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ABSTRACT: Interval arithmetic offers a powerful tool for structural model updating when 16 

uncertain-but-bounded parameters are considered. However, the application of interval model 17 

updating for practical engineering structure is hindered due to model complexity and huge 18 

computational burden involved in the repeated evaluations of non-probabilistic constraints. In 19 

this light, an efficient inner-outer decoupling scheme is proposed for non-probabilistic model 20 

updating in this study. The mathematical operation of interval model updating is decomposed 21 

into two layers labelled as inner layer with the operation of uncertainty propagation and outer 22 

layer with the operation of interval optimization. In the inner uncertainty propagation, the 23 

High Dimensional Model Representation (HDMR) is utilized to enable the decomposition of 24 

the model outputs in terms of multivariate inputs into the sum of multiple single-variate 25 

functions, which is further approximated by Chebyshev polynomials so that the stationary 26 

points of each function can be derived. In the outer layer, a fast-running optimization strategy 27 

based on the stationary points of Chebyshev polynomial approximation is proposed to 28 

accelerate tracking the bounds of model parameters by avoiding time-consuming brute-force 29 

interval optimization. As a result, the original non-probabilistic updating process with two 30 
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interacted layers can be completely decoupled into two independent operations of the inner 1 

uncertainty propagation and outer interval optimization so as to enhance the search efficiency 2 

and convergence rate significantly. Two numerical case studies illustrate capability of the 3 

proposed method in updating the structural parameters intervals efficiently with the model 4 

outputs intervals agreeing well with the testing outputs intervals. Two experimental cases of 5 

steel plates and the Canton Tower also demonstrates the efficiency and advantages of the 6 

method in interval model updating. 7 

Keywords: Finite element model updating; non-probabilistic uncertainty; interval arithmetic; 8 

HDMR; polynomial approximation  9 
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1 Introduction 1 

In most areas of engineering analysis, physical model plays an important role in 2 

characterizing mechanical behavior and helping engineers and researchers to carry out 3 

efficient numerical analysis. However, the physical model established based on highly 4 

idealized engineering blueprints will inevitably lead to discrepancies from its real counterpart 5 

due to modeling simplification and knowledge insufficiency [1-4]. Hence, structural model 6 

updating has been an important field in structural and mechanical engineering over the past 7 

few decades [1, 5]. Model updating problem usually reduces to minimizing the residuals of 8 

structural (static, dynamic and/or modal) outputs between simulated (numerical) structures 9 

and corresponding real (experimental) structures [1, 6]. 10 

Existing Finite element (FE) model updating methods can be divided into deterministic 11 

one and non-deterministic one according to whether uncertainties are properly accommodated 12 

and quantified in the updating process [7]. The former regards structural parameters and 13 

outputs as deterministic quantities. However, uncertainties always arise in engineering 14 

practices due to modeling error, measurement noise and some other factors [8-11]. Ignoring 15 

these uncertainties may lead to erroneous results in structural model updating. Therefore, 16 

non-deterministic approaches will be necessary if one considers the uncertainties properly. 17 

The non-deterministic methods are usually further classified as probabilistic model updating 18 

and non-probabilistic model updating [12, 13]. Although probabilistic model updating [14, 19 

15] have been studied extensively with fruitful outcomes, these methods still heavily rely on 20 

sufficiency of sample data and empirical hypotheses. In this light, non-probabilistic interval 21 

uncertainty [16-18] has been increasingly used to quantify the uncertainties in the fields of 22 

mechanical and structural engineering [18-23] since it requires only the boundaries of the 23 

uncertain variables with limited samples. 24 

In recent years, a number of interval model updating approaches have been proposed. 25 

Khodaparast et al. [24, 25] used Kriging predictor as the meta-model to map the parameters 26 

hypercube to the response samples. The interval updating was conducted by continuously 27 

adjusting the hypercube and comparing the derived points with experiment samples. This 28 

method is relatively complex, and the construction of the Kriging predictor has some 29 

limitations. Fang et al. [26] constructed an interval response surface using quadratic 30 

polynomials without cross terms, then the model was updated using optimization methods. 31 

This approach is clear and easy to implement. Deng et al. [27] proposed an interval model 32 

updating method based on perturbation method and radial basis function neural networks 33 
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used as a surrogate model. This method only applies to small parameter variations and the 1 

construction of neural networks is based on experience and trial. Zheng et al. [28] employed 2 

universal grey mathematics to construct a novel interval objective function, and gaussian 3 

process regression model is used as the surrogate model. The interval upper bounds and 4 

interval diameters are updated respectively. This method is applicable for nonlinear 5 

monotonic problems. 6 

In addition to abovementioned surrogate based methods, a new method using the 7 

concept of interval overlap ratio which describes the consistence object intervals was 8 

proposed [29]. The uncertainty propagation was achieved by Monte Carlo simulation. It has 9 

high accuracy due to Monte Carlo simulation, but also brings unaffordable computation costs 10 

at the same time. Based on sub-interval similarity, Zhao et al. [30] developed an updating 11 

strategy considering the range and distributed positions of the intervals. The method can be 12 

used in interval and probabilistic model updating. Faes et.al. [31-33] developed an efficient 13 

interval optimization method in terms of linear systems based on operator norm theory. 14 

Recently, non-probabilistic correlation [34, 35] has been considered in non-probabilistic 15 

model updating. Liao et al. [36] and Ouyang et al. [37, 38] applied non-probabilistic 16 

correlation propagation technique to model updating and obtained not only the interval 17 

bounds of the updating parameters, but also the correlation matrix of the updating parameters. 18 

Additionally, interval techniques have been extensively utilized in load identification [39, 40], 19 

structural identification and inversion [41, 42], which are closely related to structural model 20 

updating. 21 

While these aforementioned interval model updating algorithms provide promising 22 

performance on some engineering problems, they are still likely to perform poorly regarding 23 

computational efficiency and accuracy due to the increase of model complexity and the 24 

complex nature of interval optimization. Therefore, this paper proposes a new inner-outer 25 

decoupling scheme to enhance the computational efficiency and improve the performance of 26 

existing interval model updating algorithms based on High Dimensional Model 27 

Representation (HDMR) and Chebyshev polynomial approximation. The main scientific 28 

contribution of this study includes: 29 

 The mathematical operation of interval model updating comprising two interacted layers 30 

labelled as inner layer with the operation of uncertainty propagation and outer layer with 31 

the operation of interval optimization can be completely decoupled into two independent 32 

layers. 33 
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 In the inner operation of uncertainty propagation, the multivariate model output functions 1 

are decomposed into the sum of multiple single-variate functions utilizing HDMR, and 2 

their stationary points are derived based on Chebyshev polynomial approximation. 3 

 In the outer operation of interval optimization, a fast-running optimization strategy based 4 

on the stationary points of Chebyshev polynomial approximation is proposed to enhance 5 

the search efficiency and convergence capacity significantly. 6 

 7 

The organization of this paper is given as follows. Section 2 gives the problem 8 

description and basic introduction to interval mathematics. Section 3 illustrates the structural 9 

interval model updating strategy with special emphasis on structural interval uncertainty 10 

propagation with HDMR and interval optimization based on stationary points of polynomial 11 

approximation. Section 4 presents the implementation procedures of the proposed novel 12 

decoupling scheme for interval model updating. In Section 5, four cases are investigated as 13 

numerical validation and experimental verification for the method. 14 

2 Problem Description 15 

In this section, some general concepts of interval uncertainty [17] are firstly introduced 16 

as preliminaries. Then, the fundamentals of interval model updating is given. Finally, some 17 

critical challenging issues are also presented. 18 

2.1 Preliminaries of interval uncertainty 19 

Generally speaking, uncertainties can be divided into aleatory uncertainty and epistemic 20 

uncertainty [43]. The former is caused by intrinsic randomness, whereas the latter is usually 21 

caused by lack of knowledge and insufficient information. Interval uncertainty analysis is 22 

useful in epistemic uncertainty quantification with limited information. The primary concern 23 

of this study is to consider the non-probabilistic interval method to quantify the epistemic 24 

uncertainty caused by information insufficiency in model updating, which applies to cases 25 

that insufficient experimental samples are provided. The interval model updating can serve as 26 

a supplement to probabilistic model updating. 27 

Let ( )I R  and ( )nI R  denote the sets of all real-valued closed intervals and real-valued 28 

interval vectors (each element of the vectors is a closed interval), where n denotes the 29 

dimension of vectors. Any interval number Ix  and interval vector Ix  are members of ( )I R  30 

and ( )nI R , respectively. The superscript I denotes interval numbers. 31 
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For an uncertain variable h , it is bounded in interval mathematics as: 1 

 ,Ih h h h ∈ =     (1) 2 

where h  and h   are its lower and upper bounds, respectively. 3 

For an uncertain vector ( )1 2, , , nh h hh =  in R n  , it is bounded as: 4 

 ( )1 2, , ,I I I I
nh h h∈ h h =   (2) 5 

where each element of Ih  belongs to ( )I R , namely, 6 

 ( ),      1, 2, ,I
i i ih h h i n = =     (3) 7 

Apart from interval bounds, interval numbers can be denoted by their interval midpoints 8 

(interval centers) c
ih  and interval radius ( )1, 2, ,ih i n∆ =  . The interval midpoints and radius 9 

are defined as: 10 

 ( )  ,  =      1, 2, ,
2 2

c i i i i
i i

h h h hh h i n+ −
= ∆ =   (4) 11 

To avoid confusions, it is worth noting that the notation “ x∆ ” is used to denote interval 12 

radius in this study, whereas it means the difference between the measurement result and the 13 

actual value in measurement practice. 14 

Then, I
ih  can be rearranged as following usable form: 15 

 ( ),      1, 2, ,I c c c
i i i i i i ih h h h h h e h i n = − ∆ + ∆ = + ⋅∆ =    (5) 16 

where [ ]1,1e = − . For the uncertain parameter vector I∈h h , it can be written as: 17 

 c= + ∆h h t h  (6) 18 

where ( )1 2, , ,c c c c
nh h hh = ; ( )1 2, , , nh h h∆ ∆ ∆ ∆h = ; t  is a vector whose elements are 19 

within the interval [ ]1,1− ; and ‘  ’ denotes the element-wise product (which is also known as 20 

Hadamard product). 21 

2.2 Fundamentals of interval model updating 22 

Compared with deterministic model updating in which the structural model outputs and 23 

physical parameters are viewed as real numbers, interval model updating regards the 24 

structural model outputs and physical parameters as interval numbers. The aim of interval 25 

model updating is to calibrate the bounds of the structural interval parameters in order that 26 

the theoretical interval outputs of the structure will be consistent with the testing interval 27 
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outputs. 1 

For a structural system, let { }( )1,2, ,ip i m= p =  denote a vector with m  uncertain 2 

physical parameters to be updated, while the vector { }( )1, 2, ,jY j s= Y =  represents s  3 

structural model outputs given p . If the uncertain parameters p  are interval numbers with 4 

insufficient information, then the theoretical outputs Y  will also be interval numbers. 5 

Likewise, if the testing outputs eY  are interval numbers, the identified structural parameters 6 

will also be interval numbers. It is assumed that the structural model outputs Y  are 7 

continuous with respect to the physical parameters p . Since p  is a continuous closed 8 

interval vector, the function ( )Y p  will form a continuous closed interval as well 9 

considering the continuity of ( )Y p . In this context, the mathematical problem of interval 10 

model updating is given as: 11 

 

( )

( ) ( )
1 1

           ,

                  , 1, 2, ,

, ,
minimize   

. .              

i i

e es s
j j j j

e e
j jj j

find

p p i m

Y Y Y Y
Y Y

s t

= =

=

− −
+

≤ ≤ ≤

∑ ∑



p p

p p p p

LB p p UB

  (7) 12 

where ( ), 1, 2, ,i ip p i m=   denote the lower and upper bounds of the i-th physical parameter 13 

to be updated; ,LB UB  denote the parameter optimization bounds of ,p p ; 14 

( ) ( )( ), , , 1, 2, ,j jY Y j s= p p p p  denote the simulated lower and upper bounds of the 15 

structural model outputs with interval parameters ,I  =  p p p ; ( ), 1, 2, ,e e
j jY Y j s=   are the 16 

real upper and lower bounds of the j-th structural model output. 17 

It is worth mentioning that the structural parameters to be updated in Eq. (7) should be 18 

positive. The absolute value of the relative errors is utilized in the objective function 19 

considering that the relative error can balance the contributions of the upper bounds ( ),jY p p  20 

and lower bounds ( ),jY p p  of the objective function. Furthermore, the L1 norm is more 21 

robust to outliers compared to the L2 norm since it increases the cost of outliers linearly. If 22 

the chosen response Y  is very close to 0, the relative error may not be suitable and another 23 

criterion such as absolute error and mean square error should be utilized. 24 

 25 
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 1 
Figure 1: Illustration of the fundamental procedures and mathematical operation of 2 

conventional interval model updating algorithms 3 

 4 

It is worth noting that the interval model updating procedures mentioned in the above 5 

reduces to an optimization problem shown in Eq. (7). In this study, for the convenience of 6 

further illustration, the mathematical operation of interval model updating is investigated and 7 

one can figure out that it can be decomposed into two layers as shown in Figure 1. One layer 8 

is labelled as the inner layer with the operation of uncertainty propagation from the interval 9 

structural parameters to the interval structural outputs. As a forward problem, the inner layer 10 

aims to calculate the stationary points and interval bounds of the outputs ,i iY Y  with specified 11 

interval physical parameters ,i ip p . The other layer is labelled as the outer layer with the 12 

operation of interval optimization, which aims to search the optimal bounds so as to update 13 

,i ip p  by minimizing the residual function in Eq. (7). 14 

The outer layer requires to calculate the interval bounds ,I  =  Y Y Y  of the structural 15 

outputs ( )Y p  given ,p p  in each optimization updating step. In other words, the inner layer 16 

of uncertainty propagation will be implemented each time when we update the parameters 17 

bounds ,p p  in the outer layer of bound optimization process, which is repetitive and time 18 

consuming. To address this issue, an updating strategy of the stationary points is proposed in 19 

this study. 20 

2.3 Challenges and strategies  21 
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 1 
Figure 2: Schematic diagram of the interval model updating using the inner-outer-decoupling 2 

scheme 3 

Although significant progress has been achieved for interval model updating, there are 4 

still some challenges which hinder its practical implementation: 5 

 In the conventional interval model updating methods, the inner layer and outer layer are 6 

usually interacting with one another. In the other words, in the outer layer of bounds 7 

optimization for structural physical parameters, repetitive searches of optimal points are 8 

required in each iteration step since the inner layer of uncertainty propagation analysis is 9 

always required in this problem immediately after an updated interval ,i ip p    is given. 10 

Hence, how to trade off the computation cost and accuracy deserves further investigation. 11 

 To reduce the computational burden involved in the interval model updating due to 12 

repeating runs of finite element model analysis package with any parameter update, fast-13 

running metamodels that approximate multivariate input/output relationships have been 14 

used to replace the time-consuming physical-based computer models. However, the inner 15 

and outer layers are coupled in existing surrogate model-based interval model updating 16 

which requires repetitive evaluations of the interval structural outputs. Furthermore, non-17 

intrusive interval algorithms encounter challenges such as complex model construction 18 

and high computational costs. Neural networks based surrogate models requires a large 19 

number of training samples, manual adjustment which may be problem-specific. 20 

 For the inner layer uncertainty propagation problem, various approaches such as 21 
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perturbation method, series expansion method, Monte Carlo simulation and optimization 1 

methods have been used and have achieved satisfactory effects. However, the 2 

perturbation and series expansion methods require that the intervals are narrow, and they 3 

have uncontrollable errors when the surrogate model is nonlinear or when the variable 4 

intervals are relatively wide. Monte Carlo simulation and optimization methods suffer 5 

from high computational efforts. 6 

To address these problems, we will utilize the HDMR to decompose the multivariate 7 

structural output function into several single-variate functions, which reduces the 8 

dimensionality and, hence, the difficulty of the inner uncertainty propagation. Then, 9 

Chebyshev polynomial functions are employed to approximate each single-variate function 10 

and its stationary points are analytically obtained within the given parameter optimization 11 

bounds. For the outer interval optimization, an efficient stationary points updating strategy is 12 

proposed without repetitive searching of optimal points on the updated intervals. In this 13 

study, HDMR helps to solve the stationary points of the structural output functions within the 14 

specified parameter optimization bounds [ ],LB UB  in the inner layer, and these stationary 15 

points are constants which can be directly used for output interval prediction required in the 16 

outer interval optimization. As a result, the non-probabilistic updating can be decoupled into 17 

two independent operations of the inner uncertainty propagation and outer interval 18 

optimization which are interacted with each other in the original problem. Figure 2 shows the 19 

solution strategy by decoupling two-layer in Figure 1. 20 

3 Inner-outer-decoupling Scheme for Interval Model Updating 21 

In this study, the structural interval model updating is achieved based on two main 22 

strategies. HDMR is firstly utilized for decomposing the multivariate functions into the sum 23 

of multiple single-variate functions. To alleviate the computational burden of the interval 24 

optimization, Chebyshev polynomial approximation is adopted to determine the stationary 25 

points of the functions of interest (i.e., the first-order derivatives of the functions are zero).  26 

3.1 Multivariate function decomposition with HDMR for inner uncertainty propagation  27 

High dimensionality is one of the main obstacles in many engineering fields. Structural 28 

model updating also usually suffer from the curse of dimension. The HDMR theory proposed 29 

by Rabitz et al. [44] is widely recognized as an effective way and has been used in 30 

mechanical engineering [45, 46]. A brief review of relevant theories is given as follows. 31 



 

11 

 

For an input-output system ( ) ( )1, , mf f x x= x  within domain Ω , the following 1 

expression is used to represent it by summands with various dimensions: 2 

( ) ( ) ( ) ( ) ( )0 12 1
1 1 1

, , , , ,
m m m

i i ij i j ijk i j k m m
i i j m i j k m

f f f x f x x f x x x f x x
= ≤ < ≤ ≤ < < ≤

= + + + + +∑ ∑ ∑


 x  3 

 (8) 4 

where 0f  is a constant; ( )i if x  denotes the individual contribution to ( )f x  of each variable, 5 

and the rest of the terms are the joint contribution of these variables on ( )f x . 6 

It has been widely reported that the approximation is usually dominated by the low-7 

order correlation terms only. Therefore, the first-order expression can usually achieve 8 

acceptable results in engineering practices. A concrete expression of Eq. (8) is required in real 9 

applications. Cut-HDMR is a useful expression of Eq. (8), which expresses ( )f x  in terms of 10 

a specific reference point x  in domain Ω . The component functions 11 

( ( ) ( )0 , , , ,i i ij i jf f x f x x  ) of cut-HDMR with respect to x  are given as follows: 12 

 

( )
( ) ( )

( ) ( ) ( ) ( )

0

0

0

,

, ,

i
i i i

ij
ij i j i j i i j j

f f

f x f x f

f x x f x x f x f x f

=

= −

= − − −

…

x

x

, x
  (9) 13 

where ( ), i
ix x and ( ), ij

i jx x , x are equal to ( )1 1 1, , , , , ,i i i mx x x x x− +   and 14 

( )1 1 1 1 1, , , , , , , , , ,i i i j j j mx x x x x x x x− + − +   , respectively. Herein, the first order cut-HDMR will 15 

be given as a special case. Its advantage on interval model updating will be elaborated in 16 

Section 3.2. 17 

Given a function ( ) ( )1, , mf f x x= x  with physical parameter intervals 18 

[ ],I∈ =x x x x , and a reference point ( )0 0 0 0 0
1 2 3, , , ,

T

mx x x x= x  on interval [ ],I =x x x , the 19 

function can be approximated using HDMR decomposition by: 20 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0 0 0 0 0 0 0 0 0
1 2 3 1 2 3 1 2 3

0

1

, , , , , , , , , , , , 1

1

m m m

m

i i
i

f f x x x x f x x x x f x x x x m f

f x m f
=

= + + + − −

= − −∑



   x x

x
  (10) 21 

where ( ) ( )0 0 0
1 2, , , , ,i i i mf x f x x x x=   .  22 

Taking the first-order Taylor expansion of functions ( )i if x  and ( )f x  at the reference 23 
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points 0 0,ix x  respectively, one has: 1 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0
sub

i i
i i i i i i i i i i f i

i i

df dff x f x x x o x x f x x R x
dx dx

δ δ= + − + − = + +x   (11) 2 

and 3 

 ( ) ( ) ( ) ( ) ( )0 0 0

1 1

m m

i i i f
i ii i

f ff f x x f x R
x x

δ δ
= =

∂ ∂
= + − = + +

∂ ∂∑ ∑x x x x   (12) 4 

where 0
i i ix x xδ = − , and the Lagrange form of the remainders ( )

subf iR xδ  and ( )fR δ x  are 5 

given by: 6 

 ( ) ( ) ( )2 0  ,    is between  and 
2!sub

i i
f i i i i i

f
R x x x x

ξ
δ δ ξ

′′
=   (13) 7 

and 8 

( ) ( ) ( ) ( ) ( )
2

0
1 2

1 2

1   ,    is between  and 
2f m

m

R x x x f
x x x

δ δ δ δ
 ∂ ∂ ∂

= + + + ∂ ∂ ∂ 
x x xζ ζ9 

(14) 10 

For ease of clarity, let ( ) ( )
1

sub sub

m

f f i
i

R R xδ δ
=

=∑x . 11 

Then, we obtain the error of the HDMR decomposition: 12 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0

1

0 0

1 1

0

1 1

0

1 1

1

1

1

sub

sub

m

i i
i

m m

i i i f
i i i

m m

i i i f
i i i

m m
i

i i f i i f
i ii i

m

f i f
i

error f f

f x m f f

ff x m f f x R
x

ff x f x R
x

df fx x R x x R
dx x

R x R

R

δ δ

δ δ

δ δ δ δ

δ δ

=

= =

= =

= =

=

= −

 = − − −  
 ∂ = − − − + +   ∂   

∂ = − − −  ∂

  ∂
= + − −  ∂ 

= −

=

∑

∑ ∑

∑ ∑

∑ ∑

∑

 x x

x x

x x x

x x

x

x

( ) ( )
subf fRδ δ−x x

  (15) 13 

As is seen in Eq. (15), when ( )0 δ→ → 0x x x , the error is approaching 0. That is to 14 

say, the error will be small provided that the interval width is not too large. 15 

According to above analysis, the cut-HDMR can represent the original function in the 16 

vicinity of the reference point. In addition, it has the advantage of decomposing multivariate 17 
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functions into the sum of multiple single-variate functions, bringing conveniences to the 1 

implementation of the inner layer with the operation of uncertainty propagation in the 2 

procedure of model updating. Hence, the cut-HDMR is applied to represent structural 3 

theoretical outputs in this study. 4 

The structural theoretical output Y  is a vector function of the structural physical 5 

parameter vector p , i.e., ( )=Y Y p . The interval midpoint of ,I  =  p p p  is cp . Based on 6 

the HDMR formula in Eq. (10), the theoretical output vector can be approximately 7 

represented as: 8 

 ( ) ( ) ( )
1

1
m

j c
j

j
p m

=

= − −∑Y Y Y p   (16) 9 

where cp  is taken as the reference point. 10 

The i-th entry of Y  is given by: 11 

 ( ) ( ) ( )
1

1
m

j c
i i j i

j
Y Y p m Y

=

= − −∑ p   (17) 12 

where ( )c
iY p  is a constant representing the i-th structural output at the interval midpoint cp . 13 

As was mentioned in Section 2.2, one important problem in Eq. (7) is to calculate the 14 

bound of the outputs ( ) ( ), , , , 1, 2, ,I
i iY Y i s  = = =   Y Y Y p p p p  based on the given 15 

interval physical parameters ,I  =  p p p . This can be regarded as a problem of structural 16 

interval output prediction described by: 17 

 
( ) ( )

( ) ( )

max

min

I

I

∈

∈

=

=
p p

p p

Y p Y p

Y p Y p
  (18) 18 

The vector ( )=Y Y p  consists of s structural outputs. Each entry of Eq. (18) is: 19 

 
( ) ( )

( ) ( )
( )

max
   1, 2, ,

min

I

I

i i

i i

Y Y
i s

Y Y
∈

∈

 =
 =

=



p p

p p

p p

p p
  (19) 20 

Without loss of generality, the i-th theoretical model output iY  is taken as an example. 21 

The interval prediction problem becomes a problem of searching for function extreme values 22 

in Eq. (19). According to Eq. (17), the m-variate function iY  can be approximated by the sum 23 

of m single-variate functions ( )( )1,2, ,j
i jY p j m=  . As a result, Eq. (19) can be transformed 24 
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as: 1 

 
( )

( )
( )

,

,

max
   1, 2, ,  ,  1, 2, ,

min
j j j

j j j

j
i j

p p p

j
i jp p p

Y p
i s j m

Y p

 ∈ 

 ∈ 


 = =



    (20) 2 

The structural output interval prediction can be solved when the interval bounds of each 3 

single-variate function ( )j
i jY p  is achieved. The advantages of application of Eq. (17) and Eq. 4 

(20) to the following sections will indicate that the decomposition of multivariate model 5 

input/output function into multiple single-variate functions will significantly reduce the 6 

computational costs and simplify the original function. 7 

3.2 Chebyshev polynomial approximation for ( )j
i jY p  and its stationary points 8 

As was mentioned in the last section, one should solve the interval of ( )j
i jY p  in the 9 

procedure of interval optimization with each parameter updated. Since the explicit form of 10 

( )j
i jY p  is unknown, numerical optimization or intelligent optimization algorithms should be 11 

used to solve Eq. (20). To calculate the extreme points and corresponding values of ( )j
i jY p  12 

more efficiently, the strategy of function approximation will be employed. Chebyshev 13 

polynomials as a powerful tool to approximate functions have been used in a wide range of 14 

engineering problems [47-49]. Therefore, ( )j
i jY p  is approximated by using the Chebyshev 15 

polynomials in this study. Then, the problem of solving the bounds of ( )j
i jY p  reduces to 16 

solve the maximum and minimum values of a much simpler function. For this purpose, the 17 

first-class Chebyshev polynomials are introduced: 18 

 ( ) ( ) [ ]cos arccos ,     1,1nT x n x x= ∈ −  (21) 19 

where n is a nonnegative integer; ( ){ }nT x  constitutes Chebyshev polynomials series, which 20 

can also be obtained using the following recursive formula: 21 

 
( )
( )
( ) ( ) ( )

( )
0

1

1 1

1,

,     1, 2,3,

2n n n

T x

T x x n

T x xT x T x+ −

=


= =
 = −


 (22) 22 

For any function ( )f x  defined on interval [ ]1,1− , it can be represented by ( )rp x  with23 

{ }0 1Span , , , rT T T , i.e., the r-th order approximation polynomial ( )rH x  of ( )f x  is equal 24 
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to:  1 

 ( ) ( )0

12

r

r j j
j

tH x t T x
=

= +∑  (23) 2 

Eq. (23) is an approximation of ( )f x , and the coefficients are given by: 3 
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∫

∫
  (24) 4 

Eq. (24) can be calculated according to Gauss-Chebyshev quadrature formula:  5 
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  (25) 6 

where ( )1, 2, ,kx k q=   at the q quadrature nodes are determined by: 7 

 ( ) ( )2 1
cos     1, 2, ,

2k

q k
x k q

q
π

− +
= =   (26) 8 

It should be mentioned that ( )kf x  in Eq. (25) is the structural output value at the 9 

collocation point kx , and the q quadrature coefficients are calculated by: 10 

 
( )

( ) ( )
( )

1

21

d     1, 2, ,
1

q
k

k q k

T x
A x k q

qx x x T x

π

−

= = =
′− −

∫   (27) 11 

Then, the approximation of ( )f x  is obtained as follows: 12 

 ( ) ( ) ( ) ( ) ( )
1 1 1

1 2q qr

r k k j k j
k j k

H x f x f x T x T x
q q= = =

= +∑ ∑∑  (28) 13 

In terms of the numerical error of the Chebyshev polynomial approximation, a high 14 

order Chebyshev polynomial series can effectively reduce the approximation error [47]. 15 

Hence, adopting a high order (usually 3 or 4) Chebyshev polynomial can guarantee the 16 

precision requirement for the settings of the polynomial approximation. 17 

Since ( )f x  has been replaced by Eq. (28) with explicit expression, the stationary points 18 

of ( )f x  are easily obtained by taking a derivative of Eq. (28) as follow: 19 
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 ( ) ( ) ( ) ( )
1 1

2 0
qr

r k j k j
j k

H x f x T x T x
q = =

′ ′= =∑∑   (29) 1 

For ( )j
i jY p  with ( ), 1, 2, ,j j jp p p j m ∈ =   , the midpoint-radius notation in Eq. (5) is 2 

utilized to normalize the variable jp  to interval [ ]1,1− :  3 

 [ ]  ,   1,1c
j j j j jp p p x x= + ∆ ⋅ ∈ −   (30) 4 

Regarding ( ) ( )j j
i j i jY p Y x=  as ( )f x , the stationary points of ( )j

i jY p  is similarly 5 

solved and marked as: 6 

 { } ( ) [ ]{ }, 0, 1,1j
j d j i j jx x Y x x′= = ∈ −   (31) 7 

Considering that the extreme values of a continuous function on closed intervals are 8 

achieved at the interval endpoints or stationary points, the extreme points of ( )j
i jY p  are: 9 

 
( ) { }( ) ( ) ( )( ){ }
( ) { }( ) ( ) ( )( ){ }

,max ,

,min ,

max , 1 , 1

min , 1 , 1

j j j j
j j i j i j d i i

j j j j
j j i j i j d i i

x x Y x Y x Y Y

x x Y x Y x Y Y

= = −

= = −
  (32) 10 

 When j  successively takes 1 to m, the maximum and minimum points set of the i-th 11 

output function iY  can be obtained as follows: 12 

 
( ) { }
( ) { }

1,max 2,max ,maxmax

1,min 2,min ,minmin

, , ,

, , ,
i m

i m

x x x

x x x

=

=





x

x
  (33) 13 

Likewise, when i  successively takes 1 to s, the extreme points of other elements of Y  14 

can also be solved in the same way. At this point, all extreme points of Y  on intervals 15 

( ), 1, 2, ,j j jp p p j m ∈ =    have been obtained dimension by dimension through taking the 16 

advantage of the first-order HDMR. One core issue of interval model updating, i.e., the inner 17 

layer with the operation of uncertainty propagation from the structural parameters to the 18 

outputs, is solved with high efficiency. 19 

In the inner layer, the HDMR is utilized to represent the real structural output functions 20 

and Chebyshev polynomial is employed to calculate the stationary points of these output 21 

functions within the given optimization bounds [ ],LB UB . This layer will be performed only 22 

once since these stationary points will remain unchanged on interval [ ],LB UB  in the 23 

optimization process of the outer layer. In this sense, the inner and outer layers are decoupled. 24 
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3.3 Outer interval optimization based on stationary points of polynomial approximation  1 

In the outer interval bounds optimization, the inner layer of uncertainty propagation will 2 

be implemented each time when we update the parameters bounds ,p p  in the outer layer of 3 

bound optimization process to calculate the interval bounds ,I  =  Y Y Y  of the structural 4 

outputs ( )Y p  given ,p p , which is repetitive and time consuming. To address this issue, an 5 

updating strategy of the stationary points is proposed here. 6 

According to Section 3.2, the stationary points are of great significance since the model 7 

input-output functions always achieve their extreme values at the interval endpoints or 8 

stationary points within the interval. Hence, determining structural output bounds is 9 

equivalent to solve their stationary points. Fortunately, the proposed HDMR-assisted 10 

decoupling scheme for interval model updating has the advantage on tracking the stationary 11 

points with the aid of Chebyshev polynomial. 12 

In the proposed interval model updating method, the optimization bounds [ ],LB UB  of 13 

the physical parameters are fixed. Hence, the stationary points of the structural outputs on the 14 

interval [ ],LB UB  will be fixed. Once the stationary points of the structural outputs are 15 

obtained in the inner layer, the inner and outer layers are separated completely since these 16 

stationary points are constants and they will be used to evaluate the extreme values of the 17 

structural outputs in the outer layer. 18 

The rationale of interval optimization strategy by making full use of the stationary points 19 

is schematically explained in Figure 3. Detailed illustrations are given in the following part of 20 

this section. 21 
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 1 
Figure 3: Illustration of the updating of stationary points in the optimization process 2 

 3 

For Eq. (7), the lower and upper bounds ,LB UB  are usually predefined in various 4 

optimization algorithms. The interval [ ],LB UB  should be specified reasonably according to 5 

experiences and numerical analysis. Suppose that in initial optimization step marked by ref , 6 

the structural interval parameter is the given lower and upper bounds of the optimization 7 

parameters ( ) ( ) [ ], ,ref ref ∈ = p p p LB UB . It can be normalized to [ ],− +1 1  through 8 

transformation: 9 

 
( ) ( )( ) ( ) ( ) ( ) [ ]

( )
  ,   1,1

1,2, ,

refref ref ref refc
j j j j jp p p x x

j m

= + ∆ ⋅ ∈ −

= 

  (34) 10 

The stationary points of ( ) ( )j j
i j i jY p Y x=  on the interval [ ]1,1−  are: 11 

 { }( ) ( ) ( )( ) ( ) [ ]{ }, 0, 1,1
ref ref ref refj

j d j i j jx x Y x x′= = ∈ −   (35) 12 

It should be noted that the initial/reference stationary points of the structural output 13 

functions in Eq. (35) are obtained on the widest interval [ ],LB UB  corresponding to the 14 

bounds of the optimization parameters ,p p . Hence, arbitrary updating of ,p p  should be 15 
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included in this interval, i.e., [ ], ,  ⊂ p p LB UB . Based on this fact, the stationary points on 1 

any updated interval of ,p p  in the optimization process can be further achieved, which will 2 

be explained as follows. 3 

In any step marked by k  during the whole optimization process, an updated interval 4 
( ) ( ) [ ], ,k k  ⊂ p p LB UB  is given based on specific optimization strategy. Note that ( )k

jp  can 5 

also be normalized based on the initial interval ( ) ( ),ref ref 
 p p  as follows: 6 

 ( ) ( )( ) ( ) ( ) ( ) [ ]  ,   1,1
refk ref k kc

j j j j jp p p x x= + ∆ ⋅ ∈ −   (36) 7 

Therefore, ( ) ( ),k k 
 p p  is then transformed to the following interval: 8 

 ( ) ( ),k k
j jx x 

    (37) 9 

( )k
jx  and ( )k

jx  satisfy that: 10 

 
( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

refk ref kc
j j j j

refk ref kc
j j j j

p p p x

p p p x

= + ∆ ⋅

= + ∆ ⋅
  (38) 11 

As Figure 3 shows, in step k , corresponding stationary points of ( ) ( )j j
i j i jY p Y x=  on 12 

interval [ ]1,1−  are directly obtained by: 13 

 { }( ) { }( ) ( ) ( )
, , ,

k ref k k
j d j d j jx x x x = ∩     (39) 14 

After obtaining the new stationary points, the extreme points of function 15 

( ) ( )j j
i j i jY p Y x=  can be easily obtained by: 16 

 

( ) ( ) { }( )( ) ( )( ) ( )( ){ }
( ) ( ) { }( )( ) ( )( ) ( )( ){ }
,max ,

,min ,

max , ,

min , ,

kk k kj j j j
j j i j i j d i j i j

kk k kj j j j
j j i j i j d i j i j

x x Y x Y x Y x Y x

x x Y x Y x Y x Y x

 = =  
 

 = =  
 

  (40) 17 

Considering Eq. (17), when j  successively takes 1 to m, the maximum and minimum 18 

points set of the i-th output function iY  can be obtained as follows: 19 

 
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

1,max 2,max 2,max

1,min 2,min ,min

max

min

, , ,

, , ,
m

k k k
i

k k k
i

x x x

x x x

=

=





x

x
  (41) 20 

The extreme values of the i-th output function iY  can be achieved at points 21 
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( ) ( )min max
,i ix x . 1 

When i successively takes the value from 1 to s, the extreme points of all elements,2 

( ) ( )( ), , , 1, 2, ,j jY Y j s= p p p p  , of the output vector Y  can be solved in the same way. 3 

Specifically, in step k , the structural interval outputs ( ) ( )( ) ( ) ( )( ), , ,k k k kI  =  Y Y p p Y p p  4 

with the newly updated parameter interval ( ) ( ),k k 
 p p  are obtained. Then, IY will be used to 5 

construct the objective function in Eq. (7). Through the outer layer bound optimization 6 

framework given in Eq. (7), the finally updated physical parameter intervals will be solved. 7 

In the inner layer, Section 3.1 uses HDMR to represent each m-variate structural output 8 

function as the sum of m single-variate functions. Then, Section 3.2 utilizes Chebyshev 9 

polynomial approximation to calculate the stationary points of each m-variate structural 10 

output function dimension by dimension. The obtained stationary points are constants within 11 

the given optimization bounds, which helps to separate the inner and outer layers. For the 12 

outer layer bounds optimization, Section 3.3 provides an efficient stationary points updating 13 

algorithm for determining the interval structural output IY with the newly updated parameter 14 

interval ( ) ( ),k k 
 p p  in the optimization process. With this method, repetitive calling of the 15 

inner layer uncertainty propagation on a new interval in each optimization step is avoided. 16 

3.4 Interval sensitivity analysis of updating parameters 17 

Screening reasonable updating parameters is of great importance when handling 18 

complex problems. The parameters to be updated in model updating should be sensitive to 19 

structural outputs. In interval model updating, a basic interval sensitivity analysis method 20 

[50] is directly given in this section to illustrate whether the updating parameters are sensitive 21 

or not for model updating. 22 

Local sensitivity analysis shows how the perturbation of system parameters near a given 23 

point influences the system outputs. The sensitivity of function ( )1, , my y x x=   with respect 24 

to ix  at one point 0x  is defined by: 25 

 ( ) ( )
0

1, , m

i i

y y x x
x x

=

∂ ∂
=

∂ ∂


x x

x   (42) 26 

In engineering problems, finite difference is an effective method to solve Eq. (42) when 27 

closed-form solution is unavailable. 28 
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 ( ) ( ) ( )0 0 0 0 0 0 0
1 1, , , , , , , ,i i m i m

i i

y y x x x x y x x x
x x

∂ + ∆ −
=

∂ ∆

   x
  (43) 1 

However, traditional sensitivity analysis may lead to unreasonable results when the 2 

perturbation ix∆  is too large or too small. Hence, an interval sensitivity method is introduced 3 

to quantify the variation of the system outputs within an interval. 4 

Consider that a component 0
ix  of ( )0 0 0 0

1 , , ,i mx x x=  x  is an interval variable: 5 

 0 0 0 0 0 0 0, ,i i i i i i ix x x x x x x   ∈ = −∆ + ∆      (44) 6 

where 0
ix  and 0

ix∆  mean the interval midpoint and radius respectively. 7 

The output ( )1, , my y x x=   at point 0x  is determined by: 8 

 ( )0 0 0 0 0 0
1, , , , , ,I

i i i i i i i my y y y y x x x x x x   ∈ = = −∆ + ∆       (45) 9 

The variation of the output y  can be described by the interval radius 0
iy∆  of Iy : 10 

 
0 0

0

2
i i

i

y y
y

−
∆ =   (46) 11 

Then, its relative sensitivity at point 0x  is defined by: 12 

 
0 00

0 0 0
i ii

i i i

y yy
x x x

−∆
=

∆ −
  (47) 13 

This index reflects the change of the output y  regarding ix  within interval 0 0,i ix x    and 14 

helps to determine whether the parameters to be updated are feasible. 15 

4 Flowchart of the Algorithmic Implementation 16 

In this study, an interval model updating method based on HDMR and polynomials 17 

approximation is proposed when insufficient information of uncertain variables is provided. 18 

Firstly, each multivariate structural output function is decomposed into multiple single-19 

variate functions. Their stationary points are estimated using polynomials approximation on 20 

initial interval [ ],UB LB . Then, the interval parameters are updated under the optimization 21 

framework. The implementation of the proposed methodology is summarized in Table 1. For 22 

clarity, the flowchart of the proposed method is given in Figure 4 to further illustrate the 23 

proposed method. 24 

 25 
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Table 1: Algorithmic implementation of the proposed interval model updating method 1 

Implementation: interval model updating 
1. specify the upper and lower bounds of the parameters to be updated: ,UB LB  
2. for 1,2, ,i s=   do 
3. determine the object: the i-th structural output iY  
4. construct the reduced-order representation model of iY  through Eq. (17) at 

the midpoint cp  of the interval variable p  
5. for 1,2, ,j m=   do 
6. construct the approximation ( )r jH x  of ( ) ( )j j

i j i jY p Y x=


 through Eq. 

(22) – Eq. (28) on interval ,j j jp LB UB ∈    

7. solve the stationary points { },j dx  of ( ) ( )j j
i j i jY p Y x=


 through Eq. (29) 

- Eq. (31)  
8. end for 
9. end for 
10. given the upper and lower bounds of the optimization parameters: ,UB LB ; the 

upper and lower bounds ,e eY Y  of the test outputs used in Eq. (7) 
11. initialize the interval bounds of the parameters: ,p p  
12. for 1,2, ,i s=   do 

13. obtain the reference stationary points { }( )
,

ref

j dx by Eq. (34) – Eq. (35) based 
on the stationary points calculated in 7. 

14. in each optimization step, new stationary points are obtained using Eq. (36) - 
Eq. (39) 

15. solve the extreme points of output iY  through Eq. (40) - Eq. (41) , and then 

solve the interval bounds ,i iY Y  of iY  
16. end for 
17. calculate the fitness function (objective function) in Eq. (7) 
18. update the interval parameters ,p p  through the optimization strategy 
19. repeat step 12 – step 16 until termination conditions are satisfied 
 2 
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 1 
Figure 4: The flowchart of the proposed interval model updating method 2 

5 Case Studies 3 

In this section, two numerical examples and one experimental example are utilized to 4 

verify the effectiveness and accuracy of the proposed interval model updating scheme. 5 

5.1 Numerical case studies  6 

5.1.1 Case 1: numerical validation of a spring-mass system 7 

 8 

 9 
Figure 5: The spring-mass system 10 

 11 
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This case is a spring-mass system with three degree-of-freedoms (DOFs) from [26] and 1 

it is shown in Figure 5. For comparison purpose, the first three eigenvalues 1 2 3, ,λ λ λ  of the 2 

structure system and the absolute value of the first component of the first order mode shape 3 

( )1,1φ  are taken as the structural interval outputs. Two scenarios (update stiffness 4 

parameters and update stiffness and mass parameters) are considered. 5 

5.1.1.1 Update stiffness parameters 6 

The true parameters of the spring-mass system are given as follows: 7 

1 2 3 1m m m= = =  (kg); 3 4 61, 3k k k= = =  (N/m); [ ]1 2 5 0.8,1.2k k k= = =  (N/m). 8 

The stiffness of three springs 1 2 5, ,k k k  are selected as interval parameters to be updated. Their 9 

initial intervals are [ ]1 2 5 0.5,1.5k k k= = =  (N/m). Table 2 shows the interval sensitivity of the 10 

outputs with respect to the interval parameters. It is clear that there are at least two 11 

parameters among 1 2 5, ,k k k  influencing the structural outputs. Hence, the chosen parameters 12 

are feasible for model updating. 13 

Table 2: Interval sensitivity of the outputs with respect to the updating parameters ( 1 2 5, ,k k k ) 14 

Sensitivity 1λ  2λ  3λ  ( )1,1φ  

1k  0.3339 0.1662 0.4999 0.0731 

2k  0.3354 0.6646 0.0000 0.0641 

5k  0.0000 1.4885 0.5115 0.0000 
 15 

The updated parameters intervals using proposed method are given in Table 3. Error* 16 

means the updating errors in [26]. After model updating using the proposed method, the 17 

interval bounds of 1 2 5, ,k k k  coincide well with the true intervals. The mean error of the 18 

interval bounds decreases from [ ]37.5,25.0− % to [ ]0.16,0.54 %. Compared with [26] of 19 

which the mean error is [ ]0.4,0.3 %, the proposed method has better updating performance. 20 

Figure 6 shows the initial, true and updated output spaces of the spring-mass system. It is 21 

clear that the true and updated output spaces coincide with each other well. 22 

Table 3: Updated interval bounds of the spring-mass system ( 1 2 5, ,k k k ) 23 
Parameter True Initial Error (%) Updated Error (%) Error*(%) 

1k  [ ]0.8,1.2  [ ]0.5,1.5  [ ]37.5,25.0−  [ ]0.80,1.21  [ ]0.14,0.73  [ ]1.3,0  

2k  [ ]0.8,1.2  [ ]0.5,1.5  [ ]37.5,25.0−  [ ]0.80,1.19  [ ]0.30, 0.68− −  [ ]0,0.8  
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5k  [ ]0.8,1.2  [ ]0.5,1.5  [ ]37.5,25.0−  [ ]0.80,1.20  [ ]0.09,0.23  [ ]0,0  

mean   [ ]37.5,25.0−   [ ]0.16,0.54  [ ]0.4,0.3  
Note: The data of Error* are taken from [26] for comparison. 1 

 2 

Figure 6: Initial, true and updated output spaces of the spring-mass system ( 1 2 5, ,k k k ): 3 

(a) output space of the 1st and 2nd frequencies; (b) output space of the 1st and 3rd 4 

frequencies; (c) output space of the 1st frequency and the first absolute component of the 1st 5 

mode shape; (d) output space of the 2nd and 3rd frequencies; (e) output space of the 2nd 6 

frequency and the first absolute component of the 1st mode shape; (f) output space of the 3rd 7 

frequency and the first absolute component of the 1st mode shape 8 

5.1.1.2 Update stiffness and mass parameters simultaneously 9 

Suppose the actual parameters of the spring-mass system are given as follows: 10 

[ ]1 2 31, 0.8,1.2m m m= = =  (kg); 3 4 5 61, 3k k k k= = = =  (N/m); [ ]1 2 0.8,1.2k k= =  (N/m). 11 
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The stiffness of two springs 1 2,k k  and mass 3m  are chosen as interval parameters to be 1 

updated. Their initial intervals are [ ]1 2 0.5,1.5k k= =  (N/m), [ ]3 0.5,1.5m =  (kg). The interval 2 

sensitivity results of the outputs with respect to the interval parameters are given in Table 4. 3 

3λ  is sensitive to 1k  and 3m , while the remaining three model outputs are sensitive to all 4 

parameters.  As a result, the parameters to be updated include 1k , 2k  and 3m . 5 

Table 4: Interval sensitivity of the model outputs with respect to the updating parameters 6 

( 1 2 3, ,k k m ) 7 

Sensitivity 1λ  2λ  3λ  ( )1,1φ  

1k  0.3339 0.1662 0.4999 0.0731 

2k  0.3354 0.6646 0.0000 0.0641 

3m  0.3324 0.6386 5.6957 0.1017 

 8 

Table 5: Updated interval bounds of the spring-mass system ( 1 2 3, ,k k m ) 9 

Parameter True Initial Error (%) Updated Error (%) Error*(%) 

1k  [ ]0.8,1.2  [ ]0.5,1.5  [ ]37.5,25.0−  [ ]0.80,1.20  [ ]0.03, 0.03−  [ ]2.5, 1.7−  

2k  [ ]0.8,1.2  [ ]0.5,1.5  [ ]37.5,25.0−  [ ]0.80,1.20  [ ]0.02,0.03−  [ ]0,2.5  

3m  [ ]0.8,1.2  [ ]0.5,1.5  [ ]37.5,25.0−  [ ]0.80,1.20  [ ]0.00,0.01  [ ]2.5,0  

mean   [ ]37.5,25.0−   [ ]0.02,0.02  [ ]1.7,1.4  
Note: The data of Error* are taken from [26] for comparison. 10 

 11 

The updated parameters intervals using proposed method are given in Table 5. After 12 

updating, the interval bounds of 1 2 3, ,k k m  coincide well with the true intervals. The mean 13 

error of the interval bounds decreases from [ ]37.5,25.0− % to [ ]0.02,0.02 %. Compared with 14 

[26] whose mean error was given as [ ]1.7,1.4 %, the proposed method has a better 15 

performance. Figure 7 shows the initial, true and updated output spaces of the spring-mass 16 

system. Compared with initial output space, the updated one is narrower, which indicates that 17 

the true and updated output spaces coincide with each other well. 18 

In order to further show the efficiency of the proposed method. Case 1 is computed 19 

using both the proposed method and the approach in [29] on MATLAB R2018b platform, 20 

and the mean computation time of 5 runs for interval bounds optimization is given in Table 6. 21 
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It is obvious that the proposed method spends less time to optimize the parameter bounds for 1 

different updating parameters. 2 

 3 

Figure 7: Initial, true and updated output spaces of the spring-mass system ( 1 2 3, ,k k m ): (a) 4 

output space of the 1st and 2nd frequencies; (b) output space of the 1st and 3rd frequencies; 5 

(c) output space of the 1st frequency and the first absolute component of the 1st mode shape; 6 

(d) output space of the 2nd and 3rd frequencies; (e) output space of the 2nd frequency and the 7 

first absolute component of the 1st mode shape; (f) output space of the 3rd frequency and the 8 

first absolute component of the 1st mode shape 9 

 10 

Table 6: Optimization time of the proposed method and method in [29] 11 

 Proposed method Method in [29] 
Updating 

parameters 1 2 5, ,k k k  1 2 3, ,k k m  1 2 5, ,k k k  1 2 3, ,k k m  
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Optimization 
Time (s) 74.91 143.13 147.88 197.91 

 1 

5.1.2 Case 2: numerical validation of Canton Tower 2 

 3 
Figure 8: Real and numerical models of the Canton Tower [51] 4 

 5 

The Canton Tower (Guangzhou TV Tower) is located in Guangdong Province, China. It 6 

consists of a main tower with a height of 454m and an antenna mast with a height of 146m, 7 

with a total height of 600m and 37 floors above the ground. The tower is composed of a 8 

reinforced concrete inner core tube, a steel outer frame tube and a combined floor connecting 9 

the two. Current research has established the full FE model and reduced FE model of the 10 

Canton Tower. In [52-54], the entire structure is divided into 37 segments, each of which is 11 

modeled as a linear elastic beam element. As shown in Figure 8, the reduced FE model 12 

consists of 37 beam elements and 38 nodes. The main tower consists of 27 elements and the 13 

mast is modeled as 10 elements. In the reduced FE model, the vertical displacement of each 14 

node is disregarded, and hence each node has 5 DOFs (two horizontal translational DOFs and 15 

three rotational DOFs). The first node is completely fixed to the ground and the entire model 16 

has 185 DOFs in total. 17 

Considering that the elastic and shear modulus coefficients ,k gX X  of the FE model are 18 

the most important parameters in the model simplification, these two quantities are used as 19 
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interval variables to be updated in this case. Following [54], the experimental mode 1 

information of the Canton Tower is obtained based on the global FE model of the tower. In 2 

this case, the first four natural frequencies (Hz) are used as the structural interval outputs for 3 

model updating. The interval sensitivity results of these four natural frequencies with respect 4 

to the elastic and shear modulus coefficients are listed in Table 7. The results illustrate that 5 

both parameters will influence the natural frequencies, which is reasonable. Furthermore, it is 6 

clear that the natural frequencies are much more sensitive to the shear modulus coefficient in 7 

this model. Hence, the updating intervals of the shear modulus coefficient are narrower than 8 

that of the elastic modulus coefficient. 9 

 10 

Table 7: Interval sensitivity of the outputs with respect to the updating parameters ( ,k gX X ) 11 

Sensitivity 1λ  2λ  3λ  4λ  

kX  0.0592 0.0851 0.1856 0.1977 

gX  1.9807 1.7357 7.0938 9.8480 
 12 

Table 8: Updated interval bounds of the Canton Tower ( ,k gX X ) 13 

Parameter True Initial Error (%) Updated Error (%) 

kX  [ ]0.85,0.90  [ ]0.75,1.00  [ ]11.8,11.1−  [ ]0.851,0.903  [ ]0.14,0.73  

gX  [ ]0.995,1.005  [ ]0.99,1.01  [ ]0.5,0.5−  [ ]0.995,1.005  [ ]0,0  

mean   [ ]6.15,5.8   [ ]0.07,0.37  
 14 

Table 9: The first four frequencies of the Canton Tower under true, initial and updated states 15 

Frequency True(Hz) Initial(Hz) Error (%) Updated(Hz) Error (%) 

1f  [ ]0.0917,0.1137  [ ]0.0746,0.1279  [ ]18.68,12.44−  [ ]0.0919,0.1136  [ ]0.27, 0.11−  

2f  [ ]0.1376,0.1586  [ ]0.1196,0.1745  [ ]13.10,10.02−  [ ]0.1378,0.1586  [ ]0.16, 0.02−  

3f  [ ]0.2811,0.3491  [ ]0.2007,0.3818  [ ]28.59,9.37−  [ ]0.2818,0.3491  [ ]0.27, 0.01−  

4f  [ ]0.2876,0.3910  [ ]0.2025,0.4423  [ ]29.59,13.13−  [ ]0.2884,0.3903  [ ]0.27, 0.17−  

mean   [ ]22.49,11.24   [ ]0.25,0.08  

 16 
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 1 
Figure 9: Initial, true and updated output spaces of the Canton Tower: (a) output space of the 2 

1st and 2nd frequencies; (b) output space of the 1st and 3rd frequencies; (c) output space of 3 

the 1st and 4th frequencies; (d) output space of the 2nd and 3rd frequencies; (e) output space 4 

of the 2nd and 4th frequencies; (f) output space of the 3rd and 4th frequencies 5 

 6 

From Table 8, the updated elastic and shear modulus coefficients ,k gX X  of the FE 7 

model have a good match with their true values. The maximum updating error is small. It 8 

should be noted that the structure is very sensitive to the shear modulus coefficient gX , thus 9 

its variation interval is narrow.  10 

The true, initial and updated output spaces of the Canton Tower are shown in Figure 9 11 

and the first four natural frequencies of the Canton Tower before and after updating are given 12 

in Table 9. According to Figure 9, the true, initial and updated output spaces of the Canton 13 
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Tower are coincident, which also illustrates the effectiveness of the proposed updating 1 

method. From Table 9, it is obvious that the structural natural frequencies based on the 2 

updated structural parameters are consistent with the true ones. Although the frequencies in 3 

this case are small and the third and fourth frequencies are very close, the proposed method 4 

can still update the structural parameters with satisfactory results. 5 

 6 

5.2 Experimental case studies  7 

5.2.1 Case 1: experimental verification of a free-free plate 8 

In this experimental verification, a series of nominally identical steel plates (600mm ×9 

120 mm × 3mm) [26] are considered. In the original literature, 55 nominally identical steel 10 

plates were tested in the laboratory with a free–free boundary condition as shown in Figure 11 

10. The geometrical parameters for all these plates theoretically are 600mm(length) × 120 12 

mm(width) × 3mm(thickness). The finite element model of these plates can be constructed 13 

as Figure 11 which comprises of 300 equal size elements. In this case, the first five natural 14 

frequencies of these plates were regarded as the structural uncertain outputs used for interval 15 

model updating. The real natural frequencies of these plates were obtained through modal 16 

tests in the laboratory. 17 

 18 

 19 
Figure 10: The steel plate with free-free boundaries in laboratory [26] 20 

 21 
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 1 
Figure 11: The finite element model of the steel plate 2 

 3 

After testing, the true/measured intervals of the first five natural frequencies are 4 

obtained by interval uncertainty quantification as follows: 5 

 ( ), 1, 2, ,5I
i i i if f f f i ∈ = =     (48) 6 
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  (49) 7 

where if  means the i-th natural frequency, ,i if f  are its interval bounds, and j
if  denotes the 8 

i-th natural frequency of the j-th plate. 9 

In this model updating verification, the parameters to be updated are the elastic and 10 

shear modulus ,E G  of the steel plate. According to several single axis tension tests, the 11 

initial intervals of ,E G  are set as [ ]190,220E = GPa and [ ]77,89G = GPa. Table 10 shows 12 

the interval sensitivity of the outputs with respect to the interval parameters. The five 13 

frequencies vary significantly the elastic and shear modulus change. 14 

 15 

Table 10: Interval sensitivity of the outputs with respect to the updating parameters ( ,E G ) 16 

Sensitivity 1f  2f  3f  4f  5f  
E  0.1105 0.3303 0.0113 0.7082 0.0899 
G  0.0088 0.0844 0.7945 0.3032 1.4584 

 17 

The updating results are given in Table 11. In order to verify the performance of the 18 

model updating, the interval bounds of the first five natural frequencies under measured, 19 

initial and updated states are given in Table 12. After updating, the interval bounds of the 20 

outputs coincide well with the measured intervals. The mean error of the interval bounds 21 
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decreases from [ ]1.79,4.03 % to [ ]0.31,0.16 %. Compared with [26] of which the mean error 1 

is [ ]0.4,0.2 %, the proposed method has a better updating effect. It is clear that the practical 2 

output intervals are relatively narrow since a small variation in structural stiffness coefficient 3 

usually leads to a small variation in natural frequencies. Results in Table 12 show that the 4 

predicted interval frequencies of higher orders have larger errors than frequencies of lower 5 

orders. 6 

 7 

Table 11: Updated interval bounds of the steel plate ( ,E G ) 8 

Parameter Initial Updated Updated* 
E (GPa) [ ]190,220  [ ]195.9,203.3  [ ]196.5,203.6  

G (GPa) [ ]77,89  [ ]79.1,83.1  [ ]79.5,83.4  
Note: The data of Error* are taken from [26] for comparison. 9 

 10 

Table 12: Outputs interval bounds of the steel plate under measured, initial and updated states 11 

Frequency Measured(Hz) Initial(Hz) Error (%) Updated(Hz) Error (%) Updated* (Hz) Error*(%) 

1f  [ ]42.66,43.64  [ ]42.12,45.50  [ ]1.27,4.26  [ ]42.81,43.67  [ ]0.36,0.07  [ ]42.87,43.71  [ ]0.5,0.2  

2f  [ ]118.29,121.03  [ ]116.16,126.62  [ ]1.80,4.62  [ ]118.31,121.02  [ ]0.02, 0.01−  [ ]118.45,121.11  [ ]0.1,0.1  

3f  [ ]133.24,136.54  [ ]131.48,141.32  [ ]1.32,3.50  [ ]133.24,136.54  [ ]0.00,0.00  [ ]133.58,136.79  [ ]0.3,0.2  

4f  [ ]234.07,239.20  [ ]227.77,250.55  [ ]2.69,4.74  [ ]232.56,238.60  [ ]0.6, 0.25− −  [ ]232.78,238.78  [ ]0.6, 0.2− −  

5f  [ ]274.29,280.64  [ ]269.10,289.20  [ ]1.89,3.05  [ ]272.80,279.38  [ ]0.5, 0.45− −  [ ]273.45,279.86  [ ]0.3, 0.3− −  

mean   [ ]1.79,4.03   [ ]0.31,0.16   [ ]0.4,0.2  

Note: The data of Measured, Initial, Updated* and Error* are taken from [26] for 12 

comparison. 13 

 14 

5.2.2 Case 2: experimental verification of Canton Tower 15 

The structural model information of the Canton Tower is given in 5.1.2 Case 2. This 16 

section will introduce the experimental aspect of the tower. According to [51], the tower was 17 

equipped with a structural health monitoring system in which twenty uni-axial accelerometers 18 

(Tokyo Sokushin AS-2000C) were employed for vibration measurement. The accelerometers 19 

have a frequency range of DC-50 Hz (3 dB), an amplitude range of ±2 g and a sensitivity of 20 

1.25 V/g. Structural acceleration data from 18:00 pm 19th Jan. 2010 to 18:00 pm 20th Jan. 21 

2010 (in total 24 hours) were recorded with the sampling frequency of 50Hz by the 22 

monitoring system. 23 
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In this case, the collected acceleration series were split into nonoverlapping 20-min 1 

segments, and each segment was used for natural frequency extraction. Through operational 2 

modal analysis, the natural frequencies of all the 72 segments are extracted. Structural 3 

responses from repeated experiments will contain variations due to environment noise, 4 

numerical error, etc. [55]. Similar to Eq. (48) and Eq. (49), the measured intervals of the first 5 

four natural frequencies are obtained by interval uncertainty quantification. The measured 6 

interval natural frequencies are given in Table 14. 7 

This experimental verification mainly considers the variability of the structural natural 8 

frequencies, and the uncertainties are reflected by both the interval descriptions of the 9 

measured frequencies and the structural physical parameters to be updated. An initial Ansys 10 

model was firstly constructed, and then it was simplified as a reduced order FE model [51]. 11 

The fine-tuned FE model is employed for model updating. Similar to 5.1.2 Case 2, the elastic 12 

and shear modulus coefficients ,k gX X  of the FE model are chosen as interval variables to be 13 

updated herein. The interval sensitivities of the structural natural frequencies with respect to 14 

the chosen two structural parameters have been analyzed and given in Table 7. It is obvious 15 

that the four natural frequencies are sensitive to the selected structural parameters. 16 

Table 13: Updated interval bounds of the Canton Tower ( ,k gX X ) 17 

Parameter Initial Updated 

kX  [ ]0.97,1.03  [ ]0.9898,1.0102  

gX  [ ]0.99,1.01  [ ]0.9999,1.0001  
 18 

Table 14: Outputs interval bounds of the Canton Tower under measured and updated states 19 

Frequency Measured(Hz) Updated(Hz) Error (%) 

1f  [ ],0.0925 0.0943  [ ],0.0925 0.0943  [ ],0.00 0.01−  

2f  [ ],0.1372 0.1392  [ ],0.1373 0.1390  [ ],0.10 0.11−  

3f  [ ],0.3640 0.3681  [ ],0.3640 0.3681  [ ],0.00 0.00  

4f  [ ],0.4227 0.4249  [ ],0.4213 0.4262  [ ],0.32 0.32−  

mean   [ ]0.11,0.11  

 20 

The updating results are given in Table 13. The updated structural parameters intervals 21 

are much narrower than their initial counterparts. The interval width of the shear modulus 22 

coefficient is very small compared with that of the elastic modulus coefficient since the 23 

structural outputs are much more sensitive to the shear modulus coefficient. The interval 24 

bounds of the first four natural frequencies under measured and updated states are given in 25 
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Table 14. After updating, the mean error (absolute value) of the interval bounds reaches a low 1 

level of [ ]0.11,0.11 %. The measured, initial, and updated output spaces of the Canton Tower 2 

are shown in Figure 12. Compared with the initial output space, the updated output space has 3 

a good agreement with the measured output space. From both Table 14 and Figure 12, the 4 

upper and lower bounds of the updated output space are close to corresponding bounds of the 5 

measured output space, which shows the effectiveness of the proposed interval model 6 

updating method. 7 

 8 

Through the above cases, the effectiveness of the proposed method is well illustrated. 9 

Compared with the interval response surface method in [26], the proposed method obtain 10 

better updating results. In some cases, the interval response surface model is unable to 11 

represent the structural input-output relation and Box-Cox transformation is needed. The 12 

approach in [29] updates interval midpoint and radius respectively. It employs Monte Carlo 13 

method to propagate uncertainties forward with a high precision but relatively low efficiency 14 

compared with the proposed method. The proposed method makes full use of HDMR and 15 

Chebyshev polynomials to decouple the inner and outer layers of interval model updating, 16 

and utilizes the stationary points updating strategy to optimize parameter bounds efficiently. 17 

Hence, it achieves a good trade-off between efficiency and accuracy. 18 

 19 

 20 
Figure 12: Initial, measured and updated output spaces of the Canton Tower: (a) output 21 

space of the 1st and 2nd frequencies; (b) output space of the 1st and 3rd frequencies; (c) 22 

output space of the 1st and 4th frequencies 23 

 24 

5 Conclusions 25 

While interval uncertainty is promising for identifying uncertain-but-bounded physical 26 

parameters, interval model updating is still challenging due to complex models and huge 27 
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computational burden involved in the repeated evaluation of non-probabilistic constraints. 1 

This paper proposes a new scheme to improve the performance of existing interval model 2 

updating algorithms based on new algorithms. The first algorithm is characterized by a 3 

decoupling strategy to realize the independent operation of inner uncertainty propagation and 4 

outer interval optimization originally interacted with each other through decomposing the 5 

model input-output functions into the sum of multiple single-variate functions using HDMR, 6 

while each single-variate function is further approximated by Chebyshev polynomial 7 

approximation. The second algorithm aims to enhance the search efficiency of the bounds 8 

through an efficient optimization strategy with the aid of stationary points of Chebyshev 9 

polynomials so as to avoid brute-force and time-consuming interval optimization. Based on 10 

the proposed method, two numerical examples and two experimental applications show their 11 

capabilities of updating structural parameters with interval uncertainty. The updated results 12 

(interval upper and lower bounds) and outputs spaces matched well with corresponding true 13 

values. Furthermore, these results show that the proposed scheme outperforms a classic 14 

interval response surface method. However, some improvements are still needed in further 15 

study. Although the HDMR technique shows its effectiveness here, the discrepancy of the 16 

first-order HDMR will increase with the increase of model complexity, and higher-order 17 

HDMR including cross-terms ought to be utilized. Hence, the trade-off between computation 18 

efficiency and computation accuracy for more complex problems is still a critical issue worth 19 

of further investigation in the future. 20 
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