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Abstract. Degree-k Voronoi domains of a periodic point set are con-
centric regions around a fixed centre consisting of all points in Euclidean
space that have the centre as their k-th nearest neighbour. Periodic point
sets generalise the concept of a lattice by allowing multiple points to ap-
pear within a unit cell of the lattice. Thus, periodic point sets model
all solid crystalline materials (periodic crystals), and degree-k Voronoi
domains of periodic point sets can be used to characterise the relative
positions of atoms in a crystal from a fixed centre. The paper describes
the first algorithm to compute all degree-k Voronoi domains up to any
degree k > 1 for any two or three-dimensional periodic point set.
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1 Introduction: motivations and key contributions

A discrete set C C R™ consists of (possibly, infinitely many) points whose pair-
wise distances have a positive lower bound. The Voronoi domain Z,(C;p) or
Wigner-Seitz cell or Brillouin zone of a point p € C' consits of all ambient points
in R™ that are (non-strictly) closer to p than to all other points of C. Fig.
shows Voronoi domains in yellow when C is a lattice and p is the origin.

For any k > 1, the degree-k Voronoi domain Z,(C;p) consists of all points
in R™ that have p as its k-th nearest neighbour in C, thus covering relative
positions of distant points beyond the closest neighbours, see Fig. [I} Our key
example of C' is a periodic point set that generalises the concept of a lattice
by allowing multiple points to lie within a unit cell of the lattice. Such periodic
point sets geometrically model any solid crystalline material (briefly, a crystal)
whose atoms are represented by points, possibly with added chemical types.

Key physical properties of a crystal depend on atomic interactions beyond
immediate neighbours within larger degree-k Voronoi domains. These domains
were called k-th Brillouin zones in [13] for lattices and later helped compute
density functions [I2], Theorem 6.1], which distinguish all periodic point sets
in general position up to isometry in R3. Section 7 in [12] described how den-
sity functions detected a previously missing crystal in the Cambridge Structural
Database. This paper complements [12] by describing structural results and a
practical algorithm for degree-k Voronoi domains for three-dimensional periodic
point sets.
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Fig.1. The degree-k Voronoi domain is the union of polygons of the same colour,
and has the origin as its k-th nearest neighbour among all lattice points. Left: the
hexagonal lattice, degrees 1 < k£ < 12. Right: the square lattice, degrees 1 < k& < 20.

The first algorithm to compute Voronoi domains for periodic point sets ap-
peared in [10], but did not consider degree-k Voronoi domains for k£ > 2. The
algorithm for dual periodic Delaunay triangulations or mosaics was recently im-
proved in [23]. Previously, degree-k Voronoi domains were studied and computed
only for lattices whose motif is a single point [13].

In the more restrictive case of lattices, the Teaching and Learning Package
of Cambridge University [25] visualises the degree-k Voronoi domains only for:

e the square and hexagonal lattices up to k = 10 and k& = 6 respectively;
e the cubic, body centred cubic and face centred cubic lattices up to k = 5.

Again restricted to lattices, Andrew et al. [I] described an algorithm which
approximates the domains simply by assigning each point of a fixed square/cubical
grid at a given resolution to the appropriate degree-k Voronoi domain.

Degree-k Voronoi domains relate to the more widely known order-k Voronoi
domains, which have been studied for a long time. Only recently degree-k Voronoi
domains have begun to be properly investigated [11].

One could extend algorithms that compute order-k Voronoi domains to con-
struct the desired degree-k Voronoi domains. Though there are many algorithms
that for order-k Voronoi domains in dimension 2 [9], to the best of the authors’
knowledge, there is no publicly available algorithm for order-k£ Voronoi domains
in dimension 3, which has motivated us to propose the algorithm in this paper.

We substantially improve on the past work in two ways: by generalising to
any periodic point set, and by computing exactly the polytopes that comprise
each domain, which can be used for visualisations and precise computations.
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e Theorem [6] will describe the structure of the degree-k Voronoi domain Z(C' p)
from Definition [4 for any point p in a periodic point set C' C R™.

e The total volume of the degree-k Voronoi domains Z(C;p) over all points p
in a motif M of a periodic set C C R™ is independent of k, see Theorem [7]

e The algorithm in Sectioncomputes any degree-k Voronoi domain Zj(C;p) of
a periodic point set in polynomial time in the motif size of C, see Theorem
The actual runtime takes only milliseconds on a modest laptop, see Section

Section [2] defines necessary concepts. Section [3| states Theorems [6] and [7]
Section [] describes the practical algorithm for computing degree-k Voronoi do-
mains of periodic point sets in dimensions two and three. Section [§| contains
experimental analysis whose polynomial complexity is justified in Theorem [I7]

2 Background definitions from computational geometry

Any point p € R™ can be represented by the vector p'from the origin 0 € R™ to p.
The symbol p also denotes all equal vectors with the same length and direction.
We use only the Euclidean distance |7 — ¢] between points p,q € R™. The per-
pendicular bisector between p and ¢ is an R”~!-dimensional subspace composed
of all points that are equidistant from p and ¢, and has the property that p— ¢
is perpendicular to this subspace. For a standard orthonormal basis €, ..., €,
of R™, the lattice Z™ C R™ consists of all points with integer coordinates.

Definition 1 (lattice A, periodic point set C). For n linearly independent vectors
U1,...,0, in R, the set of integer combinations A = {>°1" | ¢;v;|¢; € Z} is
called a lattice. The unit cell spanned by this basis is the parallelepiped U =
{30 tivi | t; € [0,1)}. The lattice generated by this basis or unit cell is denoted
by A(U). A motif M C U is a finite subset of U, and the periodic point set C

for M and A is the Minkowski sum M + A= {p+ ¥|p € M,v € A}. |
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Fig. 2. Left: the green lattice A is generated by the orthonormal basis ¥1, U2. The blue
motif M consists of three points in the square unit cell U. The periodic set C' = A+ M
is the Minkowski sum of the lattice and the finite motif M of points. Right: if a unit
cell U C R™ has m motif points, then the 2-extended unit cell has 2"m motif points.

The periodic point set C' can be thought of as the union of translates of M
by all vectors of A, and hence is invariant under translations by all vectors of A.
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Fig. 3. Four red line segments [p, q) go
from the centre p to points ¢ in poly-
gons with indices k = ind(g) from Defi- Fig. 4. Degree-k Voronoi domains of a peri-
nition [5] and intersect k£ — 1 bisectors. odic set (not a lattice) with a 2-point motif.

If a periodic point set C is invariant only under translations by vectors ¥ € A,
then the lattice A and its unit cell U are called primitive for C.

One can consider any lattice A as a periodic point set on the lattice 24 with
a motif of 2" points inside the 2-extended unit cell more formally as follows.

Definition 2 (k-extended unit cell kU). Let a unit cell U C R™ have a basis
U1, ...,U, € R™ and a finite motif M C U of m points. For any integer k > 1,
the k-extended unit cell kU has motif M + > ¢;0; of k™m points obtained from

i=1
n
M by k™ translations along the vectors Y ¢;¢; with ¢; € {0,...,k —1}. [ |
i=1
Degree-k Voronoi domains of periodic point sets are introduced in Definition[4]
as the relative complement between sequential index-k Voronoi domains below.

Definition 3 (Index-k Voronoi domains Vj(C;p)). For a finite or periodic set
C C R™ and a point p € C, the index-k Voronoi domain Vi (C;p) is the (closure
of the) set of all points ¢ € R™ such that p is among the k nearest points of C'
to ¢. In particular, V;1(C;p) is the classical Voronoi domain V(C; p). [ |

The index-k Voronoi domain Vi (C;p) C R™ is defined as a closed set above
to cover all cases where p has equal distances to several neighbours, so a k-th
neighbour of p may not be unique. Unlike order-k Voronoi domains which tile
R™ [15], index-k Voronoi domains form a nested sequence. Any Vi (C;p) is star-
conver, which means it contains all line segments connecting 9V (C;p) to p.
Indeed, if p € C is among the k nearest to ¢ € Vi (C;p), then any intermediate
point in the line segment [p, ¢] has p among its k nearest neighbours of C.

An order-k Voronoi domain [14] is defined for a k-point subset Q C A C R™
and consists of all points for whom the points in @ are the closest k points in A.
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Definition 4 (Degree-k Voronoi domains Z(C;p)). For any periodic point set
C C R"™ and p € C, the degree-k Voronoi domain is the difference between
successive closed index-k Voronoi domains: Z(C;p) = Vi(C;p) — Vi—1(C; p) for
k> 1, Vo(C;p) = 0, which differs from order-k Voronoi domains in [14]. |

Fig. A shows degree-k Voronoi domains for a point in the periodic point set C
that has a 2-point motif. For a point p € C' C R", any ¢ € R" belongs to exactly
one degree-k Voronoi domain Z(C'; p) for some k > 1, hence UZ;’? Zy.(C; p) covers
R™ without overlaps. Unlike index-k Voronoi domains which are closed, Z;,(C; p)
are neither open nor closed for & > 1. The closure of the domain Zj(C;p) includes
all points g for whom p is a non-unique k-th nearest neighbour within C.

3 The geometric structure of degree-k Voronoi domains

The main results of this section are Theorem [6]describing the structure of degree-
k Voronoi domains and Theorem [7] saying that the total volume of the degree-k
Voronoi domains for all motif points is independent of k for a fixed set. So all
coloured regions in Fig. 3] have the same area, which might seem surprising.

Definition 5 (Zone index ind(g; C; p)). For a periodic set C' C R™ and p € C,
let b(C'; p) be the set of perpendicular bisectors between p and all other points of
C. For any g € R, consider the half-open line segment [p, ¢) joining p to g, but
not including ¢, see Fig. [3l Let ¢ be the number of bisectors from b(C';p) that
intersect [p, q). The zone index of ¢ relative to b(C;p) is ind(¢; C;p) =i+ 1. B

For any point ¢ in the closed Voronoi domain V;(C; p), the half-open segment
[p, q) belongs to the interior of V1 (C; p), and hence doesn’t intersect any bisectors
from b(C;p). Consider other polytopes obtained from R™ by cutting out all
bisectoral hyperplanes between p and other points ¢ € C. The zone indices of
these polytopes can be computed in gradual increments as we travel radially
outwards from p and count intersecting bisectors, see Fig.

The following structural description of a degree-k Voronoi domain Z(C;p)
justifies its spherical shape consisting of polytopes of the same degree k.

Theorem 6 (Structure of Voronoi domains). For any point p in a periodic point
set C C R™, the closure of the degree-k Voronoi domain Zj(C;p) is a union of
convex polytopes whose interior points have zone index k. Moreover, the closure
of the degree-k Voronoi domain is spherical in the sense that its image under the
radial projection Z;(C;p) — S™~! covers the whole unit sphere S*~! C R". R

Proof. First we prove that any point ¢ € R™ that has the central point p as its
exact k-th nearest neighbour in C' should have zone index ind(gq; C;p) = k, see
Deﬁnition Let us slide a point s along the half-open line segment [p, ¢) starting
from the central point p as in Fig. [3| While s is in the interior of V1 (C;p), our
point s has p as exactly its 1st nearest neighbour in C' and ind(s; C;p) = 1.

When we slide the point s further along the half-closed line segment [p, q),
the zone index ind(s; C;p) jumps up only when we intersect a bisector separating
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Fig.5. Top left: the Voronoi domain of the red point is bounded by red and black
bisectors. Top middle: both Voronoi domains of the red and blue points form the
Voronoi domain V'(A;0) of the lattice A of C. Top right: the Voronoi domain of the
blue point is bounded by blue and black bisectors. Bottom left: the degree-2 Voronoi
domain of the red point in C. Bottom middle: both degree-2 Voronoi domains form
V(4;0) after applying translations of the polygons that form the degree-2 Voronoi
domains. Bottom right: the degree-2 Voronoi domain of the blue point.

p from another point of C. If we intersect ¢ > 1 bisectors, then ind(s; C; p) jumps
by i. As the final point s = ¢ has p as its exact k-th nearest neighbour in C,
s will intersect k — 1 bisectors as it travels along [p, ¢), and so the zone index
becomes k. Then Z,(C;p) is a finite union of convex polytopes (obtained from
R™ by cutting out bisectors) that includes all index k points. The boundary of
any such polytope includes points of index at most k¥ — 1 (‘internal’ faces closer
to p) and points of index k (‘external’ faces further away from p).

So the closure of Zx(C; p) is the union of all convex polytopes whose internal
points have zone index k. Then any straight ray R emanating from p either
contains points of index k, hence intersects the interior of Z;(C;p), or R passes
through an intersection point a of several bisectors. In the latter case, when a
point s moves along R via the intersection a, the index of s can change from
k' < k to k” > k. Then any small neighbourhood of a contains points of all
intermediate indices from k' to k” (including k). So the closure of Zy(C;p)
contains @ and its image under the radial projection covers the sphere S*~!. O

Fig. illustrates the key idea for the periodic point set C' C R?, which has the
primitive square unit cell [—1,1] x [—1, 1] containing the red point at (—0.25,0)
and the blue point at (0.25,0). The bottom row in Fig. [5|shows how the polygons
of the degree-2 Voronoi domain can be rearranged to form the classical degree-1
Voronoi domain in the first row, see the proof of Theorem [7] below.
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Theorem 7 (volumes of a degree-k Voronoi domain, extending [I3], Section 2.2]).
For a periodic point set C = A + M, the sum of the volumes of the degree-k
Voronoi domains Z(C;p) over all motif points p € M is independent of k. W

Definition 8 (open subdomains V(*)(C;0)). A lattice A of a periodic set C' =
A+ M is primitive if C is not a Minkowski sum A’ + M’ whose motif M’
has a smaller number of points than M. Then the subdomain V*)(C;0) in the
interior of the Voronoi domain V'(A;0) consists of all points that have a unique
k-th nearest neighbour in the set C. So this subdomain V(*)(C;0) is obtained
from the classical Voronoi domain V' (4;0) around the origin 0 by removing the
measure 0 subset of points that have several k-th nearest neighbours in C. W

Definition 9 (subzone Z;). Let A be a primitive lattice of a periodic set C. The
open subzone Z;(C;p) in the interior of the degree-k Voronoi domain Z;(C; p)
consists of all points that have a unique closest node in A. |

Since V(*)(C;0) is in the interior of V(4;0), the origin 0 is a unique clos-
est point of A to every point of V*)(C;0). Since Z2(C;p) is in the interior of
Z,(C;p), every point of Z2(C;p) has a unique k-th nearest neighbour in C.

Definition 10 (half-open Voronoi domain V(4;0)). For a lattice A C R”, the
closed Voronoi domains V(A;q) of the lattice points ¢ € A tile R™, overlap-
ping only at their boundaries. We define a half-open Voronoi domain V(A; 0) C
V(4;0) to be such that all translational copies tile R™ without overlaps. |

A half-open Voronoi domain f/(/l; 0) differs from V' (A4;0) only by a measure
0 subset and can be obtained by removing boundary points of V(A;0) until
there remains exactly one representative of each class of boundary points that
are related via lattice translations. Definition [11] adapts the piecewise shifts f;
from the case of lattices in [I3], p. 754] to any periodic point set C C R™.

Definition 11 (piecewise shift fj). For any periodic set C' C R™ with lattice A,
any point p € V(¥)(C;0) has a unique k-th nearest neighbour p, € C. Since all
translates of V(A4;0) cover R” without overlaps, py is contained in a translate
V(A;0) + g for a unique lattice node g € A. Then we set fr(p) =p—Gr. M

Lemma 12. The map f; : V*(C;0) — U Zp(C;p) is a bijection. W
pECNV (4;0)

Proof. We first show that the image of fi is in U Z7(C;p). Any p €
peCNV(A;0)

V(k)(C;O) has a unique k-th nearest neighbour py € C, which is covered by

a unique translate V(A;O) + qi for some ¢, € A. Shifting these neighbouring

relations by —gj, we conclude that fi(p) = p— ¢x has the unique k-th neighbour

p' = pr —qi € C, which is covered by V(4;0). Then fi.(p) = p—qi € Z2(C;p') C
U Z2(C;p). To prove that fy is injective, let p,p’ € V*)(C;0) have

peECNV (4;0)

unique k-th neighbours py,p), € C, which are covered by unique translates of

V(A;0) along i, ), € A, respectively. If g, = g, then fi(p) — fu(p) =p -1/,
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so that p # p" implies fi(p) # fi(p’). Otherwise, if g, # g, then fi.(p) # fi(p')
since they lie in the interiors of two different translates of V(A;0). To prove
that fr is surjective, any point ¢ in the target set belongs to a Z3(C;py) for
pr € CNV(A;0). Then ¢ has py, as its unique k-th neighbour in C' and a unique
closest lattice node g € A such that V(4,0) + g covers g. Subtracting g, we
conclude that p = g — g has py — g as its unique k-th neighbour in C and 0 as
its unique closest lattice node in A. So p € V*)(C;0) and fi(p) = q. O

Proof of Theorem[7 By Lemma [12] the shifts fj, from Definition [I1] translate
different pieces of the Voronoi domain V(4;0) to the union of degree-k Voronoi
domains over all motif points (modulo measure 0), so the volumes are equal. [

4 Computing degree-k Voronoi domains of a periodic set

Let the dimension n = 2 or 3. The algorithm input consists of:

e a unit cell U given by a basis 91, ..., 9, with rational coordinates in practice;
e a finite motif M C U of points given by their coefficients in the basis of U;

e a degree kK > 1 and a point p € M that will be the centre of the degree-k
Voronoi domains Z(C; p) of the periodic point set C = A+ M C R™.

Up to rigid motions, we can assume that the point p € M is at the origin.
The output is the degree-k Voronoi domains Z;(C;0), i = 1,...,k. Each do-
main is a union of polygons (n = 2) or polytopes (n = 3) defined by:

e vertices: arbitrarily ordered points in R";
e edges: unordered pairs of vertices indexed above;
e 2-dimensional faces: cyclically ordered lists of edges indexed above for n = 3.

We introduce the algorithm for n = 2 in the plane R? for simplicity, while
the natural extension to R? will be described in an extended version.

Stage 1: cell reduction. A given basis of a unit cell U is reduced to a Minkowski
basis [22], see Lemma A basis reduction is needed due to Lemma [13| below.

Lemma 13 (insufficiency of cell extensions). For any k > 1, any lattice 4 C R®
has a unit cell U whose k-extension doesn’t cover the domain V'(4;0). |

Proof. The example in Fig.[6]can be generalised for any lattice A C R™ as follows.
One can choose a basis 1, ..., 9, of A in such a way that the nearest neighbour
of the origin 0 € R™ is the vertex vy of the unit cell spanned by this basis. If
we add the multiple (k + 1)¥; to ¥a, then the vertex vo of the initial unit cell U
will not be covered by the k-extended cell Uy, based on ¥y, Uy + (k4 1)¥1, . . . , Un,
see Fig. [6] Indeed, to reach the vertex @, we need k + 1 subtractions from
Uy + (k + 1)0;. Hence at least the (k + 1)-extension of the cell Uy, is needed. O

The degree-1 Voronoi domain is covered by the 2-extension of a Minkowski-
reduced cell for n = 2,3 as proved in [16, Appendix A.1]. For degrees k > 1, we
need the stronger Lemma [14] covering any degree-k Voronoi domain.
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Fig. 6. If a unit cell U is not reduced, the extension by any fixed factor £ may not
cover even the degree-1 Voronoi domain Z;(4;0), see Lemma

Lemma 14. Let n = 2 or 3. For any unit cell U with a Minkowski-reduced
basis, the unit cell 2kU C R™ (symmetrically extended around 0 € R™) covers
the degree-k Voronoi domain Zj,(C;0) C R™ for any periodic set C = A+ M. B

Lemmal[l4]states that Z;(C;0) is covered by 2kU (if U is Minkowski-reduced).
Since the boundary of Z;(C;0) is defined by bisectors between 0 and other points
in C, we need to consider points that lie in the 4k-extended unit cell.

Lemma 15 (Minkowski-reduced basis, Lemma 2.2.1 in [22]). A basis 91, ..., 9,

of a lattice A C R™ is Minkowski-reduced if and only if for any ¢ = 1,...,n and
integers c1, ..., ¢, € Z such that ¢;, ..., ¢, have no common integer factor ¢ > 1,
the inequality | Y ; ¢;7;] > [&;] holds. [ ]

Lemma 16 (sufficiency of Minkowski-reduced cell extensions). For a unit cell
U of a lattice A C R™, n < 3, with a Minkowski-reduced basis 1, ..., U,, let A;,
1 > 1, be the set of all points of A on the boundary of the 2i-extended unit cell
2iU whose centre of symmetry is the origin 0. Then any point p € R™ \ 2iU is
closer to at least one point of A; than to 0 € R". |

Proof. Set i = 1. By Appendix A.1 in [16], the Voronoi cell V(A;0) is strictly
within 2U. Any point p on the boundary of 2U belongs to the Voronoi domain
V(4;v) of a lattice point v € A\ 0. 2U 4+ v must strictly contain V' (A;v), and as
p is on the boundary of 2U, we must have v € A;. Therefore, any point on the
boundary of 2U is closer to a point of A; than to 0, which implies that any point
p € R™\ 2U is closer to at least one point of A; than to 0. For ¢ > 1, consider
the lattice ¢4 with Minkowski-reduced basis vectors it1, . . ., 10, and unit cell iU.
The above result holds for this new lattice, meaning that any p € R™ \ 2iU is
closer to at least one point of i4; than to 0. It remains to note that 14, C A4;. O

Proof of Lemma[I7 Tt suffices to prove that Vj(A;0) C 2kU only for a lattice
A, i.e. for a periodic set with a single point in a motif M. Indeed, adding any
extra points to M can only make the Voronoi domain V(A + M;0) smaller than
Vi(4;0). Let U be the unit cell with a Minkowski-reduced basis #1, . .., ¢,,. Take
any point p € R™ — 2kU. Applying Lemma [16|for i = 1, ..., k, we conclude that
p has k neighbours in Ule/li that are closer to p than 0. Hence p can not have 0
among its k£ nearest neighbours in A. Then p is outside the k-th Voronoi domain
Vi(4;0). So p € R® — Vi (A;0), R™ — 2kU C R™ — Vi (A;0), Vi(A;0) C 2kU. O
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Stage 2: sorting points from the extended motif. If the original motif
M C R™ had m points including the origin 0 € R™, the 4k-extended motif M
has (4k)™m points for any dimension n. All these points are inserted into a
balanced binary tree whose keys for comparison are distances to the origin.

Stage 3: a loop over motif points. The loop processes all motif points from
the 2k-extended cell (except 0) in increasing order of their distance to 0 € R™.

For any point p # 0 in the extended motif M}, the vector 0.5p represents the
mid-point of the line segment [0, p] C R?. The bisector line L(p) C R? between 0
and p has the parametric equation 0.50'+ tp’; , where ¢t € R and the unit vector
P is orthogonal to p and anti-clockwisely oriented relative to 0 € R2.

In the loop of Stage 3, for each point p € My \ {0}, the bisector L(p) is
intersected with all previous bisectors. The resulting intersection points can be
ordered according to the direction of L(p). We keep these intersection points
in a balanced binary tree T'(p) whose key for comparison is the parameter ¢
in the equation of L(p). So a tree T(q) of ordered intersections of L(g) will be
maintained for every point ¢ in the extended motif Mj. This tree is implemented
using the multimap structure in C++ for fast searching and insertions. Every
oriented edge e C L(q) between successive intersection points has an ordered
pair of polygons attached to this edge. This pair is kept as extra information in
the tree T'(q), for example assigned to the initial vertex a of e in Fig.

To avoid unbounded regions, we restrict all polygons to a large square S
containing the extended motif Mj. Every polygon @ in the current splitting of
S by previous bisectors has the index ind(Q) defined similarly to Definition
as the number of intersections of all previous bisectors with a line segment [0, ¢)
for any internal point g € @Q, see Fig.[3] After finding a new intersection point a
of the bisector L(p) with a previous bisector L(q), we follow the steps below.

L(a) &0

Fig. 7. Left: the blue convex polygon @ after cutting out all bisectors and before
inserting the bisector of a more distant point p of the set C. Right: the new bisector
L(p) meets the previous four bisectors, creates four intersection points, then splits Q.

Step 3a: insert the intersection point a into the binary trees T'(p), T'(¢) according
to its positions relative to other intersections of L(p), L(q), respectively.
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Step 3b: the appearance of the new intersection point a in the previous bisector
T(q) subdivides an edge e C L(¢q) and we mark the two polygons that are
attached to the edge e and should be later split by L(p).

Step 3c: splitting the polygons marked in Step 3b. After finding all intersections
of L(p) with previous bisectors, we split each marked polygon @ into two smaller
polygons and update their zone indices: the polygon closer to 0 keeps its current
index, while we increment by 1 the index of the more distant polygon.

Theorem [17] says that degree-k Voronoi domains can be computed in poly-
nomial time in the number m of motif points. The polynomial dependence on m
and k seems inevitable, because in general position m(4k)™ bisectors between a
fixed centre p and its neighbours in a k-extended motif can intersect each other.

Theorem 17 (Algorithm complexity). Let the dimension be n < 3, and let a
periodic point set C C R™ have a motif of m points in a Minkowski-reduced
basis. Then the complexity to comzpute the first k& degree-i Voronoi domains,
Zi;(Csp),i=1,...,k, is O(m™(4k)™ (nlog(4k) + logm)) for any point p € C. R

Proof. Starting from a reduced basis in Stage 1, the 4k-extended motif M}, con-
sists of m(4k)™ points. Sorting these points according to their distance from the
origin at Stage 2 takes O(m(4k)™(nlog(4k) + logm)) time. Stage 3 loops over
m(4k)™ points and computes all n-fold intersections of m(4k)™ bisectors, which
explains the extra n-th power in the factor m”(4k)”2. Inserting intersection
points into binary trees and marking polyhedra at Stage 3 requires only a log-
arithmic time in the number of intersection points between O(m™*(4k)™(=1)
1-dimensional lines (intersections of n — 1 > 2 bisectors in any dimension n > 3)
and up to m(4k)™ bisectors. Step 3¢ similarly needs to split only O(m™(4k)"")
polyhedra linearly depending on the number of intersection points. O

The complexity to compute a Minkowski-reduced basis is quadratic in loga-
rithms of the lengths of initial basis vectors for dimensions n < 3, see the exact
bounds in [22] Theorems 4.2.1 and 5.0.4]. Though the dependence of the time
estimate on the dimension n is exponential, the experiments in the next section
for n = 2 and n = 3 show that the algorithm is very fast in practice.

5 Experiments on degree-k Voronoi domains for n = 2,3

The complexity bound from Theorem [I7 has been experimentally illustrated as
follows. In R? we chose 6 different lattices: the square, hexagonal and rectangular
lattices, plus 3 more generic ones, as shown in Fig. |8l Given one of these lattices
and a fixed number m € [1,50], we randomly generated m motif points to get a
periodic point set. Repeating the random generation of motif points 100 times
for each of the 6 lattices, we get 600 periodic point sets in total for each m €
[1,50], see Fig. |§| for two periodic point sets with m = 2. In Figs. each
cross represents the mean result, such as runtime in milliseconds, over the 600
periodic point sets of every value of the number m of motif points considered.
All experiments were performed on a MacBook Pro with 2.3 GHz, 8GB RAM.
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227 =00

Fig. 8. The 2D lattices in the experiments in Section |5} 1st: a (black) generic lat-
tice with basis (1.25,0.25), (0.25,0.75). 2nd: a (blue) hexagonal lattice with basis
(1,0), (0.5,4/3/2). 3rd: an (orange) rhombic lattice with basis (1,0.5), (1, —0.5). 4th:
a (purple) rhombic lattice with basis (1, 1.5), (1,—1.5). 5th: a (red) square lattice with
standard basis (1,0), (0,1). 6th: a (green) rectangular lattice with basis (2,0), (0,1).

Fig. 9. The first 12 degree-k Voronoi domains of 0 € R? for: Left: A periodic point
set with basis (1,0.5), (1,—0.5); Right: A periodic point set with basis (1.25,0.25),
(0.25,0.75). In each image, the basis vectors are shown by thin black lines.
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Fig. 10. Runtime for 8 degree-k Voronoi Fig.11. Runtime for degree-k Voronoi
domains for m = 1,...,50 motif points, domains for k£ = 1,...,30, averaged over
averaged over 600 2D periodic sets. 600 2D periodic sets for m =1,...,5.

Fig. [I0] indicates that starting from about m = 10, the runtime increases
almost linearly with respect to the number m of motif points as expected by
Theorem [17] Fig. [[T]indicates that the runtime for n = 2 follows a slow quadratic
increase with respect to the degree k£ of Voronoi domains, see Theorem
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The 3D experiments were for periodic sets with m motif points randomly gen-
erated for the cubic lattice. Fig. [I5]shows degree-5 Voronoi domains for the FCC
(face-centred cubic) and BCC (body-centred cubic) lattices, and HCP (hexago-
nal close packing). Figs. illustrate the time in Theorem [17|for n = 3.
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I [
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E 4 £
2
1
03 2 3 Z 5 6 7 8 2 3 4 5 6 7 8 9 10
Order k of Voronoi Zone Number m of Motif Points

Fig. 12. Runtime to compute the degree- Fig.13. Runtime to compute the first 5

k Voronoi domains for £ = 1,...,8, av- degree-k Voronoi domains as the number
eraged over 10 3D periodic point sets for  of motif points takes valuesm =1, ..., 10,
each valueof m=1,...,5. averaged over 10 3D periodic point sets.

OL=-1

Fig.14. Degree-k Voronoi domains Fig.15. Degree-5 Voronoi domains for
Zy(4;0) in the cubic lattice, k = 4,5,6.  FCC, BCC and HCP respectively.

The algorithm from Section El helped compute the density functions in [12]
without covering the new results in this paper. These functions were explicitly de-
scribed for any periodic 1D sequence in [5l6]. The C++ code for the algorithm in
Section[4is available by request. This research opened the wider area of Geomet-
ric Data Science studying point sets up to isometry. Persistent homology turned
out to be a weaker isometry invariant than previously anticipated [24], but com-
plete isometry invariants with continuous and computable metrics were recently
constructed in [I7]. Isometry invariants and continuous metrics of periodic sets

were initiated in [2TJ2], see the recent progress in [3129/428|[T920IRITRI7I30I2726].

References

1. Andrew, R.C., Salagaram, T., Chetty, N.: Visualising higher order Brillouin zones
with applications. European Journal of Physics 38(3), 035501 (2017)

2. Anosova, O., Kurlin, V.: Introduction to periodic geometry and topology.
arXiv:2103.02749 (2021)

3. Anosova, O., Kurlin, V.: An isometry classification of periodic point sets. In: Dis-
crete Geometry and Mathematical Morphology. pp. 229-241 (2021)



14

10.
11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

P. Smith, V Kurlin

. Anosova, O., Kurlin, V.: Algorithms for continuous metrics on periodic crystals.

arXiv:2205.15298 (2022)

Anosova, O., Kurlin, V.: Density functions of periodic sequences. In: Lecture Notes
in Computer Science (Proceedings of DGMM). vol. 13493, pp. 395-408 (2022)
Anosova, O., Kurlin, V.: Density functions of periodic sequences of continuous
events. arxiv:arxiv:2301.05137 (2023)

Bright, M., Cooper, A., Kurlin, V.: Welcome to a continuous world of 3-dimensional
lattices. arxiv:2109.11538 (2021)

Bright, M.J., Cooper, A.I, Kurlin, V.A.: Geographic-style maps for 2-dimensional
lattices. Acta Crystallographica Section A 79(1) (2023)

Chan, T.M.: Random sampling, halfspace range reporting, and construction of
k-levels in three dimensions. STAM Journal on Computing 30(2), 561-575 (2000)
Dolbilin, N., Huson, D.: Periodic Delone tilings. Per. Math. Hung. 34, 57-64 (1997)
Edelsbrunner, H., Garber, A., Ghafari, M., Heiss, T., Saghafian, M., Wintraecken,
M.: Brillouin zones of integer lattices and their perturbations. arxiv:2204.01077
Edelsbrunner, H., Heiss, T., Kurlin, V., Smith, P., Wintraecken, M.: The density
fingerprint of a periodic point set. In: Symp. Comp. Geom. pp. 32:1-32:16 (2021)
Edelsbrunner, H., Iglesias-Ham, M.: On the optimality of the fcc lattice for soft
sphere packing. STAM Journal on Discrete Mathematics 32(1), 750-782 (2018)
Edelsbrunner, H., Osang, G.: A simple algorithm for higher-order Delaunay mosaics
and alpha shapes. arXiv:2011.03617 (2020)

Edelsbrunner, H., Seidel, R.: Voronoi diagrams and arrangements. Discrete & Com-
putational Geometry 1(1), 25-44 (1986). https://doi.org/10.1007/BF02187681
Hart, G., Jorgensen, J., Morgan, W., Forcade, R.: A robust algorithm for k-point
grid generation and symmetry reduction. J Physics Comm. 3(6), 065009 (2019)
Kurlin, V.: Complete invariants for finite clouds of unlabeled points.
arxiv:2207.08502

Kurlin, V.: A complete isometry classification of 3d lattices. arxiv:2201.10543
Kurlin, V.: Exactly computable and continuous metrics on isometry classes of finite
and 1-periodic sequences. arXiv:2205.04388 (2022)

Kurlin, V.A.: Mathematics of 2-dimensional lattices. Foundations of Computa-
tional Mathematics (2022). https://doi.org/10.1007 /s10208-022-09601-8

Mosca, M., Kurlin, V.: Voronoi-based similarity distances between arbitrary crystal
lattices. Crystal Research and Technology 55(5), 1900197 (2020)

Nguyen, P.Q., Stehlé, D.: Low-dimensional lattice basis reduction revisited. ACM
Transactions on Algorithms 5(4) (2009). https://doi.org/10.1145/1597036.1597050
Osang, G., Rouxel-Labbé, M., Teillaud, M.: Generalizing CGAL periodic Delaunay
triangulations. In: European Symposium on Algorithms. pp. 75:1-75:17 (2020)
Smith, P., Kurlin, V.: Families of point sets with identical 1d persistence.
arxiv:2202.00577 (2022)

TLP: https://www.doitpoms.ac.uk/tlplib/brillouin _zones/index.php

Torda, M., Goulermas, J.Y., Kurlin, V.A., Day, G.M.: Densest plane group pack-
ings of regular polygons. Physical Review E (to appear)

Vriza, A., et al.: Molecular set transformer: Attending to the co-crystals in the
cambridge structural database. Digital Discovery (2022)

Widdowson, D., Kurlin, V.: Resolving the data ambiguity for periodic crystals.
Advances in Neural Information Processing Systems (NeurIPS) 35 (2022)
Widdowson, D., Mosca, M., Pulido, A., Cooper, A., Kurlin, V.: Average minimum
distances of periodic sets. MATCH Comm. Math. Comp. Chem 87, 529-559 (2022)
Zhu, Q., et al.: Analogy powered by prediction and structural invariants. J Amer.
Chem. Soc. 144, 9893-9901 (2022)


https://doi.org/10.1007/BF02187681
https://doi.org/10.1007/BF02187681
https://doi.org/10.1007/s10208-022-09601-8
https://doi.org/10.1007/s10208-022-09601-8
https://doi.org/10.1145/1597036.1597050
https://doi.org/10.1145/1597036.1597050
https://www.doitpoms.ac.uk/tlplib/brillouin_zones/index.php

	A practical algorithm for degree-k Voronoi domains of three-dimensional periodic point sets

