specifically, not 

including baseline performance in the model, the proportion of maximal gains in correctly named 

items in the PNT was significantly associated (F=3.1104, p=0.0361) and independently predicted 

by a lower PBAD (T=-2.0474, p=0.0468, 9% of variance explained) and lesion volumes (T=-

2.3682, p=0.0224). Chronological age was nearing statistical significance but not an independent 

predictor (T=-1.9985, p=0.0520, 8% of variance explained). 

Importantly, including baseline performance in the model, PNT improvement was 

associated (F=1362.0020, p<0.0002) and independently predicted by PBAD (T=-2.3095, 

p=0.0259, 11.2% of variance explained). 

 

Discussion 

In this study, we evaluated the hypothesis that chronic post-stroke aphasia severity is 

influenced by brain age. We tested this by investigating the contribution of brain age (in addition 

to typical explanatory variables such as chronological age and lesion volume) using regression 

models designed to predict behavioral scores and treatment trajectories. This was made possible 

through the application of modern neuroimaging techniques (i.e., enantiomorphic healing), 

which enabled us to apply brain age estimation algorithms to non-standard (i.e., lesioned) brains. 

Specifically, we used output from the brain age algorithm to compute a proportional brain age 

difference (PBAD) score. Using this metric, we found that the PBAD was associated with 

performance on both the PPTT and well-known language tasks including WAB subscores 

(naming, spontaneous speech, repetition), and overall aphasia severity (WAB-AQ). Notably, 

therapy outcome scores between baseline and 1-month were also associated with PBAD, albeit 



 

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited 

only among participants whose estimated brain age was equal to or higher than their 

chronological age.   

 

Challenges of Computing Brain Age in Stroke 

Brain age predictions have been used previously in clinical populations28, including 

schizophrenia29, and epilepsy30. However, computing brain age within clinical populations with 

brain lesions or resections poses additional challenges31,32. The presence of large lesions is not 

only methodologically cumbersome, but the large volume of damaged tissue is known to 

influence behavioral and cognitive outcomes substantially2–4. This phenomenon is highlighted by 

the current study in which lesion volume was found to be significantly related to all behavioral 

scores. These results may indicate that more subtle effects of advanced brain aging are not as 

prominent as in otherwise healthy populations with either smaller or perhaps more diffuse brain 

lesions (e.g., atrophy). Further, the strong relationship between stroke lesion volume and 

behavioral performance may explain why we did not find associations between PBAD and 

general cognition (measured by the WAIS), a finding that has been previously described12,13. 

Thus, the current results highlight the importance of considering brain age in stroke aphasia, as it 

was a predictor of language abilities even when accounting for lesion volume and chronological 

age. 

 

The Role of Brain Age in Language Performance  

 The results from this study demonstrate a relationship between PBAD and aphasia 

severity (measured by the WAB). While chronological age and lesion volume were also 

predictors of aphasia severity, PBAD was able to explain some of the previously unexplained 

(additional) variance. Although lesion volume is often reported as a reliable predictor of post-

stroke aphasia severity, the contribution of other health and demographic factors is less 

consistent. One possibility is that specific combinations of health and demographic factors 

influence brain age, and therefore, brain age mediates the relationship between these factors and 

overall aphasia severity. The association between PBAD and PPTT scores is particularly 

interesting, as chronological age was not a significant predictor in this case. This finding 

suggests the intriguing possibility that advanced aging, as defined in the current study, may 

preferentially impact participants’ ability to access semantic information. As accessing semantic 
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information is typically associated with the ventral language stream2,33 and the bilateral temporal 

lobes34,35, it may be that advanced brain aging particularly affects these connections and regions. 

Future studies could investigate the spatial distribution of advanced age-related changes to 

identify the brain regions most affected.  

 

The Role of Brain Age in Language Recovery  

Our results demonstrating that PBAD independently predicts therapy gains is of clinical 

relevance and has clear clinical implications. A common view suggests that aphasia recovery is 

limited in the chronic stage36, with outcome largely predicted by initial impairment36. However, 

recent research casts doubt on these conclusions8,37. While measures of aggregate performance 

may appear to plateau, this may reflect different patient trajectories based on factors related to 

brain health (cognitive reserve), environment, and genetics38 . This suggests that personalized 

patterns in aphasia impairments are highly variable, and the factors that influence who shows 

therapy gains are not completely understood39. This view suggests that understanding these 

factors may prove valuable in providing accurate prognosis, recommending bespoke treatment 

and compensation regimes, and improving statistical power in clinical trials by matching 

individuals for predictable gains. Although recently health factors have been considered in 

models of language recovery8,40,41, brain age has not yet been considered in these models. 

However, the significance of the health and integrity of the spared tissue in populations with 

cortical damage, such as stroke survivors, is becoming increasingly clear within the 

literature41,42. The results of the current study are consistent with recent reports that the integrity 

of the spared tissue is related to cognitive reserve12 and capacity for therapy gains41,42, as well as 

the finding that diffuse neuronal diseases, such as small vessel disease (which can result in 

leukoaraiosis) is associated with worse stroke outcomes43, post-stroke cognitive decline44, and 

poorer language recovery41,42. As advanced aging is thought to represent reduced cortical 

integrity, it is perhaps not surprising that this would affect a complex cognitive skill such as 

language. Notably, the lack of a relationship between therapy outcome scores when including 

participants with a younger brain age than chronological age suggests that there are other factors 

influencing therapy outcomes, particularly in otherwise healthy individuals. These factors might 

include things like age at the time of stroke, cumulative amount of therapy received since stroke, 
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and other systemic health measures. There is a critical need to investigate these factors in 

combination with brain age in future research. 

 

Association with Cardiovascular Risk Factors 

In this study, estimated brain age ranged from 14-years younger to 23-years older than 

chronological age, but no associations were found between lesion volume and chronological age 

or PBAD. Although brain age and chronological age were positively correlated, we observed 

considerable variation in brain age within participants with the same chronological age. Previous 

studies have suggested that brain age in stroke patients is higher than that of chronologically age-

matched controls45 at 6-weeks, 3-months, and 12-months post-stroke. There are several factors 

which may influence brain age, including education46 and physical activity46, and it is possible 

that brain age itself is a biomarker for stroke risk45. Chronological aging is both a risk factor for 

stroke47 and is associated with poorer stroke outcomes8, as highlighted by the consistent negative 

relationship found between age and language scores in the current study. Similarly, since 

cardiovascular risk factors such as BMI, hypertension, and diabetes are associated with both 

poorer brain health48 and increased risk of stroke49, these factors may also be related to advanced 

aging. Future studies could combine measures of brain age with other markers of overall brain 

health (e.g., small vessel disease) to determine the relative influence of each of these in 

determining severity of post-stroke aphasia as well as treatment outcomes. Furthermore, future 

studies could investigate which health or demographic factors may predict who is likely to have 

delayed/advanced brain aging. 

Vascular mechanisms are also one of the major contributing factors to dementia in the 

elderly, and vascular dementia is common post-stroke. As brain age is a measure of cortical 

integrity, advanced brain aging may be directly related to mild cognitive impairment or 

subclinical Alzheimer’s disease. Among individuals with aphasia, the ascertainment of cognitive 

impairment can be limited by language barriers and was not something that was directly tested in 

this study but is an important avenue for future research.  
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Limitations and Future Directions 
 

 Although using enantiomorphic ‘healing’ enabled the estimation of brain age 

in individuals with large stroke lesions, the natural physiological asymmetry in brain 

hemispheres is therefore lost and this is a limitation of this approach.  

Furthermore, this is a retrospective study and ninety-three participants constitutes a 

relatively small sample size for studies using brain age estimations, however, to our knowledge, 

this is the first application of the BrainAgeR pipeline to individuals with stroke aphasia and 

included participants had a broad distribution of chronological age (29-80 years), time post-

stroke (12-241 months), education (12-20 years), and aphasia severity (WAB-AQ: 20.1-92.6) 

across 6 different aphasia subtypes.  

It is important to note that it is likely that all regions of the brain do not age at the same 

rate, and therefore regional distributions of aging in aphasia (and healthy aging) would be an 

important avenue for future research. The BrainAgeR methodology uses principal components of 

voxel ensembles that are responsible for most of the explained variance and are not necessarily 

associated with specific regions (i.e., they may involve more than one region, or parts of 

regions). Therefore, future research could focus on the development of region based aging 

methodologies which would allow the identification of region-specific premature brain aging. 

 

Conclusions 
 

Overall, the current study supports the theory that brain age is an important factor for 

language deficits post-stroke, highlighting the importance of personalized health factors beyond 

the characteristics of chronological age and the stroke lesion in determining post-stroke 

impairment and treatment response. Future studies could focus on integrating measures of brain 

age with other markers of brain health to better understand potential interactions between various 

factors affecting language outcomes post-stroke.  
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Tables 
 
Table 1. Demographic information of all participants (n=93). 

Demographic Variables  Value 

Stroke age, mean (SD) 56.81 (11.95) 

Test age, mean (SD) 61.00 (11.37) 

Education, mean (SD)  15.54 (2.26) 

Sex (males:females), count 58:35 

Handedness (left:right), count 9:84 

Months post-stroke, mean (SD) 49.32 (52.47) 

Fluency (fluent:nonfluent), count 45:48 

Western Aphasia Battery Aphasia Quotient, mean (SD) 58.87 (22.38) 

Aphasia Types (count)  

 Anomic 25 

 Broca’s 44 

 Conduction 13 

 Global 4 

 Transcortical Motor 1 

 Wernicke’s 6 
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Table 2. Summary of prediction models 

Test WAB 

Naming  

WAB 

Spontaneous 

Speech  

WAB 

Repetition 

WAB 

Comprehension 

WAB-AQ 

Model statistics F=9.8275  

p < 0.0001 

F=17.2809  

p < 0.0001 

F=12.3260  

p < 0.0001 

F=11.6551  

p < 0.0001 

F=16.4073  

p < 0.0001 

Chronological age T=-3.1649  

p = 0.0021 

Variance 

explained = 

10.1% 

T = -3.6159 

p = 0.0005 

Variance 

explained = 

12.8% 

T = -2.6299 

 p = 0.0101 

Variance 

explained = 

7% 

* Not 

significant 

T = -0.4878 

p = 0.6269 

Variance 

explained = 

0.2% 

T = -3.1828 

p = 0.0020 

Variance 

explained = 

10.2% 

Proportional brain 

age difference 

T=-2.0310, 

p = 0.0452 

Variance 

explained = 

4.4% 

T = -3.5747  

p = 0.0006 

Variance 

explained = 

12.5% 

T = -2.3492  

p = 0.0210 

Variance 

explained = 

5.8% 

* Not 

significant 

T = -1.7117 

p = 0.0904 

Variance 

explained = 

3.2% 

T = -2.9847  

p = 0.0037 

Variance 

explained = 

9.1% 

Lesion volume T=-4.6939 

p < 0.0001 

Variance 

explained = 

19.8% 

T = -6.1931  

p < 0.0001 

Variance 

explained = 

30.1% 

T = -5.5982  

p < 0.0001 

Variance 

explained = 

26% 

T = -5.7210 

p < 0.0001 

Variance 

explained = 

26.9% 

T = -6.3333  

p < 0.0001 

Variance 

explained = 

31.1% 
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Figure Legends 
 
Figure 1. Steps used to estimate brain age.  

This figure illustrates the steps used to estimate brain age. Images from two representative 

participants are shown. The T1-weighted images with the stroke lesion (A) were segmented 

using an enantiomorphic process to “heal” the location of the stroke lesion. The resulting images 

(B) were then processed using BrainAgeR. Probabilistic tissue maps (C), i.e., gray matter (red), 

white matter (orange) and CSF (teal) were used in machine learning models trained with a large 

dataset of healthy individuals to estimate each participant’s brain age. 
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Figure 2. Example of brain ages. 

Examples of two participants whose estimated brain ages were substantially higher (A) or similar 

(B) to the participant’s age. The box outlines the noticeable gray and matter atrophy in the 

participant with a large the brain age difference compared with the other participant. Notice that 

the size of the lesion pre-enantiomorphic correction was overall similar. 
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Figure 3. Scatterplots to show the relationship between chronological age and brain age. 

The size of each data point in the scatterplot is proportional to lesion volume. 

 

 
 
 
 
 
 
 
 
Figure 4. Graphs to show the percentage of variance explained by each factor. 

Percentage of variance explained by chronological age, proportional brain age difference and 

lesion volume for WAB-AQ and WAB subscores. Note that only lesion volume was statistically 

associated with WAB comprehension. In all other cases, significant variance in WAB scores was 

associated with all three predictors.  
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Figure 5. Scatterplots to show to the relationship between WAB scores and proportional 

brain age difference. 

The relationship between WAB scores and the residualized proportional brain age difference 

from chronological age and lesion volume. WAB comprehension is not shown since it was not 

significantly associated with proportional brain age difference. 

 
 

 
 
 


