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[bookmark: OLE_LINK1]Abstract—In this paper, a novel diagnosis method based on adaptive scale decomposition and weighted multikernel correntropy (ASD-WMKC) is developed to diagnose the faults of wheelset axle box bearing under strong wheel-rail impact interference and background noise. The ASD method is utilized to extract the complete fault characteristic signal of axle box bearing, in which the CHIMDO method is applied to restrict the overshoot and undershoot problems, an optimal shape approximation extension method is developed to suppress the end effects, and an adaptive decomposition scale construction method is proposed to overcome the mode mixing and splitting problems of decomposition. The WMKC is applied to enhance the weak fault characteristic signal and suppress the impact interferences, in which the multikernel correntropy combined with a 2D Gaussian kernel is utilized to overcome the defects of weak adaptability and poor anti-interference ability of correntropy, respectively. Simulation and application studies show that the proposed ASD-WMKC method outperforms the comparative methods and can extract the fault characteristic signal of axle box bearing with the highest completeness and SNR under strong wheel-rail impact interference and background noise.
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[bookmark: _Hlk95900119]1. Introduction
[bookmark: _Hlk118401640]As the key component of a train transmission system, axle box bearings play an important role in carrying the train weight and transmitting the traction force. The local defects that appeared in the axle box bearing will induce abnormal vibration and noise, which not only reduce the working accuracy of the transmission system but also leads to catastrophic accidents such as derailment [1–3]. Therefore, it is of great importance to diagnose the faults of axle box bearings to ensure the safe operation of a train.
[bookmark: _Hlk117608126]During the operation of a train, the wheels will inevitably produce local defects such as flats, scratches, and peelings, leading to strong wheel-rail impact [4]and strong structural vibrations at the axle box bearings. The strong resonance modulation signal caused by the wheel-rail impact has similar or identical frequencies to those of the resonance modulation signal induced by bearing faults, which will strongly mask the fault characteristic signal (FCS) of the axle box bearing. Furthermore, the FCSs will also submerge in strong background noise during operation. Therefore, the extraction of the FCSs of axle box bearing will become extremely difficult under the double masking of wheel-rail impact interference and background noise.
[bookmark: _Hlk117581362][bookmark: _Hlk117581448][bookmark: _Hlk117618323][bookmark: _Hlk118392311][bookmark: _Hlk117670461][bookmark: OLE_LINK5][bookmark: OLE_LINK6][bookmark: _Hlk117670626]By decomposing the complex signals into a series of sub-signals with unique vibration modes, the signal decomposition methods can obtain FCSs with a high signal-to-noise ratio (SNR), and they are effective to realize the incipient fault diagnosis of the axle box bearings under strong background noise [2]. In general, signal decomposition methods can be divided into time-domain methods, frequency-domain methods, and time-frequency reconstruction methods [5]. The frequency-domain methods and time-frequency reconstruction methods usually decompose the signal by constructing a filter bank. However, the parameters of the filter bank in these methods are needed to be pre-set (such as the decomposition level and basis function of wavelet transform decomposition [6], the decomposition level and penalty coefficient of [7] the sparse dictionary of the sparse decomposition [8] and the decomposition level and filter order of the 1/3-binary tree filter bank used in kurtogram [9]) and this nonadaptive approach limits their decomposition performance in nonlinear and nonstationary vibration signals. The time-domain decomposition methods directly decompose the signal by designing an adaptive iterative sifting algorithm and perform better in decomposing strong nonlinear and nonstationary vibration signals [10]. The advantages and limitations of the existing time-domain decomposition methods are analyzed in Table.1. Empirical mode decomposition (EMD) is the most famous adaptive decomposition method so far [11] and is widely used in fault diagnosis of rotating machinery due to its high decomposition adaptability and robustness. In recent decades, a series of improved methods such as Ensemble EMD (EEMD) [12], Complementary Ensemble EMD (CEEMD) [13], and Complete Ensemble EMD with Adaptive Noise (CEEMDAN) [14] have been successively proposed to improve the anti-mode mixing performance of EMD. These methods utilize the white noise to eliminate the intermittent of the decomposed signal, and then reduce mode mixing, but they still suffer from severe mode splitting problems [15]. The local character-scale decomposition (LCD) is derived from intrinsic mode decomposition, which has attracted much attention for its high-frequency resolution and computational efficiency [16]. However, similar to the EMD, LCD also experiences serious mode mixing problems, which limits its application in the FCS extraction of bearings. Wang and Liu proposed a complete ensemble LCD with adaptive noise (CELCDAN) method [10] to improve the anti-mode mixing performance of LCD. However, the CELCDAN inevitably has mode splitting problems caused by the mismatch between the decomposition scale and the signal frequency distribution since the global reference scale is also constructed by decomposing white noise. Local mean decomposition (LMD) obtains the mean curve by moving average [17], in which the generated mean curve is often under-enveloped. Hence, LMD can suppress the mode splitting to a certain extent, while suffering from severe mode mixing. To further improve the anti-mode mixing performance of LMD, a series of improved algorithms based on white noise such as Ensemble LMD (ELMD) [18], Complementary Ensemble LMD (CELMD) [19] and Complete Ensemble LMD with Adaptive Noise (CELMDAN) [15] have emerged in recent years. These methods can avoid mode splitting to a certain degree. However, due to the lower estimation accuracy of the mean curve, its anti-mode mixing performance is worse than that of CEEMAND and CELCDAN. The existing adaptive decomposition approaches still cannot simultaneously solve the mode mixing and splitting problems, which limit their application in features extraction of axle box bearing under impact interference.
[bookmark: _Hlk87951875]Table. 1. Summary of related studies.
	Methods
	Advantages
	Limitation

	Signal decomposition methods

	EEMD [12], CEEMD [13], and CEEMAND [14]
	Possess excellent anti-mode mixing ability.
	Prone to mode splitting

	CELCDAN [10]
	Possess high frequency-resolution 
Possess excellent anti-mode mixing ability.
	Prone to mode splitting

	ELMD [18], CELMD [19] and CELMDAN [15]
	Possess excellent anti-mode splitting ability.
	Exist some degree of modal mixing

	End effect suppression methods

	ME [20]
	Easy to implement
	Poor in non-symmetry signal extending

	ISBM [21]
	Power in quasi-stationary signal
	Ignore the overall fluctuation trend of the signal

	Machine-learning [10,22]
	Power in non-stationary signal
	To be computation-consuming

	Envelope curve estimation methods

	CSI [23]
	Possess excellent fitting ability
	Prone to be overshoot and undershoot

	Moving average method [16]
	Easy to implement
Improve the anti-mode splitting ability of LMD
	Has serious under-envelope problems

	Linear interpolation method [17]
	High computation efficiency
	Cannot consider the overall fluctuation trend of the decomposed signal

	HI [26], RHI [27,28] and MPCHI [29]
	Possess excellent shape-preserving ability
	Can adaptively maintain the best estimation of the envelope curve for the decomposed signal

	Feature enhancement methods

	[bookmark: _Hlk118275826]Correlation analysis-based methods [31]
	Capable of suppressing random impulse
Capable of enhancing the stationary FCSs
	Poor in suppressing the periodic impulse

	[bookmark: _Hlk118275880]Time synchronous averaging-based methods [33]
	Capable of suppressing random and low-frequent impulse
Capable of enhancing the stationary FCSs
	Poor in suppressing the periodic and high-frequent impulse

	Fat tail statistics-based methods [34]
	Capable of locating the informative band under impulse interference
Capable of separating the impulse with different frequencies to the FCSs
	Unable to suppress the impulse
Unable to separate the impulse with similar frequencies to the FCSs

	Correntropy-based methods [35-38]
	Powerful in suppressing the periodic impulse
Powerful in enhancing the stationary FCSs
	Poor in enhancing the non-stationary FCSs


[bookmark: _Hlk101284293]The end effect suppression and envelope curve estimation (summarized in Table. 1) are the other two important factors that affect the decomposition performance of the adaptive decomposition method [24,25]. Extension techniques are widely used to suppress the end effects, and the mainstream methods include the mirror extending method (ME) [20] improved slope-based method (ISBM) [21], and machine learning methods [10,22]. These approaches are associated with various limitations, for example, the ME method performs poorly when the symmetry of the signal is low, the ISBM method ignores the overall fluctuation trend of the signal, and the machine learning methods are too computation-consuming. Also, the existing decomposition algorithms have certain deficiencies in the mean curve estimations, for instance, the cubic spline interpolation method of EMD has serious overshoot and undershoot problems [23], the moving average method of LMD has serious under-envelope behaviors since it generally uses a large window to ensure the smoothness of mean curve, and the linear interpolation method utilized by LCD cannot consider the overall fluctuation trend of the decomposed signal. Hermite interpolation is the only first-order continuous differentiable and has better shape-preserving ability than other high-order interpolation techniques, which makes it widely used in mean curve estimation of decomposition algorithms [26]. Recently, the rational Hermite interpolation (RHI) method was applied to construct the envelope curves of EMD [27] and LCD [28]. The monotonic piecewise cubic Hermite interpolation (MPCHI) method was utilized to calculate the local mean and envelope amplitudes of LMD [29]. However, neither RHI nor MPCHI can adaptively maintain the best estimation of the envelope curve for the decomposed signal, and both of them still have overshoot and undershoot problems when dealing with strong non-stationary and non-Gaussian signals. Therefore, it is still a great challenge to estimate the envelope curve with high precision for strong non-stationary and non-Gaussian signals.
[bookmark: _Hlk118392429]Kurtosis as an effective index to evaluate the non-gaussian characteristics of signals, was extensively utilized to locate the informative band of bearing faults characteristic signals. In recent years, a series of diagnosis methods were proposed based on it, such as the fast Kurtogram [9], Sparsogram [30] and Autogram [31]. Although these methods are powerful in severe interference environments, they cannot deal with the bearing faults diagnosis problems under strong impact interference. However, the weak fault diagnosis of bearings under strong impact interference is a problem that needs to be solved in the health monitoring of axle box bearings [32]. When there are impulse interferences in the fault signal, the traditional informative band selection methods based on the non-Gaussian index are no longer effective. To suppress impulse interferences, many improved methods have emerged in recent years (summarized in Table. 1), such as correlation analysis-based methods [31], time synchronous averaging-based methods [33], fat tail statistics-based methods [34], and correntropy-based methods [35,36]. For the correlation analysis-based methods, their essence lies in suppressing the random impulse components in the informative signal by correlation analysis and then enhancing the periodic impulse components induced by a local bearing failure. The time synchronous averaging-based methods utilize the summation operation of the synchronous signals to weaken the random components, so they also have a suppression effect on random impulsive interferences. And the mechanism of the fault diagnosis method based on the fat-tail statistical theory is to find the frequency band with the highest probability density of non-Gaussian components. When the frequency of the resonance modulation signal induced by the periodic impact is close to that of the FCS, or the remaining noise components in the informative band are too strong, the above methods cannot effectively extract the FCSs. The correntropy is the correlation function defined in the high-dimensional Hilbert space, which can compress the strong impulse noise to the same amplitude scale as the periodic weak impulse induced by bearing faults through appropriate kernel function selection [36]. Fu et al. utilized the correntropy of intrinsic mode function (IMF) [37] and product function (PF) [38] to extract fault characteristics of rolling bearings. Zhao et al. [35,36] diagnosed bearing faults by cyclic correntropy spectrum under impulsive noise environments. Ni et al. [36] proposed a correntropy-based band selection method for bearing fault diagnosis under fault-irrelevant impulsive and cyclo-stationary interferences. These correntropy-based methods all require good stability of the FCS. However, due to the influence of external excitation, working condition fluctuation and structural nonlinearity in practical engineering, the fault characteristic components in the measured signal are non-stationarity, which makes the error distribution of the characteristic signal at different times not meet the standard Gaussian distribution. In this case, the feature enhancement performance of the correntropy (based on standard Gaussian function) will be weakened greatly especially when the FCSs are double-masked by periodic impact with similar resonant modulating frequency and strong background noise. Therefore, the feature enhancement of faulty axle box bearings under the double masking of strong wheel-rail impact and background noise is still an unsolved problem.
[bookmark: _Hlk95901110][bookmark: _Hlk117581961][bookmark: _Hlk117582121][bookmark: _Hlk104533455]In this paper, we propose a novel adaptive scale decomposition (ASD) method to simultaneously improve the anti-mode mixing and splitting performance of the existing decomposition methods. In ASD, an adaptive scale construction method based on extrema span statistics is utilized to overcome the mode mixing or splitting problems caused by the mismatch between decomposition scale and frequency distribution of the decomposed signal; the cubic Hermite interpolation with minimum derivative oscillating (CHIMDO) is applied to restrict the overshoot and undershoot problem in envelope curve estimation; an optimal shape approximation extending method (OSAE) is developed to suppress end effects of decomposition by optimally approaching the real fluctuation trend of the extended signal. Inspired by correntropy [39], a new operator named Weighted Multikernel Correntropy (WMKC) is proposed to enhance the FCSs of bearings under the double masking of strong wheel-rail impact and background noise. The multikernel correntropy (MKC) consists of multiple Gaussian functions with variable centers, which makes it better fit the non-standard Gaussian distribution [40], and thus has stronger feature enhancement performance on non-stationary FCSs. The weight function is designed as a two-dimensional Gaussian kernel [41], which can effectively suppress the impact interference and background noise to further improve the feature enhancement ability of MKC.
The follow-up contents of the paper are organized as follows. The framework, algorithms, and relevant theories of the proposed diagnosis method are introduced in Section 2. The envelope curve estimation, end effect suppression, anti-mixing and splitting ability, feature enhancement and faults diagnosis performance of the proposed ASD-WMKC method are analyzed in Section 3 via simulated signals. The superiority of the ASD-WMKC in faults diagnosis for axle box bearing diagnosis under double masking of strong background noise and wheelset-rail impulse interference is demonstrated in Section 4. Finally, the conclusions are given in Section 5.


Fig. 1 The framework of the proposed method
[bookmark: _Hlk95910737]2. Methodology
2.1 Framework of the proposed method
In this section, a new hybrid method based on ASD and WMKC (ASD-WMKC) is developed to diagnose the axle box bearing faults under double masking of strong wheel-rail impact interference and background noise. The framework of the ASD-WMKC method consists of three parts: feature extraction part, feature enhancement part and fault identification part, as shown in Fig.1. In the signal decomposition part, the proposed ASD is utilized to extract the complete FCS of bearing. Then, the FCS with impact interference is maximally enhanced by WMKC in the feature enhancement part. Finally, the fault information is identified via the WMKC spectrum of FCSs in the fault identification part. The specific implementations are depicted below.
[bookmark: _Hlk118189821]Part1: Utilize ASD to decompose the original vibration signal into a set of PFs, and calculate the kurtosis of all sub-signals, and then reserve the sub-signals with kurtosis larger than 0.8 (K>1 indicates there are non-Gaussian components in PFs) to remove the fault-irrelevant components.
[bookmark: _Hlk117583477]Part 2: Perform absolute value calculation, low-pass filtering (the cutoff frequency is fs/8) and down-sampling (the down-sampling rate is 8) for the each selected PFs independently, and obtain the corresponding envelope signal PFenvs; calculate the FEWMKC and WMKC of each PFenvs as Eqs. (16) and (19).
Part 3: Choose the PFenvs with the largest FEWMKC as the final fault characteristic signal, calculate its WMKC spectrum, and identify the fault.
[bookmark: _Hlk95900681][bookmark: _Hlk83632926][bookmark: _Hlk98857588]2.2 Optimal shape approximation extending method
[bookmark: _Hlk96594176][bookmark: _Hlk96594226][bookmark: _Hlk96594358]For the time series y(t) (as shown in Fig.2), let y(1), y(e1), y(e2) and y(e3) are the left endpoint and the first three extreme points of the left end, respectively. Then, the shape of the left end can be described as SL((y(1)y(e1), 1n1), (0, 0), (y(e2)y(e1), e2e1), (y(e3)y(e1), e3e1)) = SL((∆y1, ∆x1), (∆y2, ∆x2), (∆y3, ∆x3)). For the nth maximum point or minimum point, we can construct a shape SLn((∆yn1, ∆xn1), (∆yn2, ∆xn2), (∆yn3, ∆xn3)), n≥2, ∆xn1=∆x1, n2 and n3 denote the n+1 and n+2 extreme points, respectively. The similarity of SL and Sn can be measured using Euclidean distance between the two shapes (see in Fig. 3):

		(1)
The proposed OSAE method extends the extreme point by looking for the sequence which has the most similar shape to SL or SR in the signal as shown in Fig. 2. The implementation steps are as follows:
Step1：Find the extreme points of signal y(t) and construct the left and right end base shape SL, SR and its similar shapes SLn and SRn;
[bookmark: _Hlk96594510]Step2：Calculate the Euclidean distances D(SL, SLn) and D(SR, SRn), and find the optimal approximation shape for SL and SR by min{D(SL, SLn)} and min{D(SR, SRn)} respectively;
Step3：Extend the maximum and minimum points of the left and right end as Eqs. (2) and (3), respectively.

		(2)

		(3)
[image: ]
Fig. 2 Schematic of optimal shape approximation extending
[bookmark: _Hlk96891890][bookmark: _Hlk95900834][image: ]
Fig. 3 The shape similarity measure of SL and Sn
[bookmark: _Hlk118208619][bookmark: _Hlk118398396][bookmark: _Hlk118208698]Obviously, even the strong asymmetrical and non-stationary signals induced by the bearing fault will be well extended since the sequence with the most similar shape to that at the end of the bearing signals can always be accurately captured by the OSAE method.
[bookmark: _Hlk96605346]2.3 Local characteristic-mean decomposition
[bookmark: _Hlk96622446][bookmark: _Hlk96702545][bookmark: _Hlk96610922][bookmark: _Hlk83566853][bookmark: _Hlk83567808]In this section, a local characteristic mean decomposition method (LCMD) is proposed to generate accurate decomposition results. The cubic Hermite interpolation with minimum derivative oscillating (CHIMDO) method which can adaptively obtain smooth interpolation with minimal derivative oscillation is utilized to give the most reasonable estimation for the mean envelope curve as shown in Fig.1. Let a=e1<e2<…<eN=b be a partition of an interval [a, b]. For t[ei, ei+1], i=1,2, …, N-1, the CHIMDO can be described as[42]:

[bookmark: _Hlk83580922]		(4)
[bookmark: _Hlk83566626][bookmark: _Hlk83564457][bookmark: _Hlk83568413][bookmark: _Hlk96608533]where hi=ei+1-ei, τ=(t-ei)/hi[0,1]. H(ei)=yi are given date and the derivatives H′(ei)=di (i=1,2, …, n) are determined for minimizing I1 (d1, d2, …dn) [42]:

		(5)
[bookmark: _Hlk83576384]where λi=hi/(hi-1+hi), μi=1-λi. This system is strictly diagonally dominant and the solution can be obtained easily by the LU factorization of the tridiagonal matrix.
[bookmark: _Hlk118208786][bookmark: _Hlk96680992]CHIMDO can be regarded as a compromise between MPCHI and cubic spline interpolation. It can estimate the oscillation behavior of the signal more reasonably and effectively restrict overshoot and undershoot problems (caused by impulsive components relevant to bearing faults indued impact and wheel-rail impact) with better flexibility and shape-preserving ability. So it can be expected that CHIMDO will achieve better performance on envelope curve estimation of bearing fault signals.
[bookmark: _Hlk83629327]Given a signal {y(t), t=1,2, …, T}, the decomposition procedure of LCMD can be interpreted as:
[bookmark: _Hlk96610101][bookmark: _Hlk96611591][bookmark: _Hlk96610132][bookmark: _Hlk96610472]Step 1: Find the extreme points (ek, y(ek)) of y(t), and obtain the extended extreme points at both ends using the OSAE method;
Step 2: Obtain the CHIMDO parameters of the maximum and minimum envelopes by Eq. (5), and calculate the value of extremum envelope midpoint Ai (as shown in Fig.2) at ti as:

		(6)

[bookmark: _Hlk96615878]Step 3: Calculate the value of local characteristic-mean at ti as , and then obtain the mean envelop curves m11(t) using the CHIMDO method;
Step 4: Obtain the amplitude envelope curve a11(t) by moving average method (details see in [32]);
Step 5: Repeat steps 1-4 as Eqs. (7) and (8) until max(abs(1-a1n(t))) 0.2 or max(abs(1-a1n-2(t))) ≥ max(abs(1-a1n-1(t))) ≥ max(abs(1-a1n(t)));

		(7)

		(8)

Step 6: Obtain PF1(t) as ;
[bookmark: _Hlk91063206]Step 7: Subtract PF1(t) from y(t), then, repeat Steps 1~6 until the residual signal does not have any oscillations (the number of extreme points smaller than 3). Finally, the reconstruction of x(t) can be done as .
The proposed LCMD method follows the sifting criteria of the LMD method and can get more interpretable decomposition and concentrated decomposition results than LCD (Steps 4-6), and it can obtain more reasonable decomposition results of bearing faults signals than LCD and LMD since the CHIMDO method is used to estimate the median point Ak and the mean curve m(t).
[bookmark: _Hlk96504640][bookmark: _Hlk96622287]2.4 Adaptive Scale Decomposition
[bookmark: _Hlk117670742][bookmark: _Hlk96625185][bookmark: _Hlk96624405][bookmark: _Hlk96681333][bookmark: _Hlk96627606][bookmark: _Hlk96678449][bookmark: _Hlk121497463]The existing decomposition scale construction methods for decomposing white noise will cause a mismatch between the decomposition scale and the signal frequency distribution, resulting in mode mixing and splitting behaviors generated by bearing faults and wheel-rail induced intermittent impacts. In this section, an Extrema Span Statistics based Decomposition Scale Construction (ESSDSC) approach is developed to address this problem. Let yk(t) be the sub-signal in the kth decomposition layer, the ith extrema span of yk(t) is calculated as Sk (i)=ei+1-ei. We used the histcounts function [43] to calculate the extrema span of yk(t):

		(9)
where B(j) is the wide of the jth bin for the distribution of S and P(j) is the corresponding probability, Nb denotes the number of bins in histogram.
[bookmark: _Hlk96679214][bookmark: _Hlk96679054]Then the frequency of the compensation signals for the kth decomposition layer can be defined as

		(10)
where fs is the sampling frequency.
[bookmark: _Hlk96679733]Inspired by the CPNAM method [10], we construct the compensating signals with uniformly distributed phases.

		(11)
where NC denotes the number of compensation signals. It is always set to be an even to make . This will greatly reduce the noise remaining in the decomposed sub-signals.
To extract weak feature from strong non-stationary and non-Gaussian signals as bearing fault signals, a novel adaptive scale decomposition method, which possess both excellent anti-mode mixing and mode splitting performance and overshoot and undershoot suppression ability is proposed. The block diagram of the ASD method is illustrated in Fig. 4, and the implementation processes are detailed as follows:
Step 1: Utilize LCMD to decompose the current signal yk(t) into one product function PFk0(t) and one residue Rk0 (t), and take PFk0(t) as the input for ESSDSC to obtain the compensation signals  for the first decomposition layer;
[bookmark: _Hlk121499412][bookmark: _Hlk121499457][bookmark: _Hlk121499516][bookmark: _Hlk121499567][bookmark: _Hlk121499611][bookmark: _Hlk121499635][bookmark: _Hlk121499648]Step 2: Add  to yk(t) to construct a series new compensated signals yki(t)=yk(t)+ki where ηki=ε0std (PFk0(t))， and use LCMD to decompose each yki(t) into one PFki (t) and one residue Rki(t);
[bookmark: _Hlk121499726][bookmark: _Hlk121499857]Step 3: Obtain the kth residue as (t)=, then calculate the kth product function as =Rk-1(t)(t);
[bookmark: _Hlk121499927][bookmark: _Hlk121500103][bookmark: _Hlk121500128]Step 4: Take  as the new input and repeat Step1-Step3 for N (N=2) times to obtain the kth final product function  and calculate the kth final residue as Rk(t)=Rk-1(t);
Step 5: Repeat Steps 1-4 until there are no oscillations (the extreme point is less than three) in residue Rk(t).
The proposed ASD algorithm adaptively generates compensating signals by ESSDSC in each decomposition layer (Step 1 and Step 2) to overcome the mismatch problem of decomposition scale and signal frequency distribution in CEEMDAN, CELMDAN and CELCDAN, thereby possessing excellent anti-mode mixing and mode splitting ability to resist the aliasing behavior caused by bearing faults and wheel-rail induced intermittent impacts. Meanwhile, the ability to resist the overshoot and undershoot of ASD when dealing with strong non-stationary and non-Gaussian signals as bearing fault signals will be effectively guaranteed by LCMD.
[image: ]
Fig. 4 The block diagram of ASD method
[bookmark: _Hlk96716666]2.5 Weighted Multikernel Correntropy
Correntropy is essentially a correlation function established in a high-dimensional Hilbert space, and it is defined as [39]:

[bookmark: _Hlk121500902]		(12)
[bookmark: _Hlk121500945][bookmark: _Hlk121500962][bookmark: _Hlk96778007]where E(•) denotes the expectation operator, Gσ (•) denotes Gaussian kernel. By applying Taylor series extension to the Gaussian function, Eq. (12) can be rewritten as follows [39]:

[bookmark: _Hlk121501123]		(13)
[bookmark: _Hlk121501161][bookmark: _Hlk96769999][bookmark: _Hlk98869360][bookmark: _Hlk121501343]where e=xt1-xt2 is the error of distribution xt1 and xt2. For time series, when σ is determined, the value of the correntropy depends entirely on e, but has nothing to do with the amplitudes of xt1 and xt2. Therefore, correntropy can compress the signals with different amplitudes to the same scale for similarity comparison and it is greatly suitable to enhance the weak characteristic signals under strong pulse interference.
Multikernel correntropy (MKC) is proposed to improve the adaptability of correntropy on non-standard Gaussian distribution similarity measure [40]. The MKC between two distributions xt1 and xt2 can be expressed as [40]：

[bookmark: _Hlk96716855][bookmark: _Hlk121501929]		(14)
[bookmark: _Hlk121501960][bookmark: _Hlk121501985][bookmark: _Hlk96716282][bookmark: _Hlk96716389]where ηk, σk and ρk are respectively the integrated coefficient, kernel length and center location of kth Gaussian kernel. 
[bookmark: _Hlk96769541][bookmark: _Hlk101292513]Similarly，Eq. (14) can be rewritten as follows [40]:

[bookmark: _Hlk121502125]		(15)
[bookmark: _Hlk98871569][bookmark: _Hlk98873247][bookmark: _Hlk101272026]Eq. (15) illustrates that MKC contains all the even-order moments of error e under multiple scales σk and bias ρk. Compared with the correntropy with a single standard Gaussian kernel, MKC is more effective in the similarity measure of two signals with arbitrary distributions of error between them, and it has natural advantages in practical applications. However, when there is strong narrow-band random noise or other periodic interferences mixed in the extracted characteristic signal, the FCF components will still be overwhelmed by other interference components in the MKC spectrum. Therefore, we propose a weighted MKC based on a 2D Gaussian kernel to overcome the drawbacks of MKC, and it is defined as:

[bookmark: _Hlk92467442][bookmark: _Hlk121502614]		(16)
[bookmark: _Hlk121502931][bookmark: _Hlk121503122]where the two-dimensional Gaussian function (•) denotes the adaptive weight based on the two distribution xt1 and xt2, which act as a 2D magnitude filter. σ01, σ02 and ρ01, ρ02 are the mean and standard deviations of the two-dimensional Gaussian functions, respectively. The 2D Gaussian distribution of xt1 and xt2 can be expressed as follows [44]:

[bookmark: _Hlk121503366]		(17)
Similarly, Eq. (16) can be rewritten as:




[bookmark: _Hlk121503421]		(18)


1
[bookmark: _Hlk96783034][bookmark: _Hlk121503545][bookmark: _Hlk96778768][bookmark: _Hlk96782192][bookmark: _Hlk96782490][bookmark: _Hlk96783138][bookmark: _Hlk121503561][bookmark: _Hlk96783279][bookmark: _Hlk121503587][bookmark: _Hlk121503594][bookmark: OLE_LINK2][bookmark: _Hlk117584700]Eqs. (15) and (18) show that WMKC is jointly determined by the even-order moments of (eρk), (xt101) and (xt202). Apparently, when ρ01 and ρ02 are respectively set equal to the distribution center of the bearing FCS components in xt1 and xt2, the remaining components especially the impulse interferences induced by wheel-rail impact in the signal will be greatly weakened after WMKC transformation, and the bearing faults relevant components will be enhanced. This enables WMKC to have stronger feature enhancement capabilities than MKC, and is particularly effective in dealing with strong narrowband random signals or periodic impact interference such as wheel-rail impulse interference. The parameters of WMKC are optimized by the Coot optimization algorithm [45] to obtain the best feature enhancement performance. The optimization model is constructed as follows:

[bookmark: _Hlk121503809]		(19)
[bookmark: _Hlk117583019][bookmark: _Hlk96785503][bookmark: _Hlk117584404][bookmark: _Hlk117584067]where FEWMKC denotes the faults energy based on WMKC，EWMKC is WMKC energy, TF (h0, h1, h2) are a series of fault characteristic frequency to be considered. h0 denotes fault types (h0=1 indicates outer race faults (ORFs), h0=2 indicates inner race faults (IRFs), h0=3 indicates ball faults, h0=4 indicates cage faults), h1 denotes the order of the fault characteristic frequency, and h2 denotes the order of the modulated signal, indicating the characteristic frequency of an alternative fault or rotation frequency. H represents the number of harmonics to be evaluated. For bearings, TF denotes the theoretically calculated FCF with 2 times the frequency resolution as the tolerance zone.
[bookmark: _Hlk118214188]As ASD and WMKC have advantages of high-precision adaptive decomposition to non-Gaussian and non-stationary signals  (as the vibration signals of fault axle box bearing under wheel-rail impact interference), high adaptability to strong non-stationary signals and strong suppression ability to impact interference and background noise, the proposed method can extract axle box bearing fault characteristic signal with high completeness and SNR.
3. Simulation study
[bookmark: _Hlk96871470]3.1 End effect suppression analysis
A comparative study based on a composite signal S(t) is utilized to verify the end effect suppression performance of the proposed OSAE method. The signal S(t) and its three components (shown in Fig.5) are mathematically given by:

[bookmark: _Hlk121580880]		(20)
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[bookmark: OLE_LINK7][bookmark: _Hlk121581220][bookmark: _Hlk98923030]Fig.5. Simulated signal S(t) and its three subcomponents, s1(t), s2(t), and s3(t)
[bookmark: _Hlk104552410]Fig.5 shows that the left end of S(t) is asymmetrical and its fluctuation amplitude varies greatly. Similarly, the right end of S(t) is also asymmetrical, but its fluctuation is relatively stationary. The LCMD with the ME, ISBM and OSAE methods are applied to decompose S(t), and the results are illustrated in Fig.6. It can be observed from Fig.6(a) that there is severe distortion at both ends for the decomposition results (PF2 and PF3) by ME with LCMD. This phenomenon reveals that the ME method performs poorly both on strong asymmetrical and non-stationary signals. Although ISBM can obtain a good extension for the decomposed signal at the right end, it still leads to serious distortion at the left end (as shown in Fig.6(b)) because of its low adaptability in dealing with strong non-stationary signals. LCMD with OSAE can achieve perfect decomposition for S(t), and no distortion behavior can be observed in its decomposition results (as shown in Fig.6(c)), which means that the OSAE has superior endpoint effect suppression capability on both asymmetrical and strong non-stationary signals.
[image: ]
Fig.6 The decomposition results of S(t) by LCMD with (a) ME, (b) ISBM and (c) OSAE 
[bookmark: _Hlk98750962]3.2 Envelope curve estimation analysis
[bookmark: _Hlk96888354][bookmark: _Hlk96890036][bookmark: _Hlk98921659][bookmark: _Hlk96888264][bookmark: _Hlk96890294]In this section, the decomposition results of two simulated signals X(t) and Y(t), respectively, by LCMD with CSI (cubic spline interpolation), MPCHI and CHIMDO methods are utilized to illustrate the superiority of the CHIMDO in envelope curve estimation. The two simulated signals X(t) and Y(t), termed as strong non-stationary signal and non-Gaussian signal, are plotted in Fig.7, and their formulations are given as follows:

[bookmark: _Hlk121583003]		(21)

		(22)
[bookmark: _Hlk121583174][bookmark: _Hlk101297969][bookmark: _Hlk121583212][bookmark: _Hlk121583235]where t′ = t - floor (t/T) × T is a periodic function with fundamental period of T = 0.05 s, and floor (•) denotes the round down function.
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[bookmark: _Hlk96889814][bookmark: _Hlk98921589][bookmark: _Hlk121583339][bookmark: _Hlk121583376]Fig.7 The simulated signals and their subcomponents: (a) X(t) and (b) Y(t)
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[bookmark: _Hlk121583500][bookmark: _Hlk121583519]Fig.8 The decomposition results of (a) X(t) and (b) Y(t) by LCMD with CSI, MPCHI and CHIMDO 
Fig. 8 shows the decomposition results of X(t) and Y(t) with different interpolation methods. Fig. 8(a) shows MPCHI underestimates the oscillatory behavior of X(t) (strong non-stationary signal) and makes the high-frequency components (PF1) of the signal pass down to lower decomposition layers in the process of multi-loop iteration, thereby leading to serious mode mixing behavior in the lower decomposition layers (PF2 and PF3). When dealing with strong non-Gaussian signals (Y(t)), CSI will lead to severe overshoot and undershoot behaviors because of the insufficient conformality, which in turn leads to the mixing of high-frequency components into low-frequency modes as shown in Fig. 8(b). The decomposition results of LCMD with CHIMDO are highly consistent with the original signal and there are no mode mixing or distortion behaviors in them. The main reason is that CHIMDO can always keep the first-order derivative oscillation of the envelope curve to a minimum to achive the best envelope estimation for non-stationary and non-Gaussian signals.
3.3 Anti-mixing and splitting ability 
[bookmark: _Hlk98923141][bookmark: _Hlk98761336][bookmark: _Hlk81936710]The anti-mode mixing and splitting capability of the decomposition algorithm directly determine its weak feature extraction performance. In this section, the comparative study between ASD and CELCDAD [11], CELMDAN [9] and CELCMDAN is carried out to verify the superiority of ASD in anti-mode mixing and anti-mode splitting. The decomposed signal C(t) (see in Fig.9) consists of three components, c1(t), c2(t), and c3(t), termed as the modulated impulse signal, intermittent signal and harmonic signal, respectively. The signals are expressed as:

[bookmark: _Hlk121584589]		(23)
[bookmark: _Hlk98576300][bookmark: _Hlk121584705][bookmark: _Hlk121584775][bookmark: _Hlk121584830][bookmark: _Hlk98577493][bookmark: _Hlk121584872][bookmark: _Hlk121584890][bookmark: _Hlk121584911][bookmark: _Hlk121584979][bookmark: _Hlk121584994][bookmark: _Hlk121585010][bookmark: _Hlk121585063]where fn =2000Hz is the frequency of the modulating signal，fc =12.5Hz is the frequency of impulse; t′ denotes a periodic function (t′ = t - floor (t/T) × T) with T = 1/120s as the fundamental period, δ(t′′) denotes the Dirac delta function and t′′=n/120 for n=0,1,2…; A(•) is an amplitude capture operator that only changes when a non-zero value is entered; v(t) denotes the square wave function with 0.16 as the fundamental period and 0.5 as the amplitude.
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[bookmark: _Hlk121585235][bookmark: _Hlk121585265]Fig. 9 Simulated signal C(t) and its three subcomponents c1(t), c2(t), and c3(t)
[bookmark: _Hlk117673162]The decomposition results of CELCDAN, CELMDAN, CELCMDAN and ASD are depicted in Fig. 10. It can be observed that CELCDAN, CELMDAN and CELCMDAN have severe mode mixing and splitting behavior in their decomposition results. The number of modulated impulse signal modes obtained by LCMD (PF1 to PF3) is fewer than that by LCD (PF1 and PF2), which indicates the anti-splitting performance of LCMD is superior to LCD. This is because the CELCMDAN follows the signal sifting mechanism of LMD and adopts CHIMDO to suppress overshoot and undershoot behavior in the estimation of the mean curve, accordingly can obtain more accurate decomposition results and more concentrated modes. For the ASD method, the three PFs are highly consistent with the original modulated impulse signal, intermittent signal, and harmonic signal respectively. This means that the signals are well decoupled without mixing and splitting problems since the intermittent in different decomposition stages will be significantly eliminated by the compensating signals with the most appropriate scale constructed by ESSDSC. Therefore, ASD has significant advantages in weak characteristic signal extraction compared to other algorithms and is competent in incipient fault diagnosis.
[image: ]
[bookmark: _Hlk121585688]Fig. 10 The decomposition results of C(t) by CELCDAD, CELMDAN, CELCMDAN and ASD
[bookmark: _Hlk98751045][bookmark: _Hlk98511934][bookmark: _Hlk98511989]3.4 Feature enhancement and fault diagnosis
[bookmark: _Hlk98580124][bookmark: _Hlk98511365][bookmark: _Hlk98580139][bookmark: _Hlk121586148][bookmark: _Hlk121586172][bookmark: _Hlk121586227][bookmark: _Hlk121586257][bookmark: _Hlk118277678][bookmark: _Hlk98512064][bookmark: _Hlk98513061]This section discusses the feature enhancement performance of the proposed ASD-WMKC method under the double masking of strong impulse and background noise. A correntropy-based method (FECgram [36]), a newly developed method based on Alpha–stable distribution [34] (Alphagram), a correlation analysis-based kurtogram (Corr-kurtogram) method and a time synchronous averaging kurtogram method (TSA-kurtogram) are selected to perform the comparative study. A simulated bearing roller fault signal is constructed to verify the feature enhancement and fault diagnosis performance of ASD-WMKC. The fault signal V(t) consists of four components: the non-stationary roller fault characteristic signal v1(t), the amplitude-modulated (AM) signal v2(t), background noise signal v3(t) and periodic impulse interference signal v4(t). The waveforms of V (t) and its four components are presented in Fig.11, and their formulations are given as follows:

[bookmark: _Hlk121586588][bookmark: _Hlk106457467]		(24)
[bookmark: _Hlk98577945][bookmark: _Hlk98578518]where fn =6000Hz is the frequency of roller fault characteristic signal, fc =12.5Hz is the rotation frequency of cage; t′ denotes a periodic function with the 1/fb as the fundamental period and 0.02rand/fb as the perturbation period, and fb=171Hz is the roller fault characteristic frequency, δ(tb) denotes the Dirac delta function and tb=n/fb for n=0,1,2…2fb; A(•) is an amplitude capture operator that only changes when a non-zero value is entered; fr=30 is rotation frequency of shaft; fw=7000Hz is the frequency of the impulse interference signal, λ=0.06 is the damping ratio; N(t) denotes the standard white noise; t′′′ denotes a periodic function with the 1/fr as the fundamental period, δ(tI) denotes the Dirac delta function and tI=n/fr for n=0,1,2… 2fr.
[bookmark: OLE_LINK4][bookmark: _Hlk98684863][bookmark: _Hlk98581675][bookmark: _Hlk98924930][bookmark: _Hlk98581652][bookmark: _Hlk118401522][bookmark: _Hlk117672157][bookmark: _Hlk98685403][bookmark: _Hlk98685626][bookmark: _Hlk98686293][bookmark: _Hlk118293901][bookmark: _Hlk98583958][bookmark: _Hlk98583041][bookmark: _Hlk98584000][bookmark: _Hlk98687089][bookmark: _Hlk98593726][bookmark: _Hlk98594179][bookmark: _Hlk98593738][bookmark: _Hlk117583935]Fig. 12 is the envelope spectrum of V(t), which shows that the fault information is submerged in impact interference for the amplitudes of roller faults frequency and its harmonics are very small and hard to identify. The diagnosis results using FECgram, Alphagram, Corr-kurtogram, TSA-kurtogram and ASD-WMKC are illustrated in Fig. 13, Fig. 14, Fig. 15, Fig. 16 and Fig.17, respectively. It can be observed from Fig. 13 and Fig. 14 that FECgram is able to locate the informative band of roller fault characteristic signal, while Alphagram failed to identify it. This indicates that the correntropy-based method outperforms the alpha-stable distribution-based method in bearing faults diagnosis under strong impulse interference since the latter is unable to separate the impulse interference with similar frequencies to the FCSs. There are also no roller fault characteristic components that can be observed in the envelope spectrum of FSCs extracted by the Corr-kurtogram and TSA-kurtogram because of the low performance of TSA and correlation analysis on periodic impulse suppression, as shown Fig 15 and Fig. 16. More apparent fault characteristic frequency components (fRF, 2fRF, 3fRF) can be observed in the correntropy spectrum by ASD-correntropy than those obtained by FECgram as shown in Fig. 17(c) since the ASD can obtain more reasonable decomposition results than 1/3-binary tree filter. Fig. 17(a) and Fig. 17(b) show that MKC can achieve better feature enhancement performance than correntropy since its higher adaptability in non-standard Gaussian distributions similarity estimation. The most apparent fault characteristic frequency (FCF) components that dominate other components can be observed in the WMKC spectrum obtained by ASD-WMKC as WMKC can effectively enhance the fault characteristic signal through the amplitude filtering by the two-dimensional Gaussian function.
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[bookmark: _Hlk118273607]Fig. 11 Simulated signal V(t) and its four subcomponents
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Fig. 12 Envelope spectrum of V(t)

[bookmark: _Hlk90753920]
[image: ]
[bookmark: _Hlk118393695][bookmark: _Hlk118393375]Fig. 13 Diagnosis results by FECgram (a) the FECgram (b) the envelope spectrum of FCS
[image: ]
[bookmark: _Hlk118393662]Fig. 14 Diagnosis results by Alphagram (a) the Alphagram (b) the envelope spectrum of FCS
[bookmark: _Hlk118293971][image: ]
[bookmark: _Hlk118399696]Fig. 15 Diagnosis results by Corr-kurtogram (a) Kurtogram (b) Envelope spectrum of FCS
[image: ]
[bookmark: _Hlk118399718][bookmark: _Hlk121671255][bookmark: _Hlk118393545]Fig. 16 Diagnosis results by TSA-kurtogram (a) Kurtogram (b) Envelope spectrum of FCS

[image: ]
[bookmark: _Hlk121671372]Fig.17 Diagnosis results by (a) ASD-WMKC, (b) ASD-MKC and (c) ASD-correntropy and (d) FEWMKC of sub-signals 

[image: ]
Fig.18 (a) curves of kernel functions for WMKC, MKC and correntropy and (b) the shape of 2D Gaussian function
[image: ]
[bookmark: _Hlk98606261]Fig. 19 Envelope curve of FCS
Fig 18 depicts the curves of kernel functions for correntropy, MKC and WMKC, and the shape of the 2D Gaussian function, respectively. It can be observed that when the best feature enhancement performance is achieved, the centers of the WMKC and MKC kernel function curves are not at the origin, and their shapes are more complex than the standard Gaussian kernel function curves. This indicates that a kernel function with a stronger fitting ability is needed to guarantee the feature enhancement and interference suppression for FCS when the fault feature signal v1(t) is non-stationary. The distribution center (2.2, 1.6) of the 2D Gaussian kernel is close to the amplitude of FCS, while far from the amplitudes of the other two interferences (see Fig. 19). This reveals that the 2D Gaussian function can effectively enhance the fault characteristic signal and suppress the impulse interference v4(t) and white noise v3(t).
[bookmark: _Hlk95911649]4. Application to axle box bearing diagnosis
[bookmark: _Hlk98608673]In this section, the ASD and ASD-WMKC methods are respectively applied to diagnose the axle box bearing faults in test and real application scenarios to further verify their diagnosis performance.
4.1 Data acquisition
[bookmark: _Hlk98616177][bookmark: _Hlk82856417][bookmark: _Hlk117775128][bookmark: _Hlk92277637]The vibration tests of fault wheelset bearing in a laboratory experiment and real operating condition are shown in Fig. 20. The accelerometer sensors are arranged on the top and end of the axle box. The sampling frequency is set as 65536Hz to ensure a high enough analysis frequency for bearing faults-induced signals and the data length is set as 131072 points to guarantee the frequency resolution of the characteristic spectrum of bearing faults. The parameters of the wheelset bearing are presented in Table 2.
[bookmark: _Hlk121673358]Table 2. The parameters of the wheelset bearing
	Parameter
	Value

	Diameter of the roller (mm)
	24

	Diameter of the pitch (mm)
	180

	Roller number (N)
	19

	Contact angle (°)
	0

	Diameter of the wheel (mm)
	840


[bookmark: _Hlk121673525][image: ]
[bookmark: _Hlk98617552][bookmark: _Hlk98751762]Fig.20 vibration tests of fault wheelset bearing in different scenarios
[bookmark: _Hlk96441560][bookmark: _Hlk118187922]4.2 Axle box bearing diagnosis based on faults simulation experiment without impact interference
The original signals of IRF and RF and their corresponding envelope spectrum are pictured in Fig.21 and Fig.22, respectively. The rotating speed frequency is 6.4 Hz (385 rpm), and the IRF and RF frequencies are 65Hz and 45Hz separately. 
[bookmark: _Hlk101427160]From Fig. 21 and 22, it can be seen that the FCF components of IRF and RF are all submerged in background noise and hard to be identified. Then, the inner race fault (IRF) and roller fault (RF) signals of axle box bearing are analyzed by CELMDAN, CELCDAN, CELCMDAN and ASD, and the decomposition and diagnosis results are depicted in Fig.23, 24 and Fig.25, 26, respectively. From Fig.23(a) and Fig.25(a), it can be observed that CELMDAN produces the least number of PFs (12 for IRF and RF) since LMD can obtain more concentrated decomposition results. Nevertheless, due to the mismatch of the constructed global reference scale and frequency distribution of the vibration signal and the low estimation accuracy of the mean curve, it also has the most severe mode mixing problem and results in the lowest completeness and signal-to-noise ratio (SNR) of the extracted IRF characteristic signal, as shown in Fig. 24(a). CELCDAN obtains the largest number of PFs (20 for IRF and RF as shown in Fig.23(b) and Fig.25(b)) and has a higher frequency resolution than CELMDAN. However, it also greatly suffers from severe mode splitting problems, leading to the least FCF components in the extracted RF characteristic signal, as shown in Fig.26(b). CELCMDAN combines the anti-mode splitting advantage of CELMDAN and the high-frequency resolution advantage of CELCDAN, and can achieve satisfactory results in both IRF and RF characteristic signal extraction, as shown in Fig.24(c) and Fig.26(c). But the completeness and SNR of the fault characteristic signal extracted by CELCDAN are highly lower than that by ASD. Based on LCMD, ASD construct the most suitable decomposition scale in the light of frequency distribution characteristics of the decomposed signal to obtain the most reasonable decomposition for IRF and RF signal, and can extract fault characteristic signal with the highest completeness and SNR as shown in Figs.24(d) and 26(d).

[image: ]
Fig.21 (a) Original signals of axle box bearing IRF and (b) its corresponding envelope spectrum
[image: ]
Fig.22 (a) Original signals of axle box bearing RF and (b) its corresponding envelope spectrum

[bookmark: _Hlk121674785][image: ]
[bookmark: _Hlk98925692]Fig.23 Decomposition results of axle box bearing IRF signal by (a) CELMDAN, (b) CELCDAN, (c) CELCMDAN and (d) ASD
[image: ]
[bookmark: _Hlk108506920]Fig.24 Diagnosis results of axle box bearing IRF signal by (a) CELMDAN, (b) CELCDAN, (c) CELCMDAN and (d) ASD

[image: ]
Fig.25 Decomposition results of axle box bearing RF signal by (a) CELMDAN, (b) CELCDAN, (c) CELCMDAN and (d) ASD
[image: ]
[bookmark: _Hlk117788097]Fig.26 Diagnosis results of axle box bearing RF signal by (a) CELMDAN, (b) CELCDAN, (c) CELCMDAN, (d) ASD, (e) Regional enlarged view of (a) and (f) Regional enlarged view of (c)

4.3 Axle box bearing diagnosis under wheel-rail impact interference
To further validate the superiority of the proposed ASD-WMKC method in actual application, the IRF and RF faults signal of axle box bearing tested in actual operating conditions are analyzed. The rotating speed frequency is 4.8Hz (289 rpm), and the IRF and RF frequencies are 49.5Hz and 34Hz. The original IRF and RF signals and their corresponding envelope spectrums are depicted in Fig.27 and Fig.28, respectively. Since the wheel-rail impact and background noise are too strong, the IRF and RF of the axle box bearing cannot be effectively identified by the envelope extraction method directly.
[bookmark: _Hlk98700299][bookmark: _Hlk98700576][bookmark: _Hlk98746067][bookmark: _Hlk118294104][bookmark: _Hlk98688275][bookmark: _Hlk98747195][bookmark: _Hlk98747804][bookmark: _Hlk121729597]The diagnosis results using FECgram, Alphagram, Corr-kurtogram, TSA-kurtogram and ASD-WMKC for IRF and RF are illustrated in Fig. 29-33 and Fig.34-38, respectively. It can be observed from Fig.29 and Fig. 34 that FECgram can accurately locate the informative band of IRF and RF signals. Due to the non-adaptivity of the decomposition, the FCF components in the extracted FCSs by FECgram are less than that by ASD-WMKC and are dominated by other interference components. Alphagram failed to capture the informative frequency bands of the IRF and RF as shown in Fig.30 and Fig.35. The main reason is that when the wheel-rail impact interference is too strong with high impact frequency and large background noise, the frequency band with the highest probability density of non-Gaussian components is often the one where the wheel-rail impact interference locates instead of the frequency band where the fault characteristic signal locates. It can be seen from Fig.31 and Fig.36 that the Corr-kurtogram also failed to locate the informative frequency bands of the IRF and RF since its poor capacity in high-frequency impulsive interference suppression. The TSA-kurtogram not always can capture the informative frequency bands of bearing faults and the low performance of impulsive suppression also make the fault characteristic components are severely submerged by wheel-rail impact interference components as shown in Fig.32 and Fig.37. Fig 33(c) and Fig.38(c) reveal that the FCF components of IRF and RF extracted by ASD-correntropy dominate other interference components in their characteristic signals. However, since the low adaptability of the standard Gaussian kernel function in dealing with non-stationary signals, the FCSs extracted by ASD-correntropy have defects of incompleteness and low SNR. ASD-MKC can extract IRF and RF characteristic signals with higher SNR than ASD-correntropy as shown in Fig 33(b) and Fig.38(b). But the SNR of FCSs extracted by ASD-MKC is still lower than that by ASD-WMKC and the features are also incomplete because the MKC cannot completely overcome the masking effect of the strong background noise on the FCSs. Since ASD-WMKC can realize high-precision adaptive decomposition of non-Gaussian and non-stationary signals and possess high adaptability to strong non-stationary fault signals and strong suppression ability to impact interference and background noise, the extracted IRF and RF characteristic signals have the highest completeness and SNR as shown in Fig 33(a) and Fig.38(a).

[image: ]
Fig.27 Original signals of axle box bearing IRF in a real application and (b) its corresponding envelope spectrum
[image: ]
Fig.28 Original signals of axle box bearing RF in a real application and (b) its corresponding envelope spectrum
[image: ]
[bookmark: _Hlk118403173]Fig.29 Diagnosis results of IRF by FECgram (a) the FECgram (b) the envelope spectrum of FCS
[image: ]
[bookmark: _Hlk118294238]Fig.30 Diagnosis results of IRF by Alphagram (a) the Alphagram (b) the envelope spectrum of FCS[image: ]
[bookmark: _Hlk118400168][bookmark: _Hlk118393715]Fig.31 Diagnosis results of IRF by Corr-kurtogram (a) the kurtogram (b) the envelope spectrum of FCS
[image: ]
[bookmark: _Hlk118400184]Fig.32 Diagnosis results of IRF by TSA-kurtogram (a) the kurtogram (b) the envelope spectrum of FCS

[image: ]
[bookmark: _Hlk108507123][bookmark: _Hlk108507109]Fig.33 Diagnosis results of IRF by (a) ASD-WMKC, (b) ASD-MKC and (c) ASD-correntropy and (d) FEWMKC of sub-signals

[image: ]
Fig.34 Diagnosis results of RF by FECgram (a) the FECgram (b) the envelope spectrum of FCS
[bookmark: _Hlk118294363][image: ]
[bookmark: _Hlk118400253]Fig.36 Diagnosis results of RF by Corr-kurtogram (a) the kurtogram (b) the envelope spectrum of FCS
[image: ]
Fig.35 Diagnosis results of RF by Alphagram (a) the Alphagram (b) the envelope spectrum of FCS
[image: ]
[bookmark: _Hlk118294442]Fig.37 Diagnosis results of RF by TSA-kurtogram (a) the kurtogram (b) the envelope spectrum of FCS

[image: ]
Fig.38 Diagnosis results of RF by (a) ASD-WMKC, (b) ASD-MKC and (c) ASD-correntropy and (d) the FEWMKC of sub-signals

5. Conclusions
[bookmark: _Hlk98750643][bookmark: _Hlk98751570][bookmark: _Hlk98763920]In this paper, a novel method for axle box bearing fault diagnosis with the double masking of strong wheel-rail impact interference and background noise is proposed based on ASD and WMKC. The end effect suppression, envelope curve estimation, anti-mode mixing and splitting performance and feature enhancement of the proposed method are studied numerically, and then the diagnosis effect of the ASD-WMKC method is demonstrated by experimental studies and real scenario applications.
[bookmark: _Hlk98772523][bookmark: _Hlk98769769][bookmark: _Hlk101273167]The results indicate that the optimal shape approximation extending method can make the extended signal best approach the real fluctuation trend, and it simultaneously has excellent end-effect suppression capability on strong asymmetrical and non-stationary signals. CHIMDO possesses both excellent interpolation flexibility and shape-preserving ability, and is competent for envelope estimation of strong non-stationary and non-Gaussian signals. Adaptive Scale Decomposition can construct the most suitable decomposition scale in the light of frequency distribution characteristics of the decomposed signal to obtain the best anti-mode mixing and splitting performance. WMKC can combine the reasonable amplitude filter function of the two-dimensional Gaussian kernel and high adaptability of MKC for strong non-stationary fault signals to simultaneously enhance the fault characteristic signal and suppress the impact interference and background noise. The simulation and application studies show that the proposed ASD-WMKC methods outperform their comparative methods and can extract the characteristic signal of IRF and RF for axle box bearing with the highest completeness and SNR under double masking of strong wheel-rail impact interference and background noise.
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