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ABSTRACT

Several on-line identification approaches have been proposed to identify parameters and evo-

lution models of engineering systems and structures when sequential data-sets are available via

Bayesian inference. In this work, a robust and “tune-free" sampler is proposed to extend one of the

Sequential Monte Carlo implementation for the identification of time-varying parameters which

can be assumed constant within each set of data collected, but might vary across different sequences

of data-sets. The proposed approach involves the implementation of the Affine-invariant Ensemble

sampler in place of the Metropolis-Hastings sampler to update the samples. An adaptive-tuning

algorithm is also proposed to automatically tune the step-size of the Affine-invariant ensemble sam-

pler which, in turn, controls the acceptance rate of the samples across iterations. Furthermore, a

numerical investigation behind the existence of inherent lower and upper bounds on the acceptance

rate, making the algorithm robust by design, is also conducted. The proposed method allows for

the off-line and on-line identification of the most probable models under uncertainty. The proposed

sampling strategy is first verified against the existing sequential Monte Carlo sampler in a numerical
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example. Then, it is validated by identifying the time-varying parameters and the most probable

model of a non-linear dynamical system using experimental data.

1 INTRODUCTION

In recent years, on-line learning has garnered significant attention for the purpose of parameter

identification of engineering systems. On-line parameter identification involves the learning and

estimation of the parameter(s) of interest through distinct data-sets which are obtained sequentially,

contrary to the batch learning approach which requires the availability of the entire data-set to

produce estimates (Saad 2009). In particular, on-line parameter identification is of value in

situations when data is obtained over a period of time. This allows for real-time parameter

identification, making it a practical approach for investigating the performance of engineering

systems under operating conditions. For example, on-line parameter identification has been applied

to identify: moveable mass positions within a 2DoF shear frame (Lye et al. 2022a; Rocchetta et al.

2018); mistuning parameters of rotating blisks (Hu et al. 2021); modal parameters of a vehicle

motion modes to investigate its dominant motion-mode (Zhang et al. 2020); structural parameters

of a nonlinear structural system to update its dynamical response model (Xie and Feng 2012);

terrain parameters of the Wheel-Terrain model for wheeled motion control of mobile robots (Li

et al. 2018); and structural parameters of smart building structures for real-time damage detection

(Ghaderi and Amini 2020).

The parameters identified through on-line learning are often time-invariant, see e.g. (Zhou

et al. 2020; Hu et al. 2021; Zhang et al. 2020). However, in many engineering applications, these

parameters vary with time (Sarrka 2013) to which examples include: structural modal parameters

to study the dynamic response of structures (Ou et al. 2017; Weng and Loh 2011); fatigue cracking

parameters (Chen et al. 2020); stress data for performance prediction of steel bridges (Fan and Liu

2019a); localized impact damage in composite panels based on sensor data (Morse et al. 2018);

and earthquake ground motion parameters using generalized Kalman filter and structural absolute

accelerations data (Huang et al. 2021).

Currently, in time-domain applications, system parameters and system states such as displace-
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ments and velocities, are estimated via Sequential Bayesian inference using Kalman filters (Lund

et al. 2020; Astroza et al. 2019), Gaussian Sum filters (Wang et al. 2015; Terejanu et al. 2011),

and Particle filters (Chen et al. 2019; Rozas et al. 2020). Kalman filters are computationally

less-expensive compared to other filtering techniques. However, they are mostly designed to deal

with problems involving a dynamical system identification with a linear state-space and Gaussian

“noise" (Wan andMerwe 2002). ExtendedKalman filter (Kim et al. 2021; Hur 2021) andUnscented

Kalman filter (Xie and Feng 2012; Lund et al. 2020) extended the approach to non-linear state-space

and non-Gaussian “noise". For instance, Gaussian Sum filters utilises weighted Gaussian Models

to approximate the predictive and posterior PDFs (Terejanu et al. 2011). Thus, it does not require

the analytical form of the aforementioned PDFs. However, like the Kalman Filter, Gaussian Sum

filters become ineffective when the state-space set-up becomes highly non-linear (Terejanu et al.

2008). Particle filters are applicable in both linear and non-linear state-space set-up and do not

assume the form of the “noise" (Ristic et al. 2004). However, they are computationally expensive

and perform poorly even with moderately high number of parameters (i.e. above 18 dimensions)

(Au and Beck 2003; Lye et al. 2021). Despite this, Particle filters are more general and robust in

its implementation (Ristic et al. 2004), since the error of the estimates reducible by obtaining more

samples. For more information pertaining to the above approaches, the reader is referred to the

recent review paper by (Tatis et al. 2022).

The Sequential Monte Carlo (SMC) sampler, whose concept is based on the Particle Filter

(Moral et al. 2006; Chopin 2002), is a popular technique when addressing Bayesian inference

problems (Zhu et al. 2018). Currently, it has been implemented under off-line (i.e. batch) and on-

line settings towards the parameter identification for numerous problems involving: 1) non-linear

time-series model; 2) non-linear state-space models; and 3) high-dimensional target distributions

(Cappe et al. 2007; Olsson et al. 2008). At present, the Sequential Monte Carlo sampler has not yet

been implemented to identify model parameters that are considered constant between observation

intervals but might vary across the different observation sequences. Under such settings, the

posteriors of such parameters are assumed to be constant between observationswhile their posteriors
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(and therefore their estimates) may vary between the different sequences of observations. Moreover,

there exists the following short-comings in the SMCalgorithm: 1) the choice of proposal distribution

can significantly affect the sampler results (Moral et al. 2006); 2) it is computationally inefficient

because of the number of parameters required to compute and tune (Frank et al. 2003); and 3) the

moderation of acceptance rates of its samples has not been investigated in detail.

To address these short-comings, a robust and “tune-free" Sequential Ensemble Monte Carlo

(SEMC) sampler is proposed based on the use of the Affine-invariant Ensemble sampler (AIES) in

place of the Metropolis-Hastings (MH) sampler for the MCMC step. AIES has been proved robust

in recent implementations for reliability analysis using Subset Simulation (Shields et al. 2021) and

for model updating via Transitional Ensemble Monte Carlo sampler (Lye et al. 2022a) thanks to

its capability of sampling from highly-skewed and anisotropic distributions (see Section 3). In

addition, an adaptive-tuning algorithm, inspired from the work by (Betz et al. 2016), is developed

to provide a robust mechanism to ensure that the acceptance rate values have achieved convergence

before moving on to the next sampling iteration. Details on the adaptive-tuning algorithm are

provided in Section 3.1. Numerical investigation has proven the existence of inherent bounds in

the acceptance rates values and shown in Section 4. To the best of the authors’ knowledge, such

investigation and analysis is yet to be presented in existing literature.

The proposed SEMC sampler is first implemented alongside the traditional SMC sampler in

a numerical example involving a Spring-Mass-Damper system with 2 time-varying parameters to

which details are provided in Section 5. This allows to compare and verify the inference results

and to highlight the advantages of the proposed sampler over the traditional SMC sampler.

The proposed sampler is then validated through an experimental example involving a single-

storey structure with a Coulomb friction contact whose properties are different during each ob-

servation interval under harmonic loading as shown in Section 6. Such application example is

specifically chosen due to its importance in assessing the dynamic performance of structures and

avoiding friction-related failures (Marino and Cicirello 2020; Marino et al. 2019). This exam-

ple allows: 1) to validate the performance of the SEMC sampler in inferring both time-varying
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and time-invariant parameters with experimental data; and 2) to demonstrate the capabilities and

robustness of the algorithm in identifying the most probable Markov kernel under uncertainty.

2 REVIEW OF SEQUENTIAL MONTE CARLO

Sequential Bayesian filtering is a popular technique to address inverse problems and infer model

parameters under uncertainty thanks to its ability to combine and update prior knowledge with a

sequence of observed data J (Beck and Katafygiotis 1998; Katafygiotis and Beck 1998). This

yields the posterior %() B |J1:B, ") fromwhich samples are obtained to provide numerical estimates

of the inferred parameter(s). One such sampling technique commonly used in literature is the SMC

sampler (Doucet et al. 2001; Drovandi et al. 2014).

2.1 Advantages and limitations of current SMC sampler implementations

One key advantage of the SMC sampler lies in its ability to sequentially compute the evidence

term %(J1:B |") corresponding to the posterior %() B |J1:B, ") at any given BCℎ time step sequence

(Moral et al. 2006; Drovandi et al. 2014). The metric %(J1:B |") also quantifies how well a given

model class " describes the available set of data J1:B as well as the time-evolution of ) . This

makes the SMC sampler well-suited in addressing problems regarding the model class selection of

" (see e.g. (Toni et al. 2008; Nguyen et al. 2013; Drovandi et al. 2014; Urteaga et al. 2016; Zhou

et al. 2016)). %(J1:B |") can be estimated by the product of the mean of the nominal weights FB
8

at any given time step sequence B ≥ 1 (Moral et al. 2006):

%(J1:B |") ≈ 1
#

B∏
<=1

#∑
8=1

F<8 (1)

Another characteristic of the SMC sampler is the flexibility in the choice of auxiliary parameters

of the algorithm such as the scaling parameter of the covariance matrix and the Markov kernel of

the time-varying parameter (i.e. see Eq. (31)) (Moral et al. 2007; Moffa and Kuipers 2014). This

is because even if the samples do not follow the true distribution, the weighting process and the

conditional resampling step (i.e. the Bootstrapping with replacement), with which the algorithm

will correct andmove the samples closer to its true distribution. To illustrate the resampling concept,

5 Lye, January 4, 2023



a numerical example involving a a mixture of two bi-variate Gaussian distributions based on work

in Ref. (Ching and Chen 2007) is presented. Here, we shall consider a 2-dimensional Uniform

prior such that: %(\1) ∼ * (−2, 2) and %(\2) ∼ * (−2, 2). The likelihood function is defined as

a mixture of two bi-variate Gaussian functions with means centered about {\1, \2} = {0.5, 0.5}

and {−0.5,−0.5} with covariance matrix 0.1 · I, where I is the identity matrix. The standard

SMC sampler is implemented with # = 10000 samples and the prior samples with their associated

normalised weights F̂B
8
are presented in Figure 1. In the figure, the samples which fall in the regions

of the posterior indicated in yellow and light blue are resampled with a higher probability than

those which fall outside the regions of the posterior indicated in dark blue. This allows for the

Markov chains in the MCMC step to initiate within the support of the posterior and removes the

need to consider the burn-in.

However, there are still limits to such flexibility as situations could arise whereby nearly all

the samples could still fall outside the true distribution even after the conditional resampling step.

This leads to nominal weights being close to 0 and the resampling step would fail to converge the

samples to the true distribution (Moral et al. 2012).

One key problem in the SMC sampler is that there exists no universal choice of proposal

distribution @() B∗8 |) B8 ) to generate candidate samples ) B∗8 (Moral et al. 2006). This creates significant

degree of model uncertainty in deciding an appropriate distribution for @() B∗8 |) B8 ). In practice, a

Normal distribution is used to ease the computation of the acceptance ratio U8 due to the symmetric

nature of the distribution (Hastings 1970; Martino and Elvira 2017). However, the ideal choice of

@() B∗8 |) B8 ) is one that is “optimally" scaled to the current posterior %() B |J1:B, ") (Moral et al. 2006;

Martino and Elvira 2017; Green and Maskell 2018). Practically speaking, this would be difficult

for two reasons: 1) there is a lack of knowledge over the analytical form of the true posterior itself;

and 2) it is difficult to determine that “optimal" scale, especially in the case where the random-walk

MH algorithm is used as the MCMC kernel, although the problem can be addressed through the use

of the independent MH MCMC kernel in (Chopin 2002) which eliminates the need for parameter

tuning.
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Another challenge is the computational cost of the SMC sampler. In particular, when the

dimensionality of the problem increases, a higher computation cost is incurred in computing the

covariance matrix of @() B∗8 |) B8 ) at each BCℎ time step sequence, which can be the case for both the

independent MH (Chopin 2002) and random-walk MH algorithms.

2.2 Sequential Monte Carlo variants

Numerous MCMC move kernels within the SMC sampler have been considered such as: 1)

Particle Evolution Metropolis (i.e. PEM-SMC) (Zhu et al. 2018; Storn and Price 1997), 2) Gibbs

sampler, i.e. SMC for Vector Auto-regressions with Stochastic Volatility (VAR-SV) (Bognanni and

Zito 2020), and 3) target-invariant MCMC mutation kernel, i.e. SMC for high-dimensional inverse

problems (Kantas et al. 2014).

The PEM-SMC sampler has demonstrated its strength in generating samplers more effectively

from complex-shaped distributions, especially those with multiple peaks (Zhu et al. 2018). The

sampler is also able to sample efficiently from moderate-dimensional posteriors (i.e. up to 30

dimensions) thanks to its effective way to explore the dimensional sample space and generate more

candidate samples with a high probability content. This ensures a quick convergence of the samples

towards the posterior distribution (Zhu et al. 2018). However, the effectiveness of the algorithm is

subjected to the choice of the proposal distribution (i.e. the transfer probability distribution) which

leads to the potential problem of model uncertainty.

The SMC sampler for VAR-SV has demonstrated its strength in tackling the problem of de-

generacy effectively through the use of the Gibbs sampler which ensures that there is less repeated

samples generated in the MCMC step. This increases the number of unique samples, thereby, al-

lowing the sample space defined by the posterior to be well-explored (Bognanni and Zito 2020). In

addition, it is highly parallelizable which allows for the rapid update of samples from one posterior

to the next across iterations (Bognanni and Zito 2020). However, the sampler is limited by the

short-coming of the Gibbs sampler which is the latter’s dependency on the choice of an appropriate

conditional distribution to represent the posterior (Chib 2001). Should the posterior be functionally

complex, choosing such conditional distribution becomes non-trivial (Lye et al. 2021).
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The target-invariant MCMC mutation kernel is also quite robust thanks to its ability to address

the issue of sample degeneracy effectively like the SMC for VAR-SV (Kantas et al. 2014). In

addition, the algorithm ensures a relatively quick convergence rate of the samples to the posterior

distribution through the adaptive tempering step which ensures a smooth transition from one

posterior to the next between successive iterations (Kantas et al. 2014). This allows for the sampler

to be applicable to cases with highly-dimensional and complex-shaped posteriors. However, the use

of suchMCMCmove kernel introduces a relatively large number of auxiliary parameters to compute

such as the tempering parameter and the Fourier coefficients which increases the computational

cost of the algorithm (Kantas et al. 2014).

For the work presented here, the AIES is implemented as the alternative MCMC kernel to the

MH. The reasons behind such proposal are: 1) ability to sample from anisotropic and highly-skewed

distributions; 2) can be parallelised; and 3) uses a reduced number of tuning parameters. This gives

rise to the SEMC sampler to which an additional feature proposed is the adaptive tuning algorithm

which serves to control the acceptance rate of the sampler by tuning its step-size parameter in an

automatic manner.

3 SEQUENTIAL ENSEMBLE MONTE CARLO SAMPLER

The AIES sampler is a MCMC sampling technique endowed with the affine-invariance property

which was recently developed by Goodman and Weare (2010) (Goodman and Weare 2010). Such

property involves an affine-transformation operation k which is defined by an invertible linear

mapping from a R#3 to R#3 space (Gallier 2012):

k()) : � = �̂ ) + b (2)

where� denotes ) in the affine-transformed space, �̂ is the #3-by-#3 non-singular transformation

matrix and b is the #3-by-1 translation vector. Defining %′(�|J) as the posterior distribution of�

where %′ denotes the distribution function in the�-space, affine-invariance exists between�-space

and )-space if the following condition holds (Wang and Solomon 2019):
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%′(�|J) = %′(k()) |J) ∝ %() |J) (3)

A sampler is affine-invariant if it possesses a MCMC move kernel whose proposal distribution is

also affine-invariant such that:

@′(�∗ |�8) = @′(k()∗) |k()8)) ∝ @()∗ |)8) (4)

whereby @′ is the proposal distribution function in the �-space. When this condition is satisfied,

the probability of generating a sample�∗ given�8 in the transformed�-space now becomes equal

to that of generating a sample )∗ given )8 in the original )-space (Goodman and Weare 2010).

An ensemble ®)8 is defined as a collection of #2 Markov chains such that:

®)8 = {)1,8, )2,8, . . . , )#2−1,8, )#2 ,8}. In practice, #2 should be at least twice the dimensionality of )

(i.e. #2 ≥ 2 × #3) (Goodman and Weare 2010).

The AIES algorithm is initialized by #2 distinct Markov chains where each chain gener-

ates only one sample from the prior. This produces the first ensemble ®)8 for 8 = 1. Next,

the samples are updated one at a time in a sequential manner. To update the : Cℎ chain (for

: = 1, . . . , #2), a sample from a complementary chain is chosen randomly from the set ) [:],8 ∼

{)1,8+1, . . . , ) :−1,8+1, ) :+1,8, . . . , )#2 ,8}. The affine-invariant stretch-move kernel is used to generate

the candidate sample )∗
:,8

(Goodman and Weare 2010; Foreman-Mackey et al. 2013):

)∗:,8 = ) [:],8 + _ · () :,8 − ) [:],8) (5)

whereby _ is real-valued scalar proposal stretch factor which is also a random variable following a

proposal distribution 6(_) defined as:

6(_) =


1

2·(
√
D− 1√

D
) ·

1√
_

if _ ∈ [ 1
D
, D]

0 otherwise
(6)
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and D ≥ 1 is the user-defined step-size of the AIES sampler. The form of 6(_) in Eq. (6) is chosen

such that it has a symmetric property (Goodman and Weare 2010):

6

(
1
_

)
= _ · 6(_) (7)

The candidate sample )∗
:,8

is accepted with probability U: :

U: = min

[
1, _#3−1 ·

%()∗
:,8
|J, ")

%() :,8 |J, ")

]
(8)

This updating procedure is then repeated for the #2 chains and then the next sample is processed

(i.e. set 8 = 8 + 1 until 8 = #). To summarize the procedure, a pseudo-algorithm is presented in

Algorithm 1.

Algorithm 1 AIES sampler algorithm
1: procedure (Generate # samples from %() |J, "))
2: Define #2 chains: ®)1 = {)1,1, )2,1, ..., )#2−1,1, )#2 ,1} ⊲ Initiate chains
3: for 8 = 1 : # − 1 do
4: for : = 1 : #2 do ⊲ Update : Cℎ chain
5: Sample ) [:],8 from the complementary set
6: Sample: _ ∼ 6(_)
7: Generate )∗

:,8
using Eq. (5)

8: Calculate acceptance probability U���( using Eq. (8)
9: Sample: A ∼ * [0, 1]
10: if U: > A then ⊲ Accept/Reject step
11: Set ) :,8+1 = )∗

:,8

12: else
13: Set ) :,8+1 = ) :,8
14: end if
15: end for
16: end for
17: end procedure

The AIES sampler presents 2 key advantages over the MH sampler: it is able to sample from

poorly-scaled and highly-skewed distributions just as effectively and efficiently as it would from

a well-scaled affine-transformed distribution (Goodman and Weare 2010; Lampart 2012) due to

the use of the affine-invariant stretch-move kernel; and it does not require a user-defined proposal
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distribution @()∗8 |)8) to generate candidate samples. It needs to be noted that what is described in

point 2 can be achieved by the preconditioned Crank–Nicolson (pCN) MCMC algorithm recently

implemented in (Iglesias et al. 2018). This, in turn, removes the need for the proposed SEMC

sampler to compute the covariance matrix for @()∗8 |)8) and the algorithm only needs to iteratively

update the scalar step-size D, whose computational cost is independent of the dimensionality of ) .

The procedure to update step-size D will be presented in Section 3.1.

3.1 Adaptive-tuning Algorithm

The proposed adaptive-tuning algorithm is based on the work by (Betz et al. 2016) which serves

two key purposes: 1) to adaptively tune and update the step-size D; and 2) to provide a mechanism to

control the acceptance rates of the SEMC sampler such that they converge towards the user-defined

target acceptance rates and fall within the optimal bounds of [0.15, 0.50] suggested by (Roberts

et al. 1997).

The procedure undertaken by the algorithm is as follows: At B = 1, an initial step-size DB=1 is

defined by the user to which the recommended value is 2 (Foreman-Mackey et al. 2013; Hou et al.

2012). From this initial value, the nominal step-size D=>< is computed after the MCMC step:

D=>< = D
B · exp [UB − UCA] (9)

where UB is the acceptance rate for the current time step sequence B and UCA is the target acceptance

rate defined as (Roberts et al. 1997):

UCA =
0.21
#3
+ 0.23 (10)

If D=>< > 1, then DB+1 = D=><. Otherwise, the algorithm sets DB+1 = 1.01 to ensure that the step-size

would never be less than 1. This procedure is then repeated at the end of each iteration until the

terminal iteration B = B4=3 .

To provide additional robustness to the SEMC sampler and assuring the acceptance rates

converge towards the target acceptance value at every iteration, “virtual" iterations are introduced
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which involves the updating of the posterior samples with a series of repeated data JB. The

termination criteria is defined whereby the acceptance rate values have converged. This is indicated

when the difference in the acceptance rate values ΔU between successive “virtual" iterations 9 falls

within, e.g. 10 % of the value of UCA upon which the procedure ends. In doing so, it not only allows

for the automatic tuning of the step-size DB but also ensures that the acceptance rate values converge

towards UCA across all B, independent of the data provided.

4 ACCEPTANCE RATES ANALYSIS

The proposed SEMC sampler bounds the acceptance rate of the algorithms as defined by Eq.

(10). While this is used as a general reference for the AIES, there exists a lower and upper bound

on the acceptance rate based on the analysis done in the context of the experimental investigation

to which details are presented in Section 6. A numerical investigation into the acceptance rate

evolution by the SEMC sampler, given the Markov kernel )1 is done for target acceptance rates

of UCA = {0.100, 0.283, 0.440, 0.800, 0.900, 1.000} with the respective starting step-size values

DB=1 = {40, 40, 8, 2, 2, 2} and presented in Figure 2. It needs to be highlighted that the acceptance

rate can be controlled by controlling the step-size DB (Goodman and Weare 2010). However, the

numerical experiment shows that the acceptance rates never fall below 0.300, although the chosen

target acceptance rate values were 0.100 and 0.283. The reason behind the existence of such

lower bound is attributed to the resampling procedure by the SEMC algorithm which ensures that

samples far from the posterior are eliminated while samples closer to or within the posterior are

re-populated. This ensures that a proportion of the samples will always be accepted, resulting in a

non-zero acceptance rate.

On the other hand, the upper bound of the acceptance rate is in practice always less than 1

given that for a non-Uniform distribution a proportion of samples are rejected by the sampling

algorithm. In fact, in the cases where the chosen target acceptance rate values were 0.900 and

1.000, the acceptance rates across the time step sequences B never exceeded 0.850 as seen in Figure

2. Hence, the existence of such bounds makes the algorithm particularly robust and generally

applicable without the need of guessing a “good" acceptance rate. Instead, the acceptance rate can
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be used as a monitoring parameter of the performance of the algorithm. In fact, if the acceptance

rate is high (e.g. above 0.850), it could indicate that the samples are stuck in a specific region

of the posterior and the resulting sample distribution and its estimates may not be representative

of the true posterior distribution. The acceptance rate bounds may depend on the dimension of

the posterior distribution and the number of chains #2 used in the sampler which requires further

investigation.

Without the need to decide on a “good" acceptance rate, complemented with the proposed

adaptive-tuning algorithm involving the “virtual" iterations, these features highlight the robustness

of the proposed SEMC sampler in that: 1) it is “tune-free" for the users in that they do not have

to define an initial step-size value DB=1; and 2) it is able to effectively control the acceptance rates

across the different time step sequence B as illustrated from the results in Figure 2.

Algorithm 2 presents a summary of the SEMC sampling procedure. The resampling step in

line 10 ensures that 1) the Markov chains initiate with a higher probability from samples ) B8 with a

higher FB
8
(Ching and Chen 2007); and 2) the final distribution of samples would be representative

of the analytical distribution of %() B8 |�1:B, ").
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Algorithm 2 Proposed SEMC sampler algorithm
1: procedure (Generate # samples from %() 9 |J1: 9 , "))
2: Set B = 0 ⊲ Initialise time step counter
3: Draw initial # sample set: ) B+18 ∼ %() |") ⊲ Generate samples from prior
4: Set DB+1 = 2 ⊲ Set initial value of step-size
5: while B < B4=3 do ⊲ Loop over time steps
6: Set B = B + 1
7: Set 9 = 1 & U>;3 = UCA ⊲ Initialize parameters
8: Compute F̂B

8
using Eq. (34)

9: while do ⊲ Initiate “virtual" loop
10: Resample # samples: ) B8 ∼ F̂B8
11: Set ) B8 = )8,1 in ensemble ®)1 ⊲ Initiate ensemble
12: Update ®)1 with 1 iteration of AIES (see Algorithm 1) ⊲MCMC step
13: Compute U using Eq. (8)
14: Compute D=>< using Eq. (9) ⊲ Tuning the step-size
15: Set DB+1 = max(D=><, 1.01)
16: if |U − U>;3 | < 0.1 · UCA then ⊲ Check termination criteria
17: Break ⊲ Exit “virtual" loop
18: end if
19: Set U>;3 = U
20: Set 9 = 9 + 1
21: end while ⊲ End “virtual" loop
22: Set updated ensemble ®)1 as ) B8 ∼ %() B |J1:B, ")
23: Compute ) B+18 using ) () B+1 |) B) ⊲ Set as new prior samples
24: Compute PDF of %() B+18 |�1:B) using Eq. (38) ⊲ Set as new prior PDF
25: Compute %(J1:B |") using Eq. (1)
26: end while
27: end procedure

5 NUMERICAL EXAMPLE: A SPRING-MASS-DAMPER SYSTEM

In this example, a Single Degree-of-Freedom (SDoF) Spring-Mass-Damper system consisting

of a block with mass < = 0.30 :6 attached to a spring with stiffness : , and a damper with viscous

damping coefficient 2 is studied. The values of : and 2 decrease with time as described by a random

degradation process. The system’s equation of motion can be described following:

< · 3
2G

3g2 + 2(C) ·
3G

3g
+ : (C) · G = 0 (11)

where G denotes the instantaneous displacement of the mass from its rest position, g denotes

14 Lye, January 4, 2023



time variable (in seconds) of the oscillation, while C denotes the time variable (in months) of the

parameters : and 2. Solving the second-order differential equation in Eq. (11), we obtain its

steady-state, underdamped response solution:

Ĝ(g) = G0 · exp
[
−2(C)

2<
· g

]
· cos


√
: (C)
<
−

(
2(C)
2<

)2
· g

 (12)

where the oscillation amplitude is G0 = 0.05 <.

To account for the stochastic characteristics of the random degradation process of : (C) and

2(C), 10 simulations runs have been made for each quantity using discrete staircase functions. To

simulate the “black-box" nature of the true degradation process, for each run, 6 distinct Markov

kernels are derived to describe the evolution of : (C) and 2(C) under uncertainty. The most probable

Markov kernel would be identified based on the log-evidence. Given the most probable Markov

kernel, the Bayesian identification of : (C) and 2(C) is performed for C = 1, . . . , 6months and used for

prediction estimates at C = 7, 8, 9 months. These results obtained using both the SMC and SEMC

samplers are then compared on the basis of the estimation results, prediction results, computational

time, and its effectiveness in controlling the acceptance rates.

The results show that the SEMC sampler is able to yield estimates of : (C) and 2(C) for all 10

runs which are well-verified against those obtained by the SMC sampler. The computational time is

significantly lower for the SEMC sampler compared to the SMC sampler. Furthermore, the SEMC

sampler is able to effectively control the acceptance rates of the samples within optimal bounds

compared to the SMC sampler. These observations illustrate and highlight the strengths of the

SEMC sampler as hypothesised. Full details on the numerical set-up and the results can be found

in (Lye et al. 2022b) and the corresponding MATLAB codes of the numerical example are freely

available via: https://github.com/Adolphus8/Sequential_Ensemble_Monte_Carlo.git

6 EXPERIMENTAL INVESTIGATION: SINGLE-STOREY SHEAR FRAME STRUCTURE

SUBJECTED TO A COULOMB FRICTION

This experimental example is used to investigate the capability of the proposed approach to
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identify the most probable Markov kernel able to model the evolution of Coulomb friction force on

the response dynamics of a physical structure under uncertainty. This investigation is conducted

using a single-storey shear frame with a Coulomb friction contact, subjected to a harmonic base-

excitation. The physical set-up and schematic diagram of the structure are presented in Figures

3 and 4, respectively. Detailed description to the physical set-up can be found in (Marino and

Cicirello 2020).

The objective of this investigation is to evaluate the robustness of the proposed SEMC sampler

in its ability to infer the values of Coulomb friction force at each observation, but also the time-

invariant natural frequency of the structure and measurement error using sets of actual experimental

data obtained sequentially.

6.1 Physics-based model of the structure

The building can be modelled as Spring-Mass-Damped system as shown in Figure 5 where the

mass < and the stiffness : represent the participating mass and stiffness of the first vibrating mode

of the structure (Marino and Cicirello 2020; Marino et al. 2019). The Coulomb friction force �` is

generated as a result of contact between the mass < and a fixed wall and is obtained as the product

of a friction coefficient ` and the normal contact force �# .

To study the response dynamics of the structure as well as the parameters to be inferred in this

problem, it is possible to write the governing equation of this SDoF model in a dimensionless form

as (Marino et al. 2019):

A2 · 3
2G̃

3g1
2 + G̃ + V(C) · sgn

(
3G̃

3g1

)
= cos (g1) (13)

where G̃ is the dimensionless response of <, A is the frequency ratio, V(C) is the time-varying

friction ratio, and g1 is the dimensionless time parameter. The dimensionless frequency ratio A is

defined as (Marino et al. 2019):

A =
l1

l=
(14)
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where l= =
√

:
<

is the natural frequency of the structure which was measured experimentally

(Marino and Cicirello 2020) to be 19.572 A03/B and l1 is the driving frequency of the harmonic

base-excitation. Hence, the dimensionless time g1 in Eq. (13) is defined as: g1 = l1 · g, where g is

the physical time parameter. The dimensionless force ratio V(C) is defined as (Marino et al. 2019):

V(C) =
�` (C)
:.1

(15)

where.1 is the driving displacement amplitude by the rotor. Thus, :.1 is the driving force amplitude

whose value was measured experimentally to be 2.50 # . Hence, the dimensionless response G̃ is

defined as (Marino et al. 2019):

G̃ =
G

.1
(16)

where G is the response displacement of <. According to Den-Hartog’s theory (Den-Hartog 1930),

under the assumptions of continuous and symmetric response, the steady-state solution of Eq. (13)

can be obtained analytically as (Marino et al. 2019):

G̃=D< (g1) =


G̃ (g1) for g1 ∈ [0, c)

−G̃ (g1 − c) for g1 ∈ [c, 2c)
(17)

where G̃ (g1) can be evaluated as:

G̃(g1) = G̃0 · cos(g1) + V(C)* · sin(g1) + V(C) ·
[
1 − cos

(
g1

A

)
−*A · sin

(
g1

A

)]
(18)

In Eq. (18), the damping function* is defined as:

* =
sin (c/A)

A · [1 + cos (c/A)] (19)
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while the dimensionless response amplitude G̃0 can be evaluated as:

G̃0 =

√(
1

1 − A2

)2
− (V(C) ·*)2 (20)

Details on the derivation of the above terms can be found in (Marino et al. 2019).

6.2 Data collection

Four different values of Coulomb friction force �` (C) are considered to simulate its time-

varying aspect for C = {1, 2, 3, 4} months. This variation in �` (C) can be simulated by varying

the configuration of the weights in the counterweight system seen in Figure 4. The values of each

�` (C) are {1.435, 0.980, 0.662, 0.217} # , respectively. For each �` (C), 9 sets of phase angle data

q are collected across 9 chosen values of frequency ratio A. The phase angle q is chosen as the

response data due to its high-degree of sensitivity to the variation in �` (C) as shown in (Marino

and Cicirello 2020). The reference values for the 9 chosen values of A, which can be obtained by

adjusting l1 (i.e. see Eq. (14)), are: A=>< = {0.65, 0.80, 0.95, 1.10, 1.25, 1.40, 1.55, 1.70, 1.85}.

The experimental procedure to obtain the phase angles q from given values of �` (C) and A can be

found in (Marino and Cicirello 2020).

The experimental measurements of q, A, and �` (C) are shown in Table 1 and in Figure 6. In

Figure 6, the Den-Hartog’s boundary denotes the boundary between the continuous motion and

the stick-slip regime for the dynamic response of the top plate under Coulomb friction, while the

continuous colored lines represent the true model output of q, given �` (CB), for the different values

of A within the continuous motion regime. In addition, the values of the driving frequency l1

measured from each test are presented in Table 2.

Based on the experimentally-obtained values of �` (C), two choices of Markov kernels are

identified to model the time-based degradation of �` (C):

)1 : �` (CB+1) = �` (CB) − 0.375 + a1 (21)

)2 : �` (CB+1) = exp [−0.470] · �` (CB) + a2 (22)
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whereby B = 1, . . . , 4 denotes the time sequence index, and a1 and a2 are the zero-mean Normally-

distributed process “noise" termswith the respective standard deviations: {f1, f2} = {0.040, 0.090}

# . The parameters of theMarkov kernels are obtained using a curve-fitting procedure via the Least-

squaresmethod on the experimentally-obtained values of �` (C). The corresponding nominalmodels

Γ1 and Γ2 (i.e. Kernel models without the noise term, are shown in Figure 7. It needs to be added

that while in this example the parameters of the Markov kernel are assumed to be known, this is not

always the case in general. In such cases, the parameters of the Markov kernel can also be included

in the set of inferred parameters through Bayesian inference (Beck and Katafygiotis 1998).

6.3 Bayesian Inference set-up

The sequential Bayesian inference procedure is done for ) (CB) = (�` (CB), l=, fq, fA), where

fq and fA are the standard deviations of the respective “noise" associated with the experimentally-

obtained values of q and A. The parameters l=, fq and fA are assumed to be time-invariant and it

needs to be noted that fq and fA are are internal parameters of the likelihood function and are not

used in the models to predict �` (CB) and l=. This gives rise to a 4-dimensional Bayesian inference

problem for the estimation of the aforementioned parameters at each time sequence CB.

The initial priors at B = 1 for each of the inferred parameters are set to be non-informative

Uniform priors whose bounds are listed in Table 3. For B > 1 the prior is the predictive distribution

that is derived using Eq. (38) by propagating the samples obtained at previous time step B − 1

through the Markov kernel. The likelihood function for each time sequence CB is set to follow a

Normal distribution. Assuming independence between individual observations of q and A as well

as between data-sets obtained at different time sequence CB, the likelihood function is defined as:

%(JB |) (CB), q̂, Â) =
9∏
@=1

1
2c · fA · fq

· exp

−
(
A
@
=>< − Â (l@,B1 , l=)

)2

2 · fA2 −
(
q@,B − q̂(A@,B, �` (CB))

)2

2 · fq2


(23)

where A@=><, l
@

1
and q@ denote respectively the @Cℎ value/observation of A=><, l1, and q obtained
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at time sequence CB for @ = 1, . . . , 9, Â denotes the model used to compute A, q̂ is the model used to

compute q, and JB = (q, A)B denotes the data set obtained at CB.

The model Â evaluates the analytical solution for A from a given value of l1 and l= according

to Eq. (14). The computation procedure by the model q̂ to evaluate the analytical solution of q

from a given value of �` (CB) and A consists of 3 main steps (Den-Hartog 1930):

In the first step, the algorithm computes V(CB) with the input value of �` (CB) using Eq. (15). In

order to verify the assumption of continuous response, the value of V corresponding to the boundary

between continuous and stick-slip regimes, shown in Figure 6, is also computed as (Den-Hartog

1930):

V;8< =

√√√ 1(
*2 + 1

A4

)
· (1 − A2)2

(24)

If V(CB) > V;8<, the condition for a continuous motion is not satisfied. Therefore, the algorithm

proceeds to assign a NaN (i.e. Not a Number) value for q and the procedure terminates here.

Otherwise, the algorithm proceeds to the next step. In the second step, the analytical steady-state

response solution G̃=D< (g1) is computed for g1 ∈ [0, 2c) from Eq. (17) and the numerical excitation

function H̃=D< (g1), expressed as (Den-Hartog 1930):

H̃(g1) = cos(g1 + i) (25)

where:

i = atan2
[
−V(CB) ·* · (1 − A2), G̃0 · (1 − A2)

]
(26)

is also computed for g1 ∈ [0, 2c). In the last step, the algorithm proceeds to compute the phase

angle q between the excitation and the response functions. This is done by obtaining their respective

dimensionless frequency spectra G̃��) ( 5̃ ) and H̃��) ( 5̃ ) using the FFT algorithm (Heideman et al.

1984; Loan 1992). The dimensionless frequency is here defined as 5̃ = 2c· 5
l1

, where 5 is the

frequency variable in the FFT-space. From there, the phase angle is computed at 5̃ = 1 (i.e.
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resonance) following (Marino and Cicirello 2020):

q = arg{G̃��) ( 5̃ = 1)} − arg{H̃��) ( 5̃ = 1)} (27)

The above procedure is provided as a pseudo-algorithm as shown in Algorithm 3. In the event

q̂ = NaN, the likelihood function %(JB |) (CB), q̂, Â) returns a 0.

Algorithm 3 Pseudo-algorithm of model q̂
1: procedure (Compute q from �` (CB) and A)
2: Compute V(CB) with �` (CB) using Eq. (15)
3: Compute V;8< with A using Eq. (24)
4: if V > V;8< then ⊲ Steady, continuous motion condition not satisfied
5: Set q = NaN
6: else
7: Compute G̃=D< (g1) using Eq. (17)
8: Compute H̃=D< (g1) using Eq. (25)
9: Execute FFT on G̃=D< (g1) to generate G̃��) ( 5̃ )
10: Execute FFT on H̃=D< (g1) to generate H̃��) ( 5̃ )
11: Set 5̃ = 1
12: Compute q using Eq. (27)
13: end if
14: end procedure

6.4 Results

To account for the statistical variability of the sampling algorithms, the inference is repeated 10

times and the means and standard deviation calculated. For each run, 1000 samples are generated

from the posteriors %() B |J1:B, ") and the log-evidence log
[
%(J1:B |")

]
is computed at each time

step sequence B for each Markov kernel for both samplers. The numerical results are summarised

in Tables 4 and 5 while a graphical plot illustration is provided in Figure 8. As seen in Tables 4

and 5, log
[
%(J1:B |")

]
is consistently higher for the case of )1 which indicates that )1 is the most

probable Markov kernel to represent the variation of �` (CB) across CB.

The results of acceptance rates are illustrated in Figure 9 showing a superior convergence of

the acceptance rates of the SEMC sampler for both Markov kernels )1 and )2 right from time

step sequence B = 1 while the SMC sampler reached convergence from B = 3 onwards. This
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demonstrates the effectiveness of the SEMC tuning algorithm in ensuring the convergence of the

acceptance rates. Furthermore, the SEMC variability of the acceptance rate (shown as 1-sigma

error bars) is significantly smaller than the corresponding SMC variability.

The resulting statistics of the estimates for �` (CB) across each time step sequence B are obtained

for each choice of Markov kernel and summarised in Figures 10-11 and in Tables 6-7. Figure 10

shows the identified value of the parameter �` (CB) with the corresponding error bars in correspond

to the 1-sigma bounds. In both cases follow the trend defined by the evolution model defined within

the respective Markov kernels, for both the SEMC and SMC samplers.

The SEMC estimates for �` (CB) given )1 are generally closer to the true values compared to the

estimates using )2 while the standard deviations of the estimates at each time step sequence B are

generally the same between the different Markov kernels. Similar behaviour is also observed for

the SMC estimates. This is due to the fact that )1 describes better the change of �` (CB) across the

time step sequences B compared to )2. Hence, this set of results illustrates the direct influence of

the choice of Markov kernel on not just the trajectory of the time-varying estimates of �` (CB), but

also the accuracy of the estimates of �` (CB) across the simulation runs at any given B.

The predictive capabilities of the identified models are show in Figure 11. This is obtained

by propagating the 10000 posterior samples from the 10 repeated runs each with 1000 samples

through the Markov kernels (see Eq. (31). In the figure, the red histogram plots represent the

distribution profile of the predicted values of �` (CB) from the posterior distribution at B = 1; the

green histogram plots represent the prediction from the posterior distribution at B = 2, the blue

histogram plots represent the prediction from the posterior distribution at B = 3, and the yellow

histogram plots represent the posterior distribution obtained at B = 4. Although the samples from

both models generally include the true value of �` (CB) at any given time step, the )1 model shows a

better predictive capability compared to )2. Moreover, )2 produces a significant number of samples

with a value of Coulomb friction equal to zero, in particular for the model calibrated using only the

data from B = 1 and B = 2.

The resulting statistics of the estimates for the parameters, l=, fq, and fA , across the time step
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sequence B, obtained for each choice of Markov kernel, are shown in Figures 12 and 13 while the

corresponding numerical results summarised in Tables 8 to 13. Like in Figure 10, the error bars

correspond to the 1-sigma bounds. For the case of l=, the SEMC and SMC estimates given either

choice of the Markov kernel both converge to the experimentally measured values (see Section 6.1)

. This indicates the effectiveness of the samplers in inferring l=.

The average over the time step B of the sampled standard deviations for the measured parameters

are used as reference values denoted as fA4 5
q

and fA4 5A respectively:

f
A4 5

q
=

1
4

4∑
B=1

√√√
1
8

9∑
@=1

[
q@,B − q̂

(
�` (CB), A@,B

) ]2 (28)

f
A4 5
A =

1
4

4∑
B=1

√√√
1
8

9∑
@=1
(A@,B − A=><)2 (29)

The SEMC sampler provides an estimate of fq close to the reference values given either choice of

the Markov kernel. However, the 1-sigma bounds of the estimates given )2 is significantly larger

than that for )1 (see Figures 12 and 13). A similar observation is made for the SMC estimates of fq

although its estimates are approximately twice of that by the SEMC sampler with nearly thrice the

1-sigma bounds. In estimating fA , neither the results obtained by the SEMC and SMC samplers

come close to the reference value of fA4 5A = 0.010. Finally, for �` (CB), l=, fq, and fA , the SEMC

sampler generally has a smaller standard deviation on its estimates compared to the SMC sampler.

7 CONCLUSIONS

A “tune-free" and robust sampler named Sequential Ensemble Monte Carlo has been proposed

for the on-line Bayesian inference of time-varying parameters. The proposed sampler is charac-

terized by the implementation of the affine-invariant ensemble sampler and an automatic control

of acceptance rates. Thanks to the introduction of the “virtual" iteration mechanism the sampler

has not only automatised the tuning of the step-size parameter, but also ensured that the accep-

tance rate converges towards the prescribed value defined within the admissible bounds. This, in

turn, removes the need of tuning parameters thanks to the adaptive approach implemented in the
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algorithm. By doing so, the proposed sampler is robust, “tune-free" and generally applicable. All

features required for the use of such tool in solving real engineering problems.

The proposed sampler has been verified and validated by identifying the time-variant param-

eters. The examples provided showed that the Sequential Ensemble Monte Carlo outperforms

the traditional sampler yielding estimates with tighter bounds across independent simulation runs

and with acceptance rates well-moderated within optimum bounds. Moreover, the experimental

investigation has also shown that capability of the method to identify the most probable Markov

kernel under model uncertainty.

The implemented algorithm and all the associated files and examples are freely accessible on

the following repository: https://github.com/Adolphus8/Sequential_Ensemble_Monte_

Carlo.git. This allows for the easy replication and independent check of the approach as well

the possibility of replicating the results presented.
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8 APPENDIX

8.1 Sequential Bayesian Filtering

The mathematical formulation of Sequential Bayesian filtering to infer the time-varying param-

eter(s) is based on the well-known Bayes’ theorem (Bayes and Price 1763):

%() |J, ") = %(J |) , ") · %() |")
%(J |") (30)

whereby ) represents the vector of inferred model parameters (can be either time-invariant or time-

varying), J represents the vector of measurements (or observations) used to update our knowledge

of ) , and " denotes the model class which refers to a collection of mathematical models (i.e. as

functions of )) which are believed to best represent the observations J and the dynamics of the

time-varying ) . The terms in Eq. (30) are defined as (Lye et al. 2021):

• %() |") is the prior distribution which describes our knowledge of ) before observing J,

• %(J |) , ") is the likelihood function which accounts for the degree of error between J and

the output from " ,

• %() |J, ") is the posterior distribution which describes our updated knowledge of ) after

observing J,

• %(J |") is the evidence which serves as the normalizing constant of the posterior.

A standard approach to sample from a target distribution would beMonte Carlo sampling which

requires that the target distributions be normalised and have a defined Cumulative Distribution

Functions (CDF) (Lye et al. 2021; Robert and Casella 2013). However, due to %() |J, ") not

being known until its evaluation, Markov Chain Monte Carlo (MCMC) techniques are adopted to

generate samples from it (Lye et al. 2021).

The interest here is in the use of the Bayesian inference framework towards inferring the

time-varying ) , whose posterior is consequently varying over time. To reflect such aspects, we

define ) (CB) as the parameter value at the BCℎ time step sequence whose instantaneous posterior

can be expressed as %() (CB) |J1:B, "), while J1:B = {J1, . . . , JB} denotes the stream of data-
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set J obtained sequentially up to the BCℎ time step sequence in an on-line manner. An essential

requirement in the inference of ) (CB) is the underlyingMarkov kernel) () (CB+1) |) (CB)) that describes

the evolution from ) (CB) to ) (CB+1) and can be expressed as (Fan and Liu 2019b):

) () (CB+1) |) (CB)) : ) (CB+1) = Γ() (CB)) + a) (31)

where Γ(•) is the nominal evolution model and a) is the process “noise". In this paper, we shall

assume that a) follows a zero-mean Normal distribution with fixed standard deviation fa (see e.g.

(Fan and Liu 2019b; Schon et al. 2015; Eftekhar-Azam et al. 2017)).

The Sequential Bayesian filtering procedure can be summarised as follows (Sarrka 2013): At

time step sequence B = 1, the posterior %() (CB) |J1:B, ") is defined (see Eq. (30)). Following

which, the predictive distribution %() (CB+1) |J1:B, ") is computed (Ristic et al. 2004):

%() (CB+1) |J1:B, ") =
∫
) () (CB+1) |) (CB)) · %() (CB) |J1:B, ") · 3) (CB) (32)

The predictive distribution %() (CB+1) |J1:B, ") describes our prediction of ) (CB+1) before observing

the data JB+1 to be obtained in time step sequence number B +1. In this regard, %() (CB+1) |J1:B, ")

is set as the new prior to be updated and the process is repeated for time step sequence number B +1

until the terminal sequence B4=3 .

To sample sequentially from the time-varying %() (CB) |J1:B, "), the SMC sampler can be

implemented to which details can be found in the literature (Doucet et al. 2001; Lye et al. 2022b).

8.2 Sequential Monte Carlo sampler

The SMC sampler is based on the Sequential Importance-Resampling (SIR) algorithm in SMC

methods (or Particle filters) to generate samples sequentially from a time-evolving posterior (Doucet

et al. 2001). The sampling procedure is as follows (Chopin 2002): At iteration B = 0, sampling

algorithm is initialized by generating # samples generated from the prior %() B+1) via standard

Monte Carlo sampling. Next, the nominal weights are computed using the current likelihood

function (Hammersley and Handscomb 1964):
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FB8 = %(JB |) B8 , "). (33)

and normalised (Moral et al. 2006):

F̂B8 =
FB
8∑#

8=1 F
B
8

(34)

where 8 is the index over the sample.

In the updating step # single-step Markov chains are initiated, each starting from sample ) B8

obtained using weighted resampling (with replacement) according to FB
8
. The Metropolis-Hastings

(MH) approach is then adopted to generate 1 sample from each Markov chains (Hastings 1970).

The candidate samples are generated from a Normal proposal distribution @() B∗8 |) B8 ) with mean )̄
B

and covariance matrix �B defined as (Chopin 2002):

)̄
B
=

#∑
8=1

) B8 · F̂B8 (35)

and

�B = W2 ·
#∑
8=1

F̂B8 ·
[
{) B8 − )̄

B} × {) B8 − )̄
B})

]
(36)

where W is the scaling parameter which will be set here as 1 (Chopin 2002). The candidate sample

is accepted with probability U8:

U8 = min

[
1,
%() B∗8 |J1:B, ")
%() B8 |J1:B, ")

]
(37)

Then, the updated samples ) B8 are then passed through the Markov kernel ) () B+1 |) B) to generate

) B+18 (i.e. the predictive samples). Finally, the predictive PDF is estimated using a Kernel Density

Estimate (KDE) in the form of:

%() B+1 |JB, ") ≈ 1
#

#∑
8=1

 

(
) − ) B+18

h

)
(38)

where ) is a random variable,  (•) is the Kernel smoothing function which is set as the standard
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Normal distribution, and h is the #3-by-#3 diagonal bandwidth matrix where #3 is the number

of inferred parameter(s). Each diagonal element of the bandwidth matrix ℎ3 , for 3 = 1, . . . , #3 is

computed using the Silverman’s Rule of Thumb (Silverman et al. 1986):

ℎ3 = f̃3 ·
[

4
# · (3 + 2)

] 1
(3+4)

(39)

where f̂3 is the standard deviation of the 3Cℎ component of ) B+1.

The algorithm proceeds to the next time step B = B + 1 if data are available by setting ) B+18 as

the new prior samples and %() B+1 |J1:B, ") as the new prior PDF. When no further data is obtained

beyond that point, the algorithm terminates at time step B = B4=3 . A pseudo-algorithm of the

sampling procedure by the SMC sampler is presented in Algorithm 4.
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Algorithm 4 SMC sampler algorithm
1: procedure (Generate # samples sequentially from %() B |J1:B, "))
2: Set B = 0 ⊲ Initialise counter
3: Draw initial # sample set: ) B+18 ∼ %() |") ⊲ Generate samples prior
4: while B < B4=3 do ⊲Main sampling loop
5: Set B = B + 1
6: Compute F̂B

8
using Eq. (34)

7: for 8 = 1 : # do ⊲ For each 8Cℎ chain (MCMC step)
8: Resample: ) B8 ∼ F̂

9
B

9: Draw candidate sample: ) B∗8 ∼ @() B∗8 |) B8 )
10: Accept/Reject ) B∗8 with probability U8 using Eq. (37)
11: end for
12: Compute ) B+18 using ) () B+1 |) B) ⊲ Set as new prior samples
13: Compute PDF of %() B+18 |�1:B) using Eq. (38) ⊲ Set as new prior
14: Compute %(J1:B |") using Eq. (1)
15: end while
16: end procedure
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Exp. A=>< �` (C1) = 1.435 # �` (C2) = 0.980 # �` (C3) = 0.662 # �` (C4) = 0.217 #
A q A q A q A q

1 0.65 0.649 46.464 0.637 27.217 0.624 16.622 0.652 6.496
2 0.80 0.791 41.492 0.789 26.269 0.807 16.900 0.796 4.292
3 0.95 0.952 41.864 0.944 29.936 0.941 14.934 0.936 5.839
4 1.10 1.098 132.661 1.099 147.498 1.123 162.318 1.110 174.223
5 1.25 1.278 137.022 1.253 150.104 1.255 160.757 1.262 174.832
6 1.40 1.407 129.795 1.406 152.246 1.409 156.074 1.392 171.955
7 1.55 1.557 136.944 1.549 152.011 1.540 161.960 1.548 173.666
8 1.70 1.706 131.314 1.694 152.008 1.711 157.884 1.715 171.698
9 1.85 1.848 134.294 1.849 153.251 1.833 161.017 1.860 169.833

TABLE 1. A Spring-Mass-Damper: Numerical results of A and q [346] obtained for the respective
�` (CB).

39 Lye, January 4, 2023



Exp. �` (C1) = 1.435 �` (C2) = 0.980 �` (C3) = 0.662 �` (C4) = 0.217
l1 l1 l1 l1

1 12.696 12.462 12.213 12.751
2 15.487 15.444 15.791 15.576
3 18.639 18.478 18.415 18.318
4 21.480 21.500 21.983 21.729
5 25.015 24.514 24.569 24.694
6 27.540 27.522 27.585 27.239
7 30.468 30.321 30.141 30.296
8 33.390 33.149 33.478 33.558
9 36.165 36.195 35.880 36.398

TABLE 2. Shear frame structure: Numerical values of l1 [A03/B] used for the respective
�` (CB) [#].
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Parameter Bounds Units
�` (CB) [0.01, 100] #

l= [0.01, 100] A03/B
fq [0.001, 10] 346

fA [0.001, 1] −

TABLE 3. Shear frame structure: Bounds of the non-informative Uniform prior for the respective
inferred parameters.
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)1 )2
B E(Log-evidence) Stdev. E(Log-evidence) Stdev.
1 −23.614 5.210 −23.574 5.212
2 −37.486 9.020 −38.913 13.052
3 −51.988 13.738 −53.311 19.356
4 −65.276 18.829 −67.125 25.783

TABLE 4. Shear frame structure: Model identification using SEMC - mean of the Log-evidence
(log

[
%(J1:B |")

]
), and its standard deviation (Stdev).

42 Lye, January 4, 2023



)1 )2
B E(Log-evidence) Stdev. E(Log-evidence) Stdev.
1 −23.493 5.212 −23.543 5.209
2 −44.599 8.399 −45.435 10.501
3 −61.712 15.436 −64.471 18.207
4 −75.096 30.674 −82.697 26.252

TABLE 5. Shear frame structure: Model identification using SMC - mean of the Log-evidence
(log

[
%(J1:B |")

]
), and its standard deviation (Stdev).
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)1 )2
s True value E[�` (CB)] Stdev. E[�` (CB)] Stdev.
1 1.435 1.409 0.019 1.387 0.024
2 0.980 0.975 0.012 0.929 0.007
3 0.662 0.622 0.007 0.624 0.003
4 0.217 0.233 0.004 0.250 0.003

TABLE 6. Shear frame structure: Parameter identification of �` (CB) [#] using SEMC - mean of
�` (CB), and its standard deviation (Stdev).
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)1 )2
B True value E[�` (CB)] Stdev. E[�` (CB)] Stdev.
1 1.435 1.421 0.070 1.382 0.108
2 0.980 1.027 0.094 0.929 0.026
3 0.662 0.667 0.108 0.659 0.056
4 0.217 0.274 0.095 0.322 0.083

TABLE 7. Shear frame structure: Parameter identification of �` (CB) [#] using SMC - mean of
�` (CB), and its standard deviation (Stdev).
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)1 )2
B True value E[l=] Stdev. E[l=] Stdev.
1 19.572 20.943 1.198 21.056 1.590
2 19.572 20.737 1.220 21.252 1.583
3 19.572 20.791 1.202 21.145 1.504
4 19.572 20.771 1.198 21.155 1.531

TABLE 8. Shear frame structure: Parameter identification of l= [A03/B] using SEMC - mean of
l=, and its standard deviation (Stdev).
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)1 )2
B True value E[l=] Stdev. E[l=] Stdev.
1 19.572 65.762 1.844 46.800 1.908
2 19.572 23.725 1.750 24.748 1.741
3 19.572 21.450 1.540 21.735 1.237
4 19.572 21.045 1.025 21.668 1.978

TABLE 9. Shear frame structure: Parameter identification of l= [A03/B] using SMC - mean of
l=, and its standard deviation (Stdev).
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)1 )2
B Reference value E[fq] Stdev. E[fq] Stdev.
1 2.512 3.492 0.199 3.559 0.275
2 2.512 3.471 0.183 3.440 0.296
3 2.512 3.495 0.190 3.466 0.295
4 2.512 3.482 0.196 3.456 0.294

TABLE 10. Shear frame structure: Parameter identification of fq [346] using SEMC - mean of
fq, and its standard deviation (Stdev).
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)1 )2
B Reference value E[fq] Stdev. E[fq] Stdev.
1 2.512 6.600 0.686 6.584 0.683
2 2.512 6.921 0.686 5.646 0.658
3 2.512 6.934 0.638 6.030 0.665
4 2.512 6.479 0.660 5.949 0.682

TABLE 11. Shear frame structure: Parameter identification of fq [346] using SMC - mean of fq,
and its standard deviation (Stdev).
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)1 )2
B Reference value E[fA] Stdev. E[fA] Stdev.
1 0.010 0.383 0.053 0.383 0.108
2 0.010 0.378 0.052 0.357 0.111
3 0.010 0.366 0.054 0.357 0.119
4 0.010 0.366 0.052 0.356 0.118

TABLE 12. Shear frame structure: Parameter identification of fA using SEMC - mean of fA , and
its standard deviation (Stdev).
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)1 )2
B Reference value E[fA] Stdev. E[fA] Stdev.
1 0.010 0.393 0.144 0.408 0.252
2 0.010 0.248 0.140 0.311 0.246
3 0.010 0.170 0.149 0.203 0.267
4 0.010 0.156 0.140 0.161 0.226

TABLE 13. Shear frame structure: Parameter identification of fA using SMC - mean of fA , and
its standard deviation (Stdev).
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Fig. 1. Scatterplot of the prior samples, alongwith their associated normalisedweights F̂B
8
, obtained

from the posterior consisting of a mixture of two Gaussian distributions.
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Fig. 2. Acceptance rates for the SEMC sampler: target acceptance rate values UCA =

{0.100, 0.283, 0.440, 0.800, 0.900, 1.000} and starting step-size values DB=1 = {40, 40, 8, 2, 2, 2}.
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Fig. 3. SDoF single-storey shear frame structure subjected to Coulomb friction.
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Fig. 4. Schematic diagram of the SDoF single-storey shear frame structure subjected to Coulomb
friction. Image adapted from (Marino and Cicirello 2020).
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Fig. 5. Spring-mass representation of the SDoF single-storey shear frame structure subjected to
Coulomb friction.
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Fig. 6. Shear frame structure: Plots of A and q for the corresponding values of �` (CB) for
B = {1, . . . , 4}.
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Fig. 7. Shear frame structure: Nominal evolution models Γ1 and Γ2.
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Fig. 8. Shear frame structure: Model identification results using SEMC and SMC - mean of the
Log-evidence (log

[
%(J1:B |")

]
), and its 1-sigma bounds.
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Fig. 9. Shear frame structure: Acceptance rates results using SEMC and SMC - mean of the
acceptance rates, and its 1-sigma bounds. Target acceptance rate: 0.283 (i.e. see Eq. (10)).
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Fig. 10. Shear frame structure: Parameter identification of �` (CB) [#] using SEMC and SMC -
mean of �` (CB), and its 1-sigma bounds.
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Fig. 11. Shear frame structure: Posterior sample histogram profiles of the predicted values of
�` (CB) [#] using SEMC. The black dotted vertical line denotes the true value of �` (CB) at a given
B.
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Fig. 12. Shear frame structure: Parameter identification of l= [A03/B], fq [346], and fA using
SEMC and SMC given )1 - their corresponding means, and 1-sigma bounds. The reference values
for the respective parameters are: {l=, fq, fA} = {19.572 rad/s, 2.664>, 0.011}.
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Fig. 13. Shear frame structure: Parameter identification of l= [A03/B], fq [346], and fA using
SEMC and SMC given )2 - their corresponding means, and 1-sigma bounds. The reference values
for the respective parameters are: {l=, fq, fA} = {19.572 rad/s, 2.664>, 0.011}.
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