A practical algorithm for degree- k Voronoi domains of three-dimensional periodic point sets

Philip Smith, Vitaliy Kurlin
Computer Science department, University of Liverpool, Liverpool L69 3BX, UK
http://kurlin.org \{Philip.Smith3, vitaliy.kurlin\}@liverpool.ac.uk

Abstract

Degree- k Voronoi domains of a periodic point set are concentric regions around a fixed centre consisting of all points in Euclidean space that have the centre as their k-th nearest neighbour. Periodic point sets generalise the concept of a lattice by allowing multiple points to appear within a unit cell of the lattice. Thus, periodic point sets model all solid crystalline materials (periodic crystals), and degree- k Voronoi domains of periodic point sets can be used to characterise the relative positions of atoms in a crystal from a fixed centre. The paper describes the first algorithm to compute all degree- k Voronoi domains up to any degree $k \geq 1$ for any two or three-dimensional periodic point set.

Keywords: Degree- k Voronoi Domains • Periodic Point Sets • Crystals

1 Introduction: motivations and key contributions

A discrete set $C \subset \mathbb{R}^{n}$ consists of (possibly, infinitely many) points whose pairwise distances have a positive lower bound. The Voronoi domain $Z_{1}(C ; p)$ or Wigner-Seitz cell or Brillouin zone of a point $p \in C$ consits of all ambient points in \mathbb{R}^{n} that are (non-strictly) closer to p than to all other points of C. Fig. 1 shows Voronoi domains in yellow when C is a lattice and p is the origin.

For any $k \geq 1$, the degree- k Voronoi domain $Z_{k}(C ; p)$ consists of all points in \mathbb{R}^{n} that have p as its k-th nearest neighbour in C, thus covering relative positions of distant points beyond the closest neighbours, see Fig. [1 Our key example of C is a periodic point set that generalises the concept of a lattice by allowing multiple points to lie within a unit cell of the lattice. Such periodic point sets geometrically model any solid crystalline material (briefly, a crystal) whose atoms are represented by points, possibly with added chemical types.

Key physical properties of a crystal depend on atomic interactions beyond immediate neighbours within larger degree- k Voronoi domains. These domains were called k-th Brillouin zones in [13 for lattices and later helped compute density functions [12, Theorem 6.1], which distinguish all periodic point sets in general position up to isometry in \mathbb{R}^{3}. Section 7 in [12] described how density functions detected a previously missing crystal in the Cambridge Structural Database. This paper complements [12] by describing structural results and a practical algorithm for degree- k Voronoi domains for three-dimensional periodic point sets.

Fig. 1. The degree- k Voronoi domain is the union of polygons of the same colour, and has the origin as its k-th nearest neighbour among all lattice points. Left: the hexagonal lattice, degrees $1 \leq k \leq 12$. Right: the square lattice, degrees $1 \leq k \leq 20$.

The first algorithm to compute Voronoi domains for periodic point sets appeared in [10], but did not consider degree- k Voronoi domains for $k \geq 2$. The algorithm for dual periodic Delaunay triangulations or mosaics was recently improved in [23]. Previously, degree- k Voronoi domains were studied and computed only for lattices whose motif is a single point [13].

In the more restrictive case of lattices, the Teaching and Learning Package of Cambridge University [25] visualises the degree- k Voronoi domains only for:

- the square and hexagonal lattices up to $k=10$ and $k=6$ respectively;
- the cubic, body centred cubic and face centred cubic lattices up to $k=5$.

Again restricted to lattices, Andrew et al. [1] described an algorithm which approximates the domains simply by assigning each point of a fixed square/cubical grid at a given resolution to the appropriate degree- k Voronoi domain.

Degree- k Voronoi domains relate to the more widely known order- k Voronoi domains, which have been studied for a long time. Only recently degree- k Voronoi domains have begun to be properly investigated [11.

One could extend algorithms that compute order- k Voronoi domains to construct the desired degree- k Voronoi domains. Though there are many algorithms that for order- k Voronoi domains in dimension 2 [9, to the best of the authors' knowledge, there is no publicly available algorithm for order- k Voronoi domains in dimension 3, which has motivated us to propose the algorithm in this paper.

We substantially improve on the past work in two ways: by generalising to any periodic point set, and by computing exactly the polytopes that comprise each domain, which can be used for visualisations and precise computations.

- Theorem 6 will describe the structure of the degree- k Voronoi domain $Z_{k}(C ; p)$ from Definition 4 for any point p in a periodic point set $C \subset \mathbb{R}^{n}$.
- The total volume of the degree- k Voronoi domains $Z_{k}(C ; p)$ over all points p in a motif M of a periodic set $C \subset \mathbb{R}^{n}$ is independent of k, see Theorem 7 .
- The algorithm in Section 4 computes any degree- k Voronoi domain $Z_{k}(C ; p)$ of a periodic point set in polynomial time in the motif size of C, see Theorem 17 . The actual runtime takes only milliseconds on a modest laptop, see Section 5 .

Section 2 defines necessary concepts. Section 3 states Theorems 6 and 7. Section 4 describes the practical algorithm for computing degree- k Voronoi domains of periodic point sets in dimensions two and three. Section 5 contains experimental analysis whose polynomial complexity is justified in Theorem 17.

2 Background definitions from computational geometry

Any point $p \in \mathbb{R}^{n}$ can be represented by the vector \vec{p} from the origin $0 \in \mathbb{R}^{n}$ to p. The symbol \vec{p} also denotes all equal vectors with the same length and direction. We use only the Euclidean distance $|\vec{p}-\vec{q}|$ between points $p, q \in \mathbb{R}^{n}$. The perpendicular bisector between p and q is an \mathbb{R}^{n-1}-dimensional subspace composed of all points that are equidistant from p and q, and has the property that $\vec{p}-\vec{q}$ is perpendicular to this subspace. For a standard orthonormal basis $\vec{e}_{1}, \ldots, \vec{e}_{n}$ of \mathbb{R}^{n}, the lattice $\mathbb{Z}^{n} \subset \mathbb{R}^{n}$ consists of all points with integer coordinates.

Definition 1 (lattice Λ, periodic point set C). For n linearly independent vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ in \mathbb{R}^{n}, the set of integer combinations $\Lambda=\left\{\sum_{i=1}^{n} c_{i} \vec{v}_{i} \mid c_{i} \in \mathbb{Z}\right\}$ is called a lattice. The unit cell spanned by this basis is the parallelepiped $U=$ $\left\{\sum_{i=1}^{n} t_{i} \vec{v}_{i} \mid t_{i} \in[0,1)\right\}$. The lattice generated by this basis or unit cell is denoted by $\Lambda(U)$. A motif $M \subset U$ is a finite subset of U, and the periodic point set C for M and Λ is the Minkowski sum $M+\Lambda=\{p+\vec{v} \mid p \in M, v \in \Lambda\}$.

Fig. 2. Left: the green lattice Λ is generated by the orthonormal basis \vec{v}_{1}, \vec{v}_{2}. The blue motif M consists of three points in the square unit cell U. The periodic set $C=\Lambda+M$ is the Minkowski sum of the lattice and the finite motif M of points. Right: if a unit cell $U \subset \mathbb{R}^{n}$ has m motif points, then the 2 -extended unit cell has $2^{n} m$ motif points.

The periodic point set C can be thought of as the union of translates of M by all vectors of Λ, and hence is invariant under translations by all vectors of Λ.

Fig. 3. Four red line segments $[p, q)$ go from the centre p to points q in polygons with indices $k=\operatorname{ind}(q)$ from Definition 5 and intersect $k-1$ bisectors.

Fig. 4. Degree- k Voronoi domains of a periodic set (not a lattice) with a 2 -point motif.

If a periodic point set C is invariant only under translations by vectors $\vec{v} \in \Lambda$, then the lattice Λ and its unit cell U are called primitive for C.

One can consider any lattice Λ as a periodic point set on the lattice 2Λ with a motif of 2^{n} points inside the 2 -extended unit cell more formally as follows.

Definition 2 (k-extended unit cell $k U$). Let a unit cell $U \subset \mathbb{R}^{n}$ have a basis $\vec{v}_{1}, \ldots, \vec{v}_{n} \in \mathbb{R}^{n}$ and a finite motif $M \subset U$ of m points. For any integer $k>1$, the k-extended unit cell $k U$ has motif $M+\sum_{i=1}^{n} c_{i} \vec{v}_{i}$ of $k^{n} m$ points obtained from M by k^{n} translations along the vectors $\sum_{i=1}^{n} c_{i} \vec{v}_{i}$ with $c_{i} \in\{0, \ldots, k-1\}$.

Degree- k Voronoi domains of periodic point sets are introduced in Definition 4 as the relative complement between sequential index- k Voronoi domains below.
Definition 3 (Index- k Voronoi domains $V_{k}(C ; p)$). For a finite or periodic set $C \subset \mathbb{R}^{n}$ and a point $p \in C$, the index- k Voronoi domain $V_{k}(C ; p)$ is the (closure of the) set of all points $q \in \mathbb{R}^{n}$ such that p is among the k nearest points of C to q. In particular, $V_{1}(C ; p)$ is the classical Voronoi domain $V(C ; p)$.

The index- k Voronoi domain $V_{k}(C ; p) \subset \mathbb{R}^{n}$ is defined as a closed set above to cover all cases where p has equal distances to several neighbours, so a k-th neighbour of p may not be unique. Unlike order- k Voronoi domains which tile \mathbb{R}^{n} [15], index- k Voronoi domains form a nested sequence. Any $V_{k}(C ; p)$ is starconvex, which means it contains all line segments connecting $\partial V_{k}(C ; p)$ to p. Indeed, if $p \in C$ is among the k nearest to $q \in \partial V_{k}(C ; p)$, then any intermediate point in the line segment $[p, q]$ has p among its k nearest neighbours of C.

An order- k Voronoi domain [14] is defined for a k-point subset $Q \subset A \subset \mathbb{R}^{n}$ and consists of all points for whom the points in Q are the closest k points in A.

Definition 4 (Degree- k Voronoi domains $Z_{k}(C ; p)$). For any periodic point set $C \subset \mathbb{R}^{n}$ and $p \in C$, the degree- k Voronoi domain is the difference between successive closed index- k Voronoi domains: $Z_{k}(C ; p)=V_{k}(C ; p)-V_{k-1}(C ; p)$ for $k \geq 1, V_{0}(C ; p)=\emptyset$, which differs from order- k Voronoi domains in [14].

Fig. 4 shows degree- k Voronoi domains for a point in the periodic point set C that has a 2-point motif. For a point $p \in C \subset \mathbb{R}^{n}$, any $q \in \mathbb{R}^{n}$ belongs to exactly one degree- k Voronoi domain $Z_{k}(C ; p)$ for some $k \geq 1$, hence $\cup_{k=1}^{+\infty} Z_{k}(C ; p)$ covers \mathbb{R}^{n} without overlaps. Unlike index- k Voronoi domains which are closed, $Z_{k}(C ; p)$ are neither open nor closed for $k>1$. The closure of the domain $Z_{k}(C ; p)$ includes all points q for whom p is a non-unique k-th nearest neighbour within C.

3 The geometric structure of degree- k Voronoi domains

The main results of this section are Theorem6describing the structure of degreek Voronoi domains and Theorem 7 saying that the total volume of the degree- k Voronoi domains for all motif points is independent of k for a fixed set. So all coloured regions in Fig. 3 have the same area, which might seem surprising.

Definition 5 (Zone index $\operatorname{ind}(q ; C ; p)$). For a periodic set $C \subset \mathbb{R}^{n}$ and $p \in C$, let $b(C ; p)$ be the set of perpendicular bisectors between p and all other points of C. For any $q \in \mathbb{R}^{n}$, consider the half-open line segment $[p, q)$ joining p to q, but not including q, see Fig. 3. Let i be the number of bisectors from $b(C ; p)$ that intersect $[p, q)$. The zone index of q relative to $b(C ; p)$ is $\operatorname{ind}(q ; C ; p)=i+1$.

For any point q in the closed Voronoi domain $V_{1}(C ; p)$, the half-open segment [p, q) belongs to the interior of $V_{1}(C ; p)$, and hence doesn't intersect any bisectors from $b(C ; p)$. Consider other polytopes obtained from \mathbb{R}^{n} by cutting out all bisectoral hyperplanes between p and other points $q \in C$. The zone indices of these polytopes can be computed in gradual increments as we travel radially outwards from p and count intersecting bisectors, see Fig. 3 .

The following structural description of a degree- k Voronoi domain $Z_{k}(C ; p)$ justifies its spherical shape consisting of polytopes of the same degree k.

Theorem 6 (Structure of Voronoi domains). For any point p in a periodic point set $C \subset \mathbb{R}^{n}$, the closure of the degree- k Voronoi domain $Z_{k}(C ; p)$ is a union of convex polytopes whose interior points have zone index k. Moreover, the closure of the degree- k Voronoi domain is spherical in the sense that its image under the radial projection $Z_{k}(C ; p) \rightarrow S^{n-1}$ covers the whole unit sphere $S^{n-1} \subset \mathbb{R}^{n}$.

Proof. First we prove that any point $q \in \mathbb{R}^{n}$ that has the central point p as its exact k-th nearest neighbour in C should have zone index $\operatorname{ind}(q ; C ; p)=k$, see Definition5. Let us slide a point s along the half-open line segment $[p, q)$ starting from the central point p as in Fig. 3. While s is in the interior of $V_{1}(C ; p)$, our point s has p as exactly its 1st nearest neighbour in C and $\operatorname{ind}(s ; C ; p)=1$.

When we slide the point s further along the half-closed line segment $[p, q)$, the zone index $\operatorname{ind}(s ; C ; p)$ jumps up only when we intersect a bisector separating

Fig. 5. Top left: the Voronoi domain of the red point is bounded by red and black bisectors. Top middle: both Voronoi domains of the red and blue points form the Voronoi domain $V(\Lambda ; 0)$ of the lattice Λ of C. Top right: the Voronoi domain of the blue point is bounded by blue and black bisectors. Bottom left: the degree-2 Voronoi domain of the red point in C. Bottom middle: both degree-2 Voronoi domains form $V(\Lambda ; 0)$ after applying translations of the polygons that form the degree-2 Voronoi domains. Bottom right: the degree-2 Voronoi domain of the blue point.
p from another point of C. If we intersect $i \geq 1$ bisectors, then ind $(s ; C ; p)$ jumps by i. As the final point $s=q$ has p as its exact k-th nearest neighbour in C, s will intersect $k-1$ bisectors as it travels along $[p, q)$, and so the zone index becomes k. Then $Z_{k}(C ; p)$ is a finite union of convex polytopes (obtained from \mathbb{R}^{n} by cutting out bisectors) that includes all index k points. The boundary of any such polytope includes points of index at most $k-1$ ('internal' faces closer to p) and points of index k ('external' faces further away from p).

So the closure of $Z_{k}(C ; p)$ is the union of all convex polytopes whose internal points have zone index k. Then any straight ray R emanating from p either contains points of index k, hence intersects the interior of $Z_{k}(C ; p)$, or R passes through an intersection point a of several bisectors. In the latter case, when a point s moves along R via the intersection a, the index of s can change from $k^{\prime}<k$ to $k^{\prime \prime}>k$. Then any small neighbourhood of a contains points of all intermediate indices from k^{\prime} to $k^{\prime \prime}$ (including k). So the closure of $Z_{k}(C ; p)$ contains a and its image under the radial projection covers the sphere S^{n-1}.

Fig. 5 illustrates the key idea for the periodic point set $C \subset \mathbb{R}^{2}$, which has the primitive square unit cell $[-1,1] \times[-1,1]$ containing the red point at $(-0.25,0)$ and the blue point at $(0.25,0)$. The bottom row in Fig. 5 shows how the polygons of the degree-2 Voronoi domain can be rearranged to form the classical degree-1 Voronoi domain in the first row, see the proof of Theorem 7 below.

Theorem 7 (volumes of a degree- k Voronoi domain, extending [13, Section 2.2]). For a periodic point set $C=\Lambda+M$, the sum of the volumes of the degree- k Voronoi domains $Z_{k}(C ; p)$ over all motif points $p \in M$ is independent of k.
Definition 8 (open subdomains $V^{(k)}(C ; 0)$). A lattice Λ of a periodic set $C=$ $\Lambda+M$ is primitive if C is not a Minkowski sum $\Lambda^{\prime}+M^{\prime}$ whose motif M^{\prime} has a smaller number of points than M. Then the subdomain $V^{(k)}(C ; 0)$ in the interior of the Voronoi domain $V(\Lambda ; 0)$ consists of all points that have a unique k-th nearest neighbour in the set C. So this subdomain $V^{(k)}(C ; 0)$ is obtained from the classical Voronoi domain $V(\Lambda ; 0)$ around the origin 0 by removing the measure 0 subset of points that have several k-th nearest neighbours in C.

Definition 9 (subzone Z_{k}°). Let Λ be a primitive lattice of a periodic set C. The open subzone $Z_{k}^{\circ}(C ; p)$ in the interior of the degree- k Voronoi domain $Z_{k}(C ; p)$ consists of all points that have a unique closest node in Λ.

Since $V^{(k)}(C ; 0)$ is in the interior of $V(\Lambda ; 0)$, the origin 0 is a unique closest point of Λ to every point of $V^{(k)}(C ; 0)$. Since $Z_{k}^{\circ}(C ; p)$ is in the interior of $Z_{k}(C ; p)$, every point of $Z_{k}^{\circ}(C ; p)$ has a unique k-th nearest neighbour in C.

Definition 10 (half-open Voronoi domain $\tilde{V}(\Lambda ; 0)$). For a lattice $\Lambda \subset \mathbb{R}^{n}$, the closed Voronoi domains $V(\Lambda ; q)$ of the lattice points $q \in \Lambda$ tile \mathbb{R}^{n}, overlapping only at their boundaries. We define a half-open Voronoi domain $\tilde{V}(\Lambda ; 0) \subset$ $V(\Lambda ; 0)$ to be such that all translational copies tile \mathbb{R}^{n} without overlaps.

A half-open Voronoi domain $\tilde{V}(\Lambda ; 0)$ differs from $V(\Lambda ; 0)$ only by a measure 0 subset and can be obtained by removing boundary points of $V(\Lambda ; 0)$ until there remains exactly one representative of each class of boundary points that are related via lattice translations. Definition 11 adapts the piecewise shifts f_{i} from the case of lattices in [13, p. 754] to any periodic point set $C \subset \mathbb{R}^{n}$.

Definition 11 (piecewise shift f_{k}). For any periodic set $C \subset \mathbb{R}^{n}$ with lattice Λ, any point $p \in V^{(k)}(C ; 0)$ has a unique k-th nearest neighbour $p_{k} \in C$. Since all translates of $\tilde{V}(\Lambda ; 0)$ cover \mathbb{R}^{n} without overlaps, p_{k} is contained in a translate $\tilde{V}(\Lambda ; 0)+q_{k}$ for a unique lattice node $q_{k} \in \Lambda$. Then we set $f_{k}(p)=\vec{p}-\vec{q}_{k}$.

Lemma 12. The map $f_{k}: V^{(k)}(C ; 0) \rightarrow \bigcup_{p \in C \cap \tilde{V}(\Lambda ; 0)} Z_{k}^{\circ}(C ; p)$ is a bijection.
Proof. We first show that the image of f_{k} is in $\bigcup_{\tilde{v}} Z_{k}^{\circ}(C ; p)$. Any $p \in$ $p \in C \cap \tilde{V}(\Lambda ; 0)$
$V^{(k)}(C ; 0)$ has a unique k-th nearest neighbour $p_{k} \in C$, which is covered by a unique translate $\tilde{V}(\Lambda ; 0)+q_{k}$ for some $q_{k} \in \Lambda$. Shifting these neighbouring relations by $-\vec{q}_{k}$, we conclude that $f_{k}(p)=p-q_{k}$ has the unique k-th neighbour $p^{\prime}=p_{k}-q_{k} \in C$, which is covered by $\tilde{V}(\Lambda ; 0)$. Then $f_{k}(p)=p-q_{k} \in Z_{k}^{\circ}\left(C ; p^{\prime}\right) \subset$
$\bigcup \quad Z_{k}^{\circ}(C ; p)$. To prove that f_{k} is injective, let $p, p^{\prime} \in V^{(k)}(C ; 0)$ have $p \in C \cap \tilde{V}(\Lambda ; 0)$
unique k-th neighbours $p_{k}, p_{k}^{\prime} \in C$, which are covered by unique translates of $\tilde{V}(\Lambda ; 0)$ along $\vec{q}_{k}, \vec{q}_{k}^{\prime} \in \Lambda$, respectively. If $q_{k}=q_{k}^{\prime}$, then $f_{k}(p)-f_{k}\left(p^{\prime}\right)=p-p^{\prime}$,
so that $p \neq p^{\prime}$ implies $f_{k}(p) \neq f_{k}\left(p^{\prime}\right)$. Otherwise, if $q_{k} \neq q_{k}^{\prime}$, then $f_{k}(p) \neq f_{k}\left(p^{\prime}\right)$ since they lie in the interiors of two different translates of $\tilde{V}(\Lambda ; 0)$. To prove that f_{k} is surjective, any point q in the target set belongs to a $Z_{k}^{\circ}\left(C ; p_{k}\right)$ for $p_{k} \in C \cap \tilde{V}(\Lambda ; 0)$. Then q has p_{k} as its unique k-th neighbour in C and a unique closest lattice node $q_{k} \in \Lambda$ such that $V(\Lambda, 0)+q_{k}$ covers q. Subtracting q_{k}, we conclude that $p=q-q_{k}$ has $p_{k}-q_{k}$ as its unique k-th neighbour in C and 0 as its unique closest lattice node in Λ. So $p \in V^{(k)}(C ; 0)$ and $f_{k}(p)=q$.

Proof of Theorem 7 By Lemma 12 the shifts f_{k} from Definition 11 translate different pieces of the Voronoi domain $V(\Lambda ; 0)$ to the union of degree- k Voronoi domains over all motif points (modulo measure 0), so the volumes are equal.

4 Computing degree- k Voronoi domains of a periodic set

Let the dimension $n=2$ or 3 . The algorithm input consists of:

- a unit cell U given by a basis $\vec{v}_{1}, \ldots, \vec{v}_{n}$ with rational coordinates in practice;
- a finite motif $M \subset U$ of points given by their coefficients in the basis of U;
- a degree $k \geq 1$ and a point $p \in M$ that will be the centre of the degree- k Voronoi domains $Z_{k}(C ; p)$ of the periodic point set $C=\Lambda+M \subset \mathbb{R}^{n}$.

Up to rigid motions, we can assume that the point $p \in M$ is at the origin.
The output is the degree- k Voronoi domains $Z_{i}(C ; 0), i=1, \ldots, k$. Each domain is a union of polygons $(n=2)$ or polytopes $(n=3)$ defined by:

- vertices: arbitrarily ordered points in \mathbb{R}^{n};
- edges: unordered pairs of vertices indexed above;
- 2-dimensional faces: cyclically ordered lists of edges indexed above for $n=3$.

We introduce the algorithm for $n=2$ in the plane \mathbb{R}^{2} for simplicity, while the natural extension to \mathbb{R}^{3} will be described in an extended version.

Stage 1: cell reduction. A given basis of a unit cell U is reduced to a Minkowski basis [22], see Lemma 15. A basis reduction is needed due to Lemma 13 below.

Lemma 13 (insufficiency of cell extensions). For any $k>1$, any lattice $\Lambda \subset \mathbb{R}^{n}$ has a unit cell U whose k-extension doesn't cover the domain $V(\Lambda ; 0)$.

Proof. The example in Fig. 6 can be generalised for any lattice $\Lambda \subset \mathbb{R}^{n}$ as follows. One can choose a basis $\vec{v}_{1}, \ldots, \vec{v}_{n}$ of Λ in such a way that the nearest neighbour of the origin $0 \in \mathbb{R}^{n}$ is the vertex v_{2} of the unit cell spanned by this basis. If we add the multiple $(k+1) \vec{v}_{1}$ to \vec{v}_{2}, then the vertex v_{2} of the initial unit cell U will not be covered by the k-extended cell U_{k} based on $\vec{v}_{1}, \vec{v}_{2}+(k+1) \vec{v}_{1}, \ldots, \vec{v}_{n}$, see Fig. 6. Indeed, to reach the vertex \vec{v}_{2}, we need $k+1$ subtractions from $\vec{v}_{2}+(k+1) \vec{v}_{1}$. Hence at least the $(k+1)$-extension of the cell U_{k} is needed.

The degree- 1 Voronoi domain is covered by the 2-extension of a Minkowskireduced cell for $n=2,3$ as proved in [16, Appendix A.1]. For degrees $k>1$, we need the stronger Lemma 14 covering any degree- k Voronoi domain.

Fig. 6. If a unit cell U is not reduced, the extension by any fixed factor k may not cover even the degree- 1 Voronoi domain $Z_{1}(\Lambda ; 0)$, see Lemma 13 .

Lemma 14. Let $n=2$ or 3 . For any unit cell U with a Minkowski-reduced basis, the unit cell $2 k U \subset \mathbb{R}^{n}$ (symmetrically extended around $0 \in \mathbb{R}^{n}$) covers the degree- k Voronoi domain $Z_{k}(C ; 0) \subset \mathbb{R}^{n}$ for any periodic set $C=\Lambda+M$.

Lemma 14 states that $Z_{k}(C ; 0)$ is covered by $2 k U$ (if U is Minkowski-reduced). Since the boundary of $Z_{k}(C ; 0)$ is defined by bisectors between 0 and other points in C, we need to consider points that lie in the $4 k$-extended unit cell.

Lemma 15 (Minkowski-reduced basis, Lemma 2.2.1 in [22]). A basis $\vec{v}_{1}, \ldots, \vec{v}_{n}$ of a lattice $\Lambda \subset \mathbb{R}^{n}$ is Minkowski-reduced if and only if for any $i=1, \ldots, n$ and integers $c_{1}, \ldots, c_{n} \in \mathbb{Z}$ such that c_{i}, \ldots, c_{n} have no common integer factor $c>1$, the inequality $\left|\sum_{i=j}^{n} c_{j} \vec{v}_{j}\right| \geq\left|\vec{v}_{j}\right|$ holds.

Lemma 16 (sufficiency of Minkowski-reduced cell extensions). For a unit cell U of a lattice $\Lambda \subset \mathbb{R}^{n}, n \leq 3$, with a Minkowski-reduced basis $\vec{v}_{1}, \ldots, \vec{v}_{n}$, let Λ_{i}, $i \geq 1$, be the set of all points of Λ on the boundary of the $2 i$-extended unit cell $2 i U$ whose centre of symmetry is the origin 0 . Then any point $p \in \mathbb{R}^{n} \backslash 2 i U$ is closer to at least one point of Λ_{i} than to $0 \in \mathbb{R}^{n}$.

Proof. Set $i=1$. By Appendix A. 1 in [16], the Voronoi cell $V(\Lambda ; 0)$ is strictly within $2 U$. Any point p on the boundary of $2 U$ belongs to the Voronoi domain $V(\Lambda ; v)$ of a lattice point $v \in \Lambda \backslash 0.2 U+v$ must strictly contain $V(\Lambda ; v)$, and as p is on the boundary of $2 U$, we must have $v \in \Lambda_{1}$. Therefore, any point on the boundary of $2 U$ is closer to a point of Λ_{1} than to 0 , which implies that any point $p \in \mathbb{R}^{n} \backslash 2 U$ is closer to at least one point of Λ_{1} than to 0 . For $i \geq 1$, consider the lattice $i \Lambda$ with Minkowski-reduced basis vectors $i \vec{v}_{1}, \ldots, i \vec{v}_{n}$ and unit cell iU. The above result holds for this new lattice, meaning that any $p \in \mathbb{R}^{n} \backslash 2 i U$ is closer to at least one point of $i \Lambda_{1}$ than to 0 . It remains to note that $i \Lambda_{1} \subset \Lambda_{i}$.

Proof of Lemma 14. It suffices to prove that $V_{k}(\Lambda ; 0) \subset 2 k U$ only for a lattice Λ, i.e. for a periodic set with a single point in a motif M. Indeed, adding any extra points to M can only make the Voronoi domain $V_{k}(\Lambda+M ; 0)$ smaller than $V_{k}(\Lambda ; 0)$. Let U be the unit cell with a Minkowski-reduced basis $\vec{v}_{1}, \ldots, \vec{v}_{n}$. Take any point $p \in \mathbb{R}^{n}-2 k U$. Applying Lemma 16 for $i=1, \ldots, k$, we conclude that p has k neighbours in $\cup_{i=1}^{k} \Lambda_{i}$ that are closer to p than 0 . Hence p can not have 0 among its k nearest neighbours in Λ. Then p is outside the k-th Voronoi domain $V_{k}(\Lambda ; 0)$. So $p \in \mathbb{R}^{n}-V_{k}(\Lambda ; 0), \mathbb{R}^{n}-2 k U \subset \mathbb{R}^{n}-V_{k}(\Lambda ; 0), V_{k}(\Lambda ; 0) \subset 2 k U$.

Stage 2: sorting points from the extended motif. If the original motif $M \subset \mathbb{R}^{n}$ had m points including the origin $0 \in \mathbb{R}^{n}$, the $4 k$-extended motif M_{k} has $(4 k)^{n} m$ points for any dimension n. All these points are inserted into a balanced binary tree whose keys for comparison are distances to the origin.
Stage 3: a loop over motif points. The loop processes all motif points from the $2 k$-extended cell (except 0) in increasing order of their distance to $0 \in \mathbb{R}^{n}$.

For any point $p \neq 0$ in the extended motif M_{k}, the vector $0.5 \vec{p}$ represents the mid-point of the line segment $[0, p] \subset \mathbb{R}^{2}$. The bisector line $L(p) \subset \mathbb{R}^{2}$ between 0 and p has the parametric equation $0.5 \vec{p}+t \vec{p}_{\perp}$, where $t \in \mathbb{R}$ and the unit vector \vec{p}_{\perp} is orthogonal to \vec{p} and anti-clockwisely oriented relative to $0 \in \mathbb{R}^{2}$.

In the loop of Stage 3, for each point $p \in M_{k} \backslash\{0\}$, the bisector $L(p)$ is intersected with all previous bisectors. The resulting intersection points can be ordered according to the direction of $L(p)$. We keep these intersection points in a balanced binary tree $T(p)$ whose key for comparison is the parameter t in the equation of $L(p)$. So a tree $T(q)$ of ordered intersections of $L(q)$ will be maintained for every point q in the extended motif M_{k}. This tree is implemented using the multimap structure in C++ for fast searching and insertions. Every oriented edge $e \subset L(q)$ between successive intersection points has an ordered pair of polygons attached to this edge. This pair is kept as extra information in the tree $T(q)$, for example assigned to the initial vertex a of e in Fig. 7.

To avoid unbounded regions, we restrict all polygons to a large square S containing the extended motif M_{k}. Every polygon Q in the current splitting of S by previous bisectors has the index $\operatorname{ind}(Q)$ defined similarly to Definition 5 as the number of intersections of all previous bisectors with a line segment $[0, q)$ for any internal point $q \in Q$, see Fig. 3. After finding a new intersection point a of the bisector $L(p)$ with a previous bisector $L(q)$, we follow the steps below.

Fig. 7. Left: the blue convex polygon Q after cutting out all bisectors and before inserting the bisector of a more distant point p of the set C. Right: the new bisector $L(p)$ meets the previous four bisectors, creates four intersection points, then splits Q.

Step 3a: insert the intersection point a into the binary trees $T(p), T(q)$ according to its positions relative to other intersections of $L(p), L(q)$, respectively.

Step 3b: the appearance of the new intersection point a in the previous bisector $T(q)$ subdivides an edge $e \subset L(q)$ and we mark the two polygons that are attached to the edge e and should be later split by $L(p)$.
Step 3c: splitting the polygons marked in Step 3b. After finding all intersections of $L(p)$ with previous bisectors, we split each marked polygon Q into two smaller polygons and update their zone indices: the polygon closer to 0 keeps its current index, while we increment by 1 the index of the more distant polygon.

Theorem 17 says that degree- k Voronoi domains can be computed in polynomial time in the number m of motif points. The polynomial dependence on m and k seems inevitable, because in general position $m(4 k)^{n}$ bisectors between a fixed centre p and its neighbours in a k-extended motif can intersect each other.

Theorem 17 (Algorithm complexity). Let the dimension be $n \leq 3$, and let a periodic point set $C \subset \mathbb{R}^{n}$ have a motif of m points in a Minkowski-reduced basis. Then the complexity to compute the first k degree- i Voronoi domains, $Z_{i}(C ; p), i=1, \ldots, k$, is $O\left(m^{n}(4 k)^{n^{2}}(n \log (4 k)+\log m)\right)$ for any point $p \in C$.

Proof. Starting from a reduced basis in Stage 1, the $4 k$-extended motif M_{k} consists of $m(4 k)^{n}$ points. Sorting these points according to their distance from the origin at Stage 2 takes $O\left(m(4 k)^{n}(n \log (4 k)+\log m)\right)$ time. Stage 3 loops over $m(4 k)^{n}$ points and computes all n-fold intersections of $m(4 k)^{n}$ bisectors, which explains the extra n-th power in the factor $m^{n}(4 k)^{n^{2}}$. Inserting intersection points into binary trees and marking polyhedra at Stage 3 requires only a logarithmic time in the number of intersection points between $O\left(m^{n-1}(4 k)^{n(n-1)}\right)$ 1-dimensional lines (intersections of $n-1 \geq 2$ bisectors in any dimension $n \geq 3$) and up to $m(4 k)^{n}$ bisectors. Step 3c similarly needs to split only $O\left(m^{n}(4 k)^{n^{2}}\right)$ polyhedra linearly depending on the number of intersection points.

The complexity to compute a Minkowski-reduced basis is quadratic in logarithms of the lengths of initial basis vectors for dimensions $n \leq 3$, see the exact bounds in [22, Theorems 4.2.1 and 5.0.4]. Though the dependence of the time estimate on the dimension n is exponential, the experiments in the next section for $n=2$ and $n=3$ show that the algorithm is very fast in practice.

5 Experiments on degree-k Voronoi domains for $n=2,3$

The complexity bound from Theorem 17 has been experimentally illustrated as follows. In \mathbb{R}^{2} we chose 6 different lattices: the square, hexagonal and rectangular lattices, plus 3 more generic ones, as shown in Fig. 8. Given one of these lattices and a fixed number $m \in[1,50]$, we randomly generated m motif points to get a periodic point set. Repeating the random generation of motif points 100 times for each of the 6 lattices, we get 600 periodic point sets in total for each $m \in$ [1,50], see Fig. 9 for two periodic point sets with $m=2$. In Figs. 10.13, each cross represents the mean result, such as runtime in milliseconds, over the 600 periodic point sets of every value of the number m of motif points considered. All experiments were performed on a MacBook Pro with 2.3 GHz, 8GB RAM.

Fig. 8. The 2D lattices in the experiments in Section 5 1st: a (black) generic lattice with basis $(1.25,0.25)$, $(0.25,0.75)$. 2nd: a (blue) hexagonal lattice with basis $(1,0),(0.5, \sqrt{3} / 2) .3$ rd: an (orange) rhombic lattice with basis $(1,0.5),(1,-0.5) .4$ th: a (purple) rhombic lattice with basis $(1,1.5),(1,-1.5) .5$ th: a (red) square lattice with standard basis $(1,0),(0,1)$. $\mathbf{6 t h}$: a (green) rectangular lattice with basis $(2,0),(0,1)$.

Fig. 9. The first 12 degree- k Voronoi domains of $0 \in \mathbb{R}^{2}$ for: Left: A periodic point set with basis $(1,0.5),(1,-0.5)$; Right: A periodic point set with basis $(1.25,0.25)$, ($0.25,0.75$). In each image, the basis vectors are shown by thin black lines.

Fig. 10. Runtime for 8 degree- k Voronoi domains for $m=1, \ldots, 50$ motif points, averaged over 600 2D periodic sets.

Fig. 11. Runtime for degree- k Voronoi domains for $k=1, \ldots, 30$, averaged over 6002 D periodic sets for $m=1, \ldots, 5$.

Fig. 10 indicates that starting from about $m=10$, the runtime increases almost linearly with respect to the number m of motif points as expected by Theorem 17 Fig. 11 indicates that the runtime for $n=2$ follows a slow quadratic increase with respect to the degree k of Voronoi domains, see Theorem 17 .

The 3D experiments were for periodic sets with m motif points randomly generated for the cubic lattice. Fig. 15 shows degree- 5 Voronoi domains for the FCC (face-centred cubic) and BCC (body-centred cubic) lattices, and HCP (hexagonal close packing). Figs. 1213 illustrate the time in Theorem 17 for $n=3$.

Fig. 12. Runtime to compute the degreek Voronoi domains for $k=1, \ldots, 8$, averaged over 10 3D periodic point sets for each value of $m=1, \ldots, 5$.

Fig. 14. Degree- k Voronoi domains $Z_{k}(\Lambda ; 0)$ in the cubic lattice, $k=4,5,6$.

Fig. 13. Runtime to compute the first 5 degree- k Voronoi domains as the number of motif points takes values $m=1, \ldots, 10$, averaged over 103 D periodic point sets.

Fig. 15. Degree-5 Voronoi domains for FCC, BCC and HCP respectively.

The algorithm from Section 4 helped compute the density functions in 12 without covering the new results in this paper. These functions were explicitly described for any periodic 1D sequence in [56]. The C ++ code for the algorithm in Section 4 is available by request. This research opened the wider area of Geometric Data Science studying point sets up to isometry. Persistent homology turned out to be a weaker isometry invariant than previously anticipated [24], but complete isometry invariants with continuous and computable metrics were recently constructed in [17. Isometry invariants and continuous metrics of periodic sets were initiated in [21|2], see the recent progress in [3|29|4|28|19|20|8|18|7|30|27|26].

References

1. Andrew, R.C., Salagaram, T., Chetty, N.: Visualising higher order Brillouin zones with applications. European Journal of Physics 38(3), 035501 (2017)
2. Anosova, O., Kurlin, V.: Introduction to periodic geometry and topology. arXiv:2103.02749 (2021)
3. Anosova, O., Kurlin, V.: An isometry classification of periodic point sets. In: Discrete Geometry and Mathematical Morphology. pp. 229-241 (2021)
4. Anosova, O., Kurlin, V.: Algorithms for continuous metrics on periodic crystals. arXiv:2205.15298 (2022)
5. Anosova, O., Kurlin, V.: Density functions of periodic sequences. In: Lecture Notes in Computer Science (Proceedings of DGMM). vol. 13493, pp. 395-408 (2022)
6. Anosova, O., Kurlin, V.: Density functions of periodic sequences of continuous events. arxiv:arxiv:2301.05137 (2023)
7. Bright, M., Cooper, A., Kurlin, V.: Welcome to a continuous world of 3-dimensional lattices. arxiv:2109.11538 (2021)
8. Bright, M.J., Cooper, A.I., Kurlin, V.A.: Geographic-style maps for 2-dimensional lattices. Acta Crystallographica Section A 79(1) (2023)
9. Chan, T.M.: Random sampling, halfspace range reporting, and construction of k-levels in three dimensions. SIAM Journal on Computing 30(2), 561-575 (2000)
10. Dolbilin, N., Huson, D.: Periodic Delone tilings. Per. Math. Hung. 34, 57-64 (1997)
11. Edelsbrunner, H., Garber, A., Ghafari, M., Heiss, T., Saghafian, M., Wintraecken, M.: Brillouin zones of integer lattices and their perturbations. arxiv:2204.01077
12. Edelsbrunner, H., Heiss, T., Kurlin, V., Smith, P., Wintraecken, M.: The density fingerprint of a periodic point set. In: Symp. Comp. Geom. pp. 32:1-32:16 (2021)
13. Edelsbrunner, H., Iglesias-Ham, M.: On the optimality of the fcc lattice for soft sphere packing. SIAM Journal on Discrete Mathematics 32(1), 750-782 (2018)
14. Edelsbrunner, H., Osang, G.: A simple algorithm for higher-order Delaunay mosaics and alpha shapes. arXiv:2011.03617 (2020)
15. Edelsbrunner, H., Seidel, R.: Voronoi diagrams and arrangements. Discrete \& Computational Geometry 1(1), 25-44 (1986). https://doi.org/10.1007/BF02187681
16. Hart, G., Jorgensen, J., Morgan, W., Forcade, R.: A robust algorithm for k-point grid generation and symmetry reduction. J Physics Comm. 3(6), 065009 (2019)
17. Kurlin, V.: Complete invariants for finite clouds of unlabeled points. arxiv:2207.08502
18. Kurlin, V.: A complete isometry classification of 3d lattices. arxiv:2201.10543
19. Kurlin, V.: Exactly computable and continuous metrics on isometry classes of finite and 1-periodic sequences. arXiv:2205.04388 (2022)
20. Kurlin, V.A.: Mathematics of 2-dimensional lattices. Foundations of Computational Mathematics (2022). https://doi.org/10.1007/s10208-022-09601-8
21. Mosca, M., Kurlin, V.: Voronoi-based similarity distances between arbitrary crystal lattices. Crystal Research and Technology 55(5), 1900197 (2020)
22. Nguyen, P.Q., Stehlé, D.: Low-dimensional lattice basis reduction revisited. ACM Transactions on Algorithms 5(4) (2009). https://doi.org/10.1145/1597036.1597050
23. Osang, G., Rouxel-Labbé, M., Teillaud, M.: Generalizing CGAL periodic Delaunay triangulations. In: European Symposium on Algorithms. pp. 75:1-75:17 (2020)
24. Smith, P., Kurlin, V.: Families of point sets with identical 1d persistence. arxiv:2202.00577 (2022)
25. TLP: https://www.doitpoms.ac.uk/tlplib/brillouin_zones/index.php
26. Torda, M., Goulermas, J.Y., Kurlin, V.A., Day, G.M.M.: Densest plane group packings of regular polygons. Physical Review E (to appear)
27. Vriza, A., et al.: Molecular set transformer: Attending to the co-crystals in the cambridge structural database. Digital Discovery (2022)
28. Widdowson, D., Kurlin, V.: Resolving the data ambiguity for periodic crystals. Advances in Neural Information Processing Systems (NeurIPS) 35 (2022)
29. Widdowson, D., Mosca, M., Pulido, A., Cooper, A., Kurlin, V.: Average minimum distances of periodic sets. MATCH Comm. Math. Comp. Chem 87, 529-559 (2022)
30. Zhu, Q., et al.: Analogy powered by prediction and structural invariants. J Amer. Chem. Soc. 144, 9893-9901 (2022)
