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Abstract

In engineering and especially in stochastic dynamics, the modelling of envi-

ronmental processes is indispensable in order to design structures safely or to

determine the reliability of existing structures. Earthquakes or wind loads are

examples of such environmental processes and can be described by stochastic

processes. Such a process can be characterised by the power spectral density

(PSD) function in the frequency domain. The PSD function determines the

relevant frequencies and their amplitudes of a given time signal. For the re-

liable generation of a load model described by a PSD function, uncertainties

that occur in time signals must be taken into account. This work mainly

deals with the case where data is limited and it is infeasible to derive reli-

able statistics from the data. In such a case, it may be useful to identify

bounds that characterise the data set. The proposed approach is to employ
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a radial basis function network to generate basis functions whose weights are

optimised to obtain data-enclosing bounds. This results in an interval-based

PSD function. No assumptions are required about the distribution of the

data within those bounds. Thus, the spectral densities at each frequency

are described by optimised bounds instead of relying on discrete values. The

applicability of the imprecise PSD model is illustrated with recorded earth-

quake ground motions, demonstrating that it can be utilised for real world

problems.

Keywords: Power spectral density function, Random vibrations,

Stochastic processes, Stochastic dynamics, Imprecise probabilities,

Uncertainty quantification.

1. Introduction1

The robust determination of the reliability of buildings and structures2

in engineering and especially in the field of stochastic dynamics is of utmost3

importance [1, 2, 3, 4]. Buildings and structures are subject to random vibra-4

tions induced, for example, by environmental processes such as earthquakes5

or wind loads [5, 6, 7]. These loads initiate a dynamic system behaviour of the6

structures. To determine whether this can lead to critical system behaviour,7

simulations can be carried out as part of a reliability analysis. Simulations8

are an important part of engineering, especially to determine failure proba-9

bilities of such structures. This can be done for existing structures or for the10

design of new structures in the future.11

Within the framework of spectral analysis, a signal can be decomposed12

into its harmonic components via the Fourier transform, which allows it to13
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be examined for dominant frequencies and their amplitude by means of the14

power spectral density (PSD) function [8, 9]. The PSD function is an impor-15

tant tool for determining whether the governing frequencies of the excitation16

interfere with those of the structure under investigation, which can lead to17

dangerous system behaviour. For linear systems, a relationship between in-18

put and output PSD can be derived, while for non-linear systems, a time19

signal analysis must be conducted. Various methods can be used to generate20

time signals that intrinsically reflect the characteristics of the PSD and thus21

represent it in the time domain. Such artificially generated time signals can22

be used to perform reliability analyses, e.g. in the context of Monte Carlo23

simulations [10, 11] and other advanced sampling techniques such as sub-24

set sampling [12], line sampling [13], directional importance sampling [14] or25

others.26

In general, data records are subject to uncertainties, which may stem,27

for example, from measurement errors, damaged or inaccurately calibrated28

sensors or from a limited number of available data, see for instance [15, 16].29

Transformations based on estimations, such as a PSD estimation, can in-30

troduce additional uncertainties, as some of these estimators may provide31

results of poor quality [8]. To obtain reliable simulation results, these uncer-32

tainties must be considered in the representation of the physical process. If33

these uncertainties are not taken into account or are incorrectly quantified,34

this can lead to fatal misinterpretations of the results. For example, a build-35

ing may be classified as safe under a certain load, when in reality it has a36

high risk of damage or collapse. The consideration of uncertainties in data37

sets is therefore of utmost importance to obtain reliable simulation results.38
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Typically, uncertainties can be divided into aleatory and epistemic uncertain-39

ties [17]. While aleatory uncertainties are irreducible, epistemic uncertain-40

ties can be reduced, for example, by obtaining further information. There41

are different general approaches available to quantify these uncertainties de-42

pending on their source and occurrence, such as probabilistic models [4, 18],43

non-probabilistic models [19] or imprecise probabilistic models [20]. Specific44

methods are, for instance, p-boxes [21], which are used to bound the cumu-45

lative distribution function of an uncertain parameter, sliced-normal [22, 23]46

or sliced-exponential [24] approaches can be utilised to derive probability47

distributions of multivariate data sets, interval predictor models are able to48

capture reliable bounds on a data set when information is limited [25, 26]49

which can also be combined with interval neural networks [27]. A framework50

for uncertainty quantification with limited information is given in [28]. Other51

works use operator norm theory to reliably determine first passage problems52

under imprecise loads [29, 30, 31].53

Some approaches to estimate the PSD functions that account for uncer-54

tainties in the data have already been presented. For example, in [32, 33] the55

problem of missing data is addressed. These missing data are reconstructed56

and assumed to be normally distributed. The probability distributions of the57

reconstructed missing data are then propagated through the discrete Fourier58

transform to quantify the uncertainties in the frequency domain. In [34], a59

large set of accelerograms is used to determine interval parameters for a semi-60

empirical PSD function. Thus, different representations of the PSD functions61

result, depending on the bounds used for the derived interval parameters. A62

relaxed PSD function, based on a large data set of similar signals transformed63
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into the frequency domain, is derived in [35]. Since it is possible to extract64

robust statistical information from a large amount of data, the relaxed PSD65

provides a probabilistic representation of the data in the frequency domain.66

Although these are different approaches, they all have in common that the67

PSD functions are not treated as purely deterministic and discrete-valued68

functions, as it is usually the case.69

In this work, specifically uncertainties that stem from a limited amount70

of available data are considered. If not sufficient data are available, the71

actual underlying PSD function cannot be estimated with certainty from72

the data records. Commonly used estimators of the PSD function, such73

as the periodogram, could lead to a highly unrepresentative model under74

scarce data, so that the simulation results may not reflect the actual response75

behaviour of the system under investigation.76

Since reliable statistical information can not be derived from a small77

amount of data, this paper proposes an interval approach to define opti-78

mal bounds without considering the distribution within these bounds. The79

estimation of the proposed imprecise PSD is carried out entirely in the fre-80

quency domain, using a radial basis function (RBF) network [36] in order to81

approximate a basis power spectrum and to obtain basis functions represent-82

ing such basis power spectrum. The individual weights of the basis functions83

will be optimised to obtain reasonable bounds considering the actual mini-84

mum and maximum of the data set. These bounds reflect the physics of the85

data as the shape is approximated to represent the overall distribution and86

magnitude of the individual frequencies. In particular, this means that peak87

frequencies, for instance, are adequately represented. The approximation88
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by means of the bounds is able to represent this behaviour. Dependencies89

between the frequency components are also taken into account by this ap-90

proach. Discontinuities between two neighbouring frequencies are unlikely,91

but these can occur when estimating the PSD, especially when only limited92

data is available. By approximating the bounds using an optimisation, these93

discontinuities are avoided. In addition, individual smooth PSD functions94

can be generated from the weights and basis functions of the RBF network95

to represent the data set. Since it is very unlikely that the spectral densi-96

ties of a PSD function alternate between two frequencies between the upper97

and lower bounds, discontinuities are thus avoided. The premise for this ap-98

proach is data similarity. A method for determining the spectral similarity99

for such a data set is given in [37]. To illustrate the strength of the imprecise100

PSD, different data sets are utilised to derive optimal bounds for those. In101

particular, two artificially generated data sets are utilised and one estimated102

from real earthquake ground motions is used to show the feasibility of this103

approach for real world cases.104

This paper is structured as follows: A brief overview of PSD estimation,105

stochastic processes and RBF networks is given in Section 2. The proposed106

imprecise PSD model is described in Section 3. This approach is illustrated107

by means of two academic examples in Section 4 and a set of real data records108

in Section 5. The paper concludes with Section 6.109

2. Preliminaries110

This section introduces some basic theoretical concepts that are relevant111

for the derivation and understanding of the imprecise PSD model introduced112
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later in this work.113

2.1. PSD estimation and stochastic processes114

A stochastic process is affected by random occurrences. Therefore, it115

cannot be described in a purely deterministic way, but has to be modelled as a116

stochastic process. The resulting stochastic process at any time is determined117

by random variables, see e.g., [38].118

If no data are available or if the data do not meet the requirements for119

the simulation, artificially generated stochastic processes can be used for the120

simulations as an approximation to real stochastic processes. Such a process121

can be generated using the Spectral Representation Method (SRM) [39].122

SRM requires an analytical or empirical function of a PSD SX to construct123

a stochastic process Xt with their underlying characteristics. SRM reads as124

follows125

Xt =
Nω−1∑
n=0

√
4SX (ωn)∆ω cos (ωnt+ φn) , (1)

where126

ωn = n∆ω, n = 0, 1, 2, . . . , Nω − 1, (2)

with Nω as the total number of frequency points considered in the analysis127

ωn as the frequency vector, ∆ω as frequency step size, φn as uniformly dis-128

tributed random phase angles in the range [0, 2π] and t as time coordinate.129

Note that ∆ω and Nω are selected according to the properties of the problem130

at hand. For instance, the frequency step size can be defined as ∆ω = 2π/T ,131

with T as total length of the record, and the number of frequency points Nω132

can be chosen according to a cut-off frequency around 99% or more of the133
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total power of the PSD function [39]. This provides a suitable method for134

generating compatible time signals derived from and carrying the character-135

istics of the underlying PSD function SX .136

The estimation of the PSD function of a stationary stochastic process137

can be obtained by the periodogram [3, 9], which is formed by the squared138

absolute value of the discrete Fourier transform of the signal x(t). The peri-139

odogram reads as follows140

ŜX(ωk) =
1

Nt

∣∣∣∣∣
Nt−1∑
j=0

x(j)e
− i2π

Nt
kj

∣∣∣∣∣
2

, (3)

whereNt is the total number of data points in the time record, x(j) represents141

the value of the time signal at the j-th time instant, where j = 0, . . . , Nt−1,142

i is the imaginary unit and k is the integer frequency for ωk =
2πk
T

with T as143

the total length of the record.144

However, the periodogram is considered a poor estimator for PSD func-145

tions because it may exhibit a high variation in the frequency domain. Even146

small perturbations or noise in the data can lead to a high variability in the147

estimated PSDs, which does not correspond to reality. An alternative ap-148

proach is Welch’s method [40]. It is based on forming overlapping segments149

of the time signal and uses a periodogram modified via a window function150

to estimate the PSD. The individual estimates are then averaged to obtain151

a smoother PSD function in trade-off to a lower resolution in the frequency152

domain.153

In Welch’s method, the signal x(t) is divided into K segments, such that154

x1(t) = x(t∗), x2(t) = x(t∗ + D), . . ., xK(t) = x(t∗ + (K − 1)D) with155

t∗ = 0, 1, . . . , L − 1, L as the length of the individual segments and D as156
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a parameter that determines the spacing for the starting points of the seg-157

ments, respectively. It is noted that D determines the degree of overlap158

between the segments. For example, when D = L/2, there is a 50% of159

overlap. Each segment is multiplied by a window function W (t∗) before the160

modified periodograms are calculated as:161

Pk(ωm) =
1

L

∣∣∣∣∣
L−1∑
t∗=0

xk(t
∗)W (t∗)e−2πimt∗/L

∣∣∣∣∣
2

(4)

with k = 1, . . . , K and ωm analogous to ωk in Eq. 3. The resulting modified162

periodograms are averaged to obtain the estimated smoother PSD function.163

ŜW
x (ωm) =

1

K

K∑
k=1

Pk(ωm) (5)

The selection of the window function can be chosen according to the PSD164

estimation requirements. Two window functions are suggested in [40], which165

are166

W1(j) = 1−

(
j − L−1

2
L+1
2

)2

(6)

and167

W1(j) = 1−

∣∣∣∣∣j − L−1
2

L+1
2

∣∣∣∣∣ , (7)

with j = 0, 1, . . . , L− 1. Since both window functions ensure that the values168

in the middle of the signal segment are weighted more heavily than the outer169

values. This results in further smoothing of the data through the estimation170

process.171

2.2. Radial basis function networks172

An RBF network is a class of artificial neural networks [36]. It typically173

consists of three layers, namely the input layer, the hidden layer and the174
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output layer. It is used to interpolate or approximate functions from a given175

(and possibly multidimensional) input space to the scalar output space but176

can be extended to a multi-output network. Thus, in this work the RBF177

network is a mapping of y : RNω → R.178

The input layer of an RBF network passes the input data to the hidden179

layer. The hidden layer consists of a number of NB neurons whose activation180

functions are radial basis functions, which are characterised by the fact that181

they are symmetrical around their assigned centre ci. In this work, the RBF182

ϕi(x) = e−(||x−ci||·bϕi)
2

(8)

is used, where ||x−ci||·bϕi
describes the Euclidean distance from the input x to183

the designated centre ci multiplied with a scale factor bϕi
=
√

− log(0.5)/sB,184

where sB denotes the basis function spread.185

The function values of the radial basis functions based on the input data186

are propagated to the output layer, where a weighted linear combination of187

all neurons takes place. The weights wi of all neurons can be determined with188

a linear least squares method. In addition, to manipulate the sensitivity of189

a neuron, a bias b0 can be employed. Thus, the RBF network results in190

y(x) =

NB∑
i=1

wi ϕi(||x− ci|| · bϕi
) + b0 x ∈ RNω . (9)

For an exact interpolation of a function, the number of basis functions191

NB must be equal to the number of data points Nω. In general, however,192

exact function interpolation is not necessary. Often, the input data are noisy.193

Therefore, it is advisable to approximate a smoother function and thus av-194

erage out the noise. In addition, for an exact interpolation the number195
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of neurons can be prohibitively high, which leads to a significantly higher196

computational effort. In the case of an approximation, the number of basis197

functions NB is usually less than the number of data points Nω.198

For more information on RBF networks, such as training and validation199

of the network, the reader is referred to [41, 42, 43, 44] and the references200

therein.201

3. Method development202

For robust simulation results considering uncertainties introduced by the203

limited number of available data and the PSD estimation processes in general,204

it is proposed to derive an imprecise PSD function, i.e., an interval-valued205

PSD function determined by an optimal upper and lower bound with respect206

to the data set used and parameters chosen. The optimisation process is car-207

ried out entirely in the frequency domain. The data, for example earthquake208

ground motions, are usually given in the time domain. After transform-209

ing these data into the frequency domain, an ensemble of PSD functions is210

obtained. Based on such an ensemble, the imprecise PSD function can be211

derived performing the steps given in Fig. 1. These steps will be discussed212

in the subsequent sections in details.213

3.1. Basis power spectrum214

The basis power spectrum Sbasis(ωn) can be identified using different ap-215

proaches. As the imprecise PSD function delivers an upper and lower bound216

regardless of any distribution of the data within those bounds, the mean spec-217

trum or the midpoint spectrum are reasonable choices for the basis power218
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PSD estimation to obtain the ensemble

Identification of the basis power spectrum 

𝑆𝑏𝑎𝑠𝑖𝑠 of the ensemble

Optimisation of the 

basis function spread 𝒔𝑩

Fitting an RBF network to the basis 

power spectrum 𝑆𝑏𝑎𝑠𝑖𝑠

Optimisation of the weights 𝑤𝑢𝑝 and 

𝑤𝑙𝑜𝑤 of the basis functions 𝜙

Data in time domain

Optimum 

found?

Choosing the number of 

basis functions 𝑁𝐵

Yes

No

Obtaining optimal bounds 𝑆𝑜𝑝𝑡 and 𝑆𝑜𝑝𝑡

for the ensemble

Updating basis function spread 𝑠𝐵

Optimisation 

of the bounds

Automatic selection of basis function 

spread 𝑠𝐵

Figure 1: Scheme for computing the optimal bounds.

spectrum. The mean spectrum can be obtained by219

Smean(ωn) =
1

R

R∑
i=1

S(i)(ωn), (10)

where the superscript indicates the i-th PSD function in the ensemble and220

R is the cardinality of the ensemble, i.e. the total number of PSD func-221

tions. The midpoint spectrum can be obtained by computing the midpoint222

between maximum and minimum values of the ensemble, i.e. the vector223

consisting of all minimum values of the ensemble is defined as Smin(ωn) =224
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min(S(i)(ωn)) ∀ i ∈ R and accordingly the vector of all maximum values is225

Smax(ωn) = max(S(i)(ωn)) ∀ i ∈ R, such that226

Smidpoint(ωn) =
1

2
(Smax(ωn) + Smin(ωn)) . (11)

If the PSD functions are relatively evenly distributed between the maxi-227

mum and minimum values, the midpoint spectrum can be useful. If the data228

is unevenly distributed, the mean spectrum may be a better choice, as it will229

draw the basis power spectrum towards the direction of the majority of PSD230

functions.231

3.2. Fitting an RBF network232

To fit the RBF network to the basis power spectrum Sbasis(ωn), the hy-233

perparameters NB, the number of basis functions, as well as sB, the basis234

function spreads, are required. For an exact interpolation of the basis power235

spectrum Sbasis(ωn), it is required to use as many basis functions (i.e., neu-236

rons in the RBF network) as frequency points in the ensemble. As such a237

representation will often yield in a highly spiky power spectrum and the sub-238

sequent optimisation of the bounds will yield in the minimum and maximum239

value of the ensemble at each frequency, it is advisable to choose a lower240

number of basis functions. This will results in a smoother approximation241

for Sbasis(ωn). However, the objective of this work is to find optimal bounds242

rather than an exact interpolation. Since an exact interpolation is not fea-243

sible due to the poor scaling of interval propagation schemes in terms of244

dimensionality, optimal bounds with a significantly reduced number of basis245

functions compared to frequency points in the PSD are sought.246
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The choice of the hyperparameter NB and sB is crucial. It must be kept in247

mind, that the choice of the hyperparameters will also affect the subsequent248

optimisation of the bounds. This can result in the bounds of the imprecise249

PSD may being too wide or too narrow and therefore not correspond to250

the actual data set or the constrains of the optimisation are violated. An251

unfavourable choice of these hyperparameters can lead to unreliable results252

and will falsify the subsequent simulation analysis. Furthermore, if a low NB253

is chosen, the RBF network operates as a smoother for its realisations.254

There are several approaches in the literature to find a set of optimal hy-255

perparameters, such as pruning methods, see e.g., [43, 45, 42] and references256

therein. Since the fitting of the RBF network is followed by the optimisation257

of the bounds, the problem here is somewhat more complex. Later in this258

work, it will be discussed that finding good parameters is not a trivial task259

considering the subsequent optimisation of the bounds. Finding appropriate260

parameters can be challenging, but defining these parameters is crucial for261

deriving optimal bounds. This section only presents the proposed idea of262

how to derive these optimal bounds for two examples with predefined hy-263

perparameters. In Section 4.2 the influence of different hyperparameters on264

the resulting bounds is discussed and in Section 3.4 an optimisation of the265

hyperparameters is suggested.266

3.3. Obtaining optimised bounds267

The derivation of optimal bounds is done by optimising the weights cal-268

culated via the fitting of the RBF network. This requires the definition of an269

optimal weight wup ∈ RNB and wlow ∈ RNB for the upper and lower bounds,270

respectively, as optimisation parameters that control the sensitivity of the271
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respective basis functions and thus the distance between the basis power272

spectrum Sbasis and the upper and lower bounds, respectively.273

For the calculation of an upper and lower bound, the term from the RBF274

network (Eq. 9) must be adapted for the following optimisation problem.275

The upper bound thus results in276

Sopt(ωn;w
up) =

NB∑
i=1

wup
i ϕi + b0 (12)

and the lower bound is277

Sopt(ωn;w
low) =

NB∑
i=1

wlow
i ϕi + b0 (13)

with ωn and n as defined in Eq. 2. The basis functions ϕi and the bias278

b0 including the spread sB result from fitting the RBF network to the basis279

power spectrum Sbasis, similarly for the weights w which are the initial values280

for wup = w and wlow = w. This leads to a total number of parameters to281

be optimised of |wup|+
∣∣wlow

∣∣ = 2NB, where |·| is the cardinality.282

To ensure that representative and optimal bounds are derived for the283

data set, the Euclidean norm of the difference between the upper and lower284

bound will be the objective function for the optimisation. This optimisation285

is subject to the conditions, such that the resulting upper bound shall be286

larger than the maximum of the ensemble and the resulting lower bound287

shall be smaller than the minimum of the ensemble to ensure that all data288

points are included in the bounds. For physical reasons the lower bound must289

not be smaller than 0 as negative values are not possible in terms of power290

spectral densities. Since the weights are to be used as intervals in subsequent291

simulations, it also must be ensured that the weights for the lower bound are292
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smaller than those for the upper bound. Thus, the optimisation problem293

results as follows294

min
∣∣∣∣∣∣Sopt(ωn;w

up)− Sopt(ωn;w
low)
∣∣∣∣∣∣

s.t. Sopt(ωn;w
up) ≥ Smax(ωn)

Sopt(ωn;w
low) ≤ Smin(ωn)

Sopt(ωn;w
low) ≥ 0

wlow ≤ wup

(14)

for n = 1, . . . , Nω. If the weights wup and wlow are optimised, reasonable295

bounds can be provided.296

3.4. Optimisation of the hyperparameter297

In general, it may be a difficult task to find the optimal hyperparameters298

manually. Therefore, it seems natural to leave the choice of the hyperpa-299

rameters NB and sB to an optimisation. Since the hyperparameters also300

influence the subsequent optimisation of the bounds, a nested optimisation301

must be carried out. This means that the hyperparameters are determined302

in an outer optimisation, while the bounds are defined in a nested inner op-303

timisation. A study of different optimisation algorithms has proven that the304

best results are obtained with a Bayesian optimisation [46] for the hyperpa-305

rameters and a non-linear constrained optimisation for the bounds, see for306

instance [47]. However, various problems arise, for example that several local307

minima exist, which makes it difficult even for advanced algorithms to find308

the global optimum. Moreover, the number of basis functions is an integer309

value, which is a challenge in optimisation problems in general, see for in-310

stance [48]. In addition, a large number of basis functions NB leads to better311
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results, as already confirmed by the results in the previous section, which is312

why the optimisation for both parameters tends towards a higher number of313

basis functions.314

Since the number of basis functions is also decisive for a simulation fol-315

lowing the optimisation of the bounds, e.g. an interval propagation as part of316

a reliability analysis, it is desirable to obtain a lower number of these. Since317

it makes sense, especially with regard to interval propagation, for the ana-318

lyst to have control over the number of basis functions and since optimising319

an integer value is difficult, it is suggested to predefine a feasible number of320

basis functions NB and optimise only the parameter sB. In this way, control321

over the trade-off – more basis functions for more data enclosing bounds,322

fewer basis functions for a more efficient interval propagation – is left to the323

analyst.324

4. Academic examples325

This section illustrates the derivation of the imprecise PSD with two aca-326

demic examples. Although two specific examples are used in this case, it327

should be noted that in general any PSD function can be employed. There-328

fore, this choice of PSD functions does not affect the general nature of the329

approach. Note that in these examples, most physical units are omitted,330

as they have no effect for the purpose of illustrating the application of the331

proposed approach.332

The first PSD function utilised is the Kanai-Tajimi PSD function of the333
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form334

S1(ω) = S0

1 + 4ξ2 ω
2

ω2
p(

1− ω2

ω2
p

)2
+ 4ξ2 ω

2

ω2
p

(15)

is utilised in this section and throughout this work. In this equation, S0 =335

0.25 is a constant, ωp = 3π describes the peak frequency and ξ = 0.5 indicates336

the sharpness of the peak [49, 50]. Furthermore, the upper cut-off frequency337

is defined to be ωu = 50 rad/s.338

For verification, a second PSD function is utilised, which is given in [39].339

S2(ω) =
1

4
σ2b3ω2e−b|ω| (16)

In this PSD, the parameter σ = 1 is the standard deviation of the underlying340

stochastic process and b = 1 is a parameter proportional to the correlation341

distance of said stochastic process [51, 39]. The upper cut-off frequency is342

ωu = 12.5 rad/s.343

For both PSD functions, three time signals were generated using SRM344

shown in Eq. 1, which were then transformed back into the frequency do-345

main using the periodogram as in Eq. 3, to generate two data sets for the346

subsequent derivation of the imprecise PSD. Due to the influence of the ran-347

dom variables in SRM and the poor estimation quality of the periodogram,348

these data reflect a certain randomness and to a certain extent have the349

character of real data. Both data sets, or so-called ensembles, are depicted350

in Fig. 2. The ensembles utilised aim to illustrate the capabilities of the im-351

precise PSD in dealing with different shapes of datasets, such as a narrower352

and a more variant dataset, i.e. with low and high spectral variation, respec-353

tively. Throughout this work, the respective data sets will be called ensemble354

A, which was generated from the analytical expression of the Kanai-Tajimi355
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PSD function in Eq. 15, and ensemble B, which was generated from the PSD356

function given in Eq. 16.357
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Figure 2: Ensemble A (left), generated from the Kanai-Tajimi PSD function (Eq. 15),

and ensemble B (right), generated from the PSD function (Eq. 16), consisting of 3 PSD

functions each, utilised to estimate the imprecise PSD function.

For the illustration of the estimation of the imprecise PSD, in this work358

the midpoint spectrum is utilised for establishing the basis power spectrum359

Sbasis.360

4.1. Estimation of an imprecise PSD function361

Since this section aims to illustrate the approach in a comprehensible362

way by means of examples, the optimisation of the hyperparameters will be363

omitted. Instead, a predefined number of basis functions and spread for both364

examples are used.365

For ensemble A the number of frequency points is Nω = 238. The number366

of basis functions has been chosen to be NB = 10 with a spread of sB = 3.8.367

Ensemble B consists of Nω = 121 frequency points. NB = 5 and sB = 2368

are the predefined parameters here. For both ensembles, the weighted basis369

functions derived via the RBF network are shown in Fig. 3. In addition, the370
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calculated basis power spectra (target) and the basis power spectra approx-371

imated via the basis functions (output) are given.372
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Figure 3: Weighted basis functions used to approximate the basis power spectrum.

The imprecise PSD function for the ensembles given in Fig. 2 are shown in373

Fig. 4. The final objective function value of the optimisation of the bounds,374

i.e. the norm between upper bound Sopt and lower bound Sopt, for ensemble375

A is 1.825 and for ensemble B 0.885. For comparison, the smallest possible376

objective function values are 0.8470 for ensemble A and 0.3723 for ensemble377

B, as this corresponds to the norm between the maximum and minimum378

values of the ensembles. However, this would require that the number of379

basis functions is equal to the number of frequency points. In such a case380

it would be an interpolation rather than an approximation, which is not381

the aim of this study. The objective function value can therefore also be382

understood as an indicator of the quality of the optimisation. These objective383

function values will be of importance for Section 4.2, where the influence of384

20



the hyperparameters on the resulting bounds is investigated.385

5 10 15 20 25 30 35 40 45
Frequency (rad/s)

0

0.2

0.4

0.6

0.8

P
ow

er
 s

pe
ct

ra
l d

en
si

ty
 (

m
2
/s

3
)

Ensemble
Bounds

0 2 4 6 8 10 12
Frequency (rad/s)

0

0.05

0.1

0.15

0.2

0.25

P
ow

er
 s

pe
ct

ra
l d

en
si

ty
 (

m
2
/s

3
)

Ensemble
Bounds

Figure 4: Bounds of the estimated imprecise PSD function.

In some cases, PSD values may lie (by a small margin) outside the op-386

timised bounds or the bounds may take values smaller than 0. This can387

occur because the basis functions and their optimised weights are not able to388

capture all values, so the optimisation problem can be too inflexible. Thus,389

values smaller than zero are an artefact of the optimisation. However, due390

to tolerances on the optimisation constraints this is justifiable, since the gen-391

eral shape of the PSD and the underlying physics were nevertheless captured392

very well. Furthermore, these tolerance exceedances often only occur at low393

PSD values, the influence of which is of minor significance. However, this is394

more of an implementation problem than a theoretical issue. In the general395

case, the chosen optimisation schemes lead to robust results. In special cases,396

other optimisation methods may lead to improved results.397

4.2. Influence of the hyperparameter on the optimised bounds398

The optimisation of the bounds has been carried out in a brute-force399

manner for both ensembles. This section aims to evaluate the influence of400

the hyperparameters and to show how complex finding optimal parameters401

can be. For each possible parameter combination of NB and sB, the optimal402
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bounds were calculated. NB was run over the values 3 to 50, while sB was run403

from 0.01 to 10 with increment 0.01, yielding a total of 43,248 optimisations404

for each ensemble. The resulting objective function values for ensemble A405

are depicted in Fig. 5, while those for ensemble B can be obtained in Fig. 6.406

In both figures, the colour scale is adjusted to reasonable objective function407

values, i.e. the optimised bounds with such an objective function value are408

considered acceptable.409

The figures show that there are many local minima, which complicates410

finding suitable parameters. A higher number of basis functions often leads411

to better results, which seems to be reasonable because with a high number of412

basis functions the ensemble can be better captured. This is clearly reflected413

in the figures as for a high number of basis functions the objective func-414

tion value decreases, which accordingly means that the bounds are tighter.415

However, since a lower number of basis functions is desirable in terms of in-416

terval propagation, as already stated in Sections 3.4, this is in contradiction417

to each other. Therefore, the aim must be to find favourable parameters,418

under the condition that the number of basis functions does not become too419

high while still maintaining an acceptable objective function value for the420

optimised bounds. Although this is of course case-dependent and influenced421

by the shape of the input data, it can be reasonably concluded that the op-422

timal trade-off here is around 15 basis functions and a basis function spread423

of 3-4 for ensemble A, and around 6-8 neurons and neuron spread of 2-3 for424

ensemble B.425

The choice of hyperparameters has a direct influence on the objective426

function value, as shown in Fig. 5 and Fig. 6, and thus consequently on the427
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Figure 5: objective function values for ensemble A.

bounds. A high number of basis functions NB can, with the appropriate428

selection of the spread sB, usually represent the ensemble better, so that the429

bounds enclose the data more closely. In this case, the objective function430

value will be smaller. A lower number of basis functions, on the other hand,431

results in a smoother approximation of the ensemble, which also increases432

the objective function value. For both cases, it can be argued why these433

are preferable, as the optimisation of the bounds is case dependent and is434

significantly influenced by the shape of the data.435

However, it is also important to note that not every combination of num-436

ber of basis functions and spread leads to reasonable results, as these are also437

in direct relation to each other. A high number of basis functions usually438

needs a lower spread, because significantly more basis functions cover the439

entire frequency range. A spread that is too high would overlap too many440

basis functions, making the optimisation more complex. Fig. 5, for example,441
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Figure 6: objective function values for ensemble B.

shows that a combination of NB = 50 and sB = 10 leads to undesirable442

results.443

It can be concluded that it is a highly complicated task and challenging for444

the analyst to find optimal parameters, which motivates to incorporate the445

optimisation for identifying the parameters such as described in Section 3.4.446

5. Optimising the bounds of real data447

In order to show the derivation of optimal bounds not only for academic448

examples, but also to demonstrate its applicability to a real case, the pro-449

posed method is applied to a real data set in this section. The data used450

here come from the PEER database [52, 53] and are the records of the El451

Centro earthquake on 18 May 1940. Under the premise of this work that452

the proposed method is in particular useful for limited data, only two time453

signals are used, recorded in north-south and east-west direction, which are454
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Figure 7: Time records of the El Centro Earthquake.

shown in Fig. 7. The signals have a total length of T = 53.46 s and a455

time discretisation of ∆t = 0.02 s. At this point, only the stationary PSD456

function is estimated from the given earthquake ground motions as a simpli-457

fication. Nevertheless, it should be noted that an earthquake always has a458

non-stationary character and an estimate of the evolutionary PSD function459

taking into account the time-frequency resolution provides a more realistic460

representation.461

The two time signals are transformed into the frequency domain using462

the periodogram (Eq. 3), which leads to the PSD functions given in Fig. 8.463

Using this data set for optimisation poses some problems. The data set464

shows a high spectral variation, a problem that arises from the use of the465

periodogram, as already mentioned in Section 2. Due to the high variation,466

many PSD values, including those near the peak frequencies, are close to467

zero, which poses a challenge for the proposed method. This problem can be468

solved with a more suitable estimator. Instead of the periodogram, Welch’s469

method (Eq. 4 and 5) can be used, which usually leads to smoother results470
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Figure 8: El Centro earthquake records transformed to frequency domain with the peri-

odogram.

by averaging and windowing the input signals. This can be appreciated in471

Fig. 9.472

Another problem is that although the spectral variation has now been473

reduced, many values are still close to zero. This is natural as it indicates474

that the spectral density for high frequencies in this data set are close to zero,475

a typical pattern for earthquake data. However, since the optimisation of the476

bounds is problematic at values close to zero, a suitable cut-off frequency ωU477

must be chosen. This can reasonably be done since high frequencies with478

low spectral densities have a negligible small effect on the simulation results479

anyway. In [39], it is suggested that ωU be chosen such that 99% of the total480

power is still contained in the PSD function. Here, the cut-off frequency is481

set at 95% of the total power, which is ωU = 50 rad/s, because, as it can482

be seen in Fig. 9, a very large amount of frequency components are close to483

zero.484

After appropriate pre-processing of the data set, the bounds can be opti-485
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Figure 9: El Centro earthquake records transformed to frequency domain with Welch’s

method.
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Figure 10: El Centro earthquake records transformed to frequency domain with Welch’s

method and definition of suitable cut-off frequency.

27



mised according to the proposed approach. As described earlier, the analyst486

has control over the number of basis functions NB, so the optimisation of the487

bounds was performed for NB ∈ {8, 10, 15, 20}. The resulting bounds can488

be seen in Fig. 11. From the optimised bounds it can be seen that the more489

basis functions are used, the smaller the norm between the upper and lower490

bounds becomes. Further, the bounds are more data-enclosing for a higher491

number of basis functions. This behaviour can easily be explained by the fact492

that, as mentioned before, a high number of basis functions is better able493

to capture the signal. Nevertheless, a high number of basis functions is not494

always useful in terms of interval propagation, so it is reasonable to obtain a495

higher norm between upper and lower bound in exchange to a lower number496

of basis functions. For comparison, the corresponding optimised spreads sB497

and objective function values for the optimised bounds are given in Table 1.498
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Figure 11: Optimised bounds of the real data set for NB ∈ {8, 10, 15, 20} basis functions.

To draw the reader’s attention to the importance of selecting suitable pa-499
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Table 1: Optimised spread and resulting objective function value depending on the number

of basis functions.

NB sB objective function value

8 4.9141 0.0468

10 6.7423 0.0459

15 2.6417 0.0383

20 1.7656 0.0354

rameters and the pre-processing of the data, two counter-examples are given500

here. If the number of basis functions and their spread are incorrectly selected501

or the pre-processing of the data set was not done thoroughly enough, the op-502

timised bounds can lead to highly unrepresentative results. The optimisation503

was carried out for the pre-processed data set but with a bad combination of504

parameters, i.e. NB = 15 and sB = 0.5375. The resulting bounds are given in505

Fig. 12 (left). For the second counter-examples the optimisation was carried506

out for the ensemble given in Fig. 8, where the signals were transformed to507

frequency domain using the periodogram 3. The counter-example is depicted508

in Fig. 12 (right). No further discussion is required to prove that such bounds509

do not reflect the data set. Therefore, these bounds are not acceptable and510

cannot be used for a subsequent simulation.511

6. Conclusions512

Accounting for uncertainties in data sets to obtain reliable simulation513

results is of paramount importance in engineering. Especially when only514

limited data are available, uncertainties can have a large impact on the re-515

sults and can easily lead to wrong conclusions. This may result in disastrous516
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Figure 12: Counter-examples: a poor choice of hyperparameters (left) and a poorly pre-

processed data set (right).

consequences, e.g., when an actually catastrophic result is shifted into an ac-517

ceptable range due to incorrect consideration of uncertainties. In such a case,518

it is important to correctly interpret the data and to quantify uncertainties519

rigorously. For the generation of appropriate load models, it is important520

to account for those uncertainties. From a large amount of data, it is often521

possible to derive a robust model that provides reliable simulation results.522

However, as this is often not possible from limited data, an imprecise model523

of a PSD function is proposed in this paper, which provides optimal bounds524

of the data set. Moreover, by using an RBF network, the physics of the un-525

derlying stochastic process is reflected and dependencies between frequencies526

are taken into account. The resulting basis functions of the RBF network527

are used to optimise the weights to obtain an upper and lower bound for528

the data set. One advantage of this approach is that no assumptions have529

to be made about the distribution of the data within the bounds, as this530

would be difficult in any case due to the limited data. Another advantage is531

that the choice of the number of basis functions is left to the analyst, which532

is particularly important for the propagation of intervals in the context of a533

30



reliability analysis. This also allows some flexibility in modelling the bounds.534

An important aspect is the pre-processing of the data, as the method may not535

yield acceptable results for high variant data or in case many spectral den-536

sity values are close to zero. Adequate pre-processing of the data is therefore537

essential. The proposed approach was not only elaborated using academic538

examples, but its applicability to real data was also demonstrated. The im-539

precise PSD presented here is able to obtain optimal bounds and is thus540

suitable for quantifying uncertainties due to a limited amount data. This541

work only refers to the derivation of the optimised bounds for a data set542

consisting of only a few data records. Future works will address the robust543

propagation of the bounds in the context of reliability analyses.544
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