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Abstract12

In this paper, a single-loop approach for time-variant reliability evaluation is proposed based on a decoupling13

strategy and probability distribution reconstruction. The most attractive feature of the proposed method14

is that the reliability at a specified time instant can be captured by performing time-invariant reliability15

analysis only once. In this method, the expansion optimal linear estimation is first employed to discretize16

the loading stochastic process. Then, a decoupling strategy that decouples the loading stochastic process17

and degradation processes is developed to formulate a single-loop method for time-variant reliability analysis,18

where an equivalent extreme value limit state function (EEV-LSF) is obtained. To improve the accuracy and19

robustness, the Box-Cox transformation is applied to get a transformed EEV-LSF. The maximum entropy20

method with fractional exponential moments is employed to robustly derive the probability distribution of21

transformed EEV-LSF. Once the probability distribution is captured, the time-variant failure probability22

can be readily computed. To handle a large number of random variables, a weighted sampling method is23

applied for moment assessment to ensure an efficient solution. Numerical examples including a complex24

real-world case are studied to validate the proposed method, where pertinent Monte Carlo simulations and25

PHI2 method are conducted for comparisons.26
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1. Introduction29

In engineering practices, many factors may exhibit time-variant characteristics, e.g., the structural30

resistance may deteriorate due to aging under the aggressive service environment [1, 2, 3], and the external31

loadings may also vary with time. Therefore, time-variant reliability analysis of structures is of paramount32

importance and gains increasing attention in the reliability community [4, 5, 6, 7, 8, 9, 10], which is generally33

more complicated than the time-invariant problems since the effect of time factor cannot be ignored. Usually,34

two possible failure modes exist for time-variant reliability analysis of structure, which are the first-passage35

failure and damage accumulation as in fatigue [11, 12, 13]. In this paper, only the first-passage failure mode36

is considered, where the methods can be categorized into two main groups: the out-crossing rate approaches37

and extreme value distribution (EVD)-based approaches.38

For the first-passage failure, the out-crossing rate measure of stochastic process over the prescribed39

threshold is always of great concern [14, 15, 16]. Numerous approaches have been developed in the literature40

to compute the out-crossing rate using the asymptotic integration [17, 18, 19]. Rice’s formula [14] could be41

one of the most commonly used approaches, which assumes all crossing events are independent. Then, several42

improvements on Rice’s formula have been developed [15, 20, 21, 22, 23]. The representative contribution is43

the PHI2 method [15], which computes the out-crossing rate in time-variant reliability problem by using44

a classical time-invariant parallel system composed of a pair of limit state functions (LSFs) at successive45

time instants. Then, the out-crossing rate is approximated by the bivariate normal integral using the46

first-order reliability method (FORM) [24]. Some improved PHI2-based methods have been developed47

recently. For example, a moment-based PHI2 method is proposed to improve the efficiency by separating48

finite element analysis from the time-variant reliability analysis cycle [25]. To avoid the two-dimensional49

numerical integration required in PHI2 method, an explicit model of the out-crossing rate is put forward50

to improve the computational efficiency [26]. Although the out-crossing rate approach is quite efficient51

for time-variant reliability problems, some inherent deficiencies still exist, e.g., the Poisson distribution52
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assumption of crossing events, and the limitations of FORM, which hinder their applications to general cases.53

Alternatively, the EVD-based approaches are developed to address the time-variant reliability problems,54

where the extreme value of a time-variant LSF is extracted as a measure to quantify the reliability. The55

surrogate model or probability density function (PDF) is constructed to characterize the extreme value56

of time-variant LSF in a specified time duration, where the time-variant problem is actually converted to57

be a time-invariant counterpart. Then, the existing time-invariant reliability tools can be incorporated for58

time-variant reliability approximation [27]. Many efforts are devoted to developing the surrogate model for59

the extreme value of response, e.g., the nested extreme value response method [28], mixed global optimization60

method with adaptive Kriging Monte Carlo simulation (MCS) [29], confidence-based adaptive extreme61

response surface method [30], polynomial chaos expansion with dimension reduction [31], a method combining62

multiple response Gaussian process and subset simulation [32], and a method combining multiple response63

Gaussian process and Kriging model [33], etc. However, if the LSF involves stochastic processes, the total64

number of input random variables increases significantly due to the discretization of stochastic processes.65

In that regard, a large number of computational efforts are necessary, which makes the surrogate models66

inefficient for time-variant reliability analysis. The computational efforts and accuracy of the surrogate model67

may suffer from the so-called “curse of dimensionality”, as the number of variables and the nonlinearity68

in the problem increases [34]. The other route of the EVD-based approaches is to reconstruct the PDF of69

extreme value at each time instant, which can be used to straightforwardly evaluate the time-variant failure70

probabilities. In Ref. [35], a sampling approach and saddle point approximation are employed to obtain the71

EVD, where a large sample size is still required to ensure accuracy. The time-variant EVD evolution method72

is developed based on its first-four central moments [36], however, the accuracy may become quite poor for73

general cases due to the inherent univariate dimension-reduction method. Besides, it should be emphasized74

that the aforementioned EVD-based approaches involve double-loop computations for time-variant reliability75

analysis, where significant computational efforts are actually indispensable.76

On the other hand, the structural performance could deteriorate as a result of the action of regular77

operating or environmental conditions in service, which also needs to be taken into account in time-variant78
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reliability analysis. Structural degradation mechanisms are often divided into two categories: progressive79

degradation and shock degradation [37]. In the past decades, many researchers devote to modeling the80

structural degradation [37, 38, 39, 40, 41, 42]. In the field of time-variant reliability analysis, if repair or81

maintenance measures are not involved, structural degradation processes are often treated as monotonically82

non-increasing and are modeled as deterministic functions or stochastic functions [3, 28, 29, 43, 44]. In this83

paper, only the progressive degradation processes, which are modeled by the monotonically non-increasing84

deterministic functions are considered [3, 15, 45].85

When the degradation processes and loading stochastic process are simultaneously considered, which are86

actually coupled, the EVD-based approaches are generally applicable for time-variant reliability analysis.87

However, as mentioned, a large amount of computational efforts are still required since a double-loop problem88

is involved. It is difficult to extract the EVD over the concerned time period in an efficient manner due to89

the coupling. Considering the limitations above, a single-loop method for time-variant reliability analysis will90

be proposed with high efficiency and accuracy in the present paper. In the proposed method, a decoupling91

strategy is first put forward to decouple the loading stochastic process and degradation processes. In that92

regard, the double-loop time-variant reliability problem can be avoided, whereby a single-loop problem is93

actually formulated. A transformed EEV-LSF over the concerned time period is then of great concern. The94

PDF of transformed EEV-LSF is recovered by using the fractional exponential moments-based maximum95

entropy method (FEM-MEM) with accuracy and efficiency. Finally, the time-variant failure probability can96

be obtained by integrating the estimated PDF over the failure domain, where a time-invariant reliability97

analysis procedure is implemented. It should be emphasized that the most attractive feature of the proposed98

method is that the time-invariant reliability analysis of structures is performed only once to obtain the failure99

probability over the concerned time period. In that regard, the computational time can be greatly saved100

compared to the double-loop approaches. It is worth pointing out that the proposed method cannot deal101

with time-variant reliability problems involving the stochastic degradation process. The rest of the paper102

is organized as follows. In Section 2, the problem statement of time-variant reliability analysis and the103

EVD-based method are briefly revisited. Then, the so-called decoupling strategy is proposed to improve the104
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efficiency for calculating the extreme value of response for time-variant LSF in Section 3.1. In Section 3.2,105

the PDF derivation of a transformed EEV-LSF is presented, where the Box-Cox transformation, FEM-MEM,106

and a weighted sampling method are involved. In Section 4, three numerical examples are investigated to107

demonstrate the accuracy and efficiency of the proposed method. The last section contains the concluding108

remarks.109

2. Time-variant reliability analysis110

2.1. Problem formulation111

Time-variant reliability of a structure refers to the probability that the structure can fulfill an intended112

function within a specified time period under intended conditions with consideration of the effect of time-113

dependent uncertainty. Let Z (t) = G (X,Y (t) , t) denotes the time-variant limit state function (LSF), where114

X = [X1, X2, · · · , Xd] represents the d time-invariant random variables related to structural properties, e.g.,115

component size, material properties, etc., and Y (t) is an input scalar stochastic process with the time t,116

which collects time-variant loadings. In this paper, it is assumed that the stochastic process is used to only117

refer to the loading process and stochastic process and random variables are all independent with each other.118

For a specified time period [0, tc], the structural failure occurs if the LSF is less than zero at a time instant t,119

t ∈ [0, tc]. Then, the time-variant failure probability within the time interval [0, tc], denoted as Pf (0, tc), can120

be defined as121

Pf (0, tc) = Pr {∃t ∈ [0, tc] , G (X,Y (t) , t) < 0} (1)

As a result, the time-variant reliability can be written as122

R (0, tc) = 1− Pf (0, tc) (2)

It is technically intractable to derive a closed-form solution for evaluating the time-variant failure123

probability since the correlation of structure failures at different time instants could be involved [27]. For124

numerical solutions, the input loading stochastic process must be explicitly represented as the function of125

time and random variables. Various approaches have been developed to obtain the explicit representation126
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of stochastic process such as the expansion optimal linear estimation (EOLE) [46, 47], orthogonal series127

expansion (OSE) [48] and Karhunen-Loeve (KL) expansion [49, 50, 51, 52], etc. In the present paper, the128

EOLE method is specifically adopted for simulating the loading stochastic process.129

2.2. Decomposition of loading stochastic process via EOLE130

Consider the Gaussian loading stochastic process, namely Y (t), which can be completely characterized by131

its mean value m (t), standard deviation σ (t) and autocorrelation coefficient ρY (t, ti). In order to discretize132

the process, L time instants ti = i∆t, ∆t = tc/L, i = 1, 2, · · · , L, are selected from the considered time133

interval [0, tc], tc is the time duration. Then, the loading stochastic process Y (t) can be approximately134

represented by EOLE such that [47]135

Y (t) ≈ Ỹ (t) = m (t) + σ (t)

M∑
h=1

Ξh√
χh
φT
hCY,t,tk (t) (3)

where M is the truncated order of the EOLE for Y (t), corresponding to the M largest eigenvalues of the136

correlation matrix C, whose generic term is Ckp = {ρY (tk, tp) , k, p = 1, · · · , L}, Ξh are the independent137

standard normal random variables, χh and φh are the eigenvalues and eigenvectors of C, and CY,t,tk (t) is a138

time-variant vector, whose components are CY,t,tk (t) = {ρY (t, tk) , k = 1, · · · , L}.139

It is known that truncation error decreases monotonically as the number of terms M increases. An error140

estimator [15], which allows evaluating the accuracy of the discretization is given by:141

err (t) = 1−
M∑
h=1

1

χh

(
φT
hCY,t,tk (t)

)2
(4)

where the number of terms M can be determined by err (t) < 10−2.142

Based on the procedure above, the original time-variant LSF can be expressed in terms of only random143

variables and time such that G (X,Ξ,t), where Ξ = [Ξ1,Ξ2, · · · ,ΞM ] and the total number of random144

variables is D = d+M . It is known that the truncated order of EOLE is always quite large, e.g., M > 10, to145

secure an acceptable accuracy for the simulation of a loading stochastic process. That means the total number146

of random variables in G (X,Ξ,t) could be also very large, which results in the “curse of dimensionality” and147

brings a tremendous computational burden for time-variant reliability analysis.148
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2.3. EVD-based approach149

The EVD-based approach is a popular approach for time-variant reliability analysis. In such an approach,150

the extreme values of response of a structure over a specified time period are extracted for time-variant151

reliability analysis [27]. According to the extreme value theorem in Ref. [53], the time-variant LSF at each152

time instant could also be regarded as a random variable. The equivalent extreme value (EEV) [53] of153

time-variant LSF G (X,Ξ,t) over the time period [0, tc] can be expressed as154

Wmin (X,Ξ,tc) = min
t∈[0,tc]

{G (X,Ξ,t)} (5)

where Wmin denotes the EEV of G (X,Ξ, t). Therefore, if Wmin > 0 always holds over the time period [0, tc],155

the structure is in the safe domain; otherwise, the structural failure occurs.156

In that regard, the PDF of the extreme value Wmin is of great concern for time-variant reliability analysis.157

Once the PDF of Wmin is available, the time-variant failure probability can be readily obtained by158

Pf (0, tc) =

∫ 0

−∞
pWmin

(w, tc) dw (6)

where pWmin (w, tc) denotes the EVD during the time period [0, tc].159

Although the EVD-based approach is effective and has been widely applied for time-variant reliability160

analysis, it is generally necessary to perform the LSF evaluations at each discrete time instant to extract the161

EVD for time-variant reliability analysis, where a double-loop problem is actually involved. Therefore, if one162

concerns the failure probability at a specific time instant, the model calculations before this time instant all163

need to be implemented, where multiple-round reliability analyses need to be implemented and significant164

computational efforts could be necessary.165

3. The proposed single-loop method for structural time-variant reliability analysis166

To avoid the thorny double-loop problem, a single-loop time-variant reliability evaluation method based167

on a decoupling strategy and probability distribution reconstruction will be developed in this section. In the168

proposed method, a decoupling strategy of loading stochastic process and degradation processes involved169

in time-variant reliability analysis is first proposed to convert the double-loop problem into a single-loop170
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problem. In that regard, only by performing a single-round time-invariant reliability analysis at the concerned171

time instant, the corresponding time-variant failure probability can be obtained accordingly. It should be172

emphasized that one does not need to perform reliability analysis at any moment before the concerned time173

instant during this process, indicating the computational time can be greatly saved for time-variant reliability174

analysis.175

In the proposed method, the EOLE is applied for simulating the loading stochastic process. A weighted176

sampling method is then employed to generate the samples of loading stochastic process and random variables.177

The decoupling strategy is then implemented to decouple the samples of loading stochastic process and178

degradation processes, where the samples related to the extreme value of response at the concerned time179

instant can be obtained. Based on these samples, the FEM-MEM is employed to derive the PDF related to180

the extreme value of response, where the EVD-based approach can be applied to estimate the time-variant181

reliability. For a clear illustration, the flowchart of the proposed method for time-variant reliability analysis182

is illustrated in Figure 1. In addition, the detailed steps are also outlined as follows:183

Step 1 : Determine the number of truncated term M in the stochastic process Y (t) according to the error184

estimation formula (Eq. (4)), and specify the total number of variables D = d+M involved in185

both structural properties and loadings.186

Step 2 : Implement the weighted sampling strategy (Section 3.2.3) to generate the points and weights for187

the high-dimensional independent standard normal space, where the points and weights for the188

original probability space can be specified accordingly.189

Step 3 : Substitute the points into Eq. (3) to discretize the loading stochastic process Y (t) and obtain190

the corresponding samples of maximal value process (MVP), denoted as V (t), and degradation191

processes, denoted as D (t).192

Step 4 : Perform the decoupling strategy in Section 3.1 to decouple the MVP V (t) and degradation processes193

D (t). Then, the corresponding samples of X, MVP V (t) and the new degradation processes,194

denoted as D (t̄), are substituted into Eq. (18) to calculate the samples of the concerned function195

η (X,D (t̄) , V (t) , t) at any time instant of interest, where deterministic LSF calls are performed.196

8



Step 5 : Implement the Box-Cox transformation (Sect. 3.2.1) to transform the original EEV-LSF, denoted as197

g (X,D (t̄) , V (t) , t), into a normal or weakly non-normal distributed EEV-LSF g̃ (X,D (t̄) , V (t) , t).198

Then, the samples of g̃ (X,D (t̄) , V (t) , t) can be directly obtained.199

Step 6 : Carry out the FEM-MEM in Section 3.2.2 to obtain the PDF of g̃ (X,D (t̄) , V (t) , t), in which the200

FEMs are computed by the samples in Step 5.201

Step 7 : Calculate the failure probability at the concerned time instant by integrating the corresponding202

PDF over the failure domain (Eq. (19)).203

Start

End

Figure 1: Flowchart of the proposed method for time-variant reliability analysis
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3.1. Decoupling strategy of loading stochastic process and degradation processes204

In engineering practice, structural degradation has effects on both the structural resistance and loading205

effect [39]. Without loss of generality, the time-variant LSF of structures can be also expressed as:206

G (X,D (t) , Y (t) , t) = R (X,D (t) , t)− S (X,D (t) , Y (t) , t) (7)

where R (X,D (t) , t) and S (X,D (t) , Y (t) , t) denote the structural resistance and loading effect, respectively;207

and D (t) represents the monotonically non-increasing degradation processes of the structure.208

The degradation processes, such as the strength degradation, and loading stochastic process are actually209

coupled in time-variant reliability analysis. The degradation processes involved in this paper are independent210

and progressive and are modeled by deterministic functions. Besides, since the time-variant loads considered211

in the paper are long-term ones (over years) rather than short-term time-variant loads, such as earthquake212

and wind loads, the dynamic effects, i.e., the inertial and damping forces, are not considered in this paper,213

where a series of static problems at each time instant are actually involved in time-variant reliability analysis.214

In this regard, the first-passage of load effect over structural resistance still indicates structural failure,215

whereby the first-passage failure probability is concerned [15, 22]. Then, it is known that the changes in216

structural response are synchronized with the changes in the loading process applied to the structure when217

the degradation processes are not considered. In other words, the extreme value of response actually occurs218

along with the extreme value of time-variant loading process at the same time when the degradation processes219

are not involved. This feature provides us an opportunity to transform the time-variant problem into the220

corresponding time-invariant one, where the extreme value of response over the concerned time interval could221

be extracted by simply performing the LSF evaluations at the final time instant. The extreme value of loading222

stochastic process over the concerned time interval is first obtained, which is then applied to the structure223

to perform model evaluations and capture the extreme value of response during the time interval. Since224

extracting the extreme value of loading stochastic process does not involve deterministic model evaluations,225

a single-loop problem is actually performed to obtain the EVD of response during the time interval, where226

only a single-round reliability analysis is readily implemented.227
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From the relationship between the principle of first-passage failure and the extreme response, it is known228

that the structure fails when the extreme value of response reaches its prescribed threshold for the first time229

during the service life. Actually, the maximum value of response is always considered as the extreme response230

for structural failure identification, which is referred to as the maximum failure assumption. Therefore, one231

needs to calculate the maximal value process (MVP) of a loading stochastic process [54] before implementing232

the decoupling strategy to obtain the maximum value of response. Consider a positive loading stochastic233

process Y (t), the corresponding MVP can be defined as234

V (t) = max
0≤τ≤t

{Y (τ)} (8)

A sketch of the relation between Y (t) and V (t) is shown in Figure 2. Since Y (t) is a stochastic process,235

V (t) is also a stochastic process which is monotonically non-decreasing in the sample sense.236

0

Figure 2: Sketch of the MVP V (t) and the underlying loading stochastic process Y (t)

As mentioned above, the changes in structural response are consistent with the changes in the loading237

process applied to the structure without consideration of degradation processes. Therefore, after obtaining238

the MVP of loading stochastic process, it is directly applied to the structure to obtain the extreme value239

of response at any time instant, where only one-round model evaluations at that time instant is involved.240

Contrary to the traditional scheme of extracting the extreme value of time-variant response in EVD-based241

approaches, this strategy does not need the model evaluations before this time instant, which could significantly242

reduce the computational efforts.243
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However, the maximum load does not necessarily lead to the maximum response when the degradation244

processes are involved. Therefore, another thorny problem, how to decouple the degradation processes from245

the loading stochastic process, needs to be addressed. Let D (t) = [D1 (t) , D2 (t) , · · · , Dm (t)] denote the246

degradation processes involved in time-variant reliability analysis. In engineering practice, it is reasonable to247

assume that structural resistance actually decreases slowly with time, where the slope change of a degradation248

process is not quite large. It could be imprudent to directly use the degradation values of structural resistance249

together with the extreme value of response at a specific time instant tc to compute the time-variant failure250

probability. As shown in Figure 3, it is seen that the structure does not fail at the concerned time instant tc251

since the structural resistance R (X,D (t) , t) is always larger than the load effect S (X,D (t) , Y (t) , t) in this252

time interval [0, tc]. However, when the extreme value of load effect S
(
X,D

(
t̃
)
, V
(
t̃
)
, tc
)

and structural253

resistance R (X,D (tc) , tc) at this time instant tc are extracted to judge whether the structure is of failure254

or not, a wrong judgment could be arrived, where the structure fails at this time instant. This is because,255

from the time instant t̃, where the extreme value of load effect first occurs, the maximum load V
(
t̃
)
, where256

V
(
t̃
)

= V (tc), and degradation processes D
(
t̃
)

has been used to calculate the extreme value of response,257

but the structural resistance constantly decreases, which leads to the misjudgment of failure events. From258

the facts above, in order to efficiently and reasonably evaluate the time-variant reliability of a structure259

through a single-loop method, it is necessary to perform a decoupling strategy for the degradation processes260

and loading stochastic process.261

Since it is impossible to correctly judge whether the structure fails at the current time instant only262

through the MVP of loading process and degradation values of structural resistance at that moment, the263

time-variant failure probability of the structure cannot be calculated correctly. Therefore, one needs to264

identify the degradation values D (t̄) corresponding to V (t) from D (t), instead of directly substituting265

D (t) into the LSF for the calculation, that is, implementing the so-called decoupling strategy, where266

D (t̄) = [D1 (t̄) , D2 (t̄) , · · · , Dm (t̄)]. The crucial issue is to identify the time instant t̄ when Y (t) equals the267

extreme value V (tc) for the last time, and to use the degradation values D (t̄) at the time instant t̄ for the268

structural resistance and load effect as the basis corresponding to the first-passage failure. The following will269
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Figure 3: Schematic diagram of R (X,D (t) , t), S
(
X,D

(
t̃
)
, V

(
t̃
)
, t
)

and S (X,D (t) , V (t) , t)

describe how to obtain D (t̄) step by step in detail from the sample perspective. For ease of understanding,270

the following steps take the time-variant failure probability Pf (0, tc) at the time instant tc as an illustrative271

example and the time-variant failure probability at any other time instant can be similarly deduced.272

Step 1 : Calculate the value V (tc) of the load MVP at the time instant tc, which is illustrated as the process273

¬ in Figure 4, where the coordinate of point b in Figure 4 is (tc, V (tc)).274

Step 2 : Record all the discrete time instants when Y (t) equal to V (tc) to form a time vector T̃c, where275

T̃c =
[
t̃c,1, · · · , t̃c,i, · · · t̃c,l

]
, 1 ≤ i ≤ l, 1 ≤ l ≤ L. Then, specify the maximum value of T̃c and276

record it as t̄c:277

T̃c =
[
t̃c,1, · · · , t̃c,i, · · · t̃c,l

]
= arg min
t̃c,i∈[t1,t2,··· ,tL]

(∣∣Y (t̃c,i)− V (tc)
∣∣) (9)

278

t̄c = max
{
T̃c

}
(10)

where V (tc) refers to the realization value of V (t) at the time instant tc and Y
(
t̃c,i
)

is the279

realization sample of stochastic process Y (t). It can be more intuitively understood in combination280

with Figure 4. This step involves the processes ­ and ® in Figure 4. In practical situations, there281

may be multiple discrete moments t̃c,i such that Y (t) equals to V (tc), such as t̃c,1 and t̃c,2 in282

Figure 4. In this case, the relatively larger value of these time instants needs to be taken as t̄c,283
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that is, t̄c = t̃c,2. Actually, t̄c is a random quantity in essence. Since the sample perspective is284

considered for the illustration, t̄c is treated as an intermediate quantity to determine the sample285

values of D (t̄c).286

The reason for performing this step is that the smallest structural resistance corresponding to its287

loading MVP needs to be correctly identified at the time instant t̄c. When the structure is still of288

safety at t̄c, it can be deduced that the structure does not experience failure during the concerned289

time interval; otherwise, the structure fails during the time interval.290

Step 3 : Calculate the values D (t̄c), namely the process ¯ and ° in Figure 4.291

Based on the maximum failure assumption, the values D (t̄c) need to be calculated, and then V (tc)292

and D (t̄c) are substituted into the LSF (Eq. (7)) to calculate the extreme response, and finally293

one can correctly judge whether the structure is of failure or not.294

Likewise, when all the discrete time instants in the entire time interval are considered, a new time295

vector T̄ can be got through Steps 1 to 2:296

t̄i = max
{
T̃i

}
, i = 1, 2, · · · , L; (11)

297

T̄ = [t̄1, · · · , t̄i, · · · , t̄L] (12)

Substitute t̄i into D (t) to obtain the decoupling values D (t̄).298

Step 4 : Through substituting D (t̄c) and V (tc) into the LSF (Eq. (7)), the extreme value of response299

G (X,D (t̄c) , V (tc) , tc) of the structure at the time instant tc can be captured.300

After obtaining the samples of G (X,D (t̄c) , V (tc) , tc), one can directly calculate the time-variant failure301

probability Pf (0, tc) such that302

Pf (0, tc) = Pr {G (X,D (t̄c) , V (tc) , tc) < 0} (13)

It should be emphasized that the proposed method is established based on two assumptions: (1)303

Progressive degradation assumption: the considered structure degrades at a slow rate and can be described304

by a deterministic progressive degradation model; (2) Maximum failure assumption: the structure fails only305
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Figure 4: Schematic diagram of decoupling strategy

before the maximum load effect occurs since the first-passage problem is considered; otherwise, the structure306

is considered to be safe for the concerned time interval. Based on above two assumptions, we have307

Wmin (X,D (tc) , Y (tc) , tc) = min
t∈[0,tc]

{G (X,D (t) , Y (t) , t)}

= min
t∈[0,tc]

{R (X,D (t) , t)− S (X,D (t) , Y (t) , t)}

= R (X,D (t̄c) , tc)− max
t∈[0,tc]

{S (X,D (t̄c) , Y (t) , t)}

= R (X,D (t̄c) , tc)− S (X,D (t̄c) , V (tc) , tc)

= G (X,D (t̄c) , V (tc) , tc)

(14)

the term G (X,D (t̄c) , V (tc) , tc) is actually equivalent to Wmin (X,Ξ,tc) mentioned in Eq.(5). Let us308

define G (X,D (t̄c) , V (tc) , tc) as the time-variant EEV-LSF for the time interval [0, tc], and denote it as309

Z̄ = G (X,D (t̄c) , V (tc) , tc). Then, the time-variant failure probability can be expressed as310

Pf (0, tc) =

∫ 0

−∞
pZ̄ (z̄, tc) dz̄ (15)

where pZ̄ (z̄, tc) denotes the PDF of EEV-LSF at the time instant tc. Then, the task changes to drive the311

PDF of EEV-LSF, i.e., pZ̄ (z̄, tc). In the following section, the FEM-MEM is applied to fulfill this aim.312
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3.2. The FEM-MEM to reconstruct the PDF of transformed EEV-LSF313

3.2.1. Box-Cox transformation314

It is known that the distribution of EEV-LSF always exhibits non-normal characteristic. The tail of315

distribution of EEV-LSF is crucial to time-variant reliability analysis. Since the distribution of EEV-LSF316

with a long tail of distribution is usually quite difficult to capture with high accuracy, this paper first performs317

the Box-Cox transformation on EEV-LSF, where the distribution of EEV-LSF after transformation turns to318

be normal or weakly non-normal. Then, only the short tail of distribution is involved, whereby the failure319

probability can be captured with high accuracy.320

As mentioned, the EEV-LSF G (X,D (t̄) , V (t) , t) for time-variant reliability analysis can be expressed321

as322

G (X,D (t̄) , V (t) , t) = R (X,D (t̄) , t)− S (X,D (t̄) , V (t) , t) (16)

where both R (X,D (t̄) , t) and S (X,D (t̄) , V (t) , t) are always greater than 0. Consequently, based on the323

Box-Cox transformation [55, 56], Eq. (16) can be equivalently expressed as324

g̃ (X,D (t̄) , V (t) , t) =


η(X,D(t̄),V (t),t)κ−1

κ , κ 6= 0

ln [η (X,D (t̄) , V (t) , t)] , κ = 0

(17)

where325

η (X,D (t̄) , V (t) , t) =
R (X,D (t̄) , t)

S (X,D (t̄) , V (t) , t)
(18)

and κ is the Box-Cox transformation parameter.326

Note that when the Box-Cox transform is executed, the format of the LSF changes from the subtractive327

format originally defined in this paper to the ratio format; however, the failure domains corresponding to the328

LSFs of both formats are identical and do not pose any obstacle to the execution of the proposed decoupling329

strategy. In order to improve the accuracy for reliability analysis of EEV-LSF with highly-skewed distribution,330

the value of parameter κ should make the skewness α3g̃ of g̃ (X,D (t̄) , V (t) , t) as small as possible. Since331

the positive skewness of η (X,D (t̄) , V (t) , t) is always involved, one can simply set the value of κ as 10−4
332

to fulfill the significant skewness reduction as a quasi-optimal option with high efficiency according to our333
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computational experiences. It is worth stating that although the Box-Cox transform is formally close to334

the logarithmic transform when κ is taken as 10−4, however, based on our computational experience, the335

Box-Cox transform is more competitive in terms of accuracy when used to calculate the failure probability336

compared to the direct use of the logarithmic transform.337

Then, the time-variant failure probability can be expressed as338

Pf (0, tc) =

∫ 0

−∞
pZ̃ (z̃, tc) dz̃ (19)

where Z̃ = g̃ (X,D (t̄) , V (t) , t), and pZ̃ (z̃, tc) denotes the PDF of g̃ (X,D (t̄) , V (t) , t) during the time339

interval [0, tc].340

3.2.2. FEM-MEM341

It is generally difficult to analytically obtain the PDF of g̃ (X,D (t̄) , V (t) , t) for complex engineering342

problems. Thus, alternative simulation-based methods could be regarded as effective ways to derive the343

distribution. Since a large number of random variables are involved in time-variant reliability analysis, the344

integer moments-based maximum entropy method (IM-MEM) may not be appropriate to recover the PDF.345

As an extension of IM-MEM, the fractional moments (FM)-based MEM (FM-MEM) has recently received346

increasing attention due to its attractive features in reconstructing an unknown distribution [57, 58, 59, 60].347

Although the FM-MEM overcomes the disadvantages of IM-MEM to some extent, many problems could348

be still encountered, which result in the difficulty of ensuring the robustness and convergence in different349

cases [61, 62, 63]. In that regard, the fractional exponential moments (FEM)-based MEM (FEM-MEM) is350

introduced to circumvent the difficulty in a robust, efficient and accurate manner [61, 62, 63].351

Since different distribution domains could be involved in different problems, a coordinate transformation352

is first implemented such that Z1 = Z̃/Z̃max to tackle different problems in a uniform way, where Z̃max =353

1.2 max
{
Z̃r

}
, r = 1, 2, · · · , N , and Z̃r’s are the sample values of Z̃. Then, define U = Z1 − Z1,lower, where354

Z1,lower denotes the lower bound of Z1. Actually, Z1,lower can be approximately estimated by355

Z1,lower = µZ1 − (5− 2γZ1)σZ1 (20)
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where µZ1 , σZ1 and γZ1 are the sample mean, standard deviation and skewness of Z1, which can be356

approximately estimated by the sampling technique in subsection 3.2.3. As a matter of fact, the procedures357

above are the normalization of arbitrary distribution range from (−∞,+∞) to a bounded domain, where358

only linear translation and scale transformation are carried out.359

The FEM of the variable U is usually defined as [63]360

E [exp (−αkU)] =

∫
ΩU

exp (−αku) pU (u) du (21)

where αk denotes the fractional order, ΩU is the distribution domain of U , and pU (u) is the PDF of U . In361

fact, the FEM is equivalent to the moment generating function, which also contains the information about a362

large number of integer moments [64] and can sufficiently characterize an unknown PDF.363

Then, the FEM-MEM with a total of K constraints can be formulated such that364 
Find : pU (u)

Maximize : H [pU (u)] = −
∫

ΩU
pU (u) ln [pU (u)] du

Constrains :
∫

ΩU
exp (−αku) pU (u) du=Mαk

U , k = 0, 1, · · · ,K

(22)

where H [pU (u)] denotes the Shannon entropy and Mαk
U , k = 1, 2, ..,K denotes the sample FEM. The365

constraints mean that the analytical FEMs of U should be identical with the sampled ones. Correspondingly,366

the PDF pU (u) can be represented as367

pU (u) = exp

[
−λ0 −

K∑
k=1

λk exp (−αku)

]
(23)

where368

λ0 = ln

{∫
ΩU

exp

[
−

K∑
k=1

λk exp (−αku)

]
du

}
(24)

and λ = [λ1, λ2, · · · , λK ]
T

is the vector collecting Lagrange multipliers. The constrained optimization above369

(Eqs. (22)) has been proven to be equivalent to the following unconstrained optimization problem [59]:370 
Find : λ = [λ1, λ2, · · · , λK ]

T
and α = [α1, α2, · · · , αK ]

T

Minimize : L (λ,α) = ln
[∫
ΩU

exp
(
−
∑K
k=1 λk exp (−αku)

)
du
]

+
∑K
k=1 λkM

αk
U

(25)

where α = [α1, α2, · · · , αK ]
T

denotes the fractional order vector. For simplicity, the simplex search method371

is always employed to obtain the solutions.372
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It has been proven in Refs. [65, 61] that when the fractional orders are adopted as αk = kᾱ/K, k =373

1, 2, · · · ,K, the estimated PDF pU (u) can still converge in entropy to the underlying true density. Then, we374

assume αk = kα∗, k = 1, 2, · · · ,K, where α∗ is the initial fractional order and α = [α∗, 2α∗, 3α∗, · · · ,Kα∗]T .375

Since the low-order FEMs are always sufficient to recover the PDF, the fractional order α∗ is restricted in the376

domain [−2, 2], and the number of FEMs is specially adopted as K = 2 in the analysis, which can guarantee377

the accuracy and robustness. Then, Eq. (25) can be further expressed as378 
Find : λ = [λ1, λ2, · · · , λK ]

T
and α∗

Minimize : L (α∗,λ) = ln
[∫
ΩU

exp (−
∑m
k=1 λk exp (−kα∗ · u)) du

]
+
∑K
k=1 λkM

kα∗

U

s.t. − 2 ≤ α∗ ≤ 2

(26)

which can be solved by the bounded simplex search method in Matlab. It is noted that only K+1 parameters,379

say λ = [λ1, λ2, · · · , λK ]
T

and α∗, need to be specified to reconstruct the PDF pU (u). In that regard, an380

estimator-corrector scheme in Ref. [66] is further employed, where only the initial value of α∗ needs to381

be provided, denoted as α̃∗. Besides, although α∗ is defined between -2 to 2, the initial value α̃∗ should382

not be arbitrarily chose, which could be assigned a value according to the sample skewness of Z̃ (α3Z̃),383

i.e., α̃∗ = sign (α3z̃)× 0.5. Once the initial value α̃∗ is provided, the initial fractional order vector can be384

determined as α̃ = [α̃∗, 2α̃∗, 3α̃∗, · · · ,Kα̃∗]T , and the initial values of Lagrange multipliers can be promptly385

determined by solving a linear equation such that [66]386

λ̃ = Q−1MU (27)

where MU =
[
Mα∗

U , ...Mkα∗

U , ...,MKα∗

U

]T
, Q [k, l] = E [Fk (u) f ′l (u)], where fl (u) = exp (−lα̃∗u), Fk (u) =387 ∫

ΩU
fk (u) du, k, l = 1, 2, · · · ,K. Then, α̃ = [α̃∗, 2α̃∗, 3α̃∗, · · · ,Kα̃∗]T and λ̃ =

[
λ̃1, λ̃2, · · · , λ̃K

]T
can be388

used as the initial values to further correct the solutions by Eq.(26). Once the PDF pU (u) is obtained, the389

PDF pZ̃ (z̃, tc) can be uniquely determined through the linear translation and scale transformation.390

3.2.3. Weighted sampling in high-dimension for FEMs assessment391

As mentioned, the high-dimensional probability space usually needs to be tackled in time-variant392

reliability analysis, where the loading stochastic process is expanded as a large number of uncorrelated393
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random variables. It is widely recognized that the high-dimensional uncertainty quantification is still a394

troublesome problem, where the “curse of dimensionality” could be encountered. In other words, the395

existing techniques for uncertainty propagation, which are appropriate for low-dimensional cases, may fail in396

high-dimension. Since MCS or its variant, e.g., quasi-MCS, is irrespective of the dimension, it could be the397

feasible choice for FEMs assessment when the high-dimensional random inputs are considered. However,398

the low computational efficiency of MCS still prohibits its practical applications, especially for large-scale399

structures. In this paper, a weighted sampling strategy [67, 68] is employed to evaluate the FEMs with the400

balance of accuracy and efficiency, which is established based on the quasi-MCS and Voronoi cells.401

The FEMs involved in FEM-MEM can be further expressed as402

E [exp (−αku)] =

∫
ΩU

exp (−αku) pU (u) du

=

∫
ΩX×ΩΞ

exp (−αku (X,Ξ,tc)) pX (x) pΞ (ξ) dxdξ

=

∫
ΩΞ̃×ΩΞ

exp
(
−αku

(
N−1

[
Ξ̃
]
,Ξ,tc

))
pΞ̃

(
ξ̃
)
pΞ (ξ) dξ̃dξ

=

∫
ΩΘ

exp (−αku (Θ,tc)) pΘ (θ) dθ

(28)

where N−1 denotes the inverse Nataf transformation, which converts the non-normal random vector X to be403

the independent standard normal one Ξ̃, whose joint PDF is pΞ̃

(
ξ̃
)

; ΩX ×ΩΞ denotes the joint distribution404

domain of X and Ξ, and Θ =
[
Ξ, Ξ̃

]
= [Θ1,Θ2, · · · ,Θd, · · · ,ΘD] (D = d+M) represents the independent405

standard normal random vector.406

In that regard, only the D-dimensional standard normal space needs to be tackled. In this paper, a407

weighted sampling strategy is employed (see Appendix A), where the points and weights are generated in the408

D-dimensional standard normal space for numerical assessment of FEMs such that409

E [exp (−αku)] =

N∑
r=1

ωr exp (−αku (θr, tc)) (29)

where ωr and θr, r = 1, 2, · · · , N , are the weights and points in standard normal space and N is the total410

number of points.411

According to our computational experiences, a total of 400 samples could be sufficient for time-variant412
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reliability analysis for explicit LSFs with high accuracy, while a total of 1000 samples coule be necessary to413

achieve highly accurate results for implicit LSFs.414

4. Numerical Examples415

In this section, three classical numerical examples are investigated to verify the accuracy and efficiency416

of the proposed method for time-variant reliability evaluations, where the computational results by MCS and417

PHI2 [15] are also provided for comparisons. The PHI2 method is performed by UQLab [69], a Matlab-based418

software framework. Besides, it should be pointed out that the conventional EVD-based approach is applied419

in MCS, where the double-loop computations are implemented.420

4.1. Example 1: Corroded steel beam421

First, a simply supported steel beam with a rectangular cross section subjected to a time-variant pinpoint422

load F (t) at the mid span is considered [15], as shown in Figure 5. The length of the beam is L = 5m. Due423

to the corrosion of steel beam, the sizes of the cross section b(t) and h(t) decrease monotonically with time424

such that425

b(t) = b0 − 2kt; h(t) = h0 − 2kt; (30)

where b0 and h0 are the initial width and height of the beam and k = 0.03mm/year.426

( )F t
2 t

0b

0h

Corroded area

Sound steel

Figure 5: Corroded beam under a midspan load

The bending failure is considered, where the time-variant LSF is expressed as [15]427

Z (t) = G (X, Y (t) , t) =
b (t)h2 (t)σy

4
−
(
F (t)L

4
+
ρstb0h0L

2

8

)
(31)

where ρst = 78.5kN/m3 is the steel mass density. Besides, the distributions of input random variables and428

loading stochastic process are gathered in Table 1.429
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Table 1: Probabilistic information for corroded steel beam

Paramter Description Distribution Mean COV
σy Steel yielding stress Lognormal 180 MPa 0.10
b0 Width of the beam Lognormal 0.2 m 0.05
h0 Height of the beam Lognormal 0.04 m 0.10
F (t) Concentrated load Gaussian process 3500 N 0.20

Note: COV = Coefficient of variation.

In this example, the load F (t) is assumed to be a stationary Gaussian process, where the autocorrelation430

coefficient function takes431

ρ(t1, t2) = exp

(
−
(
t2 − t1

2

)2
)

(32)

The EOLE expansion is first employed to discretize the loading stochastic process F (t) as a time-variant432

function of independent standard normal variables. The truncated number is specified as M = 22 in this433

example. The failure probability in the time duration [0, 30] year is of first concern and the time duration434

is uniformly divided into 200 intervals with 201 time instants. The total number of random variables in435

this example is 25, where a total of 400 weighted samples are selected in the 25-dimensional independent436

standard normal space. Correspondingly, a total of 400 deterministic model evaluations are carried out to437

obtain the failure probability at the end of the life-time of the structure (“right-boundary problem”) [70].438

For the 30th year, that is tc = T = 30th, the initial fractional order α̃∗ is −0.5, where α3Z̃ = −0.0781.439

Accordingly, the initial Lagrangian multipliers are λ̃ = [−90.4380, 28.9707]
T

. The values of α̃∗ and λ at other440

discrete time points can be similarly obtained. For the sake of brevity, the relevant data are not reported.441

Figure 6 plots the PDF and cumulative distribution function (CDF) (logarithmic scale) of transformed442

EEV-LSF when tc = T = 30th year by the proposed method, where the histogram and CDF curve by MCS443

(= 2.01× 108 runs) are provided for comparisons. It is known that the MCS-based time-variant reliability444

method needs to perform a large number of LSF evaluations at each discrete time instant [45]. Herein, a445

total of 1× 106 LSF calls at each discrete time instant is employed. Since a total of 201 time instants are446

involved, the total number of LSF calls by MCS is 201 × 1 × 106 = 2.01 × 108 to get the distribution of447

transformed EEV-LSF and failure probability at the 30th year. It is clear that the results estimated by the448

proposed method agree very well with those by MCS, demonstrating the accuracy of the proposed method449

for evaluating the PDF of transformed EEV-LSF. The reliability index at the 30th year obtained from the450
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proposed method is 2.3681, which is close to 2.3212 obtained from MCS. Similarly, Figure 7 shows the451

comparisons of CDFs in logarithmic scale at the 15th, 20th and 25th years, respectively, by the proposed452

method and MCS. Clearly, the results obtained from the proposed method always accord well with those by453

MCS. In addition, the reliability indexes at the these three years calculated by the proposed method are454

2.6208, 2.5337 and 2.4076, where the corresponding reliability indexes by MCS are 2.6431, 2.5270 and 2.4185.455
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Figure 6: PDF and CDF of transformed EEV-LSF at the 30th year for the corroded steel beam.
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Figure 7: CDFs at three different years for the corroded steel beam.

The PDF surface of transformed EEV-LSF over the time interval [0, 30] year is computed and plotted456

in Figure 8 (a). The time-variant failure probabilities are depicted in Figure 8 (b), which are also listed in457

Table 2. The results by MCS and PHI2 are also given in Table 2 for comparisons, where the COVs of failure458

probabilities by MCS are also reported. In addition, since the quasi-MCS (e.g., Sobol sequence), which is a459
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deterministic point set, is applied as the basic point set in the proposed method, the sampling points do not460

exhibit variability during different simulation runs. In that regard, the COVs of results by the proposed461

method are all zero. The PHI2 method is performed by UQLab, where the total number of simulations in462

PHI2 is 20181. If the number of LSF calls is used to measure the efficiency, the proposed method is much463

more efficient since only 400 calculations are required. In addition, it is clear that the results by the proposed464

method are obviously closer to those by MCS than those by PHI2 method in this example, where the relative465

errors are much smaller. The computational results above demonstrate the proposed method can accurately466

access the time-variant reliability indexes with high efficiency.

(a) PDF evolution

10 15 20 25 30
0

0.005

0.01

0.015

MCS

proposed method

(b) Failure probability

Figure 8: Time-variant reliability evaluation for the corroded steel beam.

467

To further verify the proposed method for small failure probability problems, the mean of yield strength468

σy is modified as 218MPa. The failure probabilities at the 30th year obtained by MCS and the proposed469

method are 7.90× 10−4 and 7.36× 10−4 respectively, which also shows that the proposed method can still470

maintain acceptable accuracy when the small failure probability is of concern. It should be emphasized471

that the 10−4-level failure probability can be treated as a “small” failure probability problem [71, 72] in472

engineering practice. The failure probability smaller than 10−4-level e.g., 10−7-level, is usually associated473

with extremely rare event, considered only in some very important structures and infrastructures, and is not474

concerned in this paper.475
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Table 2: Comparisons of time-variant failure probabilities for the corroded beam

Time interval(year) [0,9] [0,12] [0,15] [0,18] [0,21] [0,24] [0,27] [0,30]
MCS (×10−3) 2.45 3.24 4.11 5.04 6.16 7.34 8.64 10.14

(COV) (%) (2.02) (1.75) (1.56) (1.40) (1.27) (1.16) (1.07) (0.99)
PHI2 (×10−3) 2.67 3.88 5.30 6.97 8.91 11.17 13.79 16.83

(R.E.) (%) (8.83) (19.67) (29.06) (38.16) (44.68) (52.10) (59.67) (66.00)
Proposed method (×10−3) 2.62 3.00 4.39 5.40 5.97 7.80 7.79 8.94

(R.E.) (%) (6.83) (7.54) (6.78) (7.14) (3.12) (6.19) (9.83) (11.81)

Note: R.E. = Relative error.

4.2. Example 2: Cantilever tube structure476
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Figure 9: A cantilever tube structure

The second example considers a cantilever tube structure, as shown in Figure 9 [45]. Three random477

external forces F1, F2, P and a torque random process T (t) are applied to the structure. A loss of yield478

strength due to the material degradation is considered, where a linearly decreasing time-variant function479

R(t) = R0(1− 0.01t) is used to describe this process and R0 stands for the initial yield stress.480

In this example, the structure fails when the maximum Von-Mises stress σmax at the end of the tube481

exceeds its time-variant bearing capacity, i.e., R(t), over a time period of 5 years:482

Z (t) = G (X, Y (t) , t) = R (t)− σmax (t) (33)

where483

σmax(t) =
√
σ2
x(t) + 3τ2

zx(t) (34)

484

σx(t) =
F1(t) sin(θ1) + F2 sin(θ2) + P

A
+
M(T )d

2I
(35)

485

M(t) = F1(t) cos(θ1)L1 + F2 cos(θ2)L2 (36)
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486

A =
π

4
[d2 − (d− 2h)2] (37)

487

I =
π

64
[d4 − (d− 2h)4] (38)

488

τzx(t) =
T (t)d

4I
(39)

and T (t) is a stationary Gaussian process whose autocorrelation function is ρ(t1, t2) = exp(−(
t2 − t1

0.5
)2).489

The distributions of other parameters involved in this example are listed in Table 3.490

Table 3: Distribution of parameters for the cantilever tube

variable Distribution Mean COV
T (t) Gaussian process 1700 N ·m 0.10
F1 Normal 1800 N 0.10
F2 Normal 1800 N 0.10
P Lognormal 1000 N 0.10
h Normal 5 mm 0.019
d Normal 42 mm 0.02
R0 Normal 500 MPa 0.10
θ1 Deterministic 5◦ 0
θ2 Deterministic 10◦ 0
L1 Deterministic 120 mm 0
L2 Deterministic 60 mm 0

First, the loading stochastic process T (t) is discretized by EOLE, where the truncated number M = 15491

is determined accordingly. In this regard, this example involves a total of 21 random variables in both492

structural parameters and external excitations. Similarly, a total of 400 weighted samples are determined in493

this 21-dimensional probability space by the proposed method, indicating 400 repeatedly deterministic model494

evaluations are required in the proposed method. The time interval [0,5] year is considered and discretized495

into 200 time intervals with 201 time instants, where ∆t = 0.3 month.496

For the last time point tc = T = 5th, the initial fractional order α̃∗ is −0.5, and the initial Lagrangian497

multipliers are λ̃ = [−104.5302, 34.8236]
T

. The PDF and CDF (in logarithmic scale) of transformed EEV-LSF498

when tc = T = 5th year are evaluated by the proposed method and plotted in Figure 10, where the results499

by MCS (= 2.01× 108 runs) are also provided for comparisons. Again, it can be observed that the proposed500
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Figure 10: PDF and CDF of transformed EEV-LSF at the 5th year for the cantilever tube.

method can provide accurate estimation for the PDF of transformed EEV-LSF within the time interval [0,5]501

year. The reliability indexes at the 5th year given by the proposed method and MCS are 2.1998 and 2.2004,502

respectively, which are very close to each other.503

Figure 11 depicts the comparisons of CDFs in logarithmic scale at three different years, say the 2nd,504

3rd, and 4th years. Note that the CDFs evaluated by the proposed method are still in close agreements with505

those by MCS, demonstrating the accuracy of the proposed method for deriving the distributions related506

to time-variant reliability analysis. The reliability indexes at these three years evaluated by the proposed507

method are 2.5062, 2.3666 and 2.2691, where the comparative results by MCS are 2.5345, 2.4012 and 2.2954.508

It is clear that the results by the proposed method also accord pretty well with those by MCS.509
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Figure 11: CDFs at three different years for the cantilever tube.
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Similarly, the PDF surface of transformed EEV-LSF over the time interval [0, 5] year is plotted in Figure510

12 (a), whereas the failure probabilities are compared in Figure 12 (b), respectively. It is seen that the511

proposed method provides a fine estimation for the evolution of failure probabilities in different time intervals.512

Table 4 lists the time-variant failure probabilities by the proposed method and MCS, where the COVs of513

failure probabilities by MCS are reported. Meanwhile, the time-variant failure probabilities results based on514

PHI2 are also listed in Table 4 for comparisons. The relative errors of failure probabilities by the proposed515

method and PHI2 are compared. It is clear that the MCS and PHI2 need to perform 2.01× 108 and 20100516

LSF calculations respectively to get the failure probability at the 5th year, while only 400 model evaluations517

are sufficient in the proposed method. Moreover, for this example, the results by the proposed method are518

obviously closer to the results by MCS than those by PHI2 again. Clearly, the proposed method can yield519

fairly accurate time-variant reliability with efficiency, which again validates the efficacy of the proposed520

method.
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Figure 12: Time-variant reliability for the cantilever tube.

Table 4: Comparisons of time-variant failure probabilities for the cantilever tube

Time interval(year) [0,3.3] [0,3.6] [0,3.9] [0,4.2] [0,4.5] [0,4.8] [0,5]
MCS (×10−2) 0.90 0.98 1.06 1.14 1.24 1.33 1.39

(COV) (%) (1.05) (1.00) (0.97) (0.93) (0.89) (0.86) (0.84)
PHI2 (×10−2) 1.00 1.13 1.26 1.40 1.55 1.70 1.81

(R.E.) (%) (11.65) (15.26) (19.18) (22.14) (24.56) (28.42) (30.57)
Proposed method (×10−2) 0.95 0.99 1.12 1.21 1.24 1.36 1.39

(R.E.) (%) (6.50) (1.23) (6.52) (5.96) (0.20) (2.37) (0.15)

521
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522

4.3. Example 3: A 13-storey RC frame-shear wall structure523

To further check the effectiveness of the proposed method for practical complex engineering structures,524

a 13-storey high-rise frame-shear wall structure is considered, as shown in Figure 13 [73]. The finite-element525

model is built by OpenSEES software. The structure is subjected to gravity loads as well as lateral loads.526

The structural properties will experience degradation due to corrosion, and the lateral loads are time-variant.527

 
(a) Finite element model (b) Plane layout (c) Geometric size and reinforcement

Figure 13: Structural information [3]

It is recognized that the time-variant deterioration of reinforced concrete members is related to both the528

concrete and steel materials as well as other chemical or physical quantities [74]. Therefore, in this example,529

the compressive strength of concrete and the yield strength of reinforcement are considered to be random530

quantities, which vary against time with the following relationships [3]:531

fpc (t) = fpc,0
(
10− 8× 10−7t3

)
(40)

532

fy (t) = fy,0
(
1− 2.2× 10−6t3

)
(41)

where fpc,0 is the compressive strength of concrete at the initial time; and fy,0 is the yield strength of533

reinforcement at the initial time. The uniaxial nonlinear constitutive models of concrete and reinforcement534

are shown in Figure 14 [73].535
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(a) Concrete constitutive model
(b) Steel constitutive model

Figure 14: Uniaxial constitutive models

In addition, the total lateral force F (t) applied to the structure is assumed to be a stationary Gaussian536

process, where the autocorrelation coefficient function takes537

ρ (t1, t2) = exp

(
−
(
t2 − t1

4

)2
)

(42)

and the lateral force applied to each storey is [73]:538

Fi (t) =
Mih

ζ
i∑13

j=1Mjhj
F (t) (43)

where Mi, hi and Fi (t) are the mass, height and applied force of the ith storey of the structure and ζ = 1.3539

is the correction factor of height.540

In this example, the structure is considered over 50 years and is out of service when the top displacement541

of the structure in the direction of lateral load, denoted as νR (t), is larger than the prescribed threshold542

ν̄R = 105mm, where the time-variant LSF can be expressed as543

Z (t) = G (X, Y (t) , t) = ν̄R − |νR (t)| (44)

The probabilistic and deterministic parameters involved in this example are listed in Table 5.544

A similar procedure is implemented for time-variant reliability analysis of this complex frame-shear545

wall structure. First, the loading stochastic process F (t) is reconstructed by EOLE, where 20 independent546

standard normal random variables are involved. The loading stochastic process F (t) is discretized into 200547

time intervals with 201 time instants. Considering the randomness in structural properties, a total of 22548
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Table 5: Parameters for the 13-storey frame-shear wall structure

variable Distribution Mean COV
fpc,0 Normal 40 MPa 0.10
fy,0 Normal 386 MPa 0.08
F (t) Gaussian process 1.5× 103 kN 0.20
fpcu Deterministic 10 MPa 0
ε0 Deterministic 0.0015 0
εu Deterministic 0.006 0
E0 Deterministic 2.0× 105 MPa 0
b Deterministic 0.01 0

independent random variables are involved in this problem. The proposed method is then applied to analyze549

the time-variant reliability, where a total of 1000 weighted samples are selected in this high-dimensional550

probability space. For the last time point tc = T = 50th, the initial fractional order α̃∗ is −0.5, and the551

initial Lagrangian multipliers are determined as λ̃ = [−92.8571, 29.7863]
T

.552

Likewise, the PDF and CDF in logarithmic scale of transformed EEV-LSF when tc = T =50th year are553

estimated by the proposed method, which are shown in Figure 15. The results by MCS (= 2.01× 106 runs)554

are also provided for comparisons. Obviously, the PDF and CDF of transformed EEV-LSF still accord very555

well with those by MCS, which indicates the accuracy of the proposed method for deriving the whole PDF556

of transformed EEV-LSF. The reliability index provided by the proposed method at the 50th year is 1.84,557

which is almost the same with that obtained by MCS. Figure 16 plots the CDFs of transformed EEV-LSF558

when tc =20th, 30th and 40th years, which are evaluated by the proposed method, and the results by MCS559

are also pictured as references. The results show that the proposed method still can yield accurate CDFs560

of transformed EEV-LSF at different years. The reliability indexes by the proposed method at these three561

years are 2.28, 2.13 and 2.00, respectively, where the corresponding results by MCS are 2.26, 2.12 and 1.97.562

Again, the accuracy of the proposed method for time-variant reliability analysis of a complex engineering563

structure is validated.564

Figure 17 shows the evolutionary PDFs of transformed EEV-LSF and the corresponding time-variant565

failure probabilities. Table 6 lists the comparisons of time-variant failure probabilities at these years. Since566

this example involves complex finite element calculations, which means that the MCS method inevitably567

requires huge computation efforts, only 1× 104 samples are used at each time instant to calculate the failure568
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Figure 15: PDF and CDF of transformed EEV-LSF at the 50th year for the frame-shear wall structure.
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Figure 16: CDFs at three different years for the frame-shear wall structure.

probability. In that regard, the COVs of failure probabilities calculated by MCS are relatively large as shown569

in Table 6. In addition, both the MCS and PHI2 need to perform 2.01× 106 calculations to get the failure570

probability at the 50th year, while the proposed method only needs 1000 model evaluations. Furthermore,571

the accuracy of time-variant failure probabilities/reliability indexes by the proposed method is obviously572

much better than those by PHI2 again in this example, which verifies the effectiveness of the proposed573

method for time-variant reliability assessment even when an implicit complex LSF with high-dimensional574

random inputs is considered.575
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Figure 17: Time-variant reliability evaluation for the frame-shear wall structure.

Table 6: Comparisons of time-variant failure probabilities for the frame-shear wall structure

Time interval(year) [0,20] [0,25] [0,30] [0,35] [0,40] [0,45] [0,50]
MCS (×10−2) 1.19 1.40 1.70 2.00 2.43 2.84 3.27

(COV) (%) (9.11) (8.39) (7.60) (7.00) (6.34) (5.85) (5.44)
PHI2 (×10−2) 1.38 1.70 2.06 2.40 2.86 3.33 3.79

(R.E.) (%) (14.19) (21.28) (21.02) (19.95) (17.60) (17.37) (15.81)
Proposed method (×10−2) 1.13 -1.34 1.68 1.87 2.29 2.82 3.27

(R.E.) (%) (5.15) (0.89) (1.26) (6.34) (5.59) (0.73) (0.14)

5. Concluding remarks576

In this paper, a single-loop method is proposed for time-variant reliability analysis of structures with577

efficiency and accuracy. The proposed method is established based on a decoupling strategy and probability578

distribution reconstruction. In this method, the input loading stochastic process is first discretized into a579

large number of random variables by EOLE. A weighted sampling strategy is then employed to determine580

the sampling points and weights for model evaluations. Then, the decoupling strategy of loading stochastic581

process and degradation processes of structural resistance is implemented. In this strategy, the maximal value582

process of loading stochastic process and decoupled degradation processes during a specified time duration583

are extracted to determine the extreme value of load effect. Meanwhile, the corresponding degradation584

values of structural resistance are determined accordingly. Then, only a single-round of model evaluations585

are necessary to derive the required PDF for time-variant reliability analysis. The FEM-MEM is employed586

for the PDF derivation with efficiency and accuracy, in which the Box-Cox transformation is performed to587
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ensure the robustness. Three numerical examples including a complex real-world case are investigated to588

check the effectiveness of the proposed method for time-variant reliability analysis. In all these examples, the589

PDF at a specified time instant can be reconstructed with accuracy and high efficiency, where only a small590

number of weighted samples are required. The time-variant failure probabilities can be also evaluated by the591

proposed method with satisfactory accuracy. The results demonstrate that the proposed method is effective592

for time-variant reliability analysis, where the trade-off of accuracy and efficiency can be achieved.593
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Appendix A. Weighted sampling method [67]604

First, a uniform point set is scattered in the unit hypercube [0, 1]
D

by quasi-MCS (e.g., Sobol sequence)605

due to its low discrepancy, which is denoted as Pu = {vr = [v1,r, v2,r, · · · , vD,r] , r = 1, 2, · · · , N}. Then,606

the uniform point set Pu is transformed into the standard normal space by using the isoprobabilistic607

transformation such that608

θi,r = Φ−1 (Fvi (vi,r)) , i = 1, 2, · · · , D, r = 1, 2, · · · , N (A.1)
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where Φ−1 denotes the inverse CDF of a standard normal distribution; and Fvi (·) is the CDF of Vr. The609

transformed point set is denoted as Pt = {θr = [θ1,r, θ2,r, · · · , θD,r] , r = 1, 2, · · · , N}.610

Next, the input D-dimensional standard normal space could be partitioned as a set of non-overlapping611

subdomains by using the Voronoi cells Vr’s , defined as [75]612

Vr = {θ ∈ Rs, ‖θ − θr‖ ≤ ‖θ − θq‖, for all r 6= q} (A.2)

where θr and θq denote the different sampling points in sub-domains Vr and Vq, where Vr ∩ Vq = ∅ for r 6= q613

and
⋃N
r=1 Vr = ΩΘ.614

The weight for each Voronoi cell can be computed by covering the joint PDF pΘ (θ) over the distribution615

domain such that616

ωr =

∫
Vr

pΘ (θ) dθ (A.3)

It is clear that the weights ωr’s, r = 1, 2, · · · , N , are unequal since the Voronoi cells are different with617

each other and are polygons. Practically, analytical computation of weights is always unfeasible, and an618

auxiliary MCS with a large number of samples could be implemented to compute the weights, where only619

the standard normal space is involved. The random samples generated by the auxiliary MCS are denoted620

as Pmcs =
{
θ̃j =

[
θ̃1,j , θ̃2,j , · · · , θ̃D,j

]
, j = 1, 2, · · · , Nmcs

}
, where Nmcs � N is the number of the auxiliary621

MCS samples. Usually, Nmcs = 107 ∼ 108 is employed. Since this step also dose not requires the deterministic622

LSF calls, the computational time could be ignored compared with the time-demanding model evaluations.623

Then, the weights can be expressed as624

ωr =

∫
Vr

pΘ (θ) dθ ≈ nr
Nmcs

(A.4)

where nr denotes the number of the auxiliary MCS samples located in the Voronoi cell Vr. Clearly,625 ∑N
r=1 ωr = 1.626

To make the point set more consistent with the standard normal distributions, rearranging the points is627

further implemented such that [67]628

θ′i,r = Φ−1

(
N∑
r=1

(ωr · I (θi,r < θi,q)) +
1

2
ωq

)
(A.5)
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where the point set Pfinal =
{
θ′r =

[
θ′1,r, θ

′
2,r, · · · , θ′D,r

]
, r = 1, 2, · · · , N

}
is taken as the final point set.629

In that regard, the FEMs in Eq. (29) can be computed by630

E [exp (−αku)] =

N∑
r=1

ωr exp (−αku (θ′r, t)) (A.6)
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