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Abstract

A new technique is proposed for determining the response of multi-degree-of-
freedom nonlinear systems with singular parameter matrices subject to combined
deterministic and non-stationary stochastic excitation. Singular matrices in the
governing equations of motion potentially account for the presence of constraints
equations in the system. Further, they also appear when a redundant coordinates
modeling is adopted to derive the equations of motion of complex multi-body sys-
tems. In this regard, the system response is decomposed into a deterministic and
a stochastic component corresponding to the two components of the excitation.
Then, two sets of differential equations are formulated and solved simultaneously
to compute the system response. The first set pertains to the deterministic re-
sponse component, whereas the second one pertains to the stochastic component
of the response. The latter is derived by utilizing the generalized statistical lin-
earization method for systems with singular matrices, while a formula for deter-
mining the time-dependent equivalent elements of the generalized statistical lin-
earization methodology is also derived. The efficiency of the proposed technique
is demonstrated by pertinent numerical examples. Specifically, a vibration energy
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harvesting device subject to combined deterministic and modulated white noise
excitation and a structural nonlinear system with singular parameter matrices sub-
ject to combined deterministic and modulated white and colored noise excitations
are considered.

1 Introduction
Assessing the reliability of nonlinear multi-degree-of-freedom (MDOF) systems sub-
ject to combined deterministic and stochastic loading constitutes a persistent challenge
in random vibration, which finds a plethora of applications in several engineering fields.
Indicatively, these span from vibration energy harvesting (e.g., [1, 2, 3]) to the problem
of turbine blades vibration under turbulent flow (e.g., [4, 5]), or nonlinear vibration of
beams and plates (e.g., [6]), and vibration of gear systems (e.g., [7]).

In this context, considerable research effort has been put over the last decades
into developing methodologies and techniques aiming at determining the response of
nonlinear MDOF systems subject to combined deterministic and stochastic excitation.
This has been done by utilizing and combining standard deterministic and stochastic
analysis tools such as, indicatively, the harmonic balance and statistical linearization
or Gaussian closure methods (e.g., [8, 9, 10, 7, 11, 12]), the harmonic balance and
stochastic averaging methods (e.g., [13]), and the equivalent linearization and deter-
ministic or stochastic averaging methods (e.g., [14, 15]). Further, the need for more
accurate media behavior modeling dictated by recent advances in theoretical and ap-
plied mechanics (e.g., [16]) has propelled the use of fractional calculus which, in turn,
resulted to the development of pertinent frameworks (e.g., [6, 17]). Yet, most of the
approaches available in the literature to-date treat systems whose stochastic excitation
component is modeled as a stationary stochastic process. However, a more accurate
modeling of the applied stochastic excitation component necessitates considering the
non-stationary characteristics corresponding to excitations often met in nature, such as
wave, wind and earthquake loads. This has recently led to the extension of relevant
tools, and approaches accounting for non-stationary stochastic excitations (e.g., [18])
and non-stationary excitations described by evolutionary power spectrum forms (e.g.,
[19]) have been proposed.

An additional aspect of the response determination problem for MDOF systems
subject to combined deterministic and stochastic excitation relates to the complexity of
the system under consideration. In this regard, a technique accounting for singular pa-
rameter matrices and constraints in the equations governing the dynamics of the MDOF
system has been recently developed in [20]. Examples of such systems are often met
in engineering applications including, indicatively, systems with massless joints (e.g.,
[21, 22]), oscillators modeled via additional auxiliary state equations (e.g., [23]), en-
ergy harvesting devices (e.g., [24]) and specific classes of non-viscously damped sys-
tems (e.g., [25]). Hence, utilizing tools from the theory of generalized matrix inverses
(e.g., [26]) has led to the extension of known input-output (excitation-response) ex-
pressions in random vibration theory, and subsequently, to the development of various
frameworks for determining the response of MDOF linear and nonlinear systems (e.g.,
[27, 28, 29, 30, 31]), conducting joint time-frequency analysis of the system response
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(e.g., [32, 33]), or solving random eigenvalue problems for systems with singular ran-
dom parameter matrices [34].

In this paper, the technique developed in [20] is extended to MDOF nonlinear
systems with singular parameter matrices subject to combined deterministic and non-
stationary stochastic excitation. This is done by formulating and solving simultane-
ously two sets of differential equations, corresponding to the deterministic and the
stochastic components of the response, respectively. An additional contribution relates
to the generalization of the expression derived in [28] to determine the time-dependent
equivalent elements of the generalized statistical linearization methodology for systems
with singular parameter matrices. Three numerical examples are considered to assess
the reliability of the proposed technique. These include a vibration energy harvesting
device subject to combined deterministic and modulated white noise excitation and a
structural nonlinear system with singular parameter matrices subject to combined de-
terministic and modulated white and colored noise excitations. The obtained results
are compared with pertinent Monte Carlo simulation (MCS) data as well as with cor-
responding results obtained by the approach proposed in [18].

2 Mathematical formulation

2.1 Nonlinear MDOF systems with singular parameter matrices
The governing equations of motion of an l-DOF nonlinear system subject to combined
deterministic and non-stationary stochastic excitation are given by

Mxẍ+Cxẋ+Kxx+Φx(x, ẋ, ẍ) = fd,x(t) +Qx(t), (1)

where x denotes the (possibly dependent) l-dimensional response displacement vector
and ẋ, ẍ are the response velocity and acceleration l-dimensional vectors, respectively.
Further, Mx, Cx and Kx correspond to the l× l mass, damping and stiffness matrices
of the system, whereas Φx(x, ẋ, ẍ) denotes the l-dimensional nonlinear vector of the
system. Lastly, fd,x(t) and Qx(t) are the l-dimensional vectors of the deterministic
and the zero-mean non-stationary stochastic excitation, respectively. It is noted that
considering a zero-mean excitation is rather for simplicity and not restrictive for the
ensuing analysis, which can be generalized also to the case of a nonzero-mean process
(e.g., [35]).

Considering, next, that the l-DOF system of Eq. (1) is subject to additional con-
straints [36, 27]

A(x, ẋ, t)ẍ = b(x, ẋ, t), (2)

Eq. (1) is recast into

M̄xẍ+ C̄xẋ+ K̄xx+ Φ̄x(x, ẋ, ẍ) = f̄d,x(t) + Q̄x(t). (3)

In Eq. (3), M̄x, C̄x and K̄x denote the augmented (l + m) × l mass, damping and
stiffness matrices of the system given by [31, 33]

M̄x =

[
JMx

A

]
, C̄x =

[
JCx

E

]
, K̄x =

[
JKx

L

]
, (4)
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the augmented (l +m)-dimensional nonlinearity vector has the form

Φ̄x =

[
JΦx

0m×1

]
, (5)

whereas the augmented (l + m)-dimensional vectors of the applied deterministic and
stochastic excitations are given by

f̄d,x(t) =

[
Jfd,x(t)
0m×1

]
(6)

and

Q̄x(t) =

[
JQx(t)

F

]
, (7)

respectively. For the derivation of the system parameter matrices in Eq. (4), as well as
the excitation vectors in Eq. (7), the system constraints Eq. (2) is written, for simplicity,
in the form Aẍ+Eẋ+Lx = F, with A, E, L denoting m× l matrices and F denoting
an m-dimensional vector (e.g., [27]). Further, J represents an l × l matrix connecting
the constraints Eq. (2) with the system governing equations of motion Eq. (1) (e.g.,
[30, 33]). A detailed derivation of Eqs. (3-7) can be found in [27, 29, 20].

2.2 System response determination
In this section, a semi-analytical technique is proposed for determining the response
of MDOF systems with singular parameter matrices subject to combined deterministic
and non-stationary stochastic excitation. This is attained by decomposing the nonlinear
system into two subsystems, i.e., one subject to the non-stationary stochastic excitation
and one subject to the deterministic excitation. The former is simplified by resorting
to the generalized statistical linearization method for systems with singular parameter
matrices [28, 29], followed by a state variable treatment. This involves the formulation
of a time-dependent matrix differential equation, whose solution yields the standard
deviation of the stochastic component of the response. Further, a set of determinis-
tic differential equations corresponding to the subsystem subject to the deterministic
excitation, and thus, governing the deterministic response component, is derived and
solved simultaneously with the matrix differential equation above. This can be done
by resorting to any standard numerical scheme, such as the Runge–Kutta method.

2.2.1 Generalized statistical linearization based framework

Consider the augmented system in Eq. (3) which is subject to combined deterministic
and non-stationary stochastic excitation. The system response is decomposed into two
components, namely the stochastic and the deterministic one, accounting, respectively,
for the corresponding components of the excitation. That is

x(t) = xs(t) + xd(t), (8)

where the l-dimensional vector xs(t) denotes the zero-mean stochastic component of
the response and the l-dimensional vector xd(t) represents the deterministic response
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component. Then, taking into account that the stochastic displacement component
is modeled as a zero-mean process, substituting Eq. (8) into Eq. (3) and ensemble
averaging yields

M̄xẍd + C̄xẋd + K̄xxd + E
[
Φ̄x(xs + xd, ẋs + ẋd, ẍs + ẍd)

]
= f̄d,x(t), (9)

where E[·] denotes the expectation operator. Eq. (9) constitutes a subsystem of deter-
ministic differential equations to be solved for computing the deterministic response
of the system. Then, subtracting Eq. (9) from Eq. (3) yields a subsystem of equations
subject to non-stationary stochastic excitation, namely

M̄xẍs + C̄xẋs + K̄xxs + Φ̃x = Q̄x(t), (10)

where

Φ̃x = Φ̄x(xs + xd, ẋs + ẋd, ẍs + ẍd)−E
[
Φ̄x(xs + xd, ẋs + ẋd, ẍs + ẍd)

]
. (11)

Clearly, the nonlinear terms in Eqs. (9) and (10) consist of a deterministic and a stochas-
tic response components, which are intertwined. Therefore, Eqs. (9) and (10) constitute
a coupled set of differential equations to be solved for determining the system response.

In this regard, the generalized statistical linearization method is applied and a linear
system equivalent to the subsystem of Eq. (10) is defined as(

M̄x + M̄e(t)
)
ẍs +

(
C̄x + C̄e(t)

)
ẋs +

(
K̄x + K̄e(t)

)
xs = Q̄x(t), (12)

where M̄e(t), C̄e(t) and K̄e(t) are the time-varying (l + m) × l mass, damping and
stiffness matrices of the equivalent linear system. Then, the error function is defined as
the difference between the nonlinear system in Eq. (10) and the equivalent linear system
in Eq. (12), and it is minimized by adopting a mean square minimization criterion in
conjunction with the Gaussian response assumption [35].

Clearly, one of the advantages of the standard statistical linearization method relates
to its capacity to provide closed-form expressions for determining the equivalent linear
elements of Eq. (12). In this context, consider that meT

i∗ (t), ceTi∗ (t) and keT
i∗ (t) for i =

1, 2, . . . , l+m denote the i-th row of the (l+m)×l time-varying matrices M̄e(t), C̄e(t)

and K̄e(t), respectively, and that x̂ =
[
xs ẋs ẍs

]T
is a 3l-dimensional vector with

“T” denoting the matrix transpose operation. A key aspect in determining meT
i∗ (t),

ceTi∗ (t) and keT
i∗ (t) is that the covariance matrix E[x̂x̂T] is invertible [35]. However, due

to the possibly dependent coordinates utilized to model the system governing equations
of motion in Eq. (1), E[x̂x̂T] is singular. Nevertheless, generalized expressions for the
equivalent elements have been proposed in [28, 29] for the case where the system is
subject to stationary stochastic excitation, as well as in [20] for MDOF systems subject
to combined deterministic and stationary stochastic excitation.

In this regard, the equivalent linear elements for systems with singular parameter
matrices and subject to deterministic and non-stationary stochastic excitations are given
by keT

i∗ (t)
ceTi∗ (t)
meT

i∗ (t)

 = E[x̂x̂T]+E[x̂x̂T]E


∂Φ̃x(i)

∂x
∂Φ̃x(i)

∂ẋ
∂Φ̃x(i)

∂ẍ

 , (13)
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for i = 1, 2, . . . , l + m, where “+” denotes the Moore-Penrose generalized inverse
matrix operation (e.g., [26]). In passing, note that an arbitrary term should also be in-
cluded in Eq. (13) due to utilizing the generalized inverse matrix theory for its deriva-
tion. Thus, Eq. (13) corresponds, in essence, to a family of solutions for the equivalent
linear elements rather than a unique expression. Nevertheless, it has been proved in [28]
that the solution derived by setting the arbitrary term equal to zero is at least as good as
any other solution corresponding to a nonzero value for the arbitrary term. Therefore,
Eq. (13) constitutes the counterpart of the expression in [28] used for determining the
time-dependent equivalent elements of the generalized statistical linearization method-
ology for systems with singular parameter matrices. The interested reader is directed to
[28, 29] for details on the derivation of Eq. (13); corresponding expressions accounting
for joint time-frequency response analysis of nonlinear systems with singular matrices
are found in [32].

Finally, it is noted that the response covariance matrix E[x̂x̂T] as well as its Moore-
Penrose generalized matrix inverse E[x̂x̂T]+ are required for computing the equivalent
linear elements in Eq. (13), and subsequently, for determining the system response.
In addition, it is readily seen that the equivalent linear elements are time-dependent,
and thus, in contrast to the stationary case [28, 29], a set of differential equations is
derived and solved in the ensuing analysis. This is attained by utilizing a state variable
formulation, which leads to a matrix differential equation governing the time-variant
covariance matrix of the system response.

2.2.2 State variable analysis for MDOF systems with singular parameter matri-
ces

In this section, the state variable formulation developed in [27] for MDOF systems with
singular parameter matrices is further extended to treat the linear system with time-
dependent equivalent elements in Eq. (12). Ultimately, this leads to a time-varying
matrix differential equation to be solved for determining the standard deviation of the
non-stationary response component.

In this regard, suppose for simplicity that M̄x,t = M̄x + M̄e(t), C̄x,t = C̄x +
C̄e(t) and K̄x,t = K̄x + K̄e(t). Then, taking into account the properties of the gener-
alized matrix inverse theory (e.g., [26]), Eq. (12) yields

ẍ = M̄+
x,t

(
−C̄x,tẋ− K̄x,tx+ Q̄x(t)

)
+

(
I− M̄+

x,tM̄x,t

)
y, (14)

where y is an arbitrary l-dimensional vector. Clearly, the presence of y in Eq. (14) de-
fines a family of equations for the response acceleration. Nevertheless, it is noted that
for the special case when the (l+m)×l matrix M̄x,t has full rank, i.e., rank(M̄x,t) = l,
its Moore-Penrose generalized matrix inverse simplifies to M̄+

x,t =
(
M̄∗

x,tM̄x,t

)−1
M̄∗

x,t,
where “∗” denotes the conjugate transpose matrix operation. Substituting the latter into
Eq. (14), the arbitrary part becomes zero and Eq. (14) is recast into the state space form

ṗ = Ḡx(t)p+ qx, (15)

where

Ḡx(t) =

[
0l×l Il×l

−M̄+
x,tK̄x,t −M̄+

x,tC̄x,t

]
(16)
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is a 2l × 2l matrix with time-dependent elements and

p =

[
xs

ẋs

]
, qx =

[
0l×1

M̄+
x,tQ̄x(t)

]
(17)

are 2l-dimensional vectors. The interested reader is also referred to [22], where a
generalized state variable formulation for MDOF systems with fractional derivative
terms and singular parameter matrices is introduced.

Next, for an initially at rest system it is assumed that the time-dependent system
response vector p in Eq. (17) is a zero-mean stochastic process. Then, defining the
2l × 2l matrix of the system response variance V = E[ppT] and resorting to the
standard theory of linear systems (e.g., [37]), the general solution of the state space
equation Eq. (15) is derived. It takes the form

V̇(t) = VḠT
x (t) + Ḡx(t)V +

∫ t

0

exp
(
Ḡx(t− τ)

) (
w(t, τ) +wT(t, τ)

)
dτ, (18)

where

w(t, τ) =

[
0l×l 0l×l

0l×l M̄+
x,twQ̄x

(t, τ)(M̄+
x,t)

T

]
(19)

is the 2l × 2l covariance matrix of the system excitation with wQ̄x
(t, τ) = E[Q̄xQ̄

T
x ]

denoting the (l +m)× (l +m) covariance matrix of Q̄x.

2.2.3 Solution of the proposed matrix differential equation subject to modulated
white noise

In this section, the zero-mean non-stationary excitation in Eq. (1) is modeled as the
product of a stationary excitation with a modulated time-function. That is

Qx(t) = a(t)Qx,s(t), (20)

where a(t) is a deterministic l×n matrix of modulating functions and Qx,s(t) is an n-
dimensional stationary stochastic process. Therefore, the (l+m)× (l+m) covariance
matrix of the excitation in Eq. (19) takes the form

wQ̄x
(t, τ) =

[
Ja(t)wQx,s

(t− τ)aT(t)JT Ja(t)Qx,sF
T

FQT
x,sa

T(t)JT FFT

]
, (21)

where wQx,s(t − τ) = E[Qx,sQ
T
x,s]. Eq. (21) is further simplified if the stationary

excitation Qx,s(t) in Eq. (20) is modeled as a Gaussian white noise process with
wQx,s

(t − τ) = δ(t − τ)S, where S is a real, symmetric and non-negative n × n
matrix of constants, and δ(·) denotes the Dirac delta function. Thus, taking into account
Eq. (21), the matrix differential equation in Eq. (18) becomes

V̇(t) = VḠT
x (t) + Ḡx(t)V +Θ(t), (22)

where

Θ(t) =

[
0l×l 0l×l

0l×l M̄+
x,twQ̄x

(t, τ)
(
M̄+

x,t

)T] (23)
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is a 2l × 2l matrix with

wQ̄x
(t, τ) =

[
Ja(t)SaT(t)JT Ja(t)Qx,sF

T

FQT
x,sa

T(t)JT FFT

]
. (24)

Clearly, in the special case where the system excitation is a stationary process, Eq. (22)
degenerates to the standard Lyapunov matrix differential equation governing the co-
variance matrix of the system response (e.g., [35, 27]).

The matrix differential equation Eq. (22) in conjunction with the generalized equiv-
alent linear elements derived by Eq. (13) constitute a coupled set of equations to be
solved for determining the response of the subsystem subject to the non-stationary ex-
citation. The deterministic component of the response is derived by considering Eq. (9),
i.e., the subsystem subject to the deterministic excitation. Overall, the differential equa-
tions corresponding to the deterministic and stochastic response components are solved
simultaneously by resorting to any standard numerical algorithm, such as the Runge-
Kutta method.

2.2.4 Solution of the proposed matrix differential equation subject to modulated
colored noise

In this section, the non-stationary non-white system excitation is modeled by consider-
ing additional auxiliary linear filter equations. In general, linear and nonlinear filters are
widely used to model non-white excitation processes in engineering dynamics in vari-
ous cases, such as the Kanai-Tajimi excitation, or even to provide sufficiently accurate
approximations in cases where the excitation power spectrum cannot be represented in
the time domain as the response of a filter (e.g., [38, 39, 40]).

In this regard, each one of the nonzero elements of the stationary excitation vector
Qx,s(t) in Eq. (20) are considered as the output of a linear r-order filter equation whose
input is a Gaussian white noise process. Specifically, the filter equations are

vr−1u
(r−1) + vr−2u

(r−2) + · · ·+ v0u
(0) = Qs(t) (25)

and
u(r) + λr−1u

(r−1) + · · ·+ λ0u
(0) = w(t), (26)

where λi and vi (i = 0, 1, . . . , r−1) denote the filter coefficients, w(t) is a white noise
process with constant power spectrum density S0, and the superscript “(j)” denotes the
j-th order derivative (j = 0, 1, . . . , r).

Next, assuming that v =
[
v0 v1 · · · vr−1

]T
is the vector of the filter constants

and that u =
[
u(0) u(1) · · · u(r−1)

]T
represents the pre-filter output, combining

Eqs. (7), (20) and (25) yields
D̄xu = Q̄x(t), (27)

where

D̄x =

[
0l×r

M̄+
x,tP̄a(t)vT

]
(28)

and

Q̄x =

[
0l×1

M̄+
x,tP̄a(t)Qs(t)

]
. (29)
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The (l+m)-dimensional vector P̄ in Eqs. (28-29) corresponds to the nonzero elements
of the excitation Q̄x in Eq. (7). Therefore, Eq. (7) is equivalently written as

Q̄x(t) = a(t)Qs(t)P̄ (30)

with a(t) denoting a time-modulating function and

P̄ =

[
JIP̄

(a(t)Qs(t))
−1

F

]
. (31)

For instance, assuming for simplicity that Qx(t) in Eq. (20) contains only a single zero-
mean process in its first entry yields IP̄ =

[
1 0 · · · 0

]T
, and J, F correspond to

the l × l matrix and m-dimensional vector of Eq. (7), respectively. Further, Eq. (26) is
written in the standard state variable form

u̇ = Λu+ws, (32)

where

Λ =


0 1 · · · 0
0 0 · · · 0
...

−λ0 −λ1 · · · −λr−1

 (33)

denotes an r × r matrix and ws =
[
0 0 · · · w(t)

]T
is an r-dimensional vector.

Overall, the governing equations of the system under consideration are derived
by combining the equations of the original system defined in Eq. (15) and the filter
equations Eqs. (25-26). Specifically, considering the new variable z =

[
pT uT

]T
,

the augmented state space system is written as

ż = N̄z+W, (34)

where

N̄ =

[
Ḡx D̄x

0r×2l Λ

]
, W =

[
02l×1

ws

]
. (35)

Finally, denoting by V = E[zzT] the response covariance matrix, the matrix differ-
ential equation corresponding to Eq. (22) for the case where the system excitation is
modeled as modulated colored noise takes the form

V̇ = VN̄T(t) + N̄(t)V +Ws, (36)

where Ws = diag(0, 0, . . . , 2πS0) is a (2l + r)× (2l + r) diagonal matrix.
The matrix differential equation Eq. (36) is considered in conjunction with Eq. (13)

to determine the stochastic response component. Moreover, similar to the formulation
in section 2.2.3, the deterministic component of the response is computed by con-
sidering the subsystem subject to the deterministic excitation in Eq. (9). Finally, the
Runge-Kutta method is used to solve simultaneously the set of differential equations
governing the stochastic and the deterministic response.
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2.2.5 Mechanization of the proposed technique

The mechanization of the proposed technique is concisely described by the following
steps:

1. Consider Eq. (8) to decompose the system response into deterministic and stochas-
tic parts. Then, form the subsystems of deterministic and stochastic differential
equations defined by Eqs. (9) and (10), respectively.

2. Apply the generalized statistical linearization methodology in section 2.2.1 to
derive the equivalent linear system in Eq. (12) corresponding to the nonlinear
stochastic differential equation Eq. (10). This is done by utilizing Eq. (13) for
determining the time-varying equivalent linear elements.

3. Apply the state variable analysis for systems with singular parameter matrices in
section 2.2.2. First, construct matrix Ḡx in Eq. (16). Then,

Case 1: Nonlinear system subject to modulated white noise.
determine matrix Θ in Eq. (23), and thus, formulate the matrix differential
equation Eq. (22).

Case 2: Nonlinear system subject to modulated colored noise.
determine matrices D̄x and Λ in Eqs. (28) and (33), respectively, and thus,
construct matrix N̄ in Eq. (35). Next, form the matrix differential equation
Eq. (36).

4. Finally, solve simultaneously the matrix differential equation derived in step 3,
i.e., Eq. (22) for the white noise excitation, or Eq. (36) for the colored noise exci-
tation, in conjunction with the deterministic differential equation Eq. (9) derived
in step 1. This can be done by resorting to any standard numerical algorithm,
such as the Runge-Kutta method.

3 Numerical examples
In this section, three numerical examples are used to demonstrate the validity of the
proposed technique and assess its reliability. The first one pertains to a nonlinear
piezoelectric energy harvesting device subject to combined deterministic and modu-
lated white noise excitation. The technique is applied to determine the response dis-
placement and induced voltage of the device, while a comparison with pertinent MCS
data (500 realizations) is used to demonstrate the accuracy of the obtained results. The
second example refers to a 2-DOF nonlinear structural system with singular parame-
ter matrices subject to combined deterministic and modulated white noise excitation,
whereas in the third example the same system is considered subject to combined de-
terministic and modulated colored noise excitation. In both cases the results obtained
by the proposed technique are compared with corresponding results obtained by the
standard approach in [18].
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3.1 Nonlinear energy harvesting device subject to combined deter-
ministic and modulated white noise excitation

In this example, the proposed technique is used for determining the response of a typi-
cal nonlinear piezoelectric energy harvesting device. Such devices consist of a mechan-
ical part, which is usually a cantilever beam moving as a result of applied excitation
and a corresponding piezoelectric part, which is used to transform the mechanical en-
ergy into electric current or voltage. They often operate in tandem with large scale
infrastructure such as bridges and high-rise buildings (e.g., [41]), which, in turn, are
potentially subject to combined deterministic and non-stationary stochastic excitation
(e.g., [42]).

The coupled electro-mechanical equations governing the dynamics of the system
subject to combined deterministic and non-stationary excitation are given by

q̈ + 2ζq̇ +
dU(q)

dq
+ κ2y = fd(t) +Q(t) (37)

ẏ + αy − q̇ = 0 (38)

where q, q̇ and q̈ denote the response displacement, velocity and acceleration of the me-
chanical part, and y is the induced voltage of a capacitive harvester (e.g., [43, 44, 31]).
ζ denotes the damping coefficient of the mechanical part, κ is a coupling coefficient, α
is a constant and U(q) represents the potential function. The nonlinear function of the
system is given by

dU(q)

dq
= q + λq2 + δq3, (39)

where λ and δ are coefficients classifying a typical harvesting device into distinctive
classes; the interested reader is directed to [45, 44] for a detailed discussion. Fur-
ther, assume that the deterministic component of the excitation is given by fd =
fd,1 sin (ωdt). The non-stationary stochastic excitation component is modeled as a
modulated white noise stochastic process Q(t) = a(t)Qs, where a(t) = A exp(−µt)
with A,µ > 0 is a time-modulating function and Qs(t) is a Gaussian white noise
process with E [Qs(t)Qs(t+ τ)] = 2πS0δ(τ).

Next, the proposed technique is used to treat the system of Eqs. (37-39). In this
regard, considering the coordinates vector x(t) =

[
q(t) y(t)

]T
, Eqs. (37-39) are

written in the form of Eq. (1), where

Mx =

[
1 0
0 0

]
, Cx =

[
2ζ 0
−1 1

]
, Kx =

[
1 κ2

0 α

]
, (40)

Φx =

[
λq2 + δq3

0

]
(41)

and

fd,x =

[
fd(t)
0

]
, Qx =

[
Q(t)
0

]
. (42)

Clearly, the matrix Mx in Eq. (40) is singular, and thus, a direct treatment of the system
of Eqs. (37-39) is not possible. However, in the ensuing analysis a solution is derived
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in a direct manner by resorting to the generalized matrix inverse theory. Specifically,
considering that Eq. (38) constitutes the constraints equation of the harvesting device
(e.g., [44, 31, 33]) and differentiating it once with respect to time, Eq. (2) is formulated,
where

A =
[
−1 1

]
, E =

[
0 α

]
, L =

[
0 0

]
(43)

and
F = 0. (44)

Further, the l × l matrix J in Eqs. (4) and (5) interconnecting the constraints to the
system governing equations takes the form

J = Il −A+A, (45)

where Il denotes the l× l identity matrix. The interested reader is directed to indicative
Refs. [27, 22, 31] for more details. Therefore, the system of Eqs. (37-39) is equiva-
lently written in the form of Eq. (3), where

M̄x =

0.5 0
0.5 0
−1 1

 , C̄x =

−0.5α 0.5
−0.5α 0.5

0 α

 , K̄x =

0.5 0.5κ2 + α
0.5 0.5κ2 + α
0 0

 , (46)

Φ̄x(x) =
(
λq2 + δq3

)0.50.5
0

 (47)

and

f̄d,x = fd,1 sin (ωdt)

0.50.5
0

 , Q̄x = Q(t)

0.50.5
0

 . (48)

Next, considering that the system response consists of a stochastic and a determin-
istic component, namely xs =

[
qs ys

]T
and xd =

[
qd yd

]T
, ensemble averaging

the nonlinear vector in Eq. (47) yields

E[Φ̄x] =
(
λσ2

qs + λq2d + 3δσ2
qsqd + δq3d

)0.50.5
0

 . (49)

Then, applying the generalized statistical linearization method with x̂ = xs the equiv-
alent linear matrix K̄e is determined by Eq. (13) in the form

K̄e =
(
λqd + 1.5δ

(
σ2
qs + q2d2

))R(1, 1) R(2, 1)
R(1, 1) R(2, 1)

0 0

 , (50)

where R(i, j), i, j = 1, 2, denotes the (i, j) element of the matrix E[x̂x̂T]+E[x̂x̂T].
For the numerical evaluation, the following set of parameter values are used for the
system ζ = 0.1, κ = 3.25, α = 0.8, δ = 0.2, λ = 2

√
δ ≈ 0.89, and fd1 = 0.1,
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ωd = 1, A = 1, µ = 0.1 and S0 = 0.2/π for the excitation. In this regard, the matrix
differential equation Eq. (22) is formed, where

wQ̄x
= exp (−0.2t)

0.0159 0.0159 0
0.0159 0.0159 0

0 0 0

 (51)

and

Θ(t) = exp (−0.2t)


0 0 0 0
0 0 0 0
0 0 0.0637 0.0637
0 0 0.0637 0.0637

 . (52)

Finally, the deterministic response component and the standard deviation of the
stochastic response component for both the mechanical and the piezoelectric parts of
the device are determined by considering the coupled set of Eqs. (9) and (22). Specif-
ically, 10 differential equations governing the stochastic response of the system are
derived by Eq. (22), whereas 4 additional differential equations governing the de-
terministic response are derived by Eq. (9). These are solved simultaneously by the
Runge-Kutta method. The solid lines in Figs. 1(a) and 1(b) show the obtained results
corresponding to the mechanical part of the device, namely the deterministic response
displacement and the standard deviation of the stochastic response displacement, re-
spectively. Further, the solid lines in Figs. 2(a) and 2(b) correspond to the piezoelectric
part of the device. Fig. 2(a) shows the deterministic component of the induced volt-
age y, whereas Fig. 2(b) shows the standard deviation of the stochastic component of
y. The obtained results are compared and found in good agreement with MCS data
(500 realizations) generated by the spectral representation method [46], with a signal
duration T0 = 100 s and a cut-off frequency equal to 2π rad/s.

(a) (b)

Fig. 1: Response of the mechanical part of the nonlinear energy harvesting device
described by Eqs. (37-39) subject to combined deterministic and modulated white
noise excitation: (a) deterministic response displacement; (b) standard deviation of
the stochastic response displacement. MCS data (500 realizations) are included for
comparison.
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(a) (b)

Fig. 2: Response of the piezoelectric part of the nonlinear energy harvesting device
described by Eqs. (37-39) subject to combined deterministic and modulated white noise
excitation: (a) deterministic component of the induced voltage; (b) standard deviation
of the stochastic component of the induced voltage. MCS data (500 realizations) are
included for comparison.

3.2 2-DOF nonlinear structural system with singular parameter
matrices subject to combined deterministic and modulated white
noise excitation

The 2-DOF nonlinear structural system in Fig. 3(a) is considered, where mass m1 is
connected to the foundation with a nonlinear spring with stiffness coefficient k1 and a
nonlinear damper with damping coefficient c1. The corresponding forces are k1q1(1 +
ε1q

2
1) and c1q̇1(1 + ε2q̇

2
1), respectively, where ε1 and ε2 are positive constants, and q1

denotes the response displacement of mass m1. Further, mass m2 is connected to mass
m1 via a linear spring and a linear damper with stiffness and damping coefficients k2
and c2, respectively. q2 denotes the response displacement of mass m2. The system
is subject to a combined deterministic and non-stationary stochastic excitation, which
is applied on mass m1. The deterministic excitation component is fd = fd,1 sin(ωdt).
The stochastic excitation is modeled as a modulated white noise Q1(t) = a(t)Qs(t),
where a(t) = A exp(−µt) is a time-modulating function with t ≥ 0 and A,µ > 0, and
Qs(t) is a Gaussian white noise process with E [Qs(t)Qs(t+ τ)] = 2πS0δ(τ).

The system governing equations of motion are derived by considering the (gener-
alized) coordinates vector q =

[
q1 q2

]T
. The mass, damping and stiffness matrices

of the system are given by

M =

[
m1 0
m2 m2

]
, C =

[
c1 −c2
0 c2

]
, K =

[
k1 −k2
0 k2

]
. (53)

Further, the system nonlinearity is written as

Φ(q, q̇, q̈) =

[
ε1k1q

3
1 + ε2c1q̇

3
1

0

]
, (54)
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(a) (b)

Fig. 3: (a) A 2-DOF nonlinear structural system subject to combined deterministic and
non-stationary stochastic excitation. (b) The nonlinear system of Fig. 3(a) modeled by
employing an additional redundant coordinate.

whereas the deterministic and non-stationary excitation vectors are

fd =

[
fd,1 sin(ωdt)

0

]
, Q =

[
Q1

0

]
. (55)

For the numerical evaluation, the system parameters take the values m1 = m2 = 1,
c1 = c2 = 0.2, k1 = k2 = 1, ε1 = ε2 = 0.1, S0 = 0.2

π , A = 1, µ = 0.1 and
the excitation parameter values are fd,1 = 1, ωd = 1. The deterministic response
component and the standard deviation of the stochastic response component of the
nonlinear system are derived by applying the standard technique proposed in [18]. The
obtained results for the response displacement and the response velocity for each of the
system DOFs are shown by dashed line in Figs. 4 and 5, respectively.

Next, the system governing equations of motion are derived by adopting a redun-
dant coordinates modeling. The nonlinear system in Fig. 3(a) is decomposed into its
constituent parts as seen in Fig. 3(b), and considering the coordinates vector x =[
x1 x2 x3

]T
, the equation of motion Eq. (1) is formed. Further, differentiating

twice with respect to time the constraints equation connecting the two subsystems in
Figs. 3(a) and 3(b), i.e., x2 = x1 + d, where d denotes the length of mass m1, Eq. (2)
is formed, where

A =
[
1 −1 0

]
, (56)

E = L = 01×3 and F = 0. In addition, matrix J in Eq. (45) becomes

J =

0.5 0.5 0
0.5 0.5 0
0 0 1

 . (57)

In this regard, the parameter matrices in Eq. (4) are given by

M̄x =


0.5 0.5 0.5
0.5 0.5 0.5
0 1 1
1 −1 0

 , C̄x =


0.1 0 0
0.1 0 0
0 0 0.2
0 0 0

 , K̄x =


0.5 0 0
0.5 0 0
0 0 1
0 0 0

 , (58)
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whereas the nonlinearity of Eq. (5) becomes

Φ̄x(x, ẋ, ẍ) =
(
k1ε1x

3
1 + c1ε2ẋ

3
1

) [
0.5 0.5 0 0

]T
. (59)

Lastly, the deterministic and non-stationary stochastic excitation components are given
by

f̄d,x = fd,1 sin(ωdt)
[
0.5 0.5 0 0

]T
(60)

and
Q̄x = Q1(t)

[
0.5 0.5 0 0

]T
, (61)

respectively.
Then, for the application of the proposed technique the system response is decom-

posed into a deterministic component xd =
[
xd,1 xd,2 xd,3

]T
and a corresponding

stochastic component xs =
[
xs,1 xs,2 xs,3

]T
. Next, ensemble averaging the non-

linear function in Eq. (59), i.e.,

E
[
Φ̄x

]
=


0.5k1ε1

(
x3
d,1 + 3xd,1σ

2
xs,1

)
+ 0.5c1ε2

(
ẋ3
d,1 + 3ẋd,1σ

2
ẋs,1

)
0.5k1ε1

(
x3
d,1 + 3xd,1σ

2
xs,1

)
+ 0.5c1ε2

(
ẋ3
d,1 + 3ẋd,1σ

2
ẋs,1

)
0
0

 , (62)

Eq. (9) is formed for the subsystem subject to deterministic excitation, while the gener-
alized statistical linearization method is applied to treat the subsystem subject to non-
stationary excitation. Thus, considering the 6-dimensional vector x̂ =

[
xs ẋs

]T
, the

equivalent linear elements in Eq. (13) are given by

K̄e = 1.5k1ε1

(
x2
d,1 + σ2

xs,1

)
R(1, 1) R(2, 1) R(3, 1)
R(1, 1) R(2, 1) R(3, 1)

0 0 0
0 0 0

 (63)

and

C̄e = 1.5c1ε2

(
ẋ2
d,1 + σ2

ẋs,1

)
R(4, 4) R(5, 4) R(6, 4)
R(4, 4) R(5, 4) R(6, 4)

0 0 0
0 0 0

 , (64)

where R(i, j), i, j = 1, 2, . . . , 6 denotes the (i, j) element of matrix E[x̂x̂T]+E[x̂x̂T]
of Eq. (13).

Then, following the presentation in section 2.2.3, the matrix differential equation
Eq. (22) is formed, where

wQ̄x
=

exp (−0.2t)

20π


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 , (65)
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and

Θ(t) =
exp (−0.2t)

5π


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 1 −1
0 0 0 1 1 −1
0 0 0 −1 −1 1

 . (66)

This leads to 21 differential equations pertaining to the determination of the stochastic
response component, which are solved simultaneously with 6 additional differential
equations derived by Eq. (9). The set of all differential equations is solved by the
Runge-Kutta method. The obtained results for the deterministic and stochastic com-
ponents of the response displacement and velocity for both DOFs of the system are
shown by solid line in Figs. 4 and 5, respectively. Clearly, these are in total agreement
with the corresponding results (dashed line) obtained by the standard method proposed
in [18].

3.3 2-DOF nonlinear structural system with singular parameter
matrices subject to combined deterministic and modulated col-
ored noise excitation

In this section, the system shown in Figs. 3(a) and 3(b) is subject to combined deter-
ministic and non-stationary stochastic excitation, with the latter modeled as modulated
colored noise. Similar to the case in section 3.2, the deterministic excitation component
is given by fd,1 sin(ωdt). The stochastic component is modeled as Q1(t) = a(t)Qs,
where a(t) = A exp(−µt) is a time-modulating function with t ≥ 0 and A,µ > 0, and
Qs is a non-white stochastic excitation process with a Kanai-Tajimi power spectrum

S(ω) =
1 + 4ξg

ω2

ω2
g(

1− ω2

ω2
g

)2

+ 4ξg
ω2

ω2
g

S0. (67)

The values of the parameters in the power spectrum of Eq. (67) are ξg = 0.5, ωg = 1
and S0 = 0.2π.

Next, the technique proposed in section 2.2.4 is applied for determining the re-
sponse of the system. In this regard, Eqs. (25) and (26) reduce to a second order linear
filter with coefficients λ0, λ1, v0 and v1, given by

v1u
(1) + v0u

(0) = Qs(t) (68)

and
u(2) + λ1u

(1) + λ0u
(0) = w(t), (69)

where v0 = ω2
g , v1 = 2ζgωg, λ0 = ω2

g , λ1 = 2ζgωg, and w(t) is a white noise pro-
cess. Further, since the excitation is applied only on the first DOF of the system (see
Fig. 3(b)), IP̄ in Eq. (31) is equal to IP̄ =

[
1 0 0

]T
and using Eq. (45), Eq. (31)

yields P̄ =
[
0.5 0.5 0 0

]T
. This leads to the computation of the 6× 2 matrix D̄x
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Fig. 4: Response of the 2-DOF nonlinear structural system in Figs. 3(a) and 3(b) sub-
ject to combined deterministic and modulated white noise excitation: (a) deterministic
response displacement of the 1st DOF; (b) standard deviation of the stochastic response
displacement of the 1st DOF; (c) deterministic response displacement of the 3rd DOF;
and (d) standard deviation of the stochastic response displacement of the 3rd DOF. Re-
sults obtained by the proposed technique (solid line) vs corresponding results obtained
by the method in [18] (dashed line).
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Fig. 5: Response of the 2-DOF nonlinear structural system in Figs. 3(a) and 3(b) sub-
ject to combined deterministic and modulated white noise excitation: (a) deterministic
response velocity of the 1st DOF; (b) standard deviation of the stochastic response
velocity of the 1st DOF; (c) deterministic response velocity of the 3rd DOF; and (d)
standard deviation of the stochastic response velocity of the 3rd DOF. Results obtained
by the proposed technique (solid line) vs corresponding results obtained by the method
in [18] (dashed line).
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in Eq. (28). In addition, Eqs. (63-64) are used for computing the 6 × 6 matrix Ḡx(t)
in Eq. (16), whereas Λ is readily found by Eq. (33).

Finally, taking into account Eq. (35), the matrix differential equation Eq. (36) is
formed and solved simultaneously with the deterministic sub-equations derived by
Eq. (9). Overall, Eq. (36) yields 36 differential equations governing the stochastic
response component, whereas Eq. (9) yields 6 additional differential equations gov-
erning the deterministic component of the response. The set of differential equations
is solved by the Runge–Kutta method. The results obtained for the deterministic and
the stochastic components of the response displacement and velocity for both DOFs
of the system are shown by solid line in Figs. 6 and 7, respectively. To demonstrate
the validity of the proposed technique, corresponding results obtained by the standard
method in [18] are also included in Figs. 6 and 7 for comparison. The latter are de-
picted by dashed line and practically coincide with the results obtained by the proposed
technique.
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Fig. 6: Response of the 2-DOF nonlinear structural system in Figs. 3(a) and 3(b) sub-
ject to combined deterministic and modulated colored noise excitation: (a) determinis-
tic response displacement of the 1st DOF; (b) standard deviation of stochastic response
displacement of the 1st DOF; (c) deterministic response displacement of the 3rd DOF;
and (d) standard deviation of the stochastic response displacement of the 3rd DOF. Re-
sults obtained by the proposed technique (solid line) vs corresponding results obtained
by the method in [18] (dashed line).
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Fig. 7: Response of the 2-DOF nonlinear structural system in Figs. 3(a) and 3(b) sub-
ject to combined deterministic and modulated colored noise excitation: (a) determin-
istic response velocity of the 1st DOF; (b) standard deviation of stochastic response
velocity of the 1st DOF; (c) deterministic response velocity of the 3rd DOF; and (d)
standard deviation of stochastic response velocity of the 3rd DOF. Results obtained by
the proposed technique (solid line) vs corresponding results obtained by the method in
[18] (dashed line).

4 Concluding remarks
In this paper, a new technique has been proposed for determining the response of
MDOF systems with singular parameter matrices subject to combined deterministic
and non-stationary stochastic excitations. The appearance of singular matrices in the
equations of motion pertain to additional constraints equations in the system, or to
a redundant coordinates modeling of its governing dynamics. Further, the stochastic
excitation component is modeled as a non-stationary process driven by the need to de-
velop response analysis frameworks accounting for the non-stationary characteristics
of excitations such as wave, wind and earthquake loads.

In this regard, the MDOF nonlinear system has been decomposed into two subsys-
tems based on the applied excitation, and a coupled set of equations has been derived
and solved to determine the system response. First, a subsystem of deterministic equa-
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tions governing the response of the system subject to deterministic excitation has been
derived. Next, the generalized statistical linearization method has been utilized to treat
the nonlinear subsystem subject to non-stationary stochastic excitation. This has been
done in conjunction with a state space formulation, which resulted a matrix differential
equation governing the stochastic response. The latter has been solved simultaneously
with the deterministic equation above by applying a standard Runge-Kutta numerical
scheme. In addition, a closed form expression for determining the time-dependent
equivalent elements of the generalized statistical linearization methodology ([28]) has
been derived. Overall, the proposed technique can be construed as an extension of
the approach in [20] to systems subject to combined deterministic and non-stationary
stochastic excitation. It has been assessed by considering three numerical examples
including a vibration energy harvesting device subject to combined deterministic and
modulated white noise excitation, and a structural nonlinear system with singular pa-
rameter matrices subject to combined deterministic and modulated white and colored
noise excitations. The reliability of the obtained results has been demonstrated by com-
parisons to MCS data and corresponding results obtained by the approach proposed in
[18].
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