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Abstract. Degree-k Voronoi domains of a periodic point set are con-
centric regions around a �xed centre consisting of all points in Euclidean
space that have the centre as their k-th nearest neighbour. Periodic point
sets generalise the concept of a lattice by allowing multiple points to ap-
pear within a unit cell of the lattice. Thus, periodic point sets model
all solid crystalline materials (periodic crystals), and degree-k Voronoi
domains of periodic point sets can be used to characterise the relative
positions of atoms in a crystal from a �xed centre. The paper describes
the �rst algorithm to compute all degree-k Voronoi domains up to any
degree k ≥ 1 for any two or three-dimensional periodic point set.
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1 Introduction: motivations and key contributions

A discrete set C ⊂ Rn consists of (possibly, in�nitely many) points whose pair-
wise distances have a positive lower bound. The Voronoi domain Z1(C; p) or
Wigner-Seitz cell or Brillouin zone of a point p ∈ C consits of all ambient points
in Rn that are (non-strictly) closer to p than to all other points of C. Fig. 1
shows Voronoi domains in yellow when C is a lattice and p is the origin.

For any k ≥ 1, the degree-k Voronoi domain Zk(C; p) consists of all points
in Rn that have p as its k-th nearest neighbour in C, thus covering relative
positions of distant points beyond the closest neighbours, see Fig. 1. Our key
example of C is a periodic point set that generalises the concept of a lattice
by allowing multiple points to lie within a unit cell of the lattice. Such periodic
point sets geometrically model any solid crystalline material (brie�y, a crystal)
whose atoms are represented by points, possibly with added chemical types.

Key physical properties of a crystal depend on atomic interactions beyond
immediate neighbours within larger degree-k Voronoi domains. These domains
were called k-th Brillouin zones in [13] for lattices and later helped compute
density functions [12, Theorem 6.1], which distinguish all periodic point sets
in general position up to isometry in R3. Section 7 in [12] described how den-
sity functions detected a previously missing crystal in the Cambridge Structural
Database. This paper complements [12] by describing structural results and a
practical algorithm for degree-k Voronoi domains for three-dimensional periodic
point sets.

http://kurlin.org
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Fig. 1. The degree-k Voronoi domain is the union of polygons of the same colour,
and has the origin as its k-th nearest neighbour among all lattice points. Left: the
hexagonal lattice, degrees 1 ≤ k ≤ 12. Right: the square lattice, degrees 1 ≤ k ≤ 20.

The �rst algorithm to compute Voronoi domains for periodic point sets ap-
peared in [10], but did not consider degree-k Voronoi domains for k ≥ 2. The
algorithm for dual periodic Delaunay triangulations or mosaics was recently im-
proved in [23]. Previously, degree-k Voronoi domains were studied and computed
only for lattices whose motif is a single point [13].

In the more restrictive case of lattices, the Teaching and Learning Package
of Cambridge University [25] visualises the degree-k Voronoi domains only for:

• the square and hexagonal lattices up to k = 10 and k = 6 respectively;

• the cubic, body centred cubic and face centred cubic lattices up to k = 5.

Again restricted to lattices, Andrew et al. [1] described an algorithm which
approximates the domains simply by assigning each point of a �xed square/cubical
grid at a given resolution to the appropriate degree-k Voronoi domain.

Degree-k Voronoi domains relate to the more widely known order-k Voronoi
domains, which have been studied for a long time. Only recently degree-k Voronoi
domains have begun to be properly investigated [11].

One could extend algorithms that compute order-k Voronoi domains to con-
struct the desired degree-k Voronoi domains. Though there are many algorithms
that for order-k Voronoi domains in dimension 2 [9], to the best of the authors'
knowledge, there is no publicly available algorithm for order-k Voronoi domains
in dimension 3, which has motivated us to propose the algorithm in this paper.

We substantially improve on the past work in two ways: by generalising to
any periodic point set, and by computing exactly the polytopes that comprise
each domain, which can be used for visualisations and precise computations.
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• Theorem 6 will describe the structure of the degree-k Voronoi domain Zk(C; p)
from De�nition 4 for any point p in a periodic point set C ⊂ Rn.

• The total volume of the degree-k Voronoi domains Zk(C; p) over all points p
in a motif M of a periodic set C ⊂ Rn is independent of k, see Theorem 7.

• The algorithm in Section 4 computes any degree-k Voronoi domain Zk(C; p) of
a periodic point set in polynomial time in the motif size of C, see Theorem 17.
The actual runtime takes only milliseconds on a modest laptop, see Section 5.

Section 2 de�nes necessary concepts. Section 3 states Theorems 6 and 7.
Section 4 describes the practical algorithm for computing degree-k Voronoi do-
mains of periodic point sets in dimensions two and three. Section 5 contains
experimental analysis whose polynomial complexity is justi�ed in Theorem 17.

2 Background de�nitions from computational geometry

Any point p ∈ Rn can be represented by the vector p⃗ from the origin 0 ∈ Rn to p.
The symbol p⃗ also denotes all equal vectors with the same length and direction.
We use only the Euclidean distance |p⃗ − q⃗| between points p, q ∈ Rn. The per-

pendicular bisector between p and q is an Rn−1-dimensional subspace composed
of all points that are equidistant from p and q, and has the property that p⃗− q⃗
is perpendicular to this subspace. For a standard orthonormal basis e⃗1, . . . , e⃗n
of Rn, the lattice Zn ⊂ Rn consists of all points with integer coordinates.

De�nition 1 (lattice Λ, periodic point set C). For n linearly independent vectors
v⃗1, . . . , v⃗n in Rn, the set of integer combinations Λ = {

∑n
i=1 civ⃗i | ci ∈ Z} is

called a lattice. The unit cell spanned by this basis is the parallelepiped U =
{
∑n

i=1 tiv⃗i | ti ∈ [0, 1)}. The lattice generated by this basis or unit cell is denoted
by Λ(U). A motif M ⊂ U is a �nite subset of U , and the periodic point set C
for M and Λ is the Minkowski sum M + Λ = {p+ v⃗ | p ∈ M,v ∈ Λ}. ■

Fig. 2. Left: the green lattice Λ is generated by the orthonormal basis v⃗1, v⃗2. The blue
motif M consists of three points in the square unit cell U . The periodic set C = Λ+M
is the Minkowski sum of the lattice and the �nite motif M of points. Right: if a unit
cell U ⊂ Rn has m motif points, then the 2-extended unit cell has 2nm motif points.

The periodic point set C can be thought of as the union of translates of M
by all vectors of Λ, and hence is invariant under translations by all vectors of Λ.
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Fig. 3. Four red line segments [p, q) go
from the centre p to points q in poly-
gons with indices k = ind(q) from De�-
nition 5 and intersect k − 1 bisectors.

Fig. 4. Degree-k Voronoi domains of a peri-
odic set (not a lattice) with a 2-point motif.

If a periodic point set C is invariant only under translations by vectors v⃗ ∈ Λ,
then the lattice Λ and its unit cell U are called primitive for C.

One can consider any lattice Λ as a periodic point set on the lattice 2Λ with
a motif of 2n points inside the 2-extended unit cell more formally as follows.

De�nition 2 (k-extended unit cell kU). Let a unit cell U ⊂ Rn have a basis
v⃗1, . . . , v⃗n ∈ Rn and a �nite motif M ⊂ U of m points. For any integer k > 1,

the k-extended unit cell kU has motif M +
n∑

i=1

civ⃗i of k
nm points obtained from

M by kn translations along the vectors
n∑

i=1

civ⃗i with ci ∈ {0, . . . , k − 1}. ■

Degree-k Voronoi domains of periodic point sets are introduced in De�nition 4
as the relative complement between sequential index-k Voronoi domains below.

De�nition 3 (Index-k Voronoi domains Vk(C; p)). For a �nite or periodic set
C ⊂ Rn and a point p ∈ C, the index-k Voronoi domain Vk(C; p) is the (closure
of the) set of all points q ∈ Rn such that p is among the k nearest points of C
to q. In particular, V1(C; p) is the classical Voronoi domain V (C; p). ■

The index-k Voronoi domain Vk(C; p) ⊂ Rn is de�ned as a closed set above
to cover all cases where p has equal distances to several neighbours, so a k-th
neighbour of p may not be unique. Unlike order-k Voronoi domains which tile
Rn [15], index-k Voronoi domains form a nested sequence. Any Vk(C; p) is star-
convex, which means it contains all line segments connecting ∂Vk(C; p) to p.
Indeed, if p ∈ C is among the k nearest to q ∈ ∂Vk(C; p), then any intermediate
point in the line segment [p, q] has p among its k nearest neighbours of C.

An order-k Voronoi domain [14] is de�ned for a k-point subset Q ⊂ A ⊂ Rn

and consists of all points for whom the points in Q are the closest k points in A.
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De�nition 4 (Degree-k Voronoi domains Zk(C; p)). For any periodic point set
C ⊂ Rn and p ∈ C, the degree-k Voronoi domain is the di�erence between
successive closed index-k Voronoi domains: Zk(C; p) = Vk(C; p)−Vk−1(C; p) for
k ≥ 1, V0(C; p) = ∅, which di�ers from order-k Voronoi domains in [14]. ■

Fig. 4 shows degree-k Voronoi domains for a point in the periodic point set C
that has a 2-point motif. For a point p ∈ C ⊂ Rn, any q ∈ Rn belongs to exactly
one degree-k Voronoi domain Zk(C; p) for some k ≥ 1, hence ∪+∞

k=1Zk(C; p) covers
Rn without overlaps. Unlike index-k Voronoi domains which are closed, Zk(C; p)
are neither open nor closed for k > 1. The closure of the domain Zk(C; p) includes
all points q for whom p is a non-unique k-th nearest neighbour within C.

3 The geometric structure of degree-k Voronoi domains

The main results of this section are Theorem 6 describing the structure of degree-
k Voronoi domains and Theorem 7 saying that the total volume of the degree-k
Voronoi domains for all motif points is independent of k for a �xed set. So all
coloured regions in Fig. 3 have the same area, which might seem surprising.

De�nition 5 (Zone index ind(q;C; p)). For a periodic set C ⊂ Rn and p ∈ C,
let b(C; p) be the set of perpendicular bisectors between p and all other points of
C. For any q ∈ Rn, consider the half-open line segment [p, q) joining p to q, but
not including q, see Fig. 3. Let i be the number of bisectors from b(C; p) that
intersect [p, q). The zone index of q relative to b(C; p) is ind(q;C; p) = i+ 1. ■

For any point q in the closed Voronoi domain V1(C; p), the half-open segment
[p, q) belongs to the interior of V1(C; p), and hence doesn't intersect any bisectors
from b(C; p). Consider other polytopes obtained from Rn by cutting out all
bisectoral hyperplanes between p and other points q ∈ C. The zone indices of
these polytopes can be computed in gradual increments as we travel radially
outwards from p and count intersecting bisectors, see Fig. 3.

The following structural description of a degree-k Voronoi domain Zk(C; p)
justi�es its spherical shape consisting of polytopes of the same degree k.

Theorem 6 (Structure of Voronoi domains). For any point p in a periodic point
set C ⊂ Rn, the closure of the degree-k Voronoi domain Zk(C; p) is a union of
convex polytopes whose interior points have zone index k. Moreover, the closure
of the degree-k Voronoi domain is spherical in the sense that its image under the
radial projection Zk(C; p) → Sn−1 covers the whole unit sphere Sn−1 ⊂ Rn. ■

Proof. First we prove that any point q ∈ Rn that has the central point p as its
exact k-th nearest neighbour in C should have zone index ind(q;C; p) = k, see
De�nition 5. Let us slide a point s along the half-open line segment [p, q) starting
from the central point p as in Fig. 3. While s is in the interior of V1(C; p), our
point s has p as exactly its 1st nearest neighbour in C and ind(s;C; p) = 1.

When we slide the point s further along the half-closed line segment [p, q),
the zone index ind(s;C; p) jumps up only when we intersect a bisector separating
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Fig. 5. Top left: the Voronoi domain of the red point is bounded by red and black
bisectors. Top middle: both Voronoi domains of the red and blue points form the
Voronoi domain V (Λ; 0) of the lattice Λ of C. Top right: the Voronoi domain of the
blue point is bounded by blue and black bisectors. Bottom left: the degree-2 Voronoi
domain of the red point in C. Bottom middle: both degree-2 Voronoi domains form
V (Λ; 0) after applying translations of the polygons that form the degree-2 Voronoi
domains. Bottom right: the degree-2 Voronoi domain of the blue point.

p from another point of C. If we intersect i ≥ 1 bisectors, then ind(s;C; p) jumps
by i. As the �nal point s = q has p as its exact k-th nearest neighbour in C,
s will intersect k − 1 bisectors as it travels along [p, q), and so the zone index
becomes k. Then Zk(C; p) is a �nite union of convex polytopes (obtained from
Rn by cutting out bisectors) that includes all index k points. The boundary of
any such polytope includes points of index at most k − 1 (`internal' faces closer
to p) and points of index k (`external' faces further away from p).

So the closure of Zk(C; p) is the union of all convex polytopes whose internal
points have zone index k. Then any straight ray R emanating from p either
contains points of index k, hence intersects the interior of Zk(C; p), or R passes
through an intersection point a of several bisectors. In the latter case, when a
point s moves along R via the intersection a, the index of s can change from
k′ < k to k′′ > k. Then any small neighbourhood of a contains points of all
intermediate indices from k′ to k′′ (including k). So the closure of Zk(C; p)
contains a and its image under the radial projection covers the sphere Sn−1.

Fig. 5 illustrates the key idea for the periodic point set C ⊂ R2, which has the
primitive square unit cell [−1, 1]× [−1, 1] containing the red point at (−0.25, 0)
and the blue point at (0.25, 0). The bottom row in Fig. 5 shows how the polygons
of the degree-2 Voronoi domain can be rearranged to form the classical degree-1
Voronoi domain in the �rst row, see the proof of Theorem 7 below.
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Theorem 7 (volumes of a degree-k Voronoi domain, extending [13, Section 2.2]).
For a periodic point set C = Λ + M , the sum of the volumes of the degree-k
Voronoi domains Zk(C; p) over all motif points p ∈ M is independent of k. ■

De�nition 8 (open subdomains V (k)(C; 0)). A lattice Λ of a periodic set C =
Λ + M is primitive if C is not a Minkowski sum Λ′ + M ′ whose motif M ′

has a smaller number of points than M . Then the subdomain V (k)(C; 0) in the
interior of the Voronoi domain V (Λ; 0) consists of all points that have a unique
k-th nearest neighbour in the set C. So this subdomain V (k)(C; 0) is obtained
from the classical Voronoi domain V (Λ; 0) around the origin 0 by removing the
measure 0 subset of points that have several k-th nearest neighbours in C. ■

De�nition 9 (subzone Z◦
k). Let Λ be a primitive lattice of a periodic set C. The

open subzone Z◦
k(C; p) in the interior of the degree-k Voronoi domain Zk(C; p)

consists of all points that have a unique closest node in Λ. ■

Since V (k)(C; 0) is in the interior of V (Λ; 0), the origin 0 is a unique clos-
est point of Λ to every point of V (k)(C; 0). Since Z◦

k(C; p) is in the interior of
Zk(C; p), every point of Z◦

k(C; p) has a unique k-th nearest neighbour in C.

De�nition 10 (half-open Voronoi domain Ṽ (Λ; 0)). For a lattice Λ ⊂ Rn, the
closed Voronoi domains V (Λ; q) of the lattice points q ∈ Λ tile Rn, overlap-
ping only at their boundaries. We de�ne a half-open Voronoi domain Ṽ (Λ; 0) ⊂
V (Λ; 0) to be such that all translational copies tile Rn without overlaps. ■

A half-open Voronoi domain Ṽ (Λ; 0) di�ers from V (Λ; 0) only by a measure
0 subset and can be obtained by removing boundary points of V (Λ; 0) until
there remains exactly one representative of each class of boundary points that
are related via lattice translations. De�nition 11 adapts the piecewise shifts fi
from the case of lattices in [13, p. 754] to any periodic point set C ⊂ Rn.

De�nition 11 (piecewise shift fk). For any periodic set C ⊂ Rn with lattice Λ,
any point p ∈ V (k)(C; 0) has a unique k-th nearest neighbour pk ∈ C. Since all
translates of Ṽ (Λ; 0) cover Rn without overlaps, pk is contained in a translate
Ṽ (Λ; 0) + qk for a unique lattice node qk ∈ Λ. Then we set fk(p) = p⃗− q⃗k. ■

Lemma 12. The map fk : V (k)(C; 0) →
⋃

p∈C∩Ṽ (Λ;0)

Z◦
k(C; p) is a bijection. ■

Proof. We �rst show that the image of fk is in
⋃

p∈C∩Ṽ (Λ;0)

Z◦
k(C; p). Any p ∈

V (k)(C; 0) has a unique k-th nearest neighbour pk ∈ C, which is covered by
a unique translate Ṽ (Λ; 0) + qk for some qk ∈ Λ. Shifting these neighbouring
relations by −q⃗k, we conclude that fk(p) = p− qk has the unique k-th neighbour
p′ = pk−qk ∈ C, which is covered by Ṽ (Λ; 0). Then fk(p) = p−qk ∈ Z◦

k(C; p′) ⊂⋃
p∈C∩Ṽ (Λ;0)

Z◦
k(C; p). To prove that fk is injective, let p, p′ ∈ V (k)(C; 0) have

unique k-th neighbours pk, p
′
k ∈ C, which are covered by unique translates of

Ṽ (Λ; 0) along q⃗k, q⃗
′
k ∈ Λ, respectively. If qk = q′k, then fk(p) − fk(p

′) = p − p′,
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so that p ̸= p′ implies fk(p) ̸= fk(p
′). Otherwise, if qk ̸= q′k, then fk(p) ̸= fk(p

′)

since they lie in the interiors of two di�erent translates of Ṽ (Λ; 0). To prove
that fk is surjective, any point q in the target set belongs to a Z◦

k(C; pk) for

pk ∈ C ∩ Ṽ (Λ; 0). Then q has pk as its unique k-th neighbour in C and a unique
closest lattice node qk ∈ Λ such that V (Λ, 0) + qk covers q. Subtracting qk, we
conclude that p = q− qk has pk − qk as its unique k-th neighbour in C and 0 as
its unique closest lattice node in Λ. So p ∈ V (k)(C; 0) and fk(p) = q.

Proof of Theorem 7. By Lemma 12 the shifts fk from De�nition 11 translate
di�erent pieces of the Voronoi domain V (Λ; 0) to the union of degree-k Voronoi
domains over all motif points (modulo measure 0), so the volumes are equal.

4 Computing degree-k Voronoi domains of a periodic set

Let the dimension n = 2 or 3. The algorithm input consists of:

• a unit cell U given by a basis v⃗1, . . . , v⃗n with rational coordinates in practice;
• a �nite motif M ⊂ U of points given by their coe�cients in the basis of U ;
• a degree k ≥ 1 and a point p ∈ M that will be the centre of the degree-k
Voronoi domains Zk(C; p) of the periodic point set C = Λ+M ⊂ Rn.

Up to rigid motions, we can assume that the point p ∈ M is at the origin.

The output is the degree-k Voronoi domains Zi(C; 0), i = 1, . . . , k. Each do-
main is a union of polygons (n = 2) or polytopes (n = 3) de�ned by:

• vertices: arbitrarily ordered points in Rn;

• edges: unordered pairs of vertices indexed above;

• 2-dimensional faces: cyclically ordered lists of edges indexed above for n = 3.

We introduce the algorithm for n = 2 in the plane R2 for simplicity, while
the natural extension to R3 will be described in an extended version.

Stage 1: cell reduction. A given basis of a unit cell U is reduced to a Minkowski
basis [22], see Lemma 15. A basis reduction is needed due to Lemma 13 below.

Lemma 13 (insu�ciency of cell extensions). For any k > 1, any lattice Λ ⊂ Rn

has a unit cell U whose k-extension doesn't cover the domain V (Λ; 0). ■

Proof. The example in Fig. 6 can be generalised for any lattice Λ ⊂ Rn as follows.
One can choose a basis v⃗1, . . . , v⃗n of Λ in such a way that the nearest neighbour
of the origin 0 ∈ Rn is the vertex v2 of the unit cell spanned by this basis. If
we add the multiple (k + 1)v⃗1 to v⃗2, then the vertex v2 of the initial unit cell U
will not be covered by the k-extended cell Uk based on v⃗1, v⃗2+(k+1)v⃗1, . . . , v⃗n,
see Fig. 6. Indeed, to reach the vertex v⃗2, we need k + 1 subtractions from
v⃗2 + (k+ 1)v⃗1. Hence at least the (k+ 1)-extension of the cell Uk is needed.

The degree-1 Voronoi domain is covered by the 2-extension of a Minkowski-
reduced cell for n = 2, 3 as proved in [16, Appendix A.1]. For degrees k > 1, we
need the stronger Lemma 14 covering any degree-k Voronoi domain.
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Fig. 6. If a unit cell U is not reduced, the extension by any �xed factor k may not
cover even the degree-1 Voronoi domain Z1(Λ; 0), see Lemma 13.

Lemma 14. Let n = 2 or 3. For any unit cell U with a Minkowski-reduced
basis, the unit cell 2kU ⊂ Rn (symmetrically extended around 0 ∈ Rn) covers
the degree-k Voronoi domain Zk(C; 0) ⊂ Rn for any periodic set C = Λ+M . ■

Lemma 14 states that Zk(C; 0) is covered by 2kU (if U is Minkowski-reduced).
Since the boundary of Zk(C; 0) is de�ned by bisectors between 0 and other points
in C, we need to consider points that lie in the 4k-extended unit cell.

Lemma 15 (Minkowski-reduced basis, Lemma 2.2.1 in [22]). A basis v⃗1, . . . , v⃗n
of a lattice Λ ⊂ Rn is Minkowski-reduced if and only if for any i = 1, . . . , n and
integers c1, . . . , cn ∈ Z such that ci, . . . , cn have no common integer factor c > 1,
the inequality |

∑n
i=j cj v⃗j | ≥ |v⃗j | holds. ■

Lemma 16 (su�ciency of Minkowski-reduced cell extensions). For a unit cell
U of a lattice Λ ⊂ Rn, n ≤ 3, with a Minkowski-reduced basis v⃗1, . . . , v⃗n, let Λi,
i ≥ 1, be the set of all points of Λ on the boundary of the 2i-extended unit cell
2iU whose centre of symmetry is the origin 0. Then any point p ∈ Rn \ 2iU is
closer to at least one point of Λi than to 0 ∈ Rn. ■

Proof. Set i = 1. By Appendix A.1 in [16], the Voronoi cell V (Λ; 0) is strictly
within 2U . Any point p on the boundary of 2U belongs to the Voronoi domain
V (Λ; v) of a lattice point v ∈ Λ \ 0. 2U + v must strictly contain V (Λ; v), and as
p is on the boundary of 2U , we must have v ∈ Λ1. Therefore, any point on the
boundary of 2U is closer to a point of Λ1 than to 0, which implies that any point
p ∈ Rn \ 2U is closer to at least one point of Λ1 than to 0. For i ≥ 1, consider
the lattice iΛ with Minkowski-reduced basis vectors iv⃗1, . . . , iv⃗n and unit cell iU.
The above result holds for this new lattice, meaning that any p ∈ Rn \ 2iU is
closer to at least one point of iΛ1 than to 0. It remains to note that iΛ1 ⊂ Λi.

Proof of Lemma 14. It su�ces to prove that Vk(Λ; 0) ⊂ 2kU only for a lattice
Λ, i.e. for a periodic set with a single point in a motif M . Indeed, adding any
extra points to M can only make the Voronoi domain Vk(Λ+M ; 0) smaller than
Vk(Λ; 0). Let U be the unit cell with a Minkowski-reduced basis v⃗1, . . . , v⃗n. Take
any point p ∈ Rn − 2kU . Applying Lemma 16 for i = 1, . . . , k, we conclude that
p has k neighbours in ∪k

i=1Λi that are closer to p than 0. Hence p can not have 0
among its k nearest neighbours in Λ. Then p is outside the k-th Voronoi domain
Vk(Λ; 0). So p ∈ Rn − Vk(Λ; 0), Rn − 2kU ⊂ Rn − Vk(Λ; 0), Vk(Λ; 0) ⊂ 2kU .
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Stage 2: sorting points from the extended motif. If the original motif
M ⊂ Rn had m points including the origin 0 ∈ Rn, the 4k-extended motif Mk

has (4k)nm points for any dimension n. All these points are inserted into a
balanced binary tree whose keys for comparison are distances to the origin.

Stage 3: a loop over motif points. The loop processes all motif points from
the 2k-extended cell (except 0) in increasing order of their distance to 0 ∈ Rn.

For any point p ̸= 0 in the extended motif Mk, the vector 0.5p⃗ represents the
mid-point of the line segment [0, p] ⊂ R2. The bisector line L(p) ⊂ R2 between 0
and p has the parametric equation 0.5p⃗+ tp⃗⊥, where t ∈ R and the unit vector
p⃗⊥ is orthogonal to p⃗ and anti-clockwisely oriented relative to 0 ∈ R2.

In the loop of Stage 3, for each point p ∈ Mk \ {0}, the bisector L(p) is
intersected with all previous bisectors. The resulting intersection points can be
ordered according to the direction of L(p). We keep these intersection points
in a balanced binary tree T (p) whose key for comparison is the parameter t
in the equation of L(p). So a tree T (q) of ordered intersections of L(q) will be
maintained for every point q in the extended motif Mk. This tree is implemented
using the multimap structure in C++ for fast searching and insertions. Every
oriented edge e ⊂ L(q) between successive intersection points has an ordered
pair of polygons attached to this edge. This pair is kept as extra information in
the tree T (q), for example assigned to the initial vertex a of e in Fig. 7.

To avoid unbounded regions, we restrict all polygons to a large square S
containing the extended motif Mk. Every polygon Q in the current splitting of
S by previous bisectors has the index ind(Q) de�ned similarly to De�nition 5
as the number of intersections of all previous bisectors with a line segment [0, q)
for any internal point q ∈ Q, see Fig. 3. After �nding a new intersection point a
of the bisector L(p) with a previous bisector L(q), we follow the steps below.

Fig. 7. Left: the blue convex polygon Q after cutting out all bisectors and before
inserting the bisector of a more distant point p of the set C. Right: the new bisector
L(p) meets the previous four bisectors, creates four intersection points, then splits Q.

Step 3a: insert the intersection point a into the binary trees T (p), T (q) according
to its positions relative to other intersections of L(p), L(q), respectively.
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Step 3b: the appearance of the new intersection point a in the previous bisector
T (q) subdivides an edge e ⊂ L(q) and we mark the two polygons that are
attached to the edge e and should be later split by L(p).

Step 3c: splitting the polygons marked in Step 3b. After �nding all intersections
of L(p) with previous bisectors, we split each marked polygon Q into two smaller
polygons and update their zone indices: the polygon closer to 0 keeps its current
index, while we increment by 1 the index of the more distant polygon.

Theorem 17 says that degree-k Voronoi domains can be computed in poly-
nomial time in the number m of motif points. The polynomial dependence on m
and k seems inevitable, because in general position m(4k)n bisectors between a
�xed centre p and its neighbours in a k-extended motif can intersect each other.

Theorem 17 (Algorithm complexity). Let the dimension be n ≤ 3, and let a
periodic point set C ⊂ Rn have a motif of m points in a Minkowski-reduced
basis. Then the complexity to compute the �rst k degree-i Voronoi domains,
Zi(C; p), i = 1, . . . , k, is O(mn(4k)n

2

(n log(4k) + logm)) for any point p ∈ C. ■

Proof. Starting from a reduced basis in Stage 1, the 4k-extended motif Mk con-
sists of m(4k)n points. Sorting these points according to their distance from the
origin at Stage 2 takes O(m(4k)n(n log(4k) + logm)) time. Stage 3 loops over
m(4k)n points and computes all n-fold intersections of m(4k)n bisectors, which

explains the extra n-th power in the factor mn(4k)n
2

. Inserting intersection
points into binary trees and marking polyhedra at Stage 3 requires only a log-
arithmic time in the number of intersection points between O(mn−1(4k)n(n−1))
1-dimensional lines (intersections of n− 1 ≥ 2 bisectors in any dimension n ≥ 3)

and up to m(4k)n bisectors. Step 3c similarly needs to split only O(mn(4k)n
2

)
polyhedra linearly depending on the number of intersection points.

The complexity to compute a Minkowski-reduced basis is quadratic in loga-
rithms of the lengths of initial basis vectors for dimensions n ≤ 3, see the exact
bounds in [22, Theorems 4.2.1 and 5.0.4]. Though the dependence of the time
estimate on the dimension n is exponential, the experiments in the next section
for n = 2 and n = 3 show that the algorithm is very fast in practice.

5 Experiments on degree-k Voronoi domains for n = 2, 3

The complexity bound from Theorem 17 has been experimentally illustrated as
follows. In R2 we chose 6 di�erent lattices: the square, hexagonal and rectangular
lattices, plus 3 more generic ones, as shown in Fig. 8. Given one of these lattices
and a �xed number m ∈ [1, 50], we randomly generated m motif points to get a
periodic point set. Repeating the random generation of motif points 100 times
for each of the 6 lattices, we get 600 periodic point sets in total for each m ∈
[1, 50], see Fig. 9 for two periodic point sets with m = 2. In Figs. 10-13, each
cross represents the mean result, such as runtime in milliseconds, over the 600
periodic point sets of every value of the number m of motif points considered.
All experiments were performed on a MacBook Pro with 2.3 GHz, 8GB RAM.
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Fig. 8. The 2D lattices in the experiments in Section 5. 1st: a (black) generic lat-
tice with basis (1.25, 0.25), (0.25, 0.75). 2nd: a (blue) hexagonal lattice with basis
(1, 0), (0.5,

√
3/2). 3rd: an (orange) rhombic lattice with basis (1, 0.5), (1,−0.5). 4th:

a (purple) rhombic lattice with basis (1, 1.5), (1,−1.5). 5th: a (red) square lattice with
standard basis (1, 0), (0, 1). 6th: a (green) rectangular lattice with basis (2, 0), (0, 1).

Fig. 9. The �rst 12 degree-k Voronoi domains of 0 ∈ R2 for: Left: A periodic point
set with basis (1, 0.5), (1,−0.5); Right: A periodic point set with basis (1.25, 0.25),
(0.25, 0.75). In each image, the basis vectors are shown by thin black lines.
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Fig. 10. Runtime for 8 degree-k Voronoi
domains for m = 1, . . . , 50 motif points,
averaged over 600 2D periodic sets.
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Fig. 11. Runtime for degree-k Voronoi
domains for k = 1, . . . , 30, averaged over
600 2D periodic sets for m = 1, . . . , 5.

Fig. 10 indicates that starting from about m = 10, the runtime increases
almost linearly with respect to the number m of motif points as expected by
Theorem 17. Fig. 11 indicates that the runtime for n = 2 follows a slow quadratic
increase with respect to the degree k of Voronoi domains, see Theorem 17.
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The 3D experiments were for periodic sets withmmotif points randomly gen-
erated for the cubic lattice. Fig. 15 shows degree-5 Voronoi domains for the FCC
(face-centred cubic) and BCC (body-centred cubic) lattices, and HCP (hexago-
nal close packing). Figs. 12-13 illustrate the time in Theorem 17 for n = 3.
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Fig. 12. Runtime to compute the degree-
k Voronoi domains for k = 1, . . . , 8, av-
eraged over 10 3D periodic point sets for
each value of m = 1, . . . , 5.
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Fig. 13. Runtime to compute the �rst 5
degree-k Voronoi domains as the number
of motif points takes valuesm = 1, . . . , 10,
averaged over 10 3D periodic point sets.

Fig. 14. Degree-k Voronoi domains
Zk(Λ; 0) in the cubic lattice, k = 4, 5, 6.

Fig. 15. Degree-5 Voronoi domains for
FCC, BCC and HCP respectively.

The algorithm from Section 4 helped compute the density functions in [12]
without covering the new results in this paper. These functions were explicitly de-
scribed for any periodic 1D sequence in [5,6]. The C++ code for the algorithm in
Section 4 is available by request. This research opened the wider area of Geomet-
ric Data Science studying point sets up to isometry. Persistent homology turned
out to be a weaker isometry invariant than previously anticipated [24], but com-
plete isometry invariants with continuous and computable metrics were recently
constructed in [17]. Isometry invariants and continuous metrics of periodic sets
were initiated in [21,2], see the recent progress in [3,29,4,28,19,20,8,18,7,30,27,26].
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