
Scalable risk assessment of large infrastructure systems

with spatially correlated components

Diqi Zenga,1, Hao Zhang∗,a,2, Hongzhe Daib,3, Michael Beerc,4

aSchool of Civil Engineering, The University of Sydney, NSW 2006, Australia
bSchool of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China

cInstitute for Risk and Reliability, Leibniz Univ. Hannover, 30167 Hannover, Germany;
Institute for Risk and Uncertainty, Univ. of Liverpool, Liverpool L69 3BX, United

Kingdom; International Joint Research Center for Engineering Reliability and Stochastic
Mechanics, Tongji Univ., Shanghai 200092, China

Abstract

Risk assessment of spatially distributed infrastructure systems under natural

hazards shall treat the performance of individual components as stochasti-

cally correlated due to the common engineering practice in the community in-

cluding similarities in building design code, regulatory practices, construction

materials, construction technologies, and the practices of local contractors.

Modelling the spatially correlated damages of an infrastructure system with

many components can be computationally expensive. This study addresses

the scalability issue of risk analysis of large-scale systems by developing an

interpolation technique. The basic idea is to sample a portion of compo-

nents in the systems and evaluate their correlated damages accurately, while

the damages of remaining components are interpolated from the sampled
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components. The new method can handle not only linear systems, but also

systems with complex connectivity such as utility networks. Two examples

are presented to demonstrate the proposed method, including cyclone loss as-

sessment of the building portfolios in a virtual community, and connectivity

analysis of an electric power system under a scenario cyclone event.

Key words: Probabilistic risk assessment, Community resilience, Random

field, Structural reliability

1. Introduction1

Civil infrastructure systems such as building portfolios, transportation2

systems and utility networks provide essential support to the well-being of a3

community, and are susceptible to natural hazards such as tropical cyclones4

and earthquakes. The damages and failures of infrastructure systems lead to5

not only direct economic loss resulting from repair and reconstruction, but6

also indirect economic loss such as population dislocation and employment7

loss. To advocate a whole-of-community approach of hazard mitigation, com-8

munity resilience assessment has become internationally an imperative [1].9

The resilience of a community is defined by the ability of its physical and10

non-physical infrastructure, which includes built environment, social institu-11

tions, and its people, to return to a level of normalcy within a reasonable time12

following the occurrence of an event [1]. A fundamental task for community13

resilience assessment is to conduct damage assessment of distributed infras-14

tructure systems under a large-scale natural hazard. The results of damage15

assessment provide the initial conditions of a community right after a haz-16

ard, which can be used to further assess the social and economic impact of17
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the hazard during post-hazard recovery period. Infrastructure system losses 18

are uncertain in nature due to the stochastic variability in hazard demands 19

and system capacities. The uncertainties must be thoroughly understood to 20

facilitate risk-informed decision making. 21

The state of the art in risk assessment of individual infrastructure facil- 22

ities is reasonably mature. The capacities of infrastructure facilities against 23

a specific hazard demand are modelled by their fragility functions. The 24

fragility function of a structure provides its conditional probability of reach- 25

ing a particular damage state given a specific hazard demand. In previous 26

studies, fragility functions were typically developed independently for differ- 27

ent structural types such as Lee and Rosowsky [2] and Li and Ellingwood 28

[3]. However, in risk assessment of distributed infrastructure systems, the 29

fragility functions of individual components should be modelled as stochas- 30

tically correlated. The spatial correlation arises due to the similarities of 31

individual components in construction materials, regulatory practices, struc- 32

tural design, construction technologies, and construction practices of local 33

contractors over a community [4]. 34

Significant progress has been made in risk assessment of distributed infras- 35

tructure systems considering the spatial correlation of damages to individual 36

components. The spatial correlation of infrastructure components may arise 37

due to the spatial correlation of hazard demands placed by a natural hazard 38

with a large geographic footprint and the spatial correlation of structural 39

fragilities in a community. Most previous studies focused on the impact of 40

the spatial correlation of hazard demands placed by an earthquake event in 41

system risk assessment, such as building portfolio risk [5–8] and lifeline sys- 42
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tem risk [9–11]. An initial effort has also been made to consider the spatial43

correlation of wind speeds from a tropical cyclone event in system risk as-44

sessment [12]. Compared with studies on the spatial correlation of hazard45

demands, the studies on the spatial correlation of structural fragilities are46

relatively limited [4, 13–16]. Lee and Kiremidjian [13] examined the effect of47

the fragility correlation between bridges on the total repair cost of a bridge48

network subjected to a scenario earthquake. A simple equi-correlation as-49

sumption was applied to the fragility correlation and the sensitivity of the50

repair cost to the correlation was investigated. Wang et al. [16] also adopted51

an equi-correlation assumption for the fragility correlation between buildings52

in evaluating cyclone damage cost to a community’s residual buildings. Vi-53

toontus and Ellingwood [4] were among the first to mathematically model54

the fragility correlation between buildings in an urban area as a function of55

material, structural type, building code, and workmanship in construction.56

The correlation of fragilities was included in the evaluation of repair cost to57

building portfolios under a scenario earthquake. In general, the impact of the58

correlation between individual structures in system risk assessment depends59

on the system loss metric selected. Many previous studies evaluated the lin-60

ear loss metrices of infrastructure systems, such as the summed economic61

losses of individual buildings [4–6, 16]. In this case, ignoring the correlation62

does not change the mean loss, but would underestimate the uncertainty of63

the loss. However, for nonlinear loss metrices such as the power outage ratio64

of an electric power grid (a connectivity problem), ignoring the correlation65

would affect both the mean and variance of the loss estimate. This point was66

also observed in other studies [12, 17]67
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Previous system risk studies typically modelled an infrastructure system 68

in an individual component basis, e.g., bridge networks [13, 18] and building 69

portfolios [5, 19]. Considering the performance of each component as cor- 70

related, the analysis needs to handle a correlation matrix of size of N × N , 71

which N denoted the number of the components in the systems. Modelling 72

the correlated components can become computationally infeasible if the sys- 73

tem has a large number of components. To overcome the computational cost 74

issue, a random sampling technique has been proposed [4] for evaluating the 75

repair cost of building portfolios. In this technique, a small number of build- 76

ings are randomly sampled. The loss of the sampled buildings is computed 77

and scaled by the ratio between the total building number and the sampled 78

building number to approximate the total loss of the building portfolio. The 79

random sampling technique was also used by Lin and Wang [20] to evaluate 80

the resilience of building portfolios. The accuracy of the random sampling 81

technique deteriorates if the building portfolio becomes more heterogeneous. 82

Most importantly, the random sampling technique cannot capture the con- 83

nectivity of lifeline networks. For example, in functional loss assessment of 84

an electric power system, individual components, such as distribution sub- 85

stations and transmission line support structures, are interconnected in such 86

a way that a structurally undamaged facility may lose its function due to the 87

failures of other facilities. To capture the failures of undamaged facilities, the 88

damage states of all the interconnected components are required. Since the 89

random sampling technique only captures damages of sampled components, 90

it cannot be used to evaluate the risk of lifeline networks. New approaches 91

are needed to address the scalability issue of risk assessment. 92
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In this paper, an interpolation technique is developed to evaluate the93

correlated damages of a large-scale infrastructure system. The basic idea is94

to sample a portion of components in the system and evaluate their corre-95

lated damages accurately, while the damages of remaining components are96

interpolated from the sampled components. The idea of interpolation origi-97

nates from random field discretization techniques in stochastic finite element98

methods. The optimal linear estimation (OLE) method, originally developed99

for continuous random fields [21], is improved to simulate the random vector100

of component damages. Due to the interpolation, the size of the correla-101

tion matrix required to analyze the system is reduced remarkably, making102

the proposed method suitable to systems of large size. Two examples are103

provided to demonstrate the proposed method, including cyclone loss assess-104

ments of building portfolios in a virtual community, and an electric power105

system with interconnected infrastructure components. In the first example,106

cyclone-induced damages to individual buildings are considered. Focused107

samples are selected uniformly at random from each building type in each108

building zone. In Example 2 (power grid), damages to transmission support109

structures are considered. Focused transmission structures include all the110

structures located at the intersections of the transmission lines, and the re-111

maining focused structures are randomly sampled along each transmission112

line.113

2. Monte Carlo simulation of spatially correlated damages114

Let D denote the damage state of a structure. D is a discrete random115

variable and typically taken as different numerical values for different damage116
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states, e.g., D = 0 for no damage, D = 1 for minor damage, and D = 2 for 117

moderate damage. In a large infrastructure system such as a building portfo- 118

lio or utility network, the damage states of individual components are invari- 119

ably positively correlated due to common engineering practices [4]. In order 120

to compute the probabilistic characteristics of the collective loss/damage of 121

an infrastructure system, the joint probabilities of individual components’ 122

damage states are required. However, only knowing the fragility functions of 123

the components and their correlations is insufficient to determine the joint 124

probabilities. In general, using copulas to approximate the stochastic depen- 125

dence of structural damages is required. To the best of our knowledge, all 126

previous studies [4, 14–16] regarding modelling spatially correlated damages 127

of multiple structures explicitly or implicitly adopted Gaussian copulas to 128

model the stochastic dependence of the structures, where correlated damage 129

states are converted into correlated Gaussian random variables. Currently, 130

there is no data available to justify if the stochastic dependence of struc- 131

tural damages is Gaussian or not. Using Gaussian copulas is mainly due 132

to its computational feasibility. Using non-Gaussian copulas to capture the 133

correlation of random variables is computationally feasible only if the num- 134

ber of the variables is relatively small, e.g., 2 correlated random variables 135

[22]. A recent work [23] developed a method to construct the joint probabil- 136

ity density function (PDF) of multiple random variables using non-Gaussian 137

copulas, when marginal distributions and correlations are specified. In this 138

method, a joint PDF is expressed in terms of pairwise bivariate copula den- 139

sity functions and the pair copulas are determined based on a particular vine 140

structure. The method was demonstrated by the examples of system relia- 141
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bility analysis with up to 8 random variables. However, risk assessment of142

infrastructure systems typically involves a large number of correlated random143

variables and constructing the joint PDF of these variables by non-Gaussian144

copulas is still computationally difficult.145

In this study, a Gaussian copula is used to model the stochastic depen-146

dence among the components [4, 15]. Let qij denote the correlation coefficient147

between the damages of components i and j. Consider an infrastructure sys-148

tem with N components. Let Ui denote the hazard intensity for component149

i. For a set of given hazard intensities (U1, . . . , UN), the procedures to gen-150

erate the correlated damage states (D1, . . . , DN) by Monte Carlo simulation151

(MCS) and copula are as follows [4, 15],152

Step 1: GenerateN correlated standard Gaussian random variables, s1, . . . , sN ,153

with a correlation coefficient matrix W = [qij].154

Step 2: Transform s1, . . . , sN into the samples of standard uniformly dis-155

tributed random variables x1, . . . , xN , by xi = Φ(si), in which Φ(·)156

represents the cumulative distribution function of a standard normal.157

Step 3: Map the samples of damage states D1, . . . , DN from x1, . . . , xN by158

Di = v, if P (Di ≤ v − 1|Ui = ui) < xi ≤ P (Di ≤ v|Ui = ui).159

In Step 3, P (·) represents the probability of the event in the bracket; Di =160

v−1 represents the damage state that is one-level less severe than the damage161

state of v; if v is already the lowest damage state, P (Di ≤ v− 1|Ui = ui) = 0.162

To specify qij in Step 1, the exponential form of fragility correlation model163

is taken from the literature [4]. More discussion about the correlation model164

will be given in the next section. It should be noted that this paper will165
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develop a general method to simulate the correlated damages of a large-scale 166

distributed infrastructure system. The correlation model itself is not the 167

focus. In simulating the correlated damages of all components, the main 168

computational cost comes from Step 1. The correlation coefficient matrix 169

W has a size of N × N and it would become computationally costly for 170

large-scale systems. 171

3. A new interpolation-based method for simulating correlated dam- 172

ages 173

3.1. Optimal linear estimation method for random field discretization 174

As discussed in Section 2, a key step to simulate the correlated damage 175

of a large-scale infrastructure system is to simulate a high-dimension vector 176

of correlated standard Gaussian random variables. One idea to reduce the 177

computational cost is to apply interpolation techniques of random field dis- 178

cretization. In this method, only some components are sampled, and based 179

on which the remaining components are interpolated. Random field dis- 180

cretization with interpolation techniques has been used in stochastic finite 181

element methods to represent continuous random fields such as structural 182

material properties with spatial variability. 183

One of the interpolation technique for random field discretization is the 184

Optimal linear estimation (OLE) method [21]. We start with the original 185

OLE method for generating N correlated standard Gaussian random vari- 186

ables. Among the N components, assume that M components have been 187

generated and denoted as so = {Sk}, k = 1, . . . ,M . The remaining N −M 188

components are represented by s∗ = {Si} where i = M + 1, ..., N . Si can be 189
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interpolated from so using OLE as follows [21],190

S
′

i = Si + dT
i G

−1(so − µ), (1)

in which S
′
i is the interpolated value of Si; Si represents the mean of Si;191

di is an M -dimension vector containing the covariance between Si and the192

elements of so; G is the covariance matrix of so; µ is an M -dimension vector193

containing the mean values of so, i.e., µ = {S1, . . . , SM}. If G is empiri-194

cally formed to represent the correlation of real infrastructure items, it may195

not satisfy the requirements of covariance matrices, which is not permissi-196

ble in simulating correlated random variables. Thus, empirically estimated197

correlation coefficients are typically fitted to a mathematically feasible cor-198

relation model, such as the exponential model later discussed in this study.199

Alternatively, an empirically formed correlation matrix can be adjusted to200

a mathematically feasible correlation matrix using the algorithm of Higham201

[24]. Then G is inversible. Eq. (1) requires the inverse of matrix G. It is202

noted that for the generation of so, the spectral decomposition of G would203

be determined [25]. Given the spectral decomposition, G−1 can be obtained204

by simply inverting the diagonal matrix which includes the eigen-values of205

G.206

Since S
′
i is a linear transformation of Gaussian random vector so, S

′
i is207

also a Gaussian random variable. The mean of S
′
i is given as208

E(S
′

i) = E
(
Si + dT

i G
−1(so − µ)

)
= Si + dT

i G
−1E (so − µ)

= Si, (2)
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in which E(·) represents the expectation. Eq. (2) shows that S
′
i and Si have 209

the same mean value, indicating that OLE is unbiased. 210

The covariance between two interpolated variables S
′
i and S

′
j (i, j = M + 211

1, ..., N), denoted as δij, is given by 212

δij = dT
i G

−1dj. (3)

The variance of S
′
i , denoted by σ

′2
i , is obtained from Eq. (3) by taking i = j. 213

The correlation between S
′
i and S

′
j, denoted as ρij, is given as 214

ρij =
δij
σ

′
iσ

′
j

. (4)

The variance of ϵi = Si − S
′
i , denoted as σ2

ϵi
, is as follows, 215

σ2
ϵi
= E

[
(Si − S

′

i)
2
]

= E
{[

Si − µi − dT
i G

−1(so − µ)
]2}

= σ2
i − dT

i G
−1di

= σ2
i − σ

′2
i (5)

where σ2
i and σ

′2
i are the variance of Si and S

′
i , respectively. It can be seen 216

that σ
′2
i is always smaller than σ2

i . 217

The OLE method was initially developed to simulate continuous Gaus- 218

sian random fields. Li and Der Kiureghian [21] suggested that the accuracy 219

of OLE deteriorates for a nondifferentiable random field whose correlation 220

function q
(
x,x

′)
for sites x and x

′
does not have a zero slope at x = x

′
. 221

The damage of individual components of a large system is a random vector, 222

and may not be differentiable. For example, a common function to represent 223
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the correlations of structural fragility is taken from the literature [4, 15, 20]224

as follows,225

q
(
x,x

′
)
=

 a · exp
(
− |x−x

′ |
b

)
+ r if x ̸= x

′
,

1 if x = x
′
,

(6)

where a, b and r are model parameters. In the study of Vitoontus and226

Ellingwood [4], the correlation length b is a constant, a and r depend on two227

buildings’ similarities in construction material, structural type, storey range228

and design code. Random fields with a correlation function of Eq. (6) are229

generally non-differentiable.230

y

xo

2

22 /(k-1) 4/(k-1) 2-2/(k-1)

2 /(k-1)

4 /(k-1)

2-2/(k-1)

Figure 1: The distribution of sampled points in the random field.

To investigate OLE’s accuracy for non-differentiable random fields, con-231

sider a standard Gaussian random field S(x) with a correlation function of232

Eq. (6), in which the parameters a, r ,b are taken as 0.7, 0 and 1. The ran-233

dom field is defined in a Cartesian coordinate system (x, y) with 0 ≤ x ≤ 2234
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Figure 2: The variance of point A=(1,1) from OLE, interpolated from M sample points.
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Figure 3: The accuracy of OLE in solving correlation between interpolated points A =

(1, 1) and B = (xB, xB).

and 0 ≤ y ≤ 2. A total of M points are selected and they are arranged 235

such that in each orthogonal direction there are k equally spaced points 236

(M = k × k), as shown in Fig. 1. Consider point A, located in (1,1). Point 237
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Figure 4: The accuracy of OLE in solving the correlation of A = (1, 1) and C = (0.7, 0.7),

given different number of sampled points.

A is interpolated using the M sampled points. The variances of point A238

from OLE with different M are plotted in Fig. 2. It can be seen that the239

variance of OLE is always smaller than the true variance and does not con-240

verge with increasing M . Next, consider another interpolation point B, with241

a coordinate of (xB, xB). The correlation coefficient of points A and B is242

plotted in Fig. 3 for two cases, i.e., M = 10 × 10 and M = 26 × 26. In243

both cases, significant error is observed. Also, the correlation coefficients of244

point A and point C = (0.7, 0.7) given different M are plotted in Fig. 4. The245

correlation of OLE is always higher than the true correlation and does not246

converge with increasing M . These results demonstrate that in simulating247

a non-differentiable Gaussian random field, the original OLE underestimates248

the variance of an interpolation point, and overestimates the correlation of249
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two interpolation points. 250

3.2. Improved OLE technique 251

This study proposes an improved OLE technique, referred to as IOLE, 252

suitable for non-differentiable Gaussian random fields. In the IOLE, the 253

interpolated value of Si, denoted by S̃i, is given by 254

S̃i = S
′

i + ζi · (σ2
i − σ

′2
i )

0.5, (7)

in which S
′
i and σ

′2
i are obtained from the original OLE, i.e., Eq. (1) and 255

Eq. (3) respectively; σ2
i is the accurate variance at point i; and ζi is an 256

independent standard Gaussian random variable. Since the mean of the 257

second term in Eq. (7) is zero, the mean of S̃i is equal to the mean of S
′
i , 258

thus S̃i is also unbiased. The covariance of two interpolated points S̃i and 259

S̃j, denoted as δ̃ij, is equal to 260

δ̃ij =E
((

S̃i − E(S̃i)
)(

S̃j − E(S̃j)
))

=E(S
′

iS
′

j)− E(S
′

i)E(S
′

j) + E(ζiζj)
√

(σ2
i − σ

′2
i )(σ

2
j − σ

′2
j ), (8)

and 261

δ̃ij =

 dT
i G

−1dj if i ̸= j

σ2
i if i = j.

(9)

Eqs. (8) and (9) show that if i ̸= j, δ̃ij is the same as the covariance obtained 262

by the original OLE. If i = j, δ̃ij represents the variance of S̃i and is equal 263

to the accurate variance of point i (σ2
i ). 264

To demonstrate the accuracy of IOLE, the example of standard Gaussian 265

random field presented in the last section is repeated using the IOLE. The 266

variances of interpolated point A = (1, 1) using OLE and IOLE, as well as the 267
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Figure 5: Comparison of IOLE and OLE: variance of point A=(1,1) interpolated from M

sample points.
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Figure 6: Comparison of IOLE and OLE: correlation coefficient of (a) points A=(1,1) and

B = (xB, xB) and (b)points C=(0.7,0.7) and B = (xB, xB).
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Figure 7: Comparison of IOLE and OLE in solving correlation given different number of

sampled points.

true variance, are given in Fig. 5. It can be seen that compared to the original 268

OLE, the IOLE represents a significant improvement in approximating the 269

variance of an interpolated point. Fig. 6 gives the correlation coefficient 270

of two interpolation points A = (1, 1) and B = (xB, xB) by using M = 271

26 × 26 sampled points and that of two interpolation points C = (0.7, 0.7) 272

and B = (xB, xB). The correlation obtained by IOLE is considerably more 273

accurate than that obtained by OLE. For example, the accurate correlation 274

of A=(1,1) and B=(0.91,0.91) is 0.61. The correlation obtained by IOLE is 275

0.60, while the correlation obtained by OLE is 0.95. The correlation between 276

C = (0.7, 0.7) and A = (1, 1) by using various numbers of sampled points, are 277

given in Fig. 7. The correlation obtained by IOLE becomes essentially the 278

same as the accurate correlation if M reaches 200. However, the correlation 279

obtained by OLE does not converge to the accurate correlation. 280
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4. Example 1: damage assessment of building portfolios in Center-281

ville under a scenario cyclone282

The first example is to evaluate the cyclone damage of the building port-283

folios in the Centerville Virtual Community Testbed [26]. A scenario-based284

risk assessment approach is adopted, in which a single postulated cyclone285

event is used as hazard input. The cyclone damage is measured by the cost286

ratio, Z, of the building portfolios. Z is defined as the ratio of total repair287

costs to the total replacement costs,288

Z =

∑L
l=1

∑nl

i=1Rilwil∑L
l=1

∑nl

i=1wil

, (10)

in which L represents the number of occupancy classes; nl represents the289

number of buildings of occupancy class l; wil is the replacement cost of290

building i of occupancy class l; Ril is the cost ratio of building i of occupancy291

class l and is a function of the building’s damage state. In this study, the292

replacement cost wil of individual building is considered as deterministic,293

while the cost ratio Ril is treated as a random variable. The building portfolio294

cost ratio Z is the weighted average of the cost ratios to individual buildings.295

The weighting coefficients are deterministic, while the cost ratios are random.296

Thus, the expectation of Z is equal to the weighted average of the expected297

cost ratios to individual buildings, as follows298

E(Z) =

∑L
l=1

∑nl

i=1 E(Ril)wil∑L
l=1

∑nl

i=1 wil

. (11)

Eq. (11) shows that E(Z) is independent of the spatial correlation among299

individual buildings. However, the standard deviation of Z would depend on300

the spatial correlation of individual buildings. The standard deviation of Z,301
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σZ , is given by 302

σZ =
(
∑L

l=1

∑nl

i=1 σ
2
ilw

2
il +

∑
i1 ̸=i2orl1 ̸=l2

ρi1l1,i2l2σi1l1σi2l2wi1l1wi2l2)
0.5∑L

l=1

∑nl

i=1wil

, (12)

where σil is the standard deviation of the cost ratio Ril to building i in 303

occupancy class l; ρi1l1,i2l2 is the correlation coefficient of Ri1l1 and Ri2l2 . 304

4.1. Description of Centerville 305
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Figure 8: Example 1: building inventory of Centerville.

Centerville represents a typical middle-class city in the USA [26]. It has a 306

size of roughly 13×8 km2. The building inventory includes 12 basic building 307
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types, distributed in 11 zones, as shown in Fig. 8. Z1-Z7 are residential zones,308

while Z8 and Z9 are business zones and Z10 and Z11 are industrial zones.309

Table 1: Example 1: descriptions of building types [26, 27].

Occupancy ID Description

Residential

R1 1-storey, Unreinforced masonry, Single-family, 1400 ft2, 1945-1970

R2 1-storey, Unreinforced masonry, Single-family, 2400 ft2, 1985-2000

R3 2-storey, Wood frame, Single-family, 3200 ft2, 1985-2000

R4 1-storey, Unreinforced masonry, Single-family, 2400 ft2, 1970-1985

R5 3-storey, Wood frame, Multi-family, 12,000 ft2/floor, 1985

R6 Single-family, Mobile home

Commercial

C1 1-storey, Steel, 50,000 ft2, 1980

C2 2-storey, Steel, 50,000 ft2, 1980

C3 2-storey, Steel, 25,000 ft2, 1960

C4 Steel, 125,000 ft2, 1995

Industrial
I1 2-storey, Reinforced masonry, 100,000 ft2, 1975

I2 1-storey, Reinforced masonry, 500,000 ft2, 1995

ft2= 0.0929 m2

The building information is adopted from Ellingwood et al. [26]. Table. 1310

summarizes the descriptions of 12 types of buildings considered in Ellingwood311

et al. [26]. In total, 20,609 buildings are distributed in 11 zones. The number312

of buildings of each type in each building zone is summarized in Table 2. In313

a given zone, buildings are located randomly; It is assumed that buildings314
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of the same type are more likely adjacent to each other, and their locations 315

have a correlation coefficient of 0.6. Fig. 8 shows the assumed distribution 316

of the 20,609 buildings, generated by a MCS run. 317

Table 2: The number of buildings of each type in each building zone [26].

ID Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11

R1 0 767 300 2567 1856 700 0

R2 2000 700 300 1000 0 0 0

R3 50 0 0 0 0 0 0

R4 2196 800 200 0 0 0 0

R5 0 0 0 1200 0 3696 0

R6 0 0 0 0 0 0 1352

C1 150 0

C2 150 0

C3 0 250

C4 0 250

I1 50 0

I2 0 75

The wind fragility functions of the 12 building types have been studied by 318

Wang [27], based on HAZUS-MH [28]. The fragility functions consider the 319

damages of roof cover, roof sheathing panels, windows, doors, and wall sec- 320

tions. Four damage states are considered, with D = 0, 1, 2, and 3 represent- 321

ing insignificant, moderate, severe and complete damage states, respectively. 322
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The fragility functions have a form of lognormal function as follows,323

P (D ≥ v|U = u) = Φ

(
ln(u)− λv

ξv

)
, (13)

in which U represents the wind speed; the two parameters λv and ξv of each324

building type are taken from Wang [27] and summarized in Table 3.325

The replacement costs w for a given type of building are assumed de-326

terministic [27], and the values are summarized in Table 3. The functional327

relation between the damage state D and cost ratio R is taken from Wang328

[27], i.e., R = 0 for D = 0, R = 0.2 for D = 1, R = 0.4 for D = 2, and329

R = 0.8 for D = 3. In general, the (functionality/economic) loss is a func-330

tion of structural damage state and the damage value conditioned on the331

damage state. In reality, uncertainties exist in the loss for a given damage332

state, thus the conditional damage value shall also be modelled as a random333

variable. The present study only considers the uncertainty in damage states,334

while treats the conditional damage value as deterministic. It is because: 1)335

there is a lack of data to estimate the damage value uncertainty, and 2) in336

some previous studies, uncertainty in conditional damage value was ignored337

(e.g., Goda and Hong [5]; Vitoontus and Ellingwood [4]). The present study338

follows the same assumption.339

The fragility correlation qij for buildings i and j (i ̸= j) is modelled as [4]340

qij = a · exp(−hij

b
) + r (14)

where hij is the separation distance between buildings i and j; a, r and b are341

model parameters, with b also known as correlation length. The parameters342

a and r are considered dependent of the similarity between two buildings343

in material and design code, and the correlation length b is considered as344
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Table 3: Example 1: wind fragility functions (wind speed unit: m/s) and replacement

costs w [27].

ID w ($US) λ1 λ2 λ3 ξv (v = 1, 2, 3)

R1 80,430 3.8906 4.0217 4.1375 0.1097

R2 137,880 4.1137 4.2448 4.3606 0.1097

R3 183,840 3.9510 4.0732 4.1661 0.0998

R4 137,880 4.0084 4.1394 4.2552 0.1097

R5 2,068,200 3.9582 4.1405 4.1814 0.0998

R6 63,000 4.2460 4.3770 4.4200 0.1295

C1 2,872,500 3.9776 4.0729 4.6035 0.0799

C2 2,872,500 3.8822 3.9775 4.5082 0.0799

C3 1,436,250 3.7769 3.8722 4.4028 0.0799

C4 7,181,250 3.8822 3.9775 4.5082 0.0799

I1 5,745,000 3.6624 3.7486 3.9014 0.1393

I2 28,725,000 3.8765 3.9627 4.1156 0.1393
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constant for the whole community [4]. For demonstration purpose, the cor-345

relation length b is taken as 2 km, roughly equal the average dimention of each346

building zone. The values of a, b and r used in this example are summarized347

in Table. 4. It is assumed that R2 and R3, C1 and C2 were designed using348

the same generations of building codes. Sensitivity analysis on correlation349

length b will be conducted in the next section.350

Table 4: Example 1: model parameters of fragility correlation.

Building description a r b (Unit: km)

Same materials; Same design codes 0.5 0.2 2

Same materials; Different design codes 0.35 0.14 2

Different materials; Same design codes 0.35 0.14 2

Different materials; Different design codes 0.245 0.098 2

Hurricane Andrew is a destructive Category 5 Atlantic hurricane that hit351

Florida, US, in August 1992. Its surface wind field at landfall (1992/8/24352

9:05 according to HURDAT database [29]) is used as hazard input. It is353

assumed that the community center is 12.4-km west of the storm center at354

landfall and the y direction of the community shown in Fig. 8 is parallel355

to the nearby coastline of South Florida. To determine surface gust wind356

speeds at buildings, the surface sustained wind speeds are computed using357

the gradient wind field model and the gradient-surface conversion factor in358

Georgiou [30], and the gust factor model in Vickery and Skerlj [31] is used359

to convert sustained wind speeds to gust wind speeds. To apply the wind360

field model, hurricane key parameters are required as model input. Transla-361
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tion speed and direction, the location of storm center, central pressure and 362

maximum surface wind speed, are collected or derived from HURDAT [29]. 363

The radius to maximum wind is collected from Landsea et al. [32]. Holland 364

parameter in the wind field model was determined such that the computed 365

maximum surface wind speed matches the recorded value [33]. To consider 366

the uncertainty of wind speeds, the computed wind speeds are multiplied by 367

a lognormal random variable with a mean of 1 and a COV of 0.1 [34]. It is 368

assumed that the bias terms at different sites are statistically independent. 369

4.2. The comparison between IOLE and RS 370

The statistics of building portfolio cost ratio Z are evaluated using three 371

methods, i.e., the accurate method, the random sampling (RS) method [4], 372

and the improved OLE (IOLE) method. This example has more than 20,000 373

buildings. It is computationally difficult to accurately simulate the correlated 374

damages of all the buildings by constructing the correlation coefficient matrix 375

of all the buildings. Herein, 80% of buildings are uniformly sampled from 376

each building type in each building zone. All the sampled buildings are 377

considered in analyzing the building portfolio loss and the estimated loss is 378

treated as “accurate”. In each building zone, for any building type, the RS 379

method samples η percent, and the IOLE samples η percent and interpolates 380

additional c percent. η is referred to as the sampling ratio, and c is the 381

interpolation ratio. 382

For each method, MCS is applied to estimate the statistics of Z including 383

mean loss Z, standard deviation σZ , and the probable maximum loss (PML) 384

of cost ratio. The PML is the loss value with a small exceedance probability 385

(10−3 in this example unless specified otherwise), which is a common decision 386
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Figure 9: Example 1: The impact of MCS run in estimating (a) Z, (b) σZ , (c) PML, for

Centerville building portfolios.

metric for decision-making when financial consequences are severe [35]. To387

determine the suitable number of MCS runs, different numbers of MCS runs388

were checked when the “accurate” method was applied. Estimated statistics389

are given in Fig. 9. It was found that the variation of estimated statistics390

is negligible if more than 50,000 MCS runs are used. For example, as the391

number of MCS run increases from 50,000 to 100,000, the variation of the392

Z estimate is about 0.089%. Thus, 50,000 MCS runs were used in all the393

computation of this example.394

IOLE and RS are first compared in estimating Z, σZ , and PML (for an395
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Figure 10: Example 1: comparison of RS and IOLE given different sampling ratio η, in

estimating (a) Z, (b) σZ , (c) PML, for Centerville building portfolios.

exceedance probability of 10−3), given different sampling ratio η. For IOLE, 396

the interpolation ratio c is set equal to η. Relevant results are given in Fig. 10. 397

The advantage of the IOLE over the RS is most obvious when the number 398

of samples are limited (i.e., η < 10%). IOLE can generally achieve the same 399

accuracy of RS by sampling 50% less buildings. 400

For further sensitivity analysis, the η of RS is set as 10%, and the η and c 401

of IOLE are both set as 10% unless specified otherwise. First, RS and IOLE 402

are compared in estimating the PML of different exceedance probabilities. 403

Fig. 11 gives the complementary cumulative distribution function (CCDF) 404

27



0.1 0.2 0.3 0.4 0.5 0.6 0.7
1E-5

1E-4

1E-3

1E-2

1

P(
Z>

z)

z

 RS 
 IOLE 
 Accurate 

Figure 11: Example 1: CCDF of Z estimated by different methods, for Centerville building

portfolios.

of Z solved by various methods. It is found that PML solved by IOLE is405

consistently more accurate than that solved by RS. Then different correlation406

lengths are considered. The loss statistics estimated by different methods407

are given in Fig. 12. It was found that the curves of IOLE, RS and the408

accurate method are roughly parallel to each other. The improved accuracy409

of IOLE, compared with RS, is not influenced by the change of correlation410

length. Finally, the impact of interpolation ratio c in the accuracy of IOLE411

is examined, with relevant results shown in Fig. 13. Again, the relative error412

of IOLE is always lower than that of RS. The relative error of IOLE can be413

further reduced by increasing c.414

The above analyses adopt a simplified deterministic cost ratio for each415

building damage state. In practice, uncertainties exist in damage/loss values.416
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Figure 12: Example 1: comparison of RS and IOLE given different correlation length, in

estimating (a) Z, (b) σZ , (c) PML, for Centerville building portfolios.

To examine the impact of loss value uncertainty, it is assumed that the cost 417

ratio R is a lognomal, with a mean value of 0.2 for the damage state D = 1, 418

a mean of 0.4 for the damage state D = 2, and a mean of 0.8 for the damage 419

state D = 3. The COV of the cost ratio R is assumed to be the same for 420

each damage state, varying between 0.05 to 0.3. It was found that the COV 421

of the cost ratio R does not affect the mean value of the building portfolio 422

loss, and has an insignificant effect on the standard deviation of the building 423

portfolio loss as shown in Figure 14. Figure 14 also shows that the proposed 424

method is more accurate than the random sampling method. 425
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Figure 13: Example 1: accuracy of IOLE given different interpolation ratio c, in estimating

(a) Z, (b) σZ , (c) PML, for Centerville building portfolios.

In general, to simulate the correlated damages of N structures in an426

infrastructure system, the main computational demand is the orthogonal de-427

composition of the system’s correlation matrix (which is N × N). In the428

IOLE method with M focused samples, the size of the correlation matrix is429

reduced to M×M . Consider the current example in which the building port-430

folio has a total of 20609 buildings. The building portfolio loss is estimated431

using two methods: the RS method with 40% sampling ratio, and the IOLE432

method with 10% sampling ratio and 30% interpolation ratio. The relative433

errors of both methods are below 1%. However, RS requires 1285 seconds to434
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estimating σZ for Centerville building portfolios.

estimate the loss, while IOLE requires 509 seconds. 435

It should be noted that in the RS method, only the damage/performance 436

of the sampled components are known. Thus, RS cannot be used for con- 437

nectivity analysis of lifeline networks while IOLE can, e.g. the power outage 438

ratio of an electric power network as will be demonstrated in the next section. 439

It is because the connectivity analysis of an infrastructure system requires 440

the information of all the infrastructure components to capture the interde- 441

pendent effects. 442

For practical applications, a suitable sampling ratio should be decided 443

in order to evaluate the loss of realistic building portfolios. In the seismic 444

loss analysis of community building portfolios in the studies of Vitoontus 445

[36], and Vitoontus and Ellingwood [4], a smaller representative region is 446

first modelled using different sampling ratios. For this smaller region, the 447
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required sampling ratio can be determined by comparing the approximate448

loss estimates with the accurate result. This sampling ratio is then used for449

estimating the loss of the entire community. This idea of choosing a suitable450

sampling ratio can be followed for application purposes.451

5. Example 2: connectivity analysis of an electric power system452

under a scenario cyclone453

The second example evaluates the performance of an electric power sys-454

tem under a scenario cyclone event, in which the connectivity between dif-455

ferent infrastructure components need to be captured.456

5.1. Description of the electric power system457

The electric power system is based on the example of Salman and Li458

[37]. The topology of the power transmission grid is for the power grid in459

Shelby County, Tennessee, USA. In this paper, it is assumed located in a460

coastal region of South Carolina to consider cyclone hazard. It covers an461

area of about 50 × 42 km2. The topological structure of the power system462

is shown in Fig. 15. It has 8 high-voltage gate stations, 17 medium-voltage463

substations, 16 low-voltage substations and 12 intersections of transmission464

lines, along with 66 transmission lines. Since there is no energy generating465

plant in this system, the gate stations are assumed as supply nodes that466

provide electricity for substations. It should be noted that the gate nodes are467

typically boundary points to a larger power transmission grid whose energy468

generation plants are located elsewhere.469

The medium-voltage and low-voltage substations are demand nodes that470

directly serve the customers in their neighbourhoods. The span of a transmis-471
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Figure 15: Example 2: an electric power system (modified from Salman and Li [37]) and

the storm centre location of Hurricane Hugo (1989) (Rmax: radius to maximum wind).

sion line between two transmission support structures is assumed to be 244 472

m. There are 1767 transmission line-supporting structures in total. Wind- 473

induced damage to the support structures is considered, since they are the 474

most vulnerable structures under wind effects. The fragility function of the 475
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transmission support structures is taken from Brown [38] as follows,476

P (D = 1|U = u) = min
(
2 · 10−7exp(0.1866u), 1

)
, (15)

in which D is the binary damage state of a transmission support structure,477

equal to 0 for no damage and 1 for failure, and U is the 3-s gust wind speed in478

m/s. The fragility functions for any two transmission support structures i and479

j are modelled as correlated, with a correlation function of Eq. (14), in which480

a = 0.5, r = 0.2, and the correlation length b = 15 km. It should be noted481

that the parameter values of correlation model are chosen for demonstration482

purpose. Sensitivity analysis will be conducted in the next section.483

Hurricane Hugo was chosen as the scenario event. The hurricane made484

landfall in South Carolina as a Category 4 storm at 4:00 AM on September485

22, 1989. The location of the storm centre at landfall relative to the electric486

power system is shown in Fig. 15. Note that gate station 1 is located 20 km487

to the east of the storm centre and 60 km to the north of the storm centre.488

The maximum surface gust wind speed of each transmission support struc-489

ture during the hurricane passage was used to determine structural damage.490

To this end,the time history of surface wind speed at each structure was first491

sought in an interval of 30 minutes using the wind models same as those492

of the building portfolio example, and then the maximum wind speed was493

found. The key hurricane parameters, including storm translation direction494

and speed, the latitude of storm center, central pressure and maximum sur-495

face wind speed, were collected or derived from HURDAT database [29].496

Since HURDAT only provides the records of hurricane key parameters in an497

interval of 6 hours, the records in a 30-minute interval are obtained by lin-498

ear interpolation [37]. The radius to maximum wind is estimated using the499
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empirical formula from Vickery and Wadhera [33]. The Holland parameter 500

in the wind field model was determined such that the computed maximum 501

surface wind speed matches the recorded value [33]. This study considered 502

the path of the hurricane from 0:00 to 12:00 on September 22, 1989 and 503

found that considering this path segment is enough to capture the maximum 504

wind speed of each structure during the storm passage. To consider wind 505

speed uncertainty, the lognormal distribution, same as that of the building 506

portfolio example, was used. 507

The performance of the power system is measured using the power out- 508

age ratio, Q, the ratio of the customers losing access to power to the total 509

customers, as follows 510

Q =

∑N
′

j=1 rjFj∑N ′

j=1 rj
, (16)

in which rj is the number of the customers served by demand node j, Fj 511

indicates the functional state of demand node j, 1 for failure and 0 for func- 512

tional, and N
′
is the total number of demand nodes. It is assumed that a 513

demand node fails if it loses connection to all supply nodes, and functions 514

if it is connected to at least one supply node. One low-voltage substation 515

serves 10,000 customers and one medium-voltage substation serves 14,000 516

customers. In total, there are 398,000 customers served by the power sys- 517

tem. Transmission lines connecting to a supply node are unidirectional and 518

electricity can only transmit from the supply nodes to the demand nodes. 519

Transmission lines connected to terminal substations such as nodes 12 and 520

13 in Fig. 15 are also unidirectional and electricity is transmitted to termi- 521

nal substations. Other transmission lines are bi-directional. A transmission 522

line connecting two nodes is modelled as a series system with multiple trans- 523
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mission support structures. If any of the transmission support structures is524

damaged, all transmission lines supported by the structure fail. The failed525

lines are removed from the network and the status of the demand node Fj is526

determined using a shortest path algorithm which searches for the available527

path(s) from any supply node to the demand node.528

5.2. The performance of IOLE529

The performance of the IOLE method was examined in estimating the530

power outage ratio Q of the system. To apply the IOLE method, η percent531

of transmission support structures are sampled and their damage is obtained532

accurately. Damages to the remaining (100 − η) percent of the support533

structures are interpolated. In the current example, the η percent of struc-534

tures include two parts. The first part contains all the support structures535

located at the intersections of transmission lines (marked as black solid circle536

in Fig. 15), accounting for 0.68% of all the support structures. The other537

(η − 0.68) percent of structures are uniformly sampled along each transmis-538

sion line. To demonstrate the accuracy of IOLE, the accurate method is539

also used in which the full correlation coefficient matrix of all the support540

structures is constructed and used to simulate the correlated damages to the541

support structures. MCS is used to estimate the statistics of Q. Different542

runs of MCS were checked, when the accurate method was applied. It is543

found that 105 MCS runs are sufficient to stably estimate the mean Q and544

the standard deviation σQ of Q. In all the computation of this example, 105545

MCS were used.546

The IOLE was used to estimate the statistics ofQ given different sampling547

ratio η, in comparision with the accurate method. Results are shown in548
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Figure 16: Example 2: relative errors of IOLE using different sampling ratio η, (a) Q, (b)

σQ.

Fig. 16. From the accurate method, the power outage ratio Q has a mean of 549

0.57 with a standard deviation of 0.21, suggesting that on average 57% of the 550

customers would lose access to power. The accuracy of IOLE improves as η 551

increases. The relative errors in Q and σQ are below 5% when η is just 2%. 552

If the sampling ratio is further increased to 11%, the errors can be controlled 553

below 2%. The results demonstrate that the IOLE can be used for utility 554

networks with interconnected infrastructure components. 555

The accuracy of IOLE was further examined by considering different 556

correlation lengths. Fig. 17 compares the accurate method, and the IOLE 557
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Figure 17: Example 2: Comparison between the IOLE and accurate methods given differ-

ent correlation lengths, (a) Q, (b) σQ.

method by sampling 5% structures in addition to the structures at the in-558

tersections of tranmission lines. The discrepancy between the two methods559

roughly remains constant with an increasing correlation length, indicating560

that the accuracy of IOLE is insensitive to the change of correlation length.561

6. Conclusion562

The improved optimal linear estimation method can simulate non-differentiable563

random fields. The technique can be used for risk assessment of large-scale564

infrastructure systems with correlated components, as demonstrated by two565
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examples. 566

Example 1 evaluates the cyclone repair costs of building portfolios in 567

the virtual community Centerville. It was found that the accuracy of both 568

the IOLE and the RS methods increases as the sampling ratio increases. 569

However, for very small sampling ratios (i.e., η ≤ 10%), the accuracy of the 570

RS is rather poor, while the IOLE can still give reasonable results. Also, 571

sensitivity analysis on the threshold value of PML, correlation length and 572

the interpolation ratio of IOLE has been conducted. The accuracy of IOLE 573

was found consistently higher than that of RS. 574

The most significant advantage of the IOLE over the conventional random 575

sampling method is that it can handle the connectivity analysis of complex 576

systems. This point is demonstrated using the electric power distribution 577

system in Example 2. The conventional random sampling method cannot be 578

used for this example, as assessing the system requires the information of all 579

components in the system. For the IOLE, the relative errors of the mean 580

and standard deviation of the power outage ratio can be controled below 5% 581

by using a sampling ratio of just 2% . The accuracy of IOLE remains given 582

different values of correlation length. 583
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