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Abstract

This paper presents a novel methodology for structural reliability analysis by means of the stochas-

tic finite element method (SFEM). The key issue of structural reliability analysis is to determine

the limit state function and corresponding multidimensional integral that are usually related to the

structural stochastic displacement and/or its derivative, e.g., the stress and strain. In this paper,

a novel weak-intrusive SFEM is first used to calculate structural stochastic displacements of all

spatial positions. In this method, the stochastic displacement is decoupled into a combination of

a series of deterministic displacements with random variable coefficients. An iterative algorithm

is then given to solve the deterministic displacements and the corresponding random variables.

Based on the stochastic displacement obtained by the SFEM, the limit state function described by

the stochastic displacement (and/or its derivative) and the corresponding multidimensional integral

encountered in reliability analysis can be calculated in a straightforward way. Failure probabilities

of all spatial positions can be obtained at once since the stochastic displacements of all spatial

points have been known by using the proposed SFEM. Furthermore, the proposed method can

be applied to high-dimensional stochastic problems without any modification. One of the most

challenging problems encountered in high-dimensional reliability analysis, known as the curse of

dimensionality, can be circumvented with great success. Three numerical examples, including

low- and high-dimensional reliability analysis, are given to demonstrate the good accuracy and the

high efficiency of the proposed method.
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1. Introduction1

As a powerful tool to quantify the uncertainty in practical problems, reliability analysis nowa-2

days has become an indispensable cornerstone for analyzing complex stochastic problems in many3

fields [1, 2, 3], such as structural design, optimization and decision management. Although sig-4

nificant effort has been made in the modeling and analysis, the estimation of the failure probabil-5

ity in reliability analysis is still challenging [4, 5, 6]. On one hand, since the multidimensional6

integral encountered in reliability analysis for calculating the failure probability often lies in high-7

dimensional stochastic spaces (hundreds to more), expensive computational costs for the purpose8

are usually prohibitive. On the other hand, the limit state surface is rarely known explicitly and9

only can be evaluated by numerical solutions because the failure region is generally complicated10

and irregular.11

In the past decade, various methods have been developed for the evaluation of multidimen-12

sional integrals arising in reliability analysis. The most straightforward method is known as Monte13

Carlo simulation (MCS). MCS almost converges to the exact value when the number of samples is14

large enough [7]. In addition, it does not depend on the dimension of stochastic spaces, thus it does15

not encounter the curse of dimensionality. However, the computational cost for estimating a small16

failure probability is expensive, which makes this method prohibitive for complex problems in17

practice. As a robust technique, MCS is usually used to verify the effectiveness of other methods.18

Some variations have been proposed to improve MCS, such as multi-level MCS, importance sam-19

pling, subset simulation, etc [5, 8, 9]. Besides sample-based methods, some non-sampling methods20

have also been developed for reliability analysis. A typical kind of non-sampling methods for reli-21

ability analysis are first/second order reliability method (FORM/SORM) [10, 11]. These methods22

are based on first/second order series expansion approximation of the failure surface at the so-23

called design point, then the resulting approximate integral is calculated by asymptotic method.24
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These methods generally have good accuracy and efficiency for low-dimensional and weakly non-25

linear problems. However, considerable errors may arise in high-dimensional stochastic spaces26

and nonlinear failure surfaces [12]. Several methods have been proposed to improve the perfor-27

mance of this kind of method [13]. Another popular method used to decrease the computational28

cost of reliability analysis, known as surrogate model methods, is receiving particular attention and29

continuously gaining significance. This kind of method calculates a functional surrogate represen-30

tation as an approximation of the limit state function. The surrogate model is usually constructed31

in an explicit representation via a set of observed points, then the failure probability can be es-32

timated with cheap computational costs. The constructions of surrogate models are crucial, and33

available surrogate model methods include response surface method [14, 15, 16], kriging method34

[17], support vector machine [18], high-dimensional model representation [19], polynomial chaos35

expansion [20, 21, 22], etc.36

In most practical cases, the limit state function in reliability analysis builds a relationship37

between stochastic spaces of input parameters and the failure probability via the stochastic dis-38

placement of the system [20, 23, 24, 25], thus the determination of the stochastic displacement of39

the system is crucial. For decades, the stochastic finite element method (SFEM), especially the40

spectral stochastic finite element method and its extensions [26, 27, 28, 29, 30], have received par-41

ticular attention for solving structural displacements. As an extension of the classical deterministic42

finite element method to the stochastic framework, the spectral SFEM has been proven efficient43

both numerically and analytically on numerous stochastic problems in engineering and science44

[31]. In this kind of method, the unknown stochastic displacement is projected onto a stochastic45

space spanned by (generalized) polynomial chaos basis. The stochastic Galerkin method is then46

adopted to transform the original stochastic finite element equation into a deterministic finite el-47

ement equation, whose size can be up to orders of magnitude larger than the original stochastic48

problems [26, 27]. However, since extreme computational costs arise as the number of stochastic49

dimensions and the number of polynomial chaos expansion terms increase, high-resolution solu-50

tions of stochastic finite element equations are still a challenge, especially for high-dimensional51

and large-scale stochastic problems in engineering practice [29, 30].52

In this paper, a novel weak-intrusive stochastic finite element method [32] is adopted to solve53
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stochastic displacements of the target systems. In this method, the unknown stochastic displace-54

ment is expanded into a summation of the products of a set of deterministic displacements and55

random variables described in a non-intrusive way, and an iterative algorithm is then given to56

solve the deterministic displacements and the corresponding random variables one by one. More57

importantly, the proposed method can be applied to high-dimensional and large-scale stochas-58

tic problems with high efficiency, thus it avoids the difficulties of the classical spectral SFEM59

discussed above. Based on the obtained stochastic displacement, limit state functions and mul-60

tidimensional integrals in reliability analysis can be calculated in a straightforward way. Failure61

probabilities of all spatial positions are then calculated using very low computational effort. Fur-62

thermore, the failure probability nephogram of the target system can be generated via the failure63

probabilities of all spatial positions, which opens up a potential way for system reliability analysis64

and also provides a unified and efficient numerical framework for various reliability analyses.65

The paper is organized as follows: Basic problems of reliability analysis are introduced in66

Section 2. Section 3 gives a novel weak-intrusive stochastic finite element method for determining67

structural stochastic displacements. Based on the obtained stochastic displacement, a SFEM-68

based method for reliability analysis is then described in Section 4, followed by the algorithm69

implementation of the proposed method in Section 5. Three problems are used to demonstrate the70

performance of the proposed method in Section 6.71

2. Structural reliability analysis72

Structural reliability analysis is typically described by a scalar limit state function g (θ) and cor-73

responding failure probability P f . The evaluation of P f requires the following multidimensional74

integral [4, 5]75

P f =

∫
g(θ)≤0

f (θ) dθ, (1)

where g (θ) ≤ 0 denotes the failure domain, f (θ) is the joint probability density function of random76

variables associated with system parameters and environmental sources. The integral in Eq. (1)77

for determining the failure probability is usually difficult to evaluate since the limit state surface78

g (θ) = 0 may have a very complicated geometry and f (θ) may be defined in high-dimensional79
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stochastic spaces. In most cases, the representation of the limit state function g (θ) is not known80

explicitly, thus numerical methods are usually employed for the evaluation of Eq. (1). Existing81

reliability analysis methods generally evaluate the failure probability at a single point. For general82

purposes, the spatial limit state function g (x, θ) is considered in this paper. Similar to Eq. (1), the83

spatial failure probability function P f (x) is defined as84

P f (x) =

∫
g(x,θ)≤0

f (x, θ) dθ, (2)

which can also provide an effective way for global reliability analysis for the target system. How-85

ever, due to the introduction of spatial positions x, the failure probability function P f (x) in Eq. (2)86

is more difficult to calculate than that in Eq. (1). Further, Eq. (2) also provides a powerful and87

unified way for problems with multiple failure modes and unknown design points. Eq. (1) is just88

considered as a simplified case of Eq. (2) at the design points.89

In this paper, we consider the failure probability function P f (x) of partial differential equation90

(PDE)-controlled stochastic systems whose displacement is a stochastic function u (x, θ). In fact,91

g (x, θ) typically represents a complicated relationship between the inputs and the failure modes via92

the solution of a potential highly complex stochastic system. Representing the limit state function93

g (x, θ) in the form of the stochastic displacement u (x, θ) we have94

g (x, θ) = g [h (u (x, θ)) , x, θ] , (3)

where h (u (x, θ)) is the function of the stochastic displacement u (x, θ). For instance, it can be the95

stochastic stress, the stochastic strain and the relative stochastic displacement, etc. The g (u (x, θ) , x, θ)96

represents the displacement-based limit state function when the function h (u (x, θ)) = u (x, θ). In97

this way, we approximate the limit state function g (x, θ) in an explicit way and the failure prob-98

ability function P f (x) is computed efficiently under the known stochastic displacement u (x, θ).99

In the next section, we will introduce an efficient stochastic finite element method to compute100

the stochastic displacement u (x, θ) and then compute Eq. (3) and Eq. (2) based on the obtained101

solution u (x, θ).102
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3. Stochastic displacements determination using a weak-intrusive SFEM103

As an extension of the deterministic finite element method (FEM), SFEM has become a com-104

mon tool for computing structural stochastic displacements [26, 31]. In the SFEM, system pa-105

rameters and environmental sources are modeled by use of random variables/fields [33, 34]. By106

substituting random variables/fields into classical finite element equations, stochastic finite ele-107

ment equations of linear problems can be written as108

K (θ) u (θ) = F (θ) , (4)

where K (θ) ∈ Rn×n is the stochastic global stiffness matrix representing stochastic properties of109

the physical model under investigation, n is the number of degrees of freedom, u (θ) ∈ Rn is the110

unknown stochastic displacement and F (θ) ∈ Rn is the stochastic force vector associated with111

source terms. It is noted that u (θ) in Eq. (4) is a discrete vector form of the original stochastic112

solution u (x, θ) in Eq. (3), which is obtained via the classical finite element discretization. All113

spatial positions x are thus embedded into the discrete vector u (θ). In the remainder of this paper,114

we perform the reliability analysis using the stochastic vector u (θ) instead of the original stochastic115

solution u (x, θ).116

In general, it is a great challenge to compute the high-precision solution of Eq. (4). Spectral117

stochastic finite element method (SSFEM) is a popular method in the past few decades, in which118

the stochastic displacement is represented through polynomial chaos expansion (PCE) and Eq. (4)119

is thus transformed into a deterministic finite element equation by stochastic Galerkin projection120

[29, 31]. The size of the deterministic finite element equation is much larger than the original121

stochastic problem and expensive computational costs limit SSFEM to low-dimensional stochastic122

problems. In order to overcome these difficulties, a novel sample-based SFEM is developed to123

solve Eq. (4) [32], which represents the unknown stochastic displacement u (θ) as124

u (θ) =

k∑
i=1

λi (θ) di, (5)

where {λi(θ)}ki=1 and {di}
k
i=1 are unknown random variables and unknown deterministic vectors,125

respectively. The solution u (θ) is approximated after k terms are truncated and the more terms k are126

retained, the more accurate approximation can be obtained. It is noted that the solution construct127
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of Eq. (5) is independent of the form of Eq. (4), thus it is applicable for both linear and nonlinear128

stochastic finite element equations. In this paper, we only consider linear stochastic finite element129

equations and nonlinear problems will be investigated in subsequent studies. Eq. (5) provides a130

separated form of deterministic and stochastic spaces, which is possible to determine {λi(θ)}ki=1 and131

{di}
k
i=1 in their individual spaces, respectively. Hence, one requires to seek deterministic vectors132

{di}
k
i=1 and corresponding random variables {λi(θ)}ki=1 such that the approximate solution in Eq. (5)133

satisfies Eq. (4). In Eq. (5), neither {di}
k
i=1 nor {λi(θ)}ki=1 are known a priori, we can successively134

determine these unknown couples {λi (θ) ,di} one by one via an iterative process. From this point,135

we assume that the first k − 1 terms {λi (θ) ,di}
k−1
i=1 have been obtained. In order to compute the136

couple {λk (θ) ,dk}, substituting Eq. (5) into Eq. (4) yields137

K (θ)

 k−1∑
i=1

λi (θ) di + λk (θ) dk

 = F (θ) . (6)

It is not easy to determine λk (θ) and dk simultaneously. In order to avoid this difficulty, the138

random variable λk (θ) and the vector dk are calculated one after another. For the determined ran-139

dom variable λk (θ) (or given as an initial value), dk can be computed by using stochastic Galerkin140

method, which corresponds to141

E
λk (θ) K (θ)

 k−1∑
i=1

λi (θ) di + λk (θ) dk


 = E {λk (θ) F (θ)} , (7)

where E{·} is the expectation operator. Once the vector dk has been determined by Eq. (7), the142

random variable λk (θ) can be subsequently computed by applying Galerkin method to Eq. (6),143

which yields144

dT
k K (θ)

 k−1∑
i=1

λi (θ) di + λk (θ) dk

 = dT
k F (θ) . (8)

In this way, the couple {λk (θ) ,dk} can be computed by repeatedly solving Eq. (7) and Eq. (8) until145

they converge to a specified precision. We note that the iterative process of Eq. (7) and Eq. (8)146

also works for nonlinear stochastic finite element equations, but Eq. (7) and Eq. (8) will be a147

deterministic nonlinear finite element equation of dk and a one-dimensional nonlinear stochastic148

algebraic equation of λk (θ), respectively. For practical implementation, the vector dk is unitized149

as dT
k dk = 1 and the convergence error of the couple {λk (θ) ,dk} is defined as150
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εlocal, j =

∣∣∣∣∣∣∣∣∣∣
E

{(
λk, j (θ) dk, j

)2
−

(
λk, j−1 (θ) dk, j−1

)2
}

E
{(
λk, j (θ) dk, j

)2
}

∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣1 −
E

{
λ2

k, j−1 (θ)
}

E
{
λ2

k, j (θ)
}

∣∣∣∣∣∣∣∣ , (9)

which measures the difference between λk, j (θ) and λk, j−1 (θ). The calculation is stopped when151

λk, j (θ) is almost same as λk, j−1 (θ). Also, the stop criterion of number k retained in the stochastic152

solution u (θ) is defined as153

εglobal,k =

∣∣∣∣∣∣∣∣
E

{
u2

k (θ) − u2
k−1 (θ)

}
E

{
u2

k (θ)
}

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣1 −
k−1∑
i, j=1

E
{
λi (θ) λ j (θ)

}
dT

i d j

k∑
i, j=1

E
{
λi (θ) λ j (θ)

}
dT

i d j

∣∣∣∣∣∣∣∣∣∣∣∣ . (10)

In most problems, the stochastic global stiffness matrix K (θ) and stochastic global load vec-154

tor F (θ) in stochastic finite element equation (4) are obtained by assembling stochastic element155

stiffness matrices and stochastic element load vector. They usually have the forms156

K (θ) =

m∑
i=0

ξi (θ) Ki, F (θ) =

q∑
i=0

ηi (θ) Fi, (11)

where {ξi (θ)}mi=1 and {ηi (θ)}qi=1 are expanded random variables, {Ki}
m
i=1 ∈ Rn×n and {Fi}

q
i=1 ∈ Rn

157

are corresponding deterministic matrices and vectors, respectively, the random variables ξ0 (θ) =158

η0 (θ) ≡ 1, K0 ∈ Rn×n and F0 ∈ Rn are the deterministic matrix and vector corresponding to159

the deterministic parts of material and load uncertainties. Eq. (11) provides a separated form of160

random variables and deterministic matrices. It is noted that random fields associated with material161

and load uncertainties do not have Eq. (11)-like separable forms in some cases. For non-separable162

random fields, series expansion methods, e.g., Karhunen–Loève expansion and Polynomial Chaos163

expansion, can be used to reformulate non-separable random fields as separable forms. Based on164

Eq. (11), Eq. (7) can be simplified and rewritten as165

K̃kkdk =

q∑
j=0

h jkF j −

k−1∑
i=1

K̃ikdi, (12)

where deterministic matrices K̃i j are given by166

K̃i j =

m∑
l=0

cli jKl, (13)

where deterministic coefficients ci jk and hi j are computed by167
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ci jk = E
{
ξi (θ) λ j (θ) λk (θ)

}
, hi j = E

{
ηi (θ) λ j (θ)

}
. (14)

The size of K̃i j in Eq. (13) is the same as the original stochastic finite element equation (4),168

which can be solved by existing deterministic FEM solvers [35, 36], thus it is readily applied to169

large-scale stochastic problems. Similarly, Eq. (8) can be simplified and rewritten as170

ak (θ) λk (θ) = bk (θ) , (15)

where random variables ak (θ) and bk (θ) are given by171

ak (θ) =

m∑
i=0

gkikξl (θ), bk (θ) =

q∑
j=0

fk jη j (θ) −
k−1∑
i=1

m∑
j=0

gk jiξ j (θ) λi (θ) (16)

where deterministic coefficients gi jk and fi j are calculated by172

gi jk = dT
i K jdk, fi j = dT

i F j. (17)

Common methods solving Eq. (15) are to represent the random variable λk(θ) in terms of a set173

of polynomial chaos basis, but they have expensive computational costs [29, 31]. In order to avoid174

this difficulty, a sample-based method is developed to determine λk (θ). For sample realizations175

{θ(i)}
ns
i=1 of all considered random event θ, sample realizations of the random variables ak (θ) and176

bk (θ) are calculated via177

ak

(̂
θ
)

= ξ
(̂
θ
)

gk,·,k, bk

(̂
θ
)

= η
(̂
θ
)

fk −
[
ξ
(̂
θ
)

gk,·,1:k−1 � λ
(k−1)

(̂
θ
)]

[1](k−1)×1, (18)

where ak

(̂
θ
)
, bk

(̂
θ
)
∈ Rns are the random sample vectors of the random variables ak (θ) and bk (θ),178

ns is the number of sample realizations, the operator � represents element-by-element multiplica-179

tion of ξ
(̂
θ
)

gk,·,1:k−1 ∈ Rns and λ(k−1)
(̂
θ
)
∈ Rns . The sample matrices of random variables {ξi (θ)}mi=0,180

{ηi (θ)}qi=0, {λi (θ)}k−1
i=1 are given by181

ξ
(̂
θ
)

=


1 ξ1

(
θ(1)

)
· · · ξm

(
θ(1)

)
...

...
. . .

...

1 ξ1

(
θ(ns)

)
· · · ξm

(
θ(ns)

)
 ∈ Rns×(m+1), (19)

η
(̂
θ
)

=


1 η1

(
θ(1)

)
· · · ηq

(
θ(1)

)
...

...
. . .

...

1 η1

(
θ(ns)

)
· · · ηq

(
θ(ns)

)
 ∈ Rns×(q+1), (20)
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λ(k−1)
(̂
θ
)

=


λ1

(
θ(1)

)
· · · λk−1

(
θ(1)

)
...

. . .
...

λ1

(
θ(ns)

)
· · · λk−1

(
θ(ns)

)
 ∈ Rns×(k−1) (21)

and the coefficient matrices are given by182

gk =
[
gki j

]
i j
∈ R(m+1)×k, fk =

[
fkm

]
m ∈ R

q+1, (22)

where gk,·,k ∈ Rm+1 represents the k-th column of the matrix gk and gk,·,1:k−1 ∈ R(m+1)×k−1 represents183

columns 1 to k − 1 of the matrix gk. With the sample realization vectors ak

(̂
θ
)

and bk

(̂
θ
)
, the184

sample realization vector λk

(̂
θ
)

of the random variable λk (θ) can be obtained by185

λk

(̂
θ
)

= ak

(̂
θ
)
� bk

(̂
θ
)
∈ Rns , (23)

where the operator � denotes the element-wise division of two vectors, which can be performed186

cheaply even for a very large sample size ns.187

Statistical methods are then used to obtain probability characteristics of the random variable188

λk (θ) from random sample realizations λk

(̂
θ
)
∈ Rns . The computational cost for solving Eq. (23)189

is mainly concentrated on the calculation of the sample vectors ak

(̂
θ
)

and bk

(̂
θ
)

in Eq. (18). It is190

very low even for very high-dimensional stochastic problems since Eq. (18) is insensitive to the191

stochastic dimensionalities of ξ (θ) and η (θ). Specifically, even for very large numbers m and q192

(corresponding to the dimensionalities of ξ (θ) and η (θ)), we can efficiently generate the sample193

realization matrices ξ
(̂
θ
)

and η
(̂
θ
)

via Eq. (19) and Eq. (20), and only matrix multiplication is194

involved in calculating the sample vectors ak

(̂
θ
)

and bk

(̂
θ
)

in Eq. (18), which is insensitive to195

stochastic dimensionalities and very cheap to calculate and store. In this way, high-dimensional196

stochastic spaces are cheaply and efficiently described and embedded into the random sample197

vectors ak

(̂
θ
)

and bk

(̂
θ
)
. Furthermore, the proposed method combines the high efficiency of in-198

trusive methods and the weak dependency on the dimensionality of non-intrusive methods. It is199

considered as a weakly intrusive approach. On one hand, Eq. (12) is fully deterministic and can200

be efficiently solved independently of the uncertainty, which is similar to intrusive approaches.201

On another hand, Eq. (23) is independent of the spatial position (or the finite element discretiza-202

tion) and solved only using random sample realizations, which is a non-intrusive way. In this203
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sense, the proposed method avoids the curse of dimensionality to a great extent and is particularly204

appropriate for high-dimensional and large-scale stochastic problems in practice.205

4. Reliability analysis using SFEM206

We recall Eq. (3) and solve the stochastic solution vector u (θ) of stochastic systems by use207

of the SFEM given in Section 3. Considering the stochastic displacement u (θ) =
k∑

i=1
λi (θ) di and208

substituting it into Eq. (3) yield209

g (x, θ) = g

h  k∑
i=1

λi (θ) di

 , x, θ , (24)

where the random parameters of the system are integrated into the random variables {λi (θ)}ki=1 and210

the spatial parameter x is discretized and embedded into the deterministic vectors {di}
k
i=1. Thus,211

the failure probability function P f (x) in Eq. (2) can be rewritten as212

P f (x) = Pr

g

h  k∑
i=1

λi (θ) di

 , x, θ ≤ 0

 . (25)

It is noted that the proposed method strongly depends on the applicability of the proposed213

SFEM. The reliability analysis for nonlinear stochastic problems is the same as mentioned above214

but based on solutions of nonlinear stochastic finite element equations. The most straightforward215

and efficient way to compute Eq. (25) is MCS. Random samples used in MCS are generated216

according to the distribution of θ, and the numbers of the points landing in the failure domain are217

counted to estimate the failure probability. Similar to the process of MCS, we utilize a sample-218

based method to estimate Eq. (25). Random sample realizations
{
λi

(
θ( j)

)}ns

j=1
, i = 1, · · · , k in219

Eq. (25) have been calculated by use of Eq. (23), thus the failure probability function P f (x) can220

be evaluated in the following form221

P f (x) =
1
ns

ns∑
j=1

I

g

h  k∑
i=1

λi

(
θ( j)

)
di

 , x, θ( j)


, (26)

where I (·) is the indicator function satisfying222

I (s) =

 1, s ≤ 0

0, s > 0
. (27)
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The proposed method in Eq. (26) combines the high accuracy of sampling methods and the223

high efficiency of non-sampling methods. On one hand, as a sample-based method, it has compa-224

rable accuracy with the Monte Carlo method. The accuracy increases as the number of samples225

increases. On the other hand, it does not require a full-scale simulation of the underlying system226

for each sample realization and only depends on the stochastic solution obtained by the proposed227

SFEM. Specifically, the full-scale deterministic finite element equation is solved for each sample228

realization if classical sampling-type methods are used. The number of finite element equations229

to solve is equal to the number of sample realizations. While the proposed method only requires230

solving a few numbers of Eq. (12) (or Eq. (7)) and Eq. (23). The number usually weakly depends231

on the number of sample realizations. The computational efficiency is thus greatly improved since232

fewer equations are solved. In addition, Eq. (26) can compute the failure probability P f (xi) for233

each spatial position xi at once, which provides a simple but effective way to identify multiple234

failure modes of complex systems. Hence, the proposed method provides a unified framework235

for reliability analysis. It is particularly appropriate for high-dimensional and complex stochastic236

problems in practice.237

5. Algorithm implementation238

The resulting procedure for solving the stochastic finite element equation (4) and computing239

the failure probability function P f (x) via Eq. (26) are summarized in Algorithm 1, which includes240

two parts in turn. The first part is from step 2 to step 9, which is to compute the stochastic241

displacement u (θ) and includes a double-loop iteration procedure. The inner loop, which is from242

step 4 to step 7, is used to determine the couple {λk (θ) ,dk}. While the outer loop, which is from243

step 2 to step 9, corresponds to recursively building the set of couples such that the approximate244

solution u (θ) satisfies Eq. (4). In step 2 and step 7, iterative errors εglobal,k and εlocal, j are calculated245

via Eq. (10) and Eq. (9) and corresponding convergence errors ε1 and ε2 are specified precisions.246

It is noted that the initializations in step 1 and step 3 have little influence on the computational247

accuracy and efficiency of the proposed method. In practical implementation, any nonzero vectors248

of size ns can be adopted as the initial random samples. The second part consists of step 10249

and step 11, where the spatial limit state function g (x, θ) in step 10 is generated based on the250
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stochastic displacement u (θ) obtained in step 8, and the spatial failure probability function P f (x)251

is calculated in step 11.252

Algorithm 1 Reliability analysis based on SFEM

1: Initialize random samples ξi

(̂
θ
)
∈ Rns , i = 1, · · · ,m and ηi

(̂
θ
)
∈ Rns , i = 1, · · · , q

2: while εglobal,k > ε1 do

3: Initialize samples λk,0

(̂
θ
)
∈ Rns of the random variable λk,0 (θ)

4: repeat

5: Compute the displacement component dk, j by solving Eq. (12)

6: Compute the random samples λk, j

(̂
θ
)
∈ Rns via Eq. (23)

7: until εlocal, j < ε2

8: uk (θ) =
k−1∑
i=1
λi (θ) di + λk (θ) dk, k ≥ 2

9: end while

10: Compute the spatial limit state function g (x, θ) via Eq. (24)

11: Compute the spatial failure probability function P f (x) via Eq. (26)

6. Numerical examples253

In this section, we present three examples to illustrate the high accuracy and high efficiency254

of the proposed method in comparison to existing methods, including the reliability analysis of255

a beam-bar frame, the reliability analysis of a roof truss defined in 100-dimensional stochastic256

spaces and the global reliability analysis of a plate. For all considered examples, 1×106 initial sam-257

ples
{
ξi

(
θ( j)

)}1×106

j=1
,
{
ηi

(
θ( j)

)}1×106

j=1
and

{
λk,0

(
θ( j)

)}1×106

j=1
of random variables ξi (θ), ηi (θ) and λk,0 (θ)258

are given and the convergence errors in step 2 and step 7 of Algorithm 1 are set as ε1 = 1 × 10−5
259

and ε2 = 1 × 10−3, respectively.260

6.1. Reliability analysis of a beam-bar frame261

A two-layer frame consists of horizontal and vertical beams and is stabilized with diagonal262

bars, as shown in Fig. 1. Probability distributions of independent random variables associated263

13



Figure 1: Model of the two-layer frame.

with material properties, geometry properties and loads are listed in Table 1. In this example, we264

consider the failure probability of a single point and the limit state function g (θ) is given by the265

maximum joint displacement of the frame as266

g (θ) = max
i

√
u2

xi
+ u2

yi
− c · umean, (28)

where umean = mean
(
max

i

√
u2

xi
(θ) + u2

yi
(θ)

)
is the mean value of the maximum joint displacement267

and the scalar c is related to different failure probabilities, that is, the failure probability decreases268

Table 1: Probability distributions of random variables in the Example 6.1.

variable description distribution mean variance

Ebeam Young’s modulus of beam normal 210 MPa 0.2

Abeam cross-sectional area of beam lognormal 100 mm2 0.2

Ibeam moment of inertia of beam lognormal 800 mm4 0.2

Ebar Young’s modulus of bar normal 210 MPa 0.2

Abar cross-sectional area of bar lognormal 100 mm2 0.2

F1, F2 load 1 and 2 normal 10 kN 0.2
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as the scalar c increases. By use of the proposed method, the maximum joint displacement of the269

frame can be identified automatically instead of selecting manually since the proposed method can270

calculate the stochastic displacements of all nodes simultaneously.271
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Figure 2: Iteration errors of different retained items.
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Figure 3: Solutions of the couples {λi (θ) ,di}
4
i=1.

In order to compute the failure probability P f , we first compute the stochastic displacement272

15



of the frame by using the first part of Algorithm 1. The iterative errors of different retained terms273

calculated by Eq. (10) are shown in Fig. 2. It is seen that only four iterations achieve the re-274

quired precision ε1 = 1 × 10−5, which demonstrates the fast convergence rate of the proposed275

SFEM. Correspondingly, as shown in Fig. 3, the number of couples {λk (θ) ,dk} that constitute the276

stochastic displacement is adopted as k = 4. With the increasing the number of couples, the ranges277

of corresponding random variables are more closely approaching zero, which indicates that the278

contribution of the higher-order random variables to the approximate stochastic solution decays279

dramatically.280
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100
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f

Figure 4: Failure probabilities of different scalar c.

Based on the stochastic displacement obtained by SFEM, failure probabilities of different281

scalar c are shown in Fig. 4, where the scalar c is set from 1.01 to 1.16. The failure probabil-282

ity P f computed from the proposed method ranges from 100 to 10−6, which is fairly close to that283

obtained from 1 × 106 MCS even for a very small failure probability. The absolute error between284

the proposed method and MCS demonstrates the high accuracy of the proposed method. As a285

comparison, we compute the stochastic displacement by SSFEM [26, 31]. The Hermite PC basis286

of seven standard Gaussian random variables are chosen to expand the stochastic displacement,287

and the order of Hermite PC basis is set as p = 2 and p = 4, respectively. For the order p = 2 and288

p = 4, the sizes of deterministic finite element equations derived from SSFEM are 423 and 3960,289

respectively. We test the computational efficiencies of these methods by use of a personal laptop290
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(dual-core, Intel Core i7, 2.40GHz). The CPU times of the proposed method, SSFEM (p = 2),291

SSFEM (p = 4) and 1 × 106 MCS are 3.18s, 16.05s, 84.66s and 374.71s, respectively, which292

demonstrates the high efficiency of the proposed method. Failure probabilities based on SSFEM293

and corresponding absolute errors referring to MCS are shown in Fig. 4, which indicates that SS-294

FEM (p = 4) is more accurate than SSFEM (p = 2). The proposed method has a smaller absolute295

error than SSFEM, especially for small failure probabilities. SSFEM has poor accuracy when the296

failure probability is less than 10−4 and cannot capture the failure probability less than 10−5, while297

the proposed method has a good accuracy even for the failure probability close to 10−6, which298

demonstrates the high accuracy of the proposed method.299
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Figure 5: Failure probabilities of different scalar c.

Furthermore, we consider the frame working in an elastic state, and the limit state function is300

associated with the ultimate interlayer shear force c · σs, where c is a scale factor and σs is the301

mean interlayer shear force. The maximum interlayer shear force is computed by the proposed302

method, SSFEM and 1 × 106 MCS, respectively. Fig. 5 shows failure probabilities obtained by303

these methods and corresponding absolute errors referring to MCS. Similar to that in Fig. 4, both304

SSFEM (p = 2) and SSFEM (p = 4) have poor accuracy for small failure probabilities, while305

the proposed method is fairly close to the results obtained by MCS. The proposed method still306

achieves good accuracy in this case.307
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6.2. Reliability analysis of a roof truss308

In this example, we consider that a stochastic wind load acts vertically downward on a roof309

truss [32], as shown in Fig. 6. The roof truss includes 185 spatial nodes and 664 elements and310

material properties of all members are set as Young’s modulus E = 209GPa and cross-sectional311

areas A = 16cm2. The stochastic wind load f (x, y, θ) is a random field with the covariance function312

C f f (x1, y1; x2, y2) = σ2
f e
−|x1−x2 |/lx−|y1−y2 |/ly , where the variance σ2

f = 1.2, the correlation lengths313

lx = ly = 24. It can be expanded by use of Karhunen-Loève expansion [33, 34, 37] with M-term314

truncated315

f (x, y, θ) =

M∑
i=0

ξi (θ)
√
νi fi (x, y), (29)

where ν0 = ξ0 (θ) ≡ 1, the mean function f0 (x, y) = 10kN, {ξi (θ)}Mi=1 are uncorrelated standard316

Gaussian random variables, νi and fi (x, y) are eigenvalues and eigenfunctions of the covariance317

function C f f (x1, y1; x2, y2), which can be obtained by solving an eigen equation [38].318

9× 3

8× 3

2× 2.16

Figure 6: Model of the roof truss.

Similar to Example 6.1, we consider the failure probability of the maximum displacement of319

the roof truss and the limit state function g (θ) is defined by the maximum displacement as320

g (θ) = max
i

ui (θ) − c · umean, (30)
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where umean = mean
(
max

i
ui (θ)

)
is the mean value of the maximum displacement, ui (θ) are vertical321

displacements of all spatial nodes and the scalar c is related to different failure probabilities.322
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Figure 7: Iteration errors of different retained items.
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Figure 8: Solutions of the couples {λi (θ) ,di}
7
i=1.

A stochastic finite element equation of the stochastic displacement u (θ) is obtained based on323

the expansion (29) of the stochastic wind load. In order to verify the effectiveness of the proposed324

method for high-dimensional reliability analysis, we adopt the stochastic dimension M = 100325

in Eq. (29). The iterative errors of different retained terms calculated by Eq. (10) are shown in326

Fig. 7. Seven iterations can achieve the required precision ε1 = 1 × 10−5, which indicates the fast327

convergence rate of the proposed method even for very high stochastic dimensions. The deter-328
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ministic displacement components {di}
7
i=1 and PDFs of corresponding random variables {λi (θ)}7i=1329

are shown in Fig. 8. The computational time for calculating couples {λi (θ) ,di}
7
i=1 in this example330

is 21.90s by use of a personal laptop (dual-core, Intel Core i7, 2.40GHz), while 854.47s are used331

for MCS, which indicates that Algorithm 1 still has less computational costs for high-dimensional332

stochastic problems. The resulting approximate probability density function (PDF) of the maxi-333

mum stochastic displacement of the whole roof truss compared with that obtained by 1×106 MCS334

is seen from Fig. 9, which indicates that the result of seven-term approximation is in very good335

accordance with that from MCS. Further increasing the number of couples will not significantly336

improve the accuracy since the series in Eq. (5) has converged. It is noted that the tail of the prob-337

ability distribution is crucial for reliability analysis. The proposed method is based on random338

samples and it can provide a good approximation for the tail of the probability distribution.339
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Figure 9: PDFs of the maximum stochastic displacement obtained by MCS and the proposed method and their relative

error.

In this example, the scalar parameter c in Eq. (30) is set from 1.10 to 1.31 and failure prob-340

abilities of different scalar c are shown in Fig. 10. The computational accuracy of the proposed341

method is verified again in comparison to 1 × 106 MCS. The accuracy of the proposed method342

decreases when the failure probability P f is close to 10−6, but it still has a good match with the343

result from MCS. The high-dimensional reliability analysis in this example is performed with low344

computational costs, thus the curse of dimensionality encountered in high-dimensional stochastic345
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spaces is thus overcome successfully.346
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Figure 10: Failure probabilities of different scalar c.

6.3. Global reliability analysis of a plate347

In this example, we consider a Kirchhoff-Love thin plate subjected to a deterministic dis-348

tributed load q = −10kN
/
m2 and simply supported on four edges. As shown in Fig. 11, parame-349

ters of this problem are set as length L = 4m, width D = 2m, thickness t = 0.05m and Poisson’s350

ratio ν = 0.3. For the sake of simplicity, we neglect the self-weight of the plate and assume351

Young’s modulus E (x, y, θ) as the realization of a Gaussian random field with the mean function352

µE = 210GPa and the covariance function CEE (x1, y1; x2, y2) = σ2
Ee−|x1−x2 |/lx−|y1−y2 |/ly , where the353

𝐿
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Τ𝐿 2

Τ𝐿 4𝐷

2

𝐷

4
𝑞

Figure 11: Model of the plate.
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correlation lengths lx = 2m, ly = 4m, the standard deviation σE = 22GPa. Similar to Eq. (29),354

Young’s modulus E (x, y, θ) is approximated by Karhunen-Loève expansion with the 10-term trun-355

cation356

E (x, y, θ) = µE +

10∑
i=1

ξi (θ) Ei (x, y). (31)

In this example, we consider failure probabilities of all spatial points, which can be considered357

as a global reliability analysis. The global limit state function g (x, θ) is defined by the stochastic358

displacement of the plate exceeding a critical threshold as359

g (x, θ) = uω (x, θ) − c · uω,mean (x) , (32)

where uω (x, θ) is the vertical stochastic displacement field of all spatial nodes, uω,mean (x) =360

mean (uω (x, θ)) is the corresponding mean displacement field of uω (x, θ) and the scalar param-361

eter is set as c = 1.35.362

1 2 3 4 5 6
k

10-6

10-4

10-2

100

E
r
r
o
r

Figure 12: Iteration errors of different retained items.

We adopt the Kirchhoff-Love theory and four-node finite elements to divide the plate into363

861 nodes and 800 elements. The unknown node displacement u (θ) is introduced as u (θ) =364

[uω (θ) ,ux (θ) ,uy (θ)]T, which are the vertical displacement, rotations in x and y axes, respectively.365

2583 degrees of freedom are thus defined. The iterative errors of different retained terms calculated366

by Eq. (10) are found in Fig. 12. The required precision ε1 = 1 × 10−5 can be achieved after six367
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iterations. Fig. 13 shows the vertical displacement components {di}
6
i=1 and PDFs of corresponding368

random variables {λi (θ)}6i=1, which again indicates that the first few couples dominate the stochastic369

solution even for very complex stochastic problems.370

Figure 13: Solutions of the couples {λi (θ) ,di}
6
i=1.

Figure 14: Failure probability nephogram.
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Based on the vertical stochastic displacement uω (θ) obtained by the proposed SFEM, the371

global failure probability P f (x) of the plate can be calculated by use of Eq. (26) (i.e. the step372

11 in Algorithm 1). As shown in Fig. 14, the failure probability nephogram has a good accordance373

with that from 1 × 106 MCS, which demonstrates the effectiveness and the high accuracy of the374

proposed method for global reliability analysis. It is noted that failure probabilities P f (xi) of all375

spatial nodes constitute the global failure probability P f (x) shown in Fig. 14, thus several diffi-376

culties encountered in existing approaches can be circumvented, such as determining the design377

point (a point lying on the failure surface which has the highest probability density among other378

points on the failure surface). In this way, the proposed method provides a novel strategy for global379

reliability analysis.380

7. Conclusion381

This paper presents an efficient and unified methodology for structural reliability analysis and382

illustrates its accuracy and efficiency using three numerical examples. The proposed method383

first calculates structural stochastic displacements by using an efficient stochastic finite element384

method, and the failure probability is subsequently calculated based on the obtained stochas-385

tic displacements. As shown in three considered examples, the proposed method has a same386

implementation process for different stochastic problems and allows to solve high-dimensional387

stochastic problems with low computational costs. The curse of dimensionality encountered in388

high-dimensional reliability analysis can thus be circumvented with great success. In addition,389

the proposed method achieves a high-precision solution of global reliability analysis, which over-390

comes difficulties encountered in existing approaches and provides a new strategy for the reliability391

analysis of complex stochastic problems. In these senses, the methodology proposed in this pa-392

per is particularly appropriate for large-scale and high-dimensional reliability analysis of practical393

interests and has great potential in reliability analysis in science and engineering. In the follow-394

up research, a wider range of reliability analyses will be further investigated, such as reliability395

analysis of time-dependent and nonlinear problems.396
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