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Abstract: Co-phase traction power supply system (TPSS) with photovoltaic (PV) and hybrid energy storage system (HESS) is a 

promising way to improve the utilization of regenerative braking energy (RBE) and power quality. However, despite co-phase TPSS 

with PV and HESS being beneficial from the perspective of technology, how to coordinate the operation strategies of various devices 

to ensure system economy is a key issue in practical engineering applications. Therefore, this paper proposes a bi-hierarchy capacity 

programming strategy of co-phase TPSS to minimize life cycle cost. In the upper layer, the integrated lifetime evaluation model of 

HESS and PFC (HESS-PFC) is proposed for the lower long-term investment cost. Remarkably, the PFC reliability assessment and the 

HESS degradation process are analyzed. Meanwhile, the capacity of HESS-PFC is obtained, and the lifetime of HESS-PFC is extended. 

In the lower layer, the power flow of co-phase TPSS is optimized to minimize short-term operating cost under satisfying three-phase 

voltage unbalance standards. Traction load peak-shaving and valley-filling are achieved by coordinating HESS-PFC and PV. And it is 

formulated as a mixed integer linear programming model based on efficient linearization methods. Whale optimization algorithm with 

GUROBI solver embedded is employed to solve this bi-hierarchy model. Finally, case studies show that the proposed model can 

achieve 23.26% cost reduction and 63.82% PFC lifetime extension, while the voltage unbalance is within an allowable range of 2%. 
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Nomenclature 

A. Abbreviations, Indices and Suffixes 

TPSS Traction power supply system 

HESS Hybrid energy storage system 

PV Photovoltaic 

RBE Regenerative braking energy 

PFC Power flow controller 

LCC Life cycle cost 

MILP Mixed integer linear programming 

UC Ultracapacitor 

WOA Whale optimization algorithm 

t, Δt Time index and interval  

s PV scenario sets 

B. Parameters 

Zjs.T/D 
Thermal impedance of between module 

junction and heatsink of IGBT/Diode 

Zsa 
Thermal impedance of between heatsink and 

ambient 

Tjmax , Tjmin 
Maximum and minimum junction temperature 

for the jth thermal cycle 

u, TMTTR Repair rate and mean time to repair of PFC 
CRF, SFF Capital recovery factor and sinking fund factor 

r Interest rate 

Tproj Project period (20 year in this paper) 

kb/ue , kb/up Unit capacity and power cost of battery and UC 

kbop Auxiliary equipment cost per unit 

kp  PFC capital cost per unit installed capacity 

kbo.f , kbo.v Battery fixed and variable cost per unit 

kbr Battery replacement cost per unit 

Tp PFC annual operating hours 

Clt PFC labor and travel cost per repair 

κ1 PFC investment cost coefficient  

κ2, κ3 
Depreciation coefficient for the recovery of 

battery and PFC 

NT Total number of time intervals in a day (=1440) 

πs Probability value of PV related scenario 

ρ
t,s

grid Price of purchased electricity from power grid 

ρ
t,s

dem Demand power electricity price per unit 

ρ
t,s

fed Price of electricity fed back to power grid  

ρ
t,s

PV Daily O&M costs of PV per unit 

Pt,s

LD, Pt,s

RBE
 Active power of train traction and braking  

Q
t,s

LD, Q
t,s

RBE Reactive power of train traction and braking 

η
ch

b/u, η
dis

b/u Charge/discharge-efficiency of battery and UC 

SOCmin/max

b/u
 Max-limits and min-limits of battery and UC 

SOCt=0

b/u
 Initial SOC of battery and UC 

εb, εu Self-discharge rate of the battery and UC 

φT, φα Power factor angles of TT and α-phase of PFC 

C. Optimization Variables 

Pt,s

dem, Pt,s

peak Demand power and its maximum peak 

Pt,s

T , Pt,s

PV Active power of TT and PV 

Pt,s

α , Pt,s

β  Active power of α and β-converters 

Pt,s

b/u,dis,Pt,s

b/u,ch Discharge and charge power of battery and UC 

Et,s

b/u
 The energy stored in battery and UC 

Pt,s

grid.max Maximum interactive power with the grid 

Q
t,s

α , Q
t,s

β  Reactive power of α and β-converters 

λ, TMTTF Failure rate and mean time to failure of PFC 

Tb, Tbh Battery lifetime and daily operating hours 

NR Battery replacement number 

Pr

b/u,Er

b/u Rated power and capacity of battery and UC 

SPFC Rated capacity of PFC 



 

1. Introduction 

With the continuous expansion of electrified railway mileage 

in recent decades, the eco-friendly and energy-efficient operation 

of traction power supply systems (TPSS) has raised significant 

concerns [1,2]. The rapid development of renewable energy and 

hybrid energy storage systems (HESS) provides an effective 

solution for railway energy saving and cost reduction [3]. 

On the one hand, renewable energy along railway lines is used 

to reduce short-term operating cost. References [4, 5] provide the 

application prospect for photovoltaics (PV) and regenerative 

braking energy (RBE) utilization in TPSS. On the other hand, 

different energy storage systems are installed in TPSS, which is 

also a potential way. In [6, 7], HESS consisting of battery and 

ultracapacitor (UC) are a promising solution to recycle RBE and 

reduce operating cost. In the above references, PV and HESS are 

directly connected to the traction network through converters, 

which may lead to power quality problems, such as network 

voltage fluctuation [8]. In addition, the distribution of HESS and 

PV along the railway results in expensive operation and 

maintenance costs [7]. The proposed co-phase TPSS can provide 

a flexible interface for PV and HESS, which consists of single-

phase traction transformers (TT) and power flow controllers (PFC) 

[9].  

As the core component of co-phase TPSS, PFC adopts high-

voltage and large-capacity converter technology to achieve 

negative sequence compensation and promote the high-efficient 

utilization of energy. Its lifetime is mainly determined by the 

reliability of insulated gate bipolar transistors (IGBT) and 

freewheeling diodes [10]. Junction temperature management is an 

effective method to improve the reliability of the converter [11]. 

In [12], a control strategy is proposed to promote PFC reliability 

and prolong the PFC lifetime by 16.28%. However, when PV and 

HESS are connected to PFC, the above research methods need to 

be improved. As a result, it is necessary to propose an integrated 

lifetime evaluation model of HESS and PFC (HESS-PFC). 

It is widely accepted that HESS capacity is one of the critical 

issues that affect system economics. The programming 

approaches of capacity sizing for HESS are extensively applied 

in other fields, such as microgrids [13], household-prosumers [14, 

15], EVs [16], and so on. The optimal sizing and power 

management of PV and HESS are studied in [14]. These 

references provide inspiration for capacity programming of 

railway systems. In [17], a mixed integer linear programming 

(MILP) model is presented to optimize the HESS sizing for RBE 

utilization. Reference [7] employs a bi-level model of railway 

energy management systems to optimize the HESS sizing and the 

grey wolf algorithm is employed. But the three-phase voltage 

unbalance is neglected, which is an important index to assess the 

power quality of TPSS. Besides, in the co-phase TPSS, additional 

investment of the PFC is essential, so it is meaningful to optimize 

the PFC capacity. In [18], a life cycle cost (LCC) model of the 

PFC is built to determine the PFC capacity. However, few 

publications are associated with the optimal scheduling and 

capacity programming of HESS-PFC.  

A detailed comparison of the above studies in the objectives, 

methods and results is given in Table I. Accordingly, this paper 

presents a comprehensive approach to planning the HESS-PFC 

capacity and optimizing the co-phase TPSS operation for 

minimum life cycle cost, which meets the standard limit of three-

phase voltage unbalance, prolongs PFC and battery lifetime, and 

realizes the economy of the capacity planning. The highlights of 

this paper can be outlined as follows: 

1) A scheduling optimization model for co-phase TPSS with 

PV and HESS is proposed, which takes the three-phase 

voltage unbalance as the constraint and short-term operating 

cost as the objective. It can sufficiently coordinate HESS- 

PFC and PV to achieve traction load peak-shaving and 

valley-filling and improve power quality comprehensively. 

2) Considering the interactive influence of PFC reliability and 

HESS charge/discharge, an integrated lifetime evaluation 

model of HESS-PFC is established. The PFC reliability 

assessment and battery degradation process are embedded 

into the model to evaluate the PFC and battery lifetime for 

the lower long-term investment cost. 

Table 1 
Comparisons among aforementioned studies and this paper 

Reference 

Objectives  Methods  Results 

Utilize 

RBE 

Remove 

NS 

Solve 

VU  

Save 

cost 
 

Bi-

level 

model 

System 

electronics 

TOU 

policy 

Solution 

method 
 

Optimize 

sizing  

Prolong 

lifetime 

[2, 20] √ × √ √  × RPC × PSO  √ × 
[3] √ √ √ ×  √ PFC √ CPLEX  × × 

[4, 5] √ × × √  × × × /  √ × 
[6] √ × × ×  √ × × HC  × × 
[8] √ × × √  √ × √ GWO  √ √ 

[10, 12] × × × ×  × PFC × PSO  × √ 

[13] × × × √  × × √ DE  × √ 

[14-15] √ × × ×  × × × TLBO  √ × 
[16] × × × √  × × × WOA  × × 
[17] √ × × √  × × √ CPLEX  √ × 
[18] × × × √  × PFC × PSO  √ √ 

[19] × × × √  √ × √ GUROBI  √ √ 

This paper √ √ √ √  √ PFC √ WOA  √ √ 

Note that: RBE-Regenerative braking energy; NS-Neutral sections; VU-Voltage unbalance; RPC-Railway static power conditioner; PFC-Power flow controller; PSO-

Particle swarm optimization; DE-Differential evolutionary; TLBO-Teaching-learning based optimization; GWO-Grey wolf optimization; WOA-Whale optimization 

algorithm. 

 

 



 

3) A bi-hierarchy capacity programming strategy is designed to 

combine long-term investment cost and short-term operating 

cost for achieving minimize life cycle cost. In the upper layer, 

the capacity of HESS-PFC as the input of the lower layer is 

planned. In the lower layer, the optimization scheduling 

results is fed back to the upper layer. A globally optimal 

solution is obtained through multiple iterations. 

The rest of this paper is structured as follows. Section II 

introduces the system description. Section III presents the upper 

layer capacity programming model. The lower layer scheduling 

optimization model is developed in Section IV. In Section V, 

WOA with GUROBI solver embedded is applied for problem 

solving. In Section VI, case studies are presented and the 

conclusion is reached in Section VII.  

2. System description 

Fig. 1 shows the structure of co-phase TPSS with PV and HESS. 

The co-phase TPSS proposed in this paper mainly consisted of 

single-phase TT and PFC, PV, and HESS. In this structure, the 

combination of single-phase TT and PFC can cancel the neutral 

section and provide continuous supply power for trains without 

any obstacle. PFC is the key component of co-phase TPSS, which 

is composed of multiple high-voltage and large-capacity back-to-

back connected converters. The direct-current link of the PFC 

provides a favorable interface for PV and HESS. The connection 

of PV can improve the utilization rate of renewable energy. 

Considering stochastic fluctuations of traction load and PV 

uncertainty, HESS composing of battery and UC is selected as the 

storage medium for TPSS. The combination of the two is more 

conducive to promoting the RBE utilization of the railway system 

and improving the operating efficiency of the system.  

Fig. 2 illustrates the block diagram of the bi-hierarchy capacity 

programming strategy proposed in this paper. The bi-hierarchy 

strategy of co-phase TPSS with PV and HESS includes the upper 

layer capacity programming model and the lower layer optimal 

scheduling model. And three goals are achieved: i) minimize the 

LCC of co-phase TPSS, ii) meet the power quality standard with 

three-phase voltage unbalance, and iii) prolong battery and PFC 

lifetime. In the upper layer model, taking the battery and PFC 

lifetime into account, the co-phase TPSS capacity-optimized and 

LCC-calculated are implemented. The capacity configuration of 

HESS-PFC is obtained from the upper layer and as input of the 

optimal scheduling model. In the lower layer, the optimal HESS 

scheduling strategy and PFC compensation power are obtained 

under satisfying negative sequence requirements with the goal of 

minimum short-term operating cost. Then, the lower layer results 

are fed back to the upper layer. Therefore, the proposed bi-

hierarchy capacity programming strategy can combine long-term 

investment cost and short-term operating cost. The minimum 

LCC and optimal capacity of HESS-PFC are obtained through 

multiple iterations. 

3. Upper layer: Capacity programming model  

3.1. Integrated lifetime evaluation model of HESS-PFC 

Fig. 3 presents that the integrated lifetime evaluation model 

(ILEM) of HESS-PFC is developed to accurately calculate the 

lifetime of HESS-PFC, including PFC reliability assessment and 

HESS degradation process. The input parameters of lifetime 

evaluation are fed back from the lower layer, therefore, ILEM 

embedded in the upper layer can provide a bridge between long-

term programming and short-term operations. 
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HMT-High-voltage matching transformer; TMT-Traction matching transformer. 

Fig. 1. Structure of co-phase TPSS with PV and HESS. 
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Note that: ILEM-Integrated lifetime evaluation model. 

Fig. 2. Block diagram of bi-hierarchy capacity programming strategy proposed. 



 

 

3.1.1 PFC reliability assessment 

The topological structure of PFC is shown in Fig. 4. The IGBT 

modules are the main cause of PFC failure. The main reason for 

converters failure is the aging of the device caused by the uneven 

thermal stress between the materials of each layer caused by 

random thermal cycling [10]. The process is “two lines and four 

steps”. Two lines mean that the failure rate of IGBT module λIGBT 

is calculated based on the physical failure mechanism, and the 

failure rate of other components λother (such as direct-current 

support capacitors λC, series reactors λL, control panels λD) is 

gained directly based on reliability manual [12].  

The reliability evaluation of IGBT modules is divided into four 

steps: First, power loss (Ptot.T, Ptot.D) is calculated and got 

according to the compensation power optimized by the lower layer. 

Second, junction temperature (Tj.T, Tj.D) is evaluated through 

established thermal network model. 

j.T tot.T js.T tot.T tot.D sa( )T P Z P P Z= + +  (1) 

j.D tot.D js.D tot.T tot.D sa( )T P Z P P Z= + +  (2) 

Third, based on RFCM, Tm and ΔTj of each thermal cycle are 

obtained in (3). Fourth, the number of cycles to failure Nf (ΔTj , 

Tm) at Tm and ΔTj is determined based on Coffin-Manson model in 

(4), a and n are adjustment parameters, a=302500, n=5.039. Ea is 

the activation energy constant, 9.891×1020 J, k is the Boltzmann 

constant, 1.38×10-23 J/K, thus λIGBT is obtained based on the miner 

linear damage theory, where N (ΔTj, Tm) is the number of thermal 

cycles corresponding to Tm and ΔTj in T. Therefore, PFC failure 

rate λ is expressed in (5).  

m jmax jmin( ) / 2T T T= + ，
j jmax jminT T T = −  (3) 

( ) ( ) ( )f j m j a m, exp /
n

N T T a T E k T
−

 =        (4) 

( )
j m

IGBT other C L D
0

f j m

( , )

( , )

T N T T

N T T
     


= + = + + +

  (5) 

In addition, the mean time to failure (TMTTF) and the mean time 

to repair (TMTTR) is respectively the mean uptime and the mean 

downtime of PFC, is calculated by (6). 

MTTF

1
T


= ，

MTTR

1
T

u
=   (6) 

Considering two converters of PFC share a common direct-

current link, their capacities (Sα and Sβ) should be equal [2]. 

Therefore, PFC capacity SPFC can be derived as. 

 PFC 2 max ,S S S =    (7) 

 

 

3.1.2 Battery degradation process 

The HESS lifetime is affected by the shock and sharp 

fluctuation of traction load. The UC lifetime is mostly affected by 

temperature, discharge rate and terminal voltage [19]. 

Furthermore, the charging and discharging rates have little effect 

on UC lifetime, and its cycle times are as high as 500,000 

~1000,000 times and far exceeding that of batteries [17]. Hence, 

this paper mainly considers the battery lifetime, which is related 

to the number of discharge-charge cycles and the depth of 

discharge (DOD). The cycle counting method [20] is adopted to 

calculate the battery lifetime. The calculation steps are: 1) Take 

the battery SOC curve obtained through the optimization of the 

lower layer model as the known input. 2) The cycle counting 

model is used to extract a series of full cycles and half cycles, and 

calculate DOD of the corresponding cycles. 3) Eq. (8) expresses 

the relationship between the number of battery cycles (Nc) and 

DOD fitted by the least square method based on the 

manufacturer’s data. 4) The battery lifetime is obtained, as (9). 

( ) 9.346DOD 1.319DODDOD 24090 6085cN e e− −= +  (8) 

( )1

1

1
365

DOD

b N

i c i

T

N=

=


  (9) 

3.2. Life cycle cost of co-phase TPSS with PV and HESS 

3.2.1 Investment cost 

HESS mainly include battery, UC and balance of plant (BOP) 

costs Chi. The investment cost of PFC Cpi is determined by its 

installed capacity. Therefore, the investment cost CInv of co-phase 

TPSS is presented as (10). 

Inv hi piC C C= +   (10) 

where: 

IGBT module 
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RFCM- Rain-flow counting method. 

Fig. 3. Integrated lifetime evaluation model of HESS-PFC.  
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Fig. 4. The topological structure of power flow controller.  



 

( )
1

365

b u b u b u

hi be r ue r bp r up r bop r rC k E k E k P k P k P P =  + + + + + 
 (11) 

PFC PFC

1

365
piC k S=     (12) 

3.2.2 Operation and maintenance (O&M) cost  

The O&M cost of co-phase TPSS CO&M can be given by the 

accumulation of HESS O&M cost Chm, PFC operation loss cost 

Cps and maintenance cost Cpm, as well as PV O&M cost CPV, as 

(13).  

O&M PVhm ps pmC C C C C= + + +   (13) 

where: 

. .

1

365

b b

hm bo f r bo v r bhC k P k P T=   +    (14) 

( )tot.T tot.D0.75ps pC P P T=  +    (15) 

( )1 MTTR

1

365
pm pi ps ltC C C C T =  +   +   (16) 

3.2.3 Replacement cost  

The battery replacement cost CRep is represented as (17). 

( )Rep

1

1

365

RN
b

br r

k

C CRF k E
=

=      (17) 

proj
1R

b

T
N

T

 
= − 
 

  (18) 

where     represents the round up operator. 

3.2.4 Disposal and recovery (D&R) cost  

The D&R cost of co-phase TPSS CD&R is the recoverable value 

that battery has not reached the end of its service life and the 

remaining material after PFC is disassembled, as (19). 

( ) proj

D&R 2 3

1

365

R b b

bp r pi

b

N T T
C k P C

T
 

+  −
=    + 


 (19) 

3.3. The capacity programming model based on the LCC of co-

phase TPSS 

Taking the minimum LCC of co-phase TPSS as the objective 

function, and taking Pr
b, Er

b, Pr
u, Er

u and SPFC as decision variables, 

a capacity programming model based on LCC is established to 

acquire the optimal configuration capacity of HESS-PFC, and the 

most economical planning scheme. The capacity programming 

model is as follows in (20). Note that all costs are calculated on a 

daily basis.  

( )LCC Inv O&M Rep D&R

PFC.min PFC PFC.max

min max

min max

min

. .                 ,

e

j j j

r

j j j

r

C C CRF C C C SFF C

S S S

s t P P P j bat uc

E E E

=  + + −  +

 


  =


 

 (20) 

where: CInv∼CD&R and Ce are respectively described in detail in 

III-3.2 and IV-4.2, corresponding to formulas (10)-(19) and (21)-

(26), then it is not necessary to list here again. 

proj

proj

(1 )

(1 ) 1

T

T

r r
CRF

r

+
=

+ −
，

( ) proj1 1
T

r
SFF

r
=

+ −
 

4. Lower layer: Scheduling optimization model 

4.1. PV output power uncertainty model 

PV power generation system is affected by solar intensity, 

season and other factors. It is necessary for the uncertain behavior 

of PV power generation to be a model. Therefore, the scenario 

reduction method is employed to cope with the uncertainty of PV 

power in this paper [21]. taking the annual solar irradiance data 

of a certain place as an example [22], the original 365 solar 

irradiance scenarios are reduced to 6 scenarios, as shown in Fig. 

5. It not only retains the characteristics of the original light 

intensity scene to the greatest extent but also greatly reduces the 

computational complexity. 

 

4.2. Optimized scheduling model of co-phase with PV and HESS 

The objective function of the lower-layer model is the sum of 

short-term operating cost for electrified railway operators, 

including energy consumption cost (CECC), demand electricity 

cost (CDC) and penalty cost (CPC), taking , , , ,, , , b

t s t s t s t s bhP P Q E T   ,  as 

decision variables. The optimized scheduling model is as follows 

in (21). 

( )
ECC CD PCmin

. . 39 54

eC C C C

s t

= + +

−
  (21) 

where: 
T grid grid

ECC , .1
=

N

s t s t ss t
C P t 

=
      (22) 

T dem dem

DC , ,1
= max( )

N

s t s t ss t
C P 

=
    (23) 

14dem grid

, T/15     1, 2,..., 14
t

t s t ss t
P P t N

+
=   = −   (24) 

T fed fed

PC , ,1
=

N

s t s t ss t
C P t 

=
     (25) 

T PV PV

PV , ,1

N

s t s t ss t
C P t 

=
=      (26) 

CECC represents the energy consumption of TPSS supplied by 

power grid in (22). In (23), CDC is determined by the maximum 

value of averaged active power through traction transformer in 15 

consecutive minutes time intervals during a month (or a day, 

assuming that daily operation of co-phase TPSS is repeated every 

day in this paper, a cycle is one day). CPC denotes the penalty bill 

for the energy fed back to the power grid from TPSS in (25). 

 
Fig. 5. Typical solar irradiance scenarios and probabilities generated by scene 

reduction techniques. 

 



 

4.3. Constraints 

4.3.1 Power flow balance constraints 

Eq. (27) indicates that the active power transmission between 

TPSS and power grid takes α-phase converters and single-phase 

traction transformer (TT) as channels. Eq. (28) denotes the power 

balance in the direct-current link of PFC. Eq. (29) states the active 

power balances among TT, PFC and traction load. Eq. (30) 

assumes that the reactive power of the traction load is completely 

compensated by the β-phase converter in this paper. Eq. (31) and 

(32) imply that the power transfer direction between the co-phase 

TPSS and the power grid is specified by the binary variable vt

grid
 so 

that the power purchased from the power grid and the energy fed 

back to the power grid cannot coexist simultaneously.  

grid fed T

, , , ,t s t s t s t sP P P P− = +   (27) 

PV b,dis u,dis b,ch u,ch

, , , , , , ,t s t s t s t s t s t s t sP P P P P P P + + + = + +  (28) 

TL RBE

, , , ,

T

t s t s t s t sP P P P + = −   (29) 

TL RBE

, , ,t s t s t sQ Q Q = −   (30) 

grid grid grid.max

, , ,0 t s t s t sP P     (31) 

fed grid grid.max

, , ,0 (1 )t s t s t sP P  −    (32) 

4.3.2 HESS constraints 

Eq. (33) indicates that the stored energy of battery and UC 

during the time interval t is limited to the presupposed upper and 

lower bounds determined by the parameters of selected energy 

storage device to avoid additional lifetime loss resulting from 

overcharge and over-discharge, as well as into account charge and 

discharge efficiency and self-discharge rate. To facilitate the daily 

scheduling of co-phase TPSS, the stored energy of battery and UC 

at initial time should be equal to that at the last time respectively, 

presented by (34). Eq. (35) represents the charging and 

discharging process of the battery and UC determined by binary 

variables vt

 j
, when equal to 1, it means the battery and UC are in 

discharging state, otherwise, it is in charging state. Eq. (36) is used 

to calculate the number of operating hours per day for battery. 
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4.3.3 PV constraints 

In the optimal scheduling of co-phase TPSS, PV output is non-

negative and constrained by the maximum predicted value 

(Pt

PV.max ). PV converter can control output in real time during 

operation, so real output of PV constraint is revised as (37).  
PV PV.max

, ,0 t s t sP P    (37) 

4.3.4 Three-phase voltage unbalance constraints  

The negative sequence problem measured by three-phase 

voltage unbalance is the most important power quality problem of 

electrified high-speed and heavy-haul railway. The three-phase 

voltage unbalance uε is described by the ratio of the negative 

sequence power 𝑆− to short circuit capacity Sd of power system 

at the common connection point, and meet the limitation required 

by the power quality standard 2% [23]. 
( )
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According to [9], the negative sequence current in grid side 

can be deduced as. 
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where 
120ja e= . 

The negative sequence current can be split into two parts, one 

is caused by active power of TT and the other by active power of 

α-phase converter. Due to these two parts do not participate in the 

transmission of reactive power between the power grid and TPSS 

in this paper, φT = φα =0. Accordingly, the amplitude of negative 

sequence current is presented as 

( )
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4.3.5 PFC operating boundary constraints 

Active power and reactive power flowing through α and β-

phase converters are constrained by their rated capacity, and are 

denoted in (41) and (42). 

( ) ( )
2 2

, ,t s t sP Q S 

+    (41) 

( ) ( )
2 2

, ,t s t sP Q S 

+    (42) 

Assuming that α-phase converter not participate in the 

transmission of reactive power in this paper. Therefore, the 

constraint (41) is equivalent to the following (43). 

,t sS P S

 −     (43) 

Particularly, , , ,, ,t s t s t sP P Q   optimized by the lower layer are used 

as the input variables of the upper layer to evaluate the PFC 

reliability. 

5. Solution Methodology: Whale optimization algorithm 

with GUROBI solver embedded 

5.1. Overview of whale optimization algorithm 

5.1.1 Bubble-net attacking (Exploitation phase) 

Humpback whales achieve the purpose of local optimization 

by surrounding their prey and spirally updating their positions. 

The behavior of whales surrounding prey is described in (44)-

(48). 

( 1) ( )+ = − t tX X A D   (44) 

( ) ( ) −= t tD CX X   (45) 



 

12=  −A a r a   (46) 

max2 2 /t t= −a   (47) 

22= C r   (48) 

where t and tmax indicate the current iteration number and the 

maximum iterations number. X* and X represent the global optimal 

whale position vector and the current whale position vector, 

respectively. A and C are the coefficient vector. r1 and r2 are 

random vector within [0, 1].  

The mathematical model of humpback whales swimming to 

prey in a spiral path is shown in (57). 

( ) ( )1 cos(2 )blt e l t + =   +X D X  (49) 

( ) ( )= t t −D X X   (50) 

where b defines the shape constant of the logarithmic spiral, l is a 

random number within [-1,1].  

However, humpback whales have special behavior that not 

only swims around their prey in a shrinking circle but also swims 

along simultaneously a spiral path. p is introduced to determine 

the probability of two predation methods and is a random number 

within [0,1]. The updated position of whale is as follows (51). 

( )                      < 0.5
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5.1.2 Random search (Exploration phase) 

Humpback whales will randomly search based on coefficient 

vector A (|A|>1), as shown in (52).  

rand( 1)t + = − X X A D   (52) 

rand=  −D C X X   (53) 

where Xrand indicates a randomly selected whale position vector. 

5.2. Piecewise linearization 

For the purpose of reducing the complexity of the model and 

improving the solution speed, it is necessary to linearize the 

nonlinear formulas such as the electricity demand electricity cost, 

PFC apparent power, and three-phase voltage unbalance 

constraints in the lower layer model by linearization means. 

Therefore, a mixed integer linear programming problem is 

formulated and GUROBI commercial solver is adopted to solve 

this problem. 

5.2.1 Linearization of demand electricity cost 

In order to reduce the computational burden, the maximum 

function in (23) is linearized by introducing an auxiliary variable 

Pt
 peak

, as shown in (54) and (55). 

dem peak

, ,max( )t s t sP P=   (54) 

dem peak

, ,     1,2,..., 14t s t s TP P t N  = −  (55) 

5.2.2 Three-phase voltage unbalance constrained linearization 

Linearize the above Eq. (40) by introducing auxiliary non-

negative variables p
t
T  and p

t
α , binary variables νt

 p
 based on the 

big-M method to improve calculation speed.  
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5.2.3 PFC apparent power linearization 

In (42), the essence of the PFC capacity constraint is a PQ 

circular constraint composed of active power and reactive power. 

The circumscribed square of multiple circles method [24] is used 

to achieve an approximate expression of the circle in this paper. 

Under the premise of ensuring accuracy, this paper chooses three 

circumscribed square constraints to linearize the PFC capacity, 

and the specific expression is denoted as (59). 
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5.3 Application of WOA with GUROBI solver embedded 

In the upper layer, the linearization of PFC and battery lifetime 

calculation is hard to be realized by the linear programming 

Input all known parameters 
(Table 1-3)

 Initialize the whales population X5 

(                                  )

 X* denotes the best search agent

 Number of iterations i=1

Start

PFC, , , ,b b u u

r r r rP E P E S

p<0.5
Yes

No

 Update the position of the current 
search agent by the Eq. (49)

/A/<1

 Update the position 
of the current search 
agent by the Eq. (44)

 Update the position 
of the current search 
agent by the Eq. (52)

Yes

No

Select a random 
search agent ( Xrand )

 Check if search agent goes beyond the search 
space and amend it

 Transfer X5 to the lower layer model, 
obtain Ce via embedded GUROBI 

solver and calculate the life cycle cost.

 Update X* if there is a better solution

i=i+1

Update a, A, C, l, p by the 
Eq. (46)-(48)

i >= imax

Output X* and optimal life cycle cost

End

Yes

No

 Transfer X5 to the lower layer 
model, obtain Ce via embedded 

GUROBI solver and calculate the 
life cycle cost.

Upper layer Lower layer Results

 
Fig. 6. Block diagram of WOA with GUROBI solver embedded. 



 

method. Therefore, WOA [25] is adopted to plan the capacity of 

HESS-PFC. In the lower layer, it is formulated as MILP model, 

which is solved to obtain HESS operation strategy and PFC 

compensation powers by GUROBI solver. 

WOA with GUROBI solver embedded approach is adopted to 

deal with this bi-hierarchy problem. In WOA, given the number 

of particles N, the position of each search agent can be expressed 

as a five-dimensional vector xi = [xi1, xi2, xi3, xi4, xi5], which 

represents the decision variables Pr
b, Er

b, Pr
u, Er

u, SPFC in the upper 

model, respectively. The block diagram and overall pseudo code 

of applying WOA with GUROBI solver embedded to settle HESS-

PFC capacity and diurnal dispatch problems are illustrated in Fig. 

6 and Algorithm 1. 

 

 

6. Case studies 

6.1 Input parameters  

Take a typical TPSS of a high-speed rail line in northwest 

China as an example, PV output power is presented in Fig. 5, and 

the data of traction load are outlined in Fig. 7. Traction load has 

the characteristics of shock and random fluctuation. Due to the 

particularity of the power supply system and the asymmetry of 

the traction load, it will cause three-phase unbalance on the grid 

side. Related parameters of system unit cost, electricity prices and 

co-phase TPSS are listed in Table 2-4 [8, 13, 17-20, 26-28]. It is 

assumed that the upper and lower bounds of decision variables of 

the upper layer model are Pr
b [1, 4] MW, Er

b [5, 15] MWh, Pr
u 

[10, 20] MW and Er
u  [0.1, 0.5] MWh, SPFC [5, 12] MVA. 

The optimization process in this manuscript is implemented on a 

computer with Intel Core i5-1135G7 CPU at 2.4 GHz and 16 GB 

RAM. The optimization problem in the upper and lower layer is 

solved using the YALMIP toolbox (version 20190425) [29] and 

GUROBI solver (version 9.5.1) [30] integrated with the software 

environment of MATLAB (version 2018a). 

 

 

6.2 Cost results analysis in different cases  

Five separate case studies are performed to show the 

Algorithm1. WOA with GUROBI solver embedded 

1. Input: Traction load, PV output and price. (Table 2-4) 

2. Set the number of search agents (N), max number of iterations tmax 

3. Initialization: Humpback whale population Xi (i=1, 2, …, n) 

4. 
Transfer Xi to the lower layer model, obtain Ce via embedded GUROBI 

solver and calculate life cycle cost 
5. X* denotes the best search agent 

6. while (t< tmax) 

7. for each search agent 

8. Update a, A, C, l and p by Eq. (46)-(48) 

9. if1 (p<0.5)          % Shrinking and enveloping mechanism 

10. if2 (/A/<1)      % Exploitation phase 

11. Update the position of the current search agent by Eq. (44)  

12. else if2 (/A/>=1)     % Exploration phase 

13. Select a random search agent (Xrand) 

14. Update the position of the current search agent by Eq. (52)  

15. end if2 

16. else if (p>=0.5)        % Spiral update position 

17. Update the position of the current search agent by Eq. (49) 

18. end if1 

19. end for 

20. Check if any search agent goes beyond the search space and amend it 

21. 
Transfer Xi to the lower layer model, obtain Ce via embedded GUROBI 

solver and calculate life cycle cost  
22. Update X* if there is a better solution 

23. t=t+1 

24. end while 

25. Output X*and optimal life cycle cost 

 

  
 Fig. 7. Traction load data. 

Table 2 
Cost parameters 

Components Parameters Battery UC 

HESS  

kbp / kup CNY/kW 2138 1680 

kbe / kue CNY/kWh 3240 61800 

kbr CNY/kWh 1292 / 

kbop CNY/kW 423 423 

kbo.f  CNY/kW/year 25.5 / 
kbo.v CNY/kW/h 2.78 / 

η
ch
b/u / η

dis
b/u 0.8/0.8 0.95/0.95 

[SOC
min

b/u , SOCmax
b/u ] [0.2,0.8] [0.05,0.95] 

SOCt=0
b/u 0.5 0.5 

εb/u/day 0.1% / 
κ2 0.7 0.7 

PFC 

kPFC CNY/kW 500 
κ1 5% 

κ3 15% 

Tp /h 8760 
Clt CNY/kW/year 1400 

PV kPV CNY/kW 0.1 

Table 3 
Parameters of electricity price 

Type of electricity price Period Price 

grid

t / fed

t  
TOU 

Valley(¥/kWh) 0-6h, 22-0h 0.370 
Peak(¥/kWh) 8-11h, 18-21h 1.252 

Intermediate(¥/kWh) 7-8h, 12-17h 0.782 

Fixed ¥/kWh 0-0+1h 0.782 

ρ
t
dem ¥/kWh/Mon 0-0+1h 42 

Table 4 
Technical parameters of co-phase TPSS 

Parameters Value 

Rated line voltage in three-phase side US  110 kV 
Grid short-circuit capacity Sd  750 MVA 

Three-phase voltage unbalance limit uε.limit 2% 

TT output voltage UT 27.5kV 
α phase voltage Uα 10 kV 

β phase voltage Uβ 10 kV 

Ratio of TT N1 4 

Ratio of HMT N2 11/√3 

 
Table 5 

The details on the case studies  

Case Systems PV 
HESS Electricity 

Schemes 

Variables 

Number Battery UC 

Case1 TPSS - - - TOU 0 
Case2 CTPSS - √ - TOU 3  

Case3 CTPSS - √ √ TOU 5 

Case4 CTPSS √ √ √ Fixed 5 
Case5 CTPSS √ √ √ TOU 5 

 

 



 

feasibility of the proposed capacity programming model, taking 

into account the existence of PV, HESS composed of battery and 

UC, as well as electricity schemes. Table 5 contains the details of 

the case studies.  

Case 1: The conventional TPSS without PV and HESS [7], 

adopts time-of-use (TOU) tariff, as a base reference; 

Case 2: A co-phase TPSS with battery, adopts TOU tariff;  

Case 3: The co-phase TPSS with HESS consisting of battery 

and UC, adopts TOU tariff; 

Case 4: A co-phase TPSS with PV and HESS shown in Fig. 1, 

adopts Fixed tariff;  

Case 5: The co-phase TPSS with PV and HESS, adopts TOU 

tariff. 

The LCC results of co-phase TPSS are listed in Table 6. Case 

1 is to serve as the basic control group, which is no PV and HESS 

accessed. In Case-1, short-term operating cost is 98967 CNY and 

equals to LCC of co-phase TPSS. The main difference between 

Case-2 and Case-3 is the type of energy storage device. The 

former uses only the battery, while the latter adopts HESS 

consisting of battery and UC. The short-term operating cost Ce and 

CLCC of Case-2 are higher than those of Case-3, and even higher 

than Case-1, because the replacement cost of the battery is taken 

into account. Compared with Case-1, the optimal results obtained 

show that the LCC of Case-2 is increased by 4.78% and Case-3 is 

reduced by 7.80%. It can be illustrated that HESS has more 

advantages than a single battery in terms of traction load peak-

shaving and valley-filling and RBE utilization. It can be further 

confirmed that the peak load power of co-phase TPSS has been 

shaved and RBE has been largely recycled between 12:00 A.M 

and 14:00 A.M in Fig. 8(a) and Fig. 8(b), which contributes to 

reducing CECC, CDC and CPC.  

 
The access of PV is to improve the utilization of renewable 

energy. Case-5 is connected to PV based on the scenario of Case-

3, the reduction rate of the LCC is 23.26%. However, penalty 

charge CPC is slightly higher than Case-3, mainly because the PV 

is like a source that only provides energy rather than absorb energy. 

In other words, PV accessed can reduce CECC and CDC, as shown 

in Fig. 8(c). Case-4 is distinct from Case-5 in terms of electricity 

price schemes. The short-term operating cost of co-phase TPSS in 

Case-5 is 57444 CNY, which is much higher than cost 48973 

CNY in Case-4. It is mainly because the peak period of traction 

load corresponds to peak or intermediate electricity price. The 

valley electricity price coincides with the railway skylight period 

when the load is almost zero, which causes enormous differences 

in electricity.  

  
(a) 

  
(b) 

 

 

Table 6 
The LCC in different cases 

Case/CNY Case-1 Case-2 Case-3 Case-4 Case-5 

CECC 81837 59436 55739 37873 45087 

CDC 17130 13004 11655 10113 10538 
CPC 14760 4116 1137 987 1819 

Ce 98967 76556 68531 48973 57444 

C / 27143 22721 24709 18501 

CLCC 98967 103699 91252 73682 75945 

Re% / 22.64% 30.75% 50.51% 41.96% 

Rt% / -4.78% 7.80% 25.55% 23.26% 

Re%——Short-term operating cost Ce reduction rate (Compare with Case-1);  

Rt%——LCC CLCC reduction rate (Compare with Case-1). 

11.33MW

7.53MW

 
(c) 

Fig. 8. (a) Power of utility grid in Case-1 and Case-2; (b) Power of utility grid in 

Case-3 and Case-2; (c) Demand power in Case-1 and Case-5  

 
(a) 

 
(b) 

Fig. 9. (a) SOC of battery and UC; (b) Active power of α-phase converter and 

active, reactive and apparent power of β-phase converter in Case-5. 



 

The charge and discharge number of UC is much higher than 

that of battery in Fig. 9(a). UC is mainly responsible for high-

frequency shock load response due to its high cycle lifetime and 

rapid response, while the battery is mainly responsible for 

responding to long-term energy demand due to its high energy 

density and short cycle lifetime. Fig. 9(b) shows power flow of β-

phase converter. Due to the charge and discharge of HESS, β-

phase converter absorbs power from α-phase converter, HESS, PV 

or RBE, so it can be observed that active power of β-phase 

converter is significantly greater than that of α-phase converter. In 

addition, the apparent power Sβ of β-phase converter is always not 

greater than its rated capacity SPFC (optimized variable in this 

paper), which proves the effectiveness of the PFC capacity 

constraint linearization.  

 

 

6.3 Lifetime of battery and PFC  

The optimal capacity and lifetime results of co-phase TPSS 

under different cases are shown in Table 7. In Fig.10(a), the 

battery contains 27 full cycles and 2 half cycles in Case-2. By 

contrast, in Fig. 10(b), the battery contains 10 full cycles and 2 

half cycles in Case-3, resulting in a significant of battery lifetime. 

The results are consistent with Tb in Table 7. The charging and 

discharging number of the battery is more frequent in Case-2, 

resulting in a faster battery aging, so the combination of the 

battery and UC is beneficial to prolong the battery lifetime. 

Fig. 11 shows the PFC lifetime TMTTF and IGBT modules 

junction temperature (Tj and ΔTj) results on the traction side 

under different cases. In the comparison between Case-2 and 

Case-3, it is illustrated that HESS combining the advantages of 

battery and UC is superior to a single battery in PFC lifetime 

improvement. Furthermore, PV connected also can improve PFC 

lifetime to a certain extent. The PFC lifetime TMTTF in Case-5 is 

larger than in Case-4. It means that the electricity price schemes 

affect the power flow distribution of co-phase TPSS, and then 

affect the PFC junction temperature. To sum up the above, 

adopting the proposed bi-hierarchy capacity programming 

strategy in this paper can decrease the junction temperature 

fluctuation and average junction temperature, thereby the PFC 

lifetime is prolonged to 21.56 years compared with Case-2 to 

Case-4.  

 

 

6.4 The effect of power quality control  

For three-phase voltage unbalance caused by asymmetric 

traction load, the three-phase voltage unbalance constraint is 

taken into account in the optimization model of co-phase TPSS, 

the three-phase voltage unbalance limit is set to 2% in accordance 

with the IEC/TR 61000-3-13 standard. It can be seen from Fig. 

12 that compared with the voltage unbalance of the traction 

substation in Case-1 that only uses TT, by reasonably distributing 

the power flow distribution of TT and PFC, the voltage unbalance 

in Case-5 is a large degree of reduction and bound by the standard. 

On the contrary, the three-phase voltage unbalance in Case-1 

exists exceeding the IEC standard, and the maximum value is 

2.79%.  

Table 7 
Optimal capacity and lifetime results in different cases 

Case Case-2 Case-3 Case-4 Case-5 

Pr
b /MW 3.4 2.3 3.5 1.2 

Er
b/MWh 6.5 6.2 6.6 5.5 

Pr
u/MW / 11.6 13.5 10.1 

Er
u/MWh / 0.43 0.4 0.48 

SPFC/MVA 13.4 13.2 12.6 12.2 
Tb/year 1.47 2.35 2.71 2.93 

TMTTF /year 13.63 14.99 18.35 21.56 

  

 
(a) 

 
(b) 

h——Half cycles; f——Full cycles.  

Fig. 10. (a) and (b) Cycles identification of battery SOC in Case-2 and Case-

3, respectively.  

 
Fig. 11. Comparison of PFC lifetime TMTTF and junction temperature of IGBTs in 

the traction side under different cases. 

 
Fig. 12. Comparison of three-phase voltage unbalance in Case-5 and Case-1. 



 

6.5 The impact of initial SOC on short-term operating cost 

Take Case-5 as an example, Fig. 13 shows the comparison 

result of short-term operating cost considering different initial 

SOC. A series of initial SOC values of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 

and 0.8 are analyzed. It can be seen from Fig. 14 that a maximum 

short-term operating cost reduction of 46.65% compared with 

Case-1 is achieved with initial SOC of 0.5. If the initial SOC of 

HESS continues to increase, the effect of short-term operating cost 

reduction will be saturated. 

 

 

6.6 Comparison with existing literature 

The comparison between reference [7, 18, 31] and this paper is 

presented in Table 8.  

R_1: The conventional traction power supply system (TPSS) with 

HESS and PV, as shown in reference [7]. 

R_2: Only PFC, and PFC capacity is set 12MW in reference [18]. 

R_3: Co-phase TPSS with HESS, and PFC capacity is set 10MW 

in reference [31]. 

This paper: Co-phase TPSS with HESS and PV, and PFC capacity 

is optimized. 

Case 1 is to serve as the basic control group, which is no PV 

and HESS accessed. R_1 is connected to HESS and PV on the 

basis of traditional TPSS, which reduces the short-term operating 

cost by 38.93% (from 98967 CNY to 60441 CNY) through the 

charging and discharging process of HESS, but inevitably 

increases the investment cost and O&M cost of HESS and PV, 

resulting in a final total cost reduction of only 9.01%. R_2 only 

considers the life cycle cost of PFC, and the PFC cost is calculated 

as 2364 CNY with the capacity set in reference [18]. The co-phase 

TPSS adopted in R_3 can effectively utilize the RBE and reduce 

the penalty cost caused by the energy feedback to the grid. 

However, the cost reduction rate is lower than that of reference [7]. 

This is because the HESS capacity is not reasonably optimized in 

reference [31]. Therefore, the bi-hierarchy capacity programming 

strategy adopted in this paper not only improves the RBE 

utilization to reduce short-term operating cost, but also reduces 

the life cycle cost of system by optimizing the capacity of HESS 

and PFC. It is seen from Table 8 that the cost reduction effect of 

this paper is better than that of the references [7, 18, 31]. 

In addition, an integrated lifetime evaluation model of HESS-

PFC in this paper is used to assess the battery and PFC lifetime 

further. Compared with reference [7] and [18], the method 

proposed in this paper can prolong the battery lifetime to 2.93 

years, which is the key to reduce the long-term investment cost 

of battery. The optimization process of PFC capacity between 

reference [7] and this paper is inconsistent. Reference [17] is an 

open-loop state, the enumeration method is used to determine the 

PFC capacity. By contrast, this paper forms a closed loop, an 

integrated lifetime evaluation model of HESS-PFC is constructed 

and a bi-hierarchy capacity programming strategy is adopted to 

simultaneously optimize PFC capacity and extend PFC lifetime 

for minimum life cycle cost. It is shown in Table 8 that the PFC 

lifetime can be extended from 7.80 years to 21.56 years, an 

extension of 63.82%, and a reduction of 49.91% in the PFC life 

cycle cost by optimizing the PFC capacity. 

The convergence of solving methods for capacity 

programming is compared as shown in Fig. 14. Reference [7] 

adopts the gray wolf algorithm (GWO), and reference [18] uses 

the particle swarm algorithm (PSO). In this paper, the whale 

optimization algorithm (WOA) with embedded GUROBI solver 

is used. It can be seen from Fig. 14 that the WOA converges to 

75.95k CNY in the eighth iteration, which is better than the other 

two algorithms. In addition, the best solution of WOA in the first 

generation is also obviously lower than that of the other two 

algorithms, which further proves that WOA has a strong 

superiority.  

 

7. Conclusion 

In this paper, a bi-hierarchy capacity programming model of 

co-phase TPSS with PV and HESS is proposed to optimize 

HESS-PFC capacity for minimum life cycle cost. Meanwhile, the 

proposed method can improve technical metrics, including three-

phase voltage unbalance, and the battery and PFC lifetime, as 

well as remove neutral section. Furthermore, whale optimization 

algorithm with GUROBI solver embedded is employed to solve 

this model.  

 
Fig. 13. Sensitivity analysis on the impact of initial SoC on electricity reduction.  
 
Table 8 
Comparison results of different optimization strategies 

 Case 1 R_1 R_2 R_3 This paper 

CLCC/CNY 98967 90051 2364 91537 75945 

Ce/CNY 98967 60441 / 65754 57444 
CHESS/CNY / 28232 / 25783 16027 

CPV/CNY / 1378 / / 1289 

CPFC/CNY / / 2364 / 1184 

Tb/year / 1.84 / 1.81     2.93↑ 

TMTTF /year / / 7.80 /     21.56↑ 

RLCC% / 9.01% / 7.51%     23.26%↓ 

RPFC%——Life cycle cost of PFC CPFC reduction rate (Compare with R_2). 

 

 
Fig. 14. Convergence curves of PSO, GWO and WOA 

(28,76.44k)

(10,75.95k)

(16,76.06k)



 

Case studies reveal that the life cycle cost and short-term 

operating cost of co-phase TPSS with PV and HESS in this paper 

can be reduced respectively by 23.26% and 41.96% compared 

with traditional co-phase TPSS. Meanwhile, three-phase voltage 

unbalance of co-phase TPSS is within the allowable range of the 

IEC standard (2%), which proves the effectiveness of co-phase 

TPSS to improve energy utilization and power quality. Besides, 

HESS has more advantages than a single battery in terms of 

traction load peak-shaving and valley-filling, RBE utilization 

improvement, and PFC lifetime improvement. Compared with 

existing literature, PFC lifetime is enhanced by 63.82% (from 7.80 

years to 21.56 years) and battery lifetime is prolonged to 2.93 

years. In addition, the whale optimization algorithm with 

GUROBI embedded has been proved to have a strong superiority. 
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