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Abstract: Background: Cholangiocarcinoma (CCA) has a complex immune microenvironment archi-
tecture, thus possessing challenges in its characterization and treatment. This study aimed to repur-
pose FDA-approved drugs for cholangiocarcinoma by transcriptomic-driven bioinformatic approach.
Methods: Cox-proportional univariate regression was applied to 3017 immune-related genes known
a priori to identify a list of mortality-associated genes, so-called immune-oncogenic gene signature, in
CCA tumor-derived RNA-seq profiles of two independent cohorts. Unsupervised clustering stratified
CCA tumors into two groups according to the immune-oncogenic gene signature expression, which
then confirmed its clinical relevance by Kaplan–Meier curve. Molecularly guided drug repurposing
was performed by an integrative connectivity map-prioritized drug-gene network analysis. Results:
The immune-oncogenic gene signature consists of 26 mortality-associated immune-related genes.
Patients with high-expression signature had a poorer overall survival (log-rank p < 0.001), while gene
enrichment analysis revealed cell-cycle checkpoint regulation and inflammatory-immune response
signaling pathways affected this high-risk group. The integrative drug-gene network identified eight
FDA-approved drugs as promising candidates, including Dasatinib a multi-kinase inhibitor currently
investigated for advanced CCA with isocitrate-dehydrogenase mutations. Conclusion: This study
proposes the use of the immune-oncogenic gene signature to identify high-risk CCA patients. Future
preclinical and clinical studies are required to elucidate the therapeutic efficacy of the molecularly
guided drugs as the adjunct therapy, aiming to improve the survival outcome.

Keywords: cholangiocarcinoma; connectivity map; drug–gene network; drug repurposing; immune-
oncogenic gene signature; transcriptomics; survival analysis

1. Introduction

Cholangiocarcinoma (CCA) is a highly prevalent biliary malignancy that is notoriously
heterogeneous and is usually diagnosed at advanced stages [1]. CCA possesses a complex
tumor microenvironment (TME) that can regulate the occurrence and progression of cancer.
Cancer-associated fibroblasts, tumor-associated macrophages, myeloid-derived suppressor
cells, stromal cells, and cytokines promote an immunosuppressive environment to foster
CCA progression. Infiltration of these cells in CCA is associated with poor survival
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outcomes [2,3]. Due to its multifaceted tumor architecture and heterogeneous nature,
current treatment options cannot mitigate CCA progression effectively.

Recent advents in cancer immunology led to the development of novel therapies,
including immune checkpoint blockades (ICBs) against PD-1 and CTLA-4, chimeric antigen
receptor (CAR) T cells, and recombinant cancer vaccines [4]. These therapies have been
successful; however, the response rate varies among patients and cancer types. In CCA,
Pembrolizumab exhibited anti-tumor activity in 6–13% of advanced-stage patients [5].
Additionally, the phase 1 trial of epidermal growth factor-specific CAR T cell therapy in
unresectable CCA showed that of 17 evaluable patients, one patient achieved complete
remission, ten patients had stable disease [6]. Varied responses to immunotherapy are owed
to the heterogeneous nature of immunosuppressive microenvironments and the expression
of immune-related genes in tumors [7]. Hence, this warrants molecular characterization of
tumors in an immune context.

This bioinformatic study aimed to identify immune-related genes that recognized the
high-risk CCA patients with a poorer prognosis and repurposing FDA-approved drugs
that could be beneficial for the high-risk CCA patients. The entire workflow of this study is
shown in Figure 1.
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Figure 1. Schematic workflow of the present study. Vectors designed by FreePik (accessed on 30
August 2021).

2. Materials and Methods
2.1. Data Acquisition and Pre-Processing

Transcriptomic profiles of patient-derived CCA tumor tissues were collected from two
independent cohorts. For the first cohort, RNA-seq data were obtained from Gene Expres-
sion Omnibus (GEO; accessed on 24 June 2021) using the search terms “cholangiocarcinoma”
AND “human” AND “RNA-seq”. Results were filtered to select only processed RNA-seq
data, resulting in the reads per kilobase million (RPKM) counts matrix from GSE107943,
containing 30 CCA samples with 27 matched normal liver tissues. For the second cohort,
RNA-seq data of TCGA-CHOL was acquired from cBioportal (www.cbioportal.org; ac-
cessed on 24 June 2021), containing 36 CCA tumor samples. Each dataset was treated
independently. For the validation dataset, we applied our previous compilation of CCA tu-
mor microarray profile containing 704 tumors from 10 independent cohorts (i.e., GSE132305,
GSE22633, GSE26566, GSE32225, GSE32879, GSE35306, GSE57555, GSE66255, GSE76279,

www.cbioportal.org
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and GSE89749) [8]. The immune-oncogenic signature was derived from Thorsson V et al.,
study [9] containing 3017 genes shown in Table S1.

2.2. Survival Analysis

Survival analysis was performed using the survival, survminer, and survplot packages
in R version 4.0.2. Cox-Proportional Univariate Regression model was applied to each
gene in the immune-oncogenic signature. Hazard Ratios (HR) and Wald Statistic p-value
were tabulated and plotted. Clinically relevant genes in the immune-oncogenic signature
were filtered using the cut-offs of HR > 1 and p-value < 0.05. These candidate genes were
fitted to the Cox regression curve. Venn diagrams of common candidates were drawn from
http://bioinformatics.psb.ugent.be/webtools/Venn/ (accessed on 25 August 2021).

2.3. Unsupervised Hierarchical Clustering

Unsupervised hierarchical clustering was conducted to explore whether the filtered
gene signature expression can stratify CCA patients. Heatmap was drawn using the
pheatmap package. Samples were then grouped according to the clusters corresponding to
the low- and high-expression of the immune-oncogenic gene signature.

2.4. Differential Gene Expression Analysis

To assess the transcriptomic differences between samples with low and high expression
of the filtered gene list. Principal Component Analysis and differential gene expression
analysis was conducted using the DESeq2 package for the RNA-Seq datasets and limma
package for the Microarray datasets in R. p-values were determined by Wald statistics
and an adjusted p-value (Q-value) to correct for multiple comparisons testing using the
Benjamini–Hochberg method. DEGs were defined as genes with 2× fold-change and
adjusted p-value < 0.05.

2.5. Pathway Enrichment Analysis

The DEGs were then input into EnrichR [10] to evaluate their significance in biological
pathways using the BioPlanet 2019, WikiPathways 2021, and Kyoto Encyclopedia of Genes
and Genomes (KEGG) 2021 databases. p-values were calculated using Fisher’s exact test,
and enrichment ‘Combined’ scores were calculated by combining the p-value and z-score.
The enrichment results were plotted using the ggplot2 package in R.

2.6. Pharmacogenomic Connectivity Analysis

The DEGs and their respective log2-fold change and adjusted p-values served as
the input for pharmacogenomic connectivity analysis using the integrative LINCS L1000
database portal [11,12] (ilincs.org; accessed on 25 August 2021). Using a query analysis, we
input our DEG signature of up- and down-regulated genes and computed the connectivity
levels between our signature and that of the chemical perturbagens of the LINCS database
using random query analysis. Chemical perturbagens with “unusually” high similarity
scores were tabulated [11,12]. The identified chemical perturbagens were considered valid
when p-value < 0.01.

2.7. Drug–Gene Network Analysis

STITCH, the Search Tool for Interactions of Chemicals, is a web-server for identifying
interactions between the defined genes and perturbagens from text-mining, experimental
evidence, co-expression, gene-fusion, and database annotation sources [13]. The common
connected perturbagens and the CCA immune-oncogenic gene signature were input into
STITCH-DB (http://stitch.embl.de; accessed on 25 August 2021) selecting Homo sapiens as
the organism identifier. Default parameters were maintained in the network visualization.
These node and edge data was tabulated and re-plotted using Cytoscape v.3.8. Nodes were
re-annotated using the stringApp v.1.7.0 plugin.

http://bioinformatics.psb.ugent.be/webtools/Venn/
ilincs.org
http://stitch.embl.de
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3. Results
3.1. Deriving the Mortality-Associated Immune-Related Genes for CCA

The comprehensive list of immune-oncogenic genes was retrieved from
Thorsson V et al. [9]. This list is comprised of 160 immune expression signatures from
text-mining sources and gene-set databases. When summarized, the resulting gene sig-
nature consisted of 3017 genes (Table S1). These genes were significantly enriched in
T-cell receptor signaling, cytokines and inflammation, pathways involved in autoimmune
diseases and immune responses, and the Interleukin-STAT signaling pathway (Figure S1a).

To identify which immune-related genes are associated with patient prognosis, the
Cox Proportional Univariate regression model was applied to CCA patients of both cohorts,
GSE107943 and TCGA-CHOL, assessing the effect of each gene in the list against the overall
survival. The mortality-associated gene was considered valid when its Hazard Ratio (HR) > 1
and p-value < 0.05. The resulting gene list comprised of 386 genes in the GSE107943 cohort
(Figure 2a and Table S2) and 103 genes in the TCGA-CHOL cohort (Figure 2b and Table S3).
Here, a Venn diagram showed that 26 genes were consistently recognized between two
independent cohorts of CCA patients (Figure 2c and Table S4). The common 26 genes were
significantly enriched in oncogenic pathways, e.g., TP53 network and PI3K/AKT/mTOR
signaling (Figure S1b), that linked to CCA oncogenesis and chemoresistance [1]. The
molecularly derived list of 26 mortality-associated immune-related genes, so-called the
immune-oncogenic gene signature, was then applied throughout this study.
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Figure 2. Identification of the mortality-associated immune-related genes for cholangiocarcinoma
(CCA). The scatter plots show Cox-Proportional Hazard Ratio (HR; x-axis) and −log10 (p-value)
(y-axis) of 3017 immune-related genes in CCA tumor transcriptomic profiles from (a) GSE107943
(n = 30 samples) and (b) TCGA-CHOL (n = 36 samples) cohorts. The candidate gene was considered
valid if HR > 1 and p-value < 0.05. (c) Venn diagram shows 26 mortality-associated immune-related
genes that commonly presented between two cohorts.
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The unsupervised hierarchical clustering was performed to stratify CCA samples de-
pending on the expression patterns of the immune-oncogenic gene signature. Accordingly,
18 vs. 12 samples in the GSE107943 (Figure 3a), and 23 vs. 13 samples in the TCGA-CHOL
(Figure 3b), were recognized as the low- vs. the high-expression groups, respectively. Next,
the Kaplan–Meier curve was plotted to evaluate the overall survival rate of CCA patient
subpopulations as stratified by the immune-oncogenic gene signature (total n = 66; 41 low-
vs. 25 high-expression). Interestingly, patients in the high-expression group were significantly
associated with a poorer overall survival (log-rank p-value < 0.001) (Figure 3c). These findings
suggested that intertumoral heterogeneity of CCA driven by the immune-oncogenic gene signa-
ture associated with the patient prognosis. Further analysis of transcriptomic changes between
CCA patients with the low-expression (owning a better prognosis) and the high-expression
(owning a poorer prognosis) signature could provide insights into mechanistic pathways and
therapeutic targets driven by the immune-oncogenic gene signature.
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Figure 3. Patient stratification according to the immune-oncogenic gene signature and Kaplan–Meier
survival analysis. Heatmap with unsupervised hierarchical clustering of the immune-oncogenic
gene signature stratified CCA samples from (a) GSE107943 and (b) TCGA-CHOL into the low- vs.
high-expression groups. (c) Kaplan–Meier survival curve revealed patients with the high-expression
signature significantly associated with a poorer outcome.
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3.2. CCA Immune-Oncogenic Gene Signature Involved in Various Cancer Signaling Pathways

To gain insight into mechanistic pathways underlying the high-risk CCA patient
subpopulation (the high-expression group), we performed differential expression analy-
sis between 12 low- vs. 18 high-expression of immune-oncogenic gene signature in the
GSE107943 cohort, resulting in 150 differentially expressed genes (DEGs) with 2× fold-
changes and adjusted p-value < 0.05 (Figure S2a,b and Table S5). Pathway enrichment
analysis showed that DEGs were significantly enriched in cell-cycle checkpoint regulation
and cytokine signaling pathways, i.e., interferon alpha/beta, oncostatin M (an IL-6 family
member), IL-4, and TGF-β (Figure S2e and Table S6). The cell-cycle checkpoint molecule
CyclinD-CDK4 complex regulated the immune checkpoint PD-L1 expression [14], while the
anti-PD-L1 therapy potentiated the effect of CDK4/6 inhibitors [15]. Interleukins and type
1 interferon signaling established chronic inflammation to drive immune evasion, cancer
progression and metastasis in colorectal, pancreatic, and hepatocellular carcinoma [16,17].

To ensure this phenomenon is generalizable in patients with CCA, the differential
expression and pathway enrichment analyses were again performed on TCGA-CHOL
cohort (13 low- vs. 23 high-expression). As a result, a total of 888 DEGs were identified
(Figure S2c,d and Table S7). Pathway enrichment analysis demonstrated DEGs were signif-
icantly enriched in the interleukins and TGF-β signaling pathways. Additionally, EGFR
signaling pathway and coagulation and complement signaling were also significantly
enriched (Figure S2f and Table S8). These results were in line with our previous findings
(Figure S2e), implying that the immune-oncogenic gene signature governs immune re-
sponses and various oncogenic signaling pathways associated with CCA proliferation and
progression (Figure S2g). Addressing the molecular immune-oncogenic machinery in the
high-risk CCA patients could guide to an effective therapeutic strategy.

3.3. Drug Repurposing for the High-Risk CCA Patients

To repurpose FDA-approved drugs that may improve therapeutic outcomes in the
high-risk CCA patients, we performed pharmacogenomic connectivity analysis [11] be-
tween CCA tumor-transcriptional changes driven by the immune-oncogenic gene signature
(the low- vs. high-expression groups) with L1000-based cellular transcriptional changes
induced by thousands of chemical perturbagens. The DEGs (150 and 888 genes derived
from the GSE107943 and TCGA-CHOL cohorts, respectively) with their corresponding
fold-changes and p-values were used as the input signature to survey for chemical per-
turbagen signatures positively correlated to the input. The results showed that 268 and
949 small molecules were significantly matched for the GSE107943 and TCGA-CHOL co-
horts, respectively (full details in Tables S9 and S10). The top 25 predicted compounds for
GSE107943 and TCGA-CHOL, ranked by the connectivity z-score, are shown in Figure 4a,b,
respectively. Notably, in the GSE107943, several cyclin-dependent kinase inhibitors (in-
cluding dinaciclib, alvocidib, and seliciclib) were discovered for their potential effects on
CCA transcriptomic reversal. This observation was maintained in the TCGA-CHOL cohort,
but additionally several tyrosine-kinase inhibitors (i.e., dacomitinib and pazopanib) were
also identified. A Venn diagram of the candidate small molecules from the analyses of
GSE107943 and TCGA-CHOL datasets identified 29 mutual entities. These small molecules
belong but are not limited to the classes of kinase inhibitors (for dasastinib, selumetinib,
and trametinib), cyclin-dependent kinase inhibitors (for AT-7519 and BMS-387032), and
epigenetic modulators (for pracinostat) (Figure 4c,d and Table S11).

3.4. Pharmacogenomic Connectivity and the CCA Immune-Oncogenic Gene Signature

Finally, we determined the potential causal effects between the transcriptomic profile-
guided drugs and immune-oncogenic signals driven by the immune-oncogenic gene signa-
ture. Accordingly, the drug-gene interactome of 29 predicted drugs (as shown in Figure S3)
and 26 mortality-associated immune-related genes in CCA patients (Figure 2c) was gener-
ated by using the STITCH database [13] with the Cytoscape v.3.8 and stringApps v.1.7.0
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plugin. As a result, the predicted drugs established several meaningful interactions to the
members of the immune-oncogenic gene signature (Figure 5 and Table 1).
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Most interactions converged at dasatinib (a multi-kinase inhibitor), which directly
targets ABL1, FRK, FYN, LCK, and SRC, five gene members of the immune-oncogenic
gene signature. Dasatinib interacted with a cluster of tyrosine kinase inhibitors, including
canertinib (EGFR inhibitor), and selumetinib (MEK1/2 inhibitors). These results were con-
sistent with the enriched EGFR1 and FGF signaling pathways (Figure S2e,f) and involved
with the MAPK signaling cascade. Bexarotene interacts with MDM2 by promoting its
p53-mediated gene expression [18]. Bexarotene has been implicated cancer immunity and
has been approved for the treatment of skin manifestations of cutaneous T-cell lymphoma.
Moreover, NVP-TAE226 inhibits the AURKA/AKT/FAK signaling pathway by inhibiting
FAK, thereby waning cell invasion and migration in head-and-neck squamous cell carci-
noma [19]. Additionally, PF-573228, another FAK inhibitor, interacts with SRC by impeding
the formation of the SRC/FAK complex and integrin activation through the inhibition of
FAK, resulting in reduced cell proliferation in thyroid cancer [20]. These results provide
insight into the causal effect of predicted drug action through cell-cycle regulation and FAK
signaling pathways. Cyclin-dependent kinase (CDK) inhibitors were not directly connected
to the immune-oncogenic gene signature; however, TP53 and AURKA have shown evidence
in regulating CDK activity [21]. Additionally, several interactions were established around
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the members of the immune-oncogenic gene signature and TP53, BRCA1, and AURKA,
which involved in regulating spindle assembly and the cell-cycle [21], and TGF-β signal-
ing [22], thus supporting the potential of CDK inhibitors against the immune-oncogenic
related pathways behind the high-risk CCA phenotype (Figures 4c and 5c). Taken together,
the molecularly driven pharmacogenomic connectivity-mapping with the integrative drug-
gene network analysis successfully delivered 8 FDA-approved drugs and 11 investigational
drugs in multiple phases of clinical trials (Table 1) as promising candidates for adjunct
treatment to improve therapeutic outcomes in high-risk CCA patients.
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3.5. Validation Analysis Using a Pooled CCA Cohort

To extend this generalizability across platforms, we validated the use of the signature
to stratify 704 CCA tumors with microarray profiles compiled from 10 independent co-
horts and previously reported by our group [8]. We found that patient samples stratified
themselves into groups of low-, intermediate-, and high- expressing samples (268 low,
182 intermediate, and 254 high expressing samples) (Figure S3a). When differential expres-
sion and pathway enrichment analysis was conducted, we found 4765 genes differentially
expressed with 2× fold-changes and adjusted p-value < 0.05 (Figure S3b). The pathway en-
richment of these genes revealed interferon related signaling. Additionally, DNA damage,
gene expression, and protein metabolism pathways were also significantly enriched. These
pathways are consistent with our findings in the GSE107943 and TCGA-CHOL datasets
(Figure S3c). Lastly, the connected perturbagens identified several kinase inhibitors such as:
Imatinib, NVP-AEW541, and BMS-777607. Moreover, in indirectly targeting elements of
the CCA immune-oncogenic gene signature, SJ 172550, an MDM4 was also significantly
enriched. An epigenetic modulator was also identified, including PCI-34051 (Figure S3d).
Interestingly, the perturbagen identified commonly among the three analyses was WH-
4-025, a dual LCK/SRC tyrosine kinase inhibitor (Figure S3e). These findings provide
significance to the immune-oncogenic gene signature, in that it was capable of stratifying
patients, and identifying positively correlated connected perturbagens.
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Table 1. Candidate drugs predicted to have therapeutic efficacy in the CCA patient subpopulation with the high-expression of the immune-oncogenic gene signature
in tumor tissues. NA, not applicable.

Perturbagen Drug Class Drug Target Signature Gene FDA-Approval/Clinical Trial Phase (Clinicaltrials.gov Identifier)

Bexarotene RXR agonist RXRA, RXRB, RXRG MDM2 Approved for skin manifestations of cutaneous T-cell lymphoma

Cabozantinib Tyrosine kinase inhibitor KDR, MET, KIT, FLT3, TIE-2,
RET, AXL NA

Approved for hepatocellular carcinoma and advanced
renal cell carcinoma

Investigated as a monotherapy for cholangiocarcinoma after
progression on first line and second line therapy (NCT01954745)

Dasatinib Tyrosine kinase inhibitor

ABL1, FYN, LCK, SRC, KIT,
YES1, EPHA2, LYN, PDGFRB,

BCR, HCK, FGR, FRK,
BLK, SRMS

ABL1, FYN, LCK,
SRC, FRK

Approval for chronic myeloid leukemia with Philadelphia
chromosome-positive

Investigated for isocitrate dehydrogenase (IDH)-mutant advanced
intrahepatic cholangiocarcinoma (NCT02428855)

Binimetinib
(MEK162) MEK inhibitor MAP2K1, MAP2K2 NA

Approved in combination with encorafenib for
unresectable/metastatic melanoma with BRAF V600E

or V600K variants

Ibrutinib
(PCI-32765) BTK inhibitor BTK NA Approved for B cell malignancies

Mirdametinib
(PD-0325901) MEK inhibitor MAP2K1, MAP2K2 NA Approved for neurofibromatosis type 1

Selumetinib MEK inhibitor MAP2K1, MAP2K2 NA
Approved for neurofibromatosis type 1

Investigated for unresectable cholangiocarcinoma with Ras
pathway activation (NCT00553332)

Trametinib MEK inhibitor MAP2K1, MAP2K2 NA

Approved for unresectable/metastatic malignant melanoma with
BRAF V600E or V600K variants

Investigated in combination with hydroxycholoroquine in KRAS
mutated refractory cholangiocarcinoma (NCT04566133)

Allitinib Tyrosine kinase inhibitor EGFR, ERBB2 NA Phase II (NCT04671303)

AT-7519 CDK inhibitor

CDK2, CDK1, CDK9, CDK4,
CDK5, CDK6, CDK14, CDK11B,

CDK8, CDK7, CDK3, CDK16,
CDK17, CDK18, CDK13, CDK10,
CDK20, CDK15, CDK19, CDK12

NA Phase I–phase II (NCT01183949, NCT02503709, NCT01652144,
NCT01627054, NCT00390117)

Clinicaltrials.gov
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Table 1. Cont.

Perturbagen Drug Class Drug Target Signature Gene FDA-Approval/Clinical Trial Phase (Clinicaltrials.gov Identifier)

AZD4547 FGFR inhibitor FGFR1, FGFR2, FGFR3, FGFR4 NA Phase I/II-phase II/III (NCT04439240, NCT02965378, NCT02824133,
NCT01824901, NCT01791985, NCT01213160)

AZD-8330 MEK inhibitor MAP2K1, MAP2K2 NA Phase I (NCT00454090)

Canertinib pan-EGFR inhibitor EGFR, ERBB2, ERBB4 NA Phase II (NCT00050830, NCT00051051, NCT00174356)

CI-1040 MEK inhibitor MAP2K1, MAP2K2 NA Phase II (NCT00033384, NCT00034827)

Triptolide
(PG 490) HSP70 inhibitor NA NA Phase I–phase II (NCT03117920, NCT03129139)

Pictilisib pan-PI3K inhibitor
PIK3CG, PIK3CD, PIK3R2,
PIK3R1, PIK3CA, PIK3CB,

PIK3R5, PIK3R3
NA Phase I–phase II (NCT00975182, NCT00876122, NCT01740336,

NCT02389842, NCT00876109, NCT00960960, NCT01493843)

Pracinostat HDAC inhibitor HDAC NA Phase I–phase III (NCT01912274, NCT03151408, NCT03848754,
NCT01112384, NCT01075308, NCT00741234)

RO4987655 MEK inhibitor MAP2K1, MAP2K2 NA Phase I (NCT00817518)

SNS-032
(BMS-387032) CDK inhibitor CDK2, CDK7, CDK9 NA Phase I (NCT00446342, NCT00292864)

NVP-TAE226
(761437-28-9) Phenylmorpholines FAK, InsR, IGF-1R, ALK, MET AURKA No entry in clinical trials yet

PF-573228
(869288-64-2) Tyrosine kinase inhibitor FAK, Pyk2, CDK1, CDK7,

GSK-3β SRC No entry in clinical trials yet

AZ628 pan-Raf inhibitor BRAF, RAF1 NA No entry in clinical trials yet

CGP 60474 CDK inhibitor CDK1 NA No entry in clinical trials yet

CHEMBL1242477 NA NA NA No entry in clinical trials yet

Kitasamycin
(CPD000469235) NA NA NA No entry in clinical trials yet

EX-8678 NA NA NA No entry in clinical trials yet

HG-14-10-04 NA NA NA No entry in clinical trials yet

S+A19RC NA NA NA No entry in clinical trials yet

WH-4-025 Tyrosine kinase inhibitor LCK, SRC, p38α, KDR LCK, SRC No entry in clinical trials yet

Clinicaltrials.gov
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4. Discussion

While elements of the tumor immune microenvironment may be shared across various
tumor types, the composition and mechanism of these components are unique to each
tumor lineage. This presents a challenge in characterizing tumors based on infiltration
levels or transcriptomic signatures defined globally to all tumor types. To address this
issue, the present investigation derived a clinically relevant onco-immune signature to
characterize and stratify CCA patients and utilize this CCA sample stratification strategy
to identify small molecules that can be repositioned to potentially combat CCA and its
complex immune architecture.

Here, we formulated the immune-oncogenic gene signature containing 26 mortality-
associated immune-related genes that stratified CCA samples according to the molecular
signature expression patterns. The similar strategy had been employed with successes to
identify tumor-lineage-specific immune signatures in lung adenocarcinoma [23] and breast
cancer [24]. However, the present study was the first effort, to the best of our knowledge, to
focus on drug discovery and repurposing by the immune-oncogenic gene signature-driven
pharmacogenomic connectivity mapping and comprehensive network analysis.

The immune-oncogenic gene set provided by Thorsson V et al. [9], comprised of
3017 genes, was seen to be enriched in various aspects of immune responses. These include
cytokines and inflammatory response, T-cell receptor activation, NO2 dependent IL-12
pathway for NK cells, macrophage markers, and bystander B-cell activation (Figure S1a).
These inflammatory signaling pathways have been associated with tumor initiation, angio-
genesis, and metastasis of cancers, by modulating TME [25]. Moreover, in the process of
immune evasion, several immune cell types, such as macrophages, NK cells, T cells, and B
cells, work in concert to create an immunosuppressive TME [26]. Nonetheless, one should
be aware that not all elements of the immune-oncogenic gene set are clinically relevant
for CCA. This study then sorted out a subset of this immune-oncogenic gene signature as
clinically relevant genes (n = 26 genes) commonly presented in two independent cohorts
and associated with the poorer prognosis when highly expressed in CCA tumors (Figure 2).
The gene members of this immune-oncogenic gene signature still retained the oncogenic
pathways through mitotic spindle formation, PI3K-Akt-mTOR signaling, and Aurora B
signaling (Figure S1b). These pathways are known to implicate in the regulation of anti-
tumor immunological surveillance. For instance, PI3K-Akt-mTOR pathway is reported to
be essential in regulating the secretion of immunosuppressive cytokines such as TGF-β and
IL-10 [27]. These findings suggested that 26 gene members of the immune-oncogenic gene
signature might play crucial roles in CCA oncogenic processes, regulating the cell cycle or
modulating immunosuppressive TME.

Pathway enrichment analysis of CCA transcriptional changes between the low- vs.
high-expression signature groups revealed the critical involvements of cell-cycle regulation,
mitotic spindle formation, complement and coagulation signaling cascade, and cytokine
signaling pathways (i.e., interferons and IL-1) in the immune-oncogenic processes of the
high-risk CCA phenotype (Figure S2). These pathways have been previously observed
for their roles in various cancer types. Regulation of the cell cycle has implications in
anti-tumor immunity [28,29] contributed by AURKA, a member in the immune-oncogenic
gene signature. AURKA regulates the cell-cycle through the p53 and NF-kB pathway [30].
In melanoma, the combination of AURKA inhibitors and MDM2 inhibitors synergistically
promoted anti-tumor immune cell infiltration in immunocompetent mice [31]. Activation
of the complement system induces the accumulation and differentiation of various tumor-
associated neutrophils. These neutrophils release proteinases which promote tumor growth,
as witnessed in lung cancer [32]. CCA tumor cells secrete several cytokines to establish the
immunosuppressive TME [2]. To modulate the tumor microenvironment, several cytokine-
targeted therapies have been coupled with the standard-of-care chemotherapy, such as the
use of Interferon-alpha with G-colony stimulating factor, fluorouracil, and hydroxyurea
(Clinicaltrials.gov identifier NCT00019474). Interferon-alpha 2 is a cytokine that promotes
antigen presentation via upregulation of MHC-I/II, leading to increased infiltrations of
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Genes 2022, 13, 271 12 of 15

dendritic cells and T cells into melanoma tumors [33]. Similarly, clinical trials have been
conducted in CCA patients to evaluate the efficacy of interferon-alpha 2 with an immune
checkpoint blockade pembrolizumab (Clinicaltrials.gov identifier NCT02982720), or in com-
bination with standard-of-care chemotherapy (Clinicaltrials.gov identifier NCT00019474).
This line of evidence supports that the immune-oncogenic processes in CCA, as driven by
the immune-oncogenic gene signature, deserve attention as promising therapeutic targets.

In this direction, drug discovery and repurposing by the pharmacogenomic approach,
coupled with integrative network analysis, predicted 29 candidate small molecules which
might intervene the immune-oncogenic signals in CCA tumors with the high-expression
signature (Figure 5 and Table 1). These candidate perturbagens are primarily enriched
in FDA-approved tyrosine kinase inhibitors. Among these, dasatinib was recognized as
the most promising candidate. Dasatinib directly interacts with 5 out of 26 genes in the
immune-oncogenic gene signature (i.e., ABL1, FYN, LCK, SRC, and FRK), and also links
to TP53 which is involved in regulating cell-cycle [21] and TGF-β signaling [22]. Multiple
targets of dasatinib action, particularly SRC [34] and ABL [35], are crucial in CCA progres-
sion. In fact, several tyrosine kinase inhibitors have potential to modulate inflammatory
responses within the TME which can affect cancer immunotherapy [36]. While dasatinib
is recognized as the suitable candidate due to its targeting multiple kinases involved in
immune-oncogenic pathways, it shows promise in modulating the tumor immune microen-
vironment as well. Dasatinib treatment increased Th1 and CD8+T cell levels in patients with
chronic myeloid leukemia who had better therapeutic responses [37]. Currently, dasatinib
is being investigated for isocitrate dehydrogenase (IDH)-mutant advanced intrahepatic
cholangiocarcinoma (NCT02428855). Considering this finding, and the potential dasatinib
holds in treating CCA, future explorations can unravel the anti-tumoral immunogenic
effects of dasatinib in CCA patients who express high levels of the immune-oncogenic
gene signature.

Another drug class in the network that deserved our attention is CDK inhibitors,
including AT-7519 and BMS-387032 (Figure 5). AT-7519 is the second generation multi-CDK
inhibitor that targets CDK1/2/4/6/9 and has proven effective in inhibiting hematologic
malignancies [38], while BMS-387032 is a selective CDK2 inhibitor that has shown promise
in treating acute myeloid leukemia in vitro [39]. It was known that CCA cell lines were
ubiquitously reliant on CDK4/6 activity for cell proliferation, and therefore were responsive
to CDK4/6 inhibition [40]. Additionally, recent reports revealed the use of CDK inhibitors
in triggering immunogenic responses in cancers by destabilizing PD-L1 [14] and enhancing
anti-tumor immunity through the production of type III interferon and the suppression of
regulatory T cells [15]. Nonetheless, such evidence demonstrating AT-7519 and BMS-387032
in regulating anti-cancer immune functions in the context of CCA is lacking. Our findings
support further investigations, both to explore the efficacy of AT-7519 and BMS-387032 in
CCA, and unravel its mechanism in an immune context.

This study had limitations. First, the CCA immune-oncogenic gene signature was
derived from a modest sample size, and has not been explored for its performance as a
multivariate signature. However, this constraint encouraged us to validate all findings in
two independent RNA-Seq gene expression cohorts (GSE107943 and TCGA-CHOL), and
ten independent microarray cohorts, which collectively showed expression of this gene
signature in varying profiles. Nevertheless, future investigations may be directed towards
performing multivariate and LASSO regression analysis to assess the performance of the
immune-oncogenic gene signature as a prognostic marker. Second, this study was limited
by the nature of bioinformatic study in which the conclusion had no support from the
experimental validation. Nonetheless, different methods applied in this study provided the
consistent results and thus serve as a rationale for further investigations of the candidate
drugs (Table 1) for the experimental evidence of its efficacy in preclinical models and
clinical studies. For instance, WH-4-025, the dual LCK/SRC inhibitor, was identified as the
commonly enriched perturbagen across 12 independent CCA cohorts (Figure S3e). Hence,
the present study offers an opportunity to explore and reposition several candidates to be
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developed in preclinical and clinical models for the treatment of CCA. Moreover, future
investigations may also explore the contexture of the CCA immune-oncogenic signature
in the tumor immune microenvironment by comparing the expression levels between the
tumor and its microenvironment using spatial or single-cell transcriptomics.

5. Conclusions

In conclusion, this study identified the immune-oncogenic gene signature consisting of
26 mortality associated immune-related genes that consistently presented in two indepen-
dent cohorts. Immune-oncogenic gene signature-driven patient stratification could identify
high-risk CCA patients with a poorer prognosis. Drug repurposing by pharmacogenomic
connectivity mapping with drug-gene network analysis predicted several FDA-approved
kinase inhibitors. Future investigations are warranted to evaluate therapeutic potentials of
the predicted drugs as the adjunct to the standard treatment regimens for high-risk CCA
patients, aiming to improve the survival outcome.
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//www.mdpi.com/article/10.3390/genes13020271/s1, Figure S1: (a) Pathway enrichment analysis
of the full immune-oncogenic signature from ‘Immune Land-scape of Cancer/against BioPlanet 2019,
KEGG 2021, and WikiPathways 2021. (b) Pathway enrichment analysis of filtered clinically relevant
immune signature for CCA against BioPlanet 2019, KEGG 2021, and WikiPathways 2021 databases,
Figure S2: Differential gene expression and pathway enrichment analysis of CCA tumor transcrip-
tomes, Figure S3: (a) Unsupervised Hierarchical clustering of CCA samples from 10 Microarray
datasets against the CCA immune-oncogenic signature. (b) Differential Gene Expression analysis
of low vs. high ex-pressing CCA samples from the Microarray cohorts. (c) Pathway enrichment
analysis of the DEGs against BioPlanet 2019, and KEGG 2021. (d) Top 25 connected perturbagens
positively correlated to transcriptional changes between the low- vs. high-expression groups in the
GSE107943 cohort. (e) Venn diagram depicting the common perturbagens identified in each analysis;
Table S1: Pan-immune gene list [9] containing 3017 genes, Table S2: Univariate Cox Proportional
Hazards to immune genes in GSE107943, Table S3: Univariate Cox Proportional Hazard for immune
genes in TCGA-CHOL, Table S4: Common Significant Univariate CoxPH immune genes, Table S5:
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