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Abstract15

Sessile marine invertebrates on hard substrates are one of the two canonical examples of16

communities structured by competition, but some aspects of their dynamics remain poorly17

understood. Jellyfish polyps are an important but under-studied component of these commu-18

nities. We determined how jellyfish polyps interact with their potential competitors in sessile19

marine hard-substrate communities, using a combination of experiments and modelling. We20

carried out an experimental study of the interaction between polyps of the moon jellyfish21

Aurelia aurita and potential competitors on settlement panels, in which we determined the22

effects of reduction in relative abundance of either A. aurita or potential competitors at two23

depths. We predicted that removal of potential competitors would result in a relative increase24

in A. aurita that would not depend on depth, and that removal of A. aurita would result25

in a relative increase in potential competitors that would be stronger at shallower depths,26

1



where oxygen is less likely to be limiting. Removal of potential competitors resulted in a27

relative increase in A. aurita at both depths, as predicted. Unexpectedly, removal of A. au-28

rita resulted in a relative decrease in potential competitors at both depths. We investigated29

a range of models of competition for space, of which the most successful involved enhanced30

overgrowth of A. aurita by potential competitors, but none of these models was completely31

able to reproduce the observed pattern. Our results suggest that interspecific interactions in32

this canonical example of a competitive system are more complex than is generally believed.33

1 Introduction34

The two canonical examples of communities structured by competition are sessile marine invertebrates on35

hard substrates (usually thought to be structured by competition for space) and terrestrial vertebrates36

(usually thought to be structured by exploitation competition for food) (Roughgarden, 1986). These37

examples are distinct because opportunities for niche partitioning of space are limited, while resources38

such as food can generally be partitioned in ways that enhance coexistence (Yodzis, 1978, pp. 8-10).39

Another key difference between these two canonical examples is that marine sessile communities are40

often modelled as open systems, while terrestrial vertebrate communities are often treated as closed41

(Roughgarden, 1986). In consequence, marine sessile communities such as rocky shores, coral reefs42

and subtidal encrusting and fouling communities have played a key role in the development of theory43

including the importance of competition in determining distributions (Connell, 1961), the existence of44

alternative stable states (Sutherland, 1974), non-transitive networks of interactions (Buss and Jackson,45

1979), mathematical models of open systems (Roughgarden et al., 1985) and Markov models (Hill et al.,46

2004).47

Subtidal sessile communities are likely to be strongly affected by human activity in the marine envi-48

ronment and are economically and ecologically important. Nevertheless, some aspects of their dynamics49

remain poorly understood. Artificial structures such as offshore wind farms, oil rigs and docks (known50

collectively as ocean sprawl) can create new hard substrate, and thus act as stepping stones increasing51

connectivity between natural habitat patches (Henry et al., 2018). Subtidal sessile communities on struc-52

tures such as offshore wind farms can affect other ecosystem components, with important socioeconomic53

consequences such as changes to fisheries yields (Haraldsson et al., 2020). The development of these54

communities affects the design and operation of structures such as offshore oil rigs, but can also lead to55

commercially useful products such as shellfish and pharmaceuticals (Page et al., 2010). The temporal56

development and depth gradient patterns in temperate fouling communities are well known (Whomersley57

and Picken, 2003). Many aspects of such patterns can be understood in terms of the tradeoff between58

colonization rates and ability to compete for space (Bracewell et al., 2017). However, there is evidence59
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that factors other than space may sometimes be limiting in subtidal sessile communities, including food60

(Svensson and Marshall, 2015) and oxygen (Ferguson et al., 2013), and in many cases we do not have a61

detailed understanding of the mechanisms controlling community dynamics. There are also methodolog-62

ical issues. Proportions of space occupied by sessile organisms are an example of compositional data.63

Naive analysis of relationships among the parts of a composition (such as between percentage cover of64

different groups of organisms) is misleading because of spurious correlation problems (Aitchison, 1986,65

pp. 48-50). This issue is sometimes overlooked, for example by ecologists attempting to infer competition66

from patterns in percentage cover (e.g. Willcox et al., 2008). A key property of compositional data is67

that all relevant information is contained in logs of ratios of parts (Aitchison, 1986, chapter 4). Several68

important early examples of compositional data analysis are ecological (e.g. Mosimann, 1962; Billheimer69

et al., 2001) but compositional data analysis has been relatively little used by ecologists, other than those70

working on coral reefs (e.g. Gross and Edmunds, 2015; Vercelloni et al., 2020) and microbiome data (e.g.71

Grantham et al., 2019; Silverman et al., 2019).72

Jellyfish polyps are an important but under-studied component of subtidal sessile communities. There73

is increasing evidence that jellyfish medusae play a key role in marine food webs (Hays et al., 2018).74

Demographic models suggest that the sessile polyp life stage of jellyfish can be very long-lived, and that75

polyp survival strongly affects population growth (Goldstein and Steiner, 2019). Ocean sprawl is thought76

to increase the availability of habitat for jellyfish polyps (Duarte et al., 2013). There is observational77

evidence for competitive and sometimes mutualistic interactions between jellyfish polyps and other sessile78

organisms, typically inferred from patterns in abundance on settlement panels or natural substrates (e.g.79

Watanabe and Ishii, 2001; Colin and Kremer, 2002; Willcox et al., 2008; Ishii and Katsukoshi, 2010;80

Rekstad et al., 2021). However, experimental evidence is limited. For example, in an experimental81

manipulation of Aurelia aurita polyp density on settlement panels, high polyp densities were associated82

with reduced settlement of other organisms, and polyps were overgrown by other organisms (Gröndahl,83

1988), although no data analysis was attempted. In addition, survival of Cyanea nozaki polyps was84

higher where the settlement of other organisms was reduced by mesh enclosures (Feng et al., 2017).85

Since most potential competitors are much larger than typical jellyfish polyps, it seems likely that if86

there is competition for space, it will be asymmetric, with jellyfish polyps affected by their potential87

competitors more strongly than vice versa. There is also evidence that polyps are more tolerant of88

hypoxia than many of their potential competitors, and this may affect the outcome of competition, with89

polyps doing better in low oxygen conditions near the bottom of the water column (Ishii and Katsukoshi,90

2010). However, relatively little is known about the details of interactions between jellyfish polyps and91

other marine sessile organisms.92

Here, we describe an experimental study of the interaction between A. aurita polyps and potential93

competitors on settlement panels in a brackish dock whose walls support a dense community of sessile94

3



organisms (Chong and Spencer, 2018; Fielding, 1997, chapter 4), dominated by green and red algae,95

solitary and colonial ascidians (e.g. Ascidiella aspersa, Botryllus schlosseri, Botrylloides spp., Ciona96

intestinalis, Clavelina lepadiformis, Molgula tubifera, Styela clava), bryozoans (Bugula spp.), cnidarians97

(Diadumene cincta), mussels (Mytilus edulis) and sponges (Halichondria spp.). Aurelia aurita medusae98

are abundant in the summer, and polyps are found throughout the year, particularly towards the bottom99

of the dock walls. Oxygen concentrations are sometimes low at nearby sites, particularly close to the100

bottom in summer (Fielding, 1997, pp. 74-78). We determine the responses of the system to reduction101

in relative abundance of either A. aurita or potential competitors. We carry out these reductions at two102

depths, because it is plausible that differences in environmental conditions such as oxygen concentration103

affect the outcome of competitive interactions. We take two approaches to analysis of the data. First, we104

take a phenomenological approach, using a compositional manova model to analyze the effects of removal105

treatments and depth on relative abundances at the end of the experiment. We predict that removal of106

potential competitors will result in a relative increase in A. aurita, and that this increase will not depend107

on depth, because A. aurita polyps are relatively tolerant of low oxygen concentrations and often increase108

in abundance with depth. We also predict that removal of A. aurita may result in a relative increase109

in potential competitors, but that this increase will be stronger at shallower depths, where oxygen is110

less likely to be limiting to potential competitors. However, it seems likely that competition between111

A. aurita and potential competitors is asymmetric, with potential competitors affecting A. aurita more112

than vice versa. Second, we take a more mechanistic approach, measuring interaction strengths between113

A. aurita and potential competitors using a series of models for community dynamics fitted to data. We114

determine whether the observed responses to manipulation can be generated by a model of preemptive115

competition for space, and whether this competition is asymmetric as predicted above.116

2 Methods117

2.1 Experiment118

2.1.1 Study site119

The experiment was done in Salthouse Dock, Liverpool (53.4015◦ N, 2.9912◦ W), a semi-enclosed, brack-120

ish, non-tidal water body with stone walls and a depth of approximately 4m, part of a dock system121

originally constructed in the 19th century, and redeveloped for recreational use in the 1980s (Fielding,122

1997, pp. 11-14, 17). Permission to work at the site was given by the Canal and River Trust.123

2.1.2 Settlement panels124

Interactions between A. aurita polyps and other sessile organisms were investigated on 60 settlement125

panels (grey PVC, 100mm × 100mm × 5mm, roughened to provide a better surface for colonization).126
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Previous experiments showed that such PVC panels support a similar set of species to that found on127

the dock walls (Maxatova, 2016; Presser, 2019; Sharpe, 2020). Panels were suspended from a pontoon128

running along the dock wall in blocks of 6, with 3 in each block at 1m and 3 at 3m. Previous work129

has found substantial differences between dock wall communites at these depths (Chong and Spencer,130

2018). The 3 panels at each depth were attached to the underside of a hardwood bar by a single stainless131

steel screw through the centre of each panel. A strip of lead along the underside of the bar ensured132

that panels always faced downwards. Bars were attached to the pontoon by 5mm diameter nylon cords.133

Panels were suspended on 30 July 2019, a time of year when larvae of sessile organisms are usually134

abundant, and many A. aurelia medusae appeared ready to spawn. Human interference with panels was135

unlikely, because they were not readily visible from above and access to the pontoon was restricted to136

boat owners.137

2.1.3 Treatments138

PVC panels were assigned to one of 3 treatments: control (C), A. aurita polyp removal (A) and removal139

of potential competitors (O). Among the 3 panels in each block at each depth, one was assigned randomly140

to each treatment. In the A treatment, half of the A. aurita polyps on the underside of the panel were141

removed once a week by scraping with the tip of a plastic pipette. In the O treatment, every second142

individual or colony of each other species on the underside of the panel was removed using a paint scraper.143

Proportions removed were judged by eye. On one occasion (panel 2, 13 August 2019, the second week144

of sampling), the A treatment was mistakenly applied to a control panel at 1m depth. In the analyses145

described below, we treated this panel as a control when studying the final community, but included the146

A treatment in the second week of sampling when analysing temporal data.147

2.1.4 Sampling148

Panels were sampled photographically every 7 days for 8 weeks (ending on 24 September 2019). Panels149

were pulled out of the water, placed face-up in a plastic box containing dock water, and photographed150

twice from a distance of approximately 100mm using a Canon Powershot G10 14.7 megapixel digital151

camera (Canon Inc., Tokyo, Japan). Sampling using a stereo microscope would have improved the152

detectability of small organisms, but was not logistically feasible in the field. Panels other than those in153

the control group were photographed both before and after treatment, unless no relevant organisms were154

visible to remove (for example, no A. aurita polyps were visible in the first week of sampling). Dissolved155

oxygen, temperature and salinity were measured each week (except that no salinity measurements were156

taken in the fifth week) at both 1m and 3m, using YSI 550 (oxygen) and 556 MPS (temperature and157

salinity) meters (YSI Inc., Yellow Springs, Ohio, USA). A Secchi disc was visible to at least 3.5m in158

every week.159
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2.1.5 Analysis of environmental data160

Differences in dissolved oxygen, temperature and salinity between 3m and 1m were investigated using161

central 95% credible intervals for the mean difference between depths in pairs of measurements from the162

same week. Under the assumption that differences between depths were independently and identically163

normally distributed, and with a noninformative uniform prior on the mean and log standard deviation,164

the standard one-sample t-interval is a central 95% credible interval for the mean difference between165

depths (Gelman et al., 2003, section 3.2). The assumption of approximate normality was checked using166

QQ-plots, which did not reveal any major problem.167

2.1.6 Photograph analysis168

Proportional cover of each taxon was estimated on each panel in each week by point counting. The169

sharpest photograph from each pair was selected, and the organism present (if any) at each of 100170

randomly-located points recorded using JMicroVision version 1.3.1 (Roduit, 2007). The resolution of171

photographs was generally good enough to determine what organism was present, but when the organism172

present at a point could not be determined, the point was redrawn. The absence of macroscopic organisms173

was recorded as ‘bare panel’, which includes the presence of a biofilm of microorganisms. A. aurita polyps174

growing on potential competitors were recorded separately from those growing directly on the panel.175

Point count data were exported as ASCII text files and compiled into a single data set for statistical176

analysis. If a panel was not photographed before and after treatment (a control panel, or a treatment177

panel on which none of the target organisms were visible), the same point count data were used for before178

and after.179

2.2 Analysis of final composition180

We used a Bayesian latent hierarchical compositional manova with a multinomial observation model to181

determine how final proportional cover was affected by treatments. A manova is the obvious way to182

examine patterns in multiple species, and a compositional approach is needed because we have relative183

abundance data, for which the standard vector addition and scalar multiplication operations used in184

manova are not appropriate. Pawlowsky-Glahn et al. (2015) is a good introduction to compositional185

data analysis. A multinomial observation model is the obvious choice for data derived from point counts.186

We analyzed the pre-treatment data from the final photographic sampling date, and included only A.187

aurita growing directly on panels, bare panel and other taxa contributing at least 20 points to the point188

count data for at least one panel: Botrylloides spp., Bugula spp. and Molgula tubifera. Together, these189

5 taxa accounted for 90-100 points out of 100 on every panel in the pre-treatment point count data190

from the final week, and no other taxon contributed more than 7 points on any panel. Compositional191

data analysis is subcompositionally coherent (Egozcue and Pawlowsky-Glahn, 2011, section 2.3.2), which192
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means that results for the subcomposition we studied do not depend on excluded taxa. We therefore193

analyzed final subcompositions of the form c = (c1, c2, c3, c4, c5), where parts 1 to 5 represent A. aurita194

on panel, bare panel, Botrylloides spp., Bugula spp. and M. tubifera, respectively. We represented these195

final subcompositions in isometric logratio (ilr) coordinates (Egozcue et al., 2003) using the contrast196

matrix described in the supporting information, section S1.197

Let yjkl be the vector of point count data for the single panel from depth j, treatment k, block l, and198

let njkl be the total number of points counted in this observation (between 90 and 100). We modelled199

these data using a Bayesian latent hierarchical compositional manova with a multivariate observation200

model:201

yjkl ∼ multinomial(njkl,ρjkl),

ρjkl = ilr−1 (µ+αj + βk + γjk + δl + εjkl) ,

δl ∼ N(0,Z),

εjkl ∼ N(0,Σ).

(1)202

Here, ρjkl is the vector of expected relative abundances for the panel from depth j, treatment k, block l.203

The isometric log transformation of ρjkl is a vector in R4, formed from the sum of an overall mean vector204

µ, the effect αj of depth j, the effect βk of treatment k, the effect γjk of the interaction between depth205

j and treatment k, the effect δl of block l and the effect εjkl of the panel from depth j, treatment k,206

block l. The block and panel effects are modelled hierarchically, drawn from 4-dimensional multivariate207

normal distributions with mean vector 0 and covariance matrices Z and Σ respectively (independent of208

each other and of the explanatory variables). Note that ρjkl can be written in the simplex S4 as209

ρjkl = µ′ ⊕α′
j ⊕ β′

k ⊕ γjk ⊕ δ′l ⊕ ε′jkl, (2)210

where the primes indicate ilr−1 transformations of the corresponding parameters in R4, and ⊕ denotes211

the perturbation operator (Aitchison, 1986, p. 42). We coded treatment effects as described in the212

supporting information, section S2. Similar models have been used for effects of vegetation disturbance213

and predator manipulation on terrestrial arthropod communities (Billheimer et al., 2001), effects of214

depth on community composition at our study site (Chong and Spencer, 2018), and effects of cyclones215

and bleaching on coral reef composition (Vercelloni et al., 2020).216

We fitted the model using Bayesian estimation in cmdstan 2.23.0 (Carpenter et al., 2017), which217

implements a dynamic Hamiltonian Monte Carlo algorithm (Hoffman and Gelman, 2014). Details of218

priors are given in the supporting information, section S3. Details of fitting, checking and calibration219

are given in the supporting information, section S4.220

We compared the ability to predict new observations between the full model and simpler models221

(without the interaction between depth and treatment, without depth, or without treatment) using222
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leave-one-cluster-out cross-validation. The natural choice for “new observations” is a new block of223

panels, because a replication of the experiment would involve a new set of blocks, rather than new panels224

within existing blocks or new observations on existing panels. We therefore evaluated models based on225

marginal rather than conditional likelihoods with respect to block and panel effects (Merkle et al., 2019).226

Details are in the supporting information, section S5.227

Our primary interest is in responses of A. aurita, bare panel and potential competitors as a whole,228

rather than variation within the subcomposition of potential competitors. Visualizing S4 is not easy, so229

we decomposed treatment effects into two orthogonal components, each of which can be represented in230

a ternary plot: effects on A. aurita, bare panel and potential competitors as a whole, and effects on the231

subcomposition of potential competitors (supporting information, section S6).232

We assessed the effects of potential competitors on A. aurita using differences in logit (A. aurita)233

between potential competitor removal (O) and control (C) treatments. Similarly, we assessed the effects234

of A. aurita on potential competitors using differences in logit (potential competitors) between A. aurita235

removal (A) and control (C) treatments, as described in the supporting information, section S7.236

2.3 Models for community dynamics237

2.3.1 Basic model description238

We will consider two state variables: the proportion of substrate x filled by potential competitors such as239

ascidians and bryozoans (dimensionless) and the density y1 of A. aurita polyps per unit area of substrate240

(numbers L−2). Before collecting data we had planned to include a third state variable y2 representing241

polyps on potential competitors. Some potential competitors provide suitable microhabitat for polyps242

(e.g. Rekstad et al., 2021), and we have observed polyps on potential competitors in the past. However,243

in our data, there were very few polyps on potential competitors. We therefore do not consider y2 in244

the main text, although we we describe the full model in the supporting information (Section S8). Our245

basic model allowed only preemptive competition for space between polyps and potential competitors.246

Preliminary analyses described below showed that this basic model could not reproduce the qualitative247

patterns found in experimental data, in which polyps appeared to have positive effects on potential248

competitors. We therefore introduced a series of modifications after initial analysis of experimental data.249

We treat both state variables and time t (T) as continuous. For simplicity, we treat the dynamics250

of these variables (including the effects of removal treatments) as deterministic, and do not explicitly251

consider the spatial organisation of the system. A system of two ordinary differential equations is252

therefore a natural modelling approach. We treat the system as open, because we are modelling only the253

hard-substrate part of the ecosystem. We assume that polyps and potential competitors interact through254

preemptive competition for space. It is widely believed that space is often limiting for communities of255

sessile marine organisms on hard substrates (Witman and Dayton, 2001, p. 356). There is evidence256
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that competition for food (Svensson and Marshall, 2015) and oxygen (Ferguson et al., 2013) may also257

be important in fouling communities, but for simplicity we do not include these resources. The simplest258

plausible model is therefore259

dx

dt
= a0 (1− x− δy1) + a1x (1− x− δy1) + a2x, (3)260

dy1
dt

= b0 (1− x− δy1) + b1y1 (1− x− δy1) + b2y1, (4)261

262

The processes included in this model are sketched in Figure 1. This model is almost identical to a model263

for competition for space between branching and tabular corals (Muko et al., 2001), except that we treat264

settlement rates as depending on the proportion of free space rather than the absolute amount of free265

space. We assume that larvae arrive at the same rate at all points in space, but only succeed in settling266

on free space, while Muko et al. (2001) presumably allow larvae to seek out only free space.267

The dynamics of potential competitors are represented by Equation 3. The positive parameter a0268

(T−1) is the rate at which the proportion of unoccupied substrate is reduced by settlement of potential269

competitors, and the proportion of unoccupied substrate is 1 − x − δy1, where the positive parameter270

δ is the area of substrate occupied per polyp (numbers−1L2). The positive parameter a1 (T−1) is the271

proportional rate at which the proportion of unoccupied substrate is reduced by growth of potential272

competitors already on the substrate. The negative parameter a2 (T−1) is the proportional rate at273

which the proportion of unoccupied substrate is increased by death of potential competitors already on274

the substrate. The dynamics of polyps (Equation 4) have the same form as Equation 3. The parameters275

are the proportional rate of settlement of polyps on unoccupied substrate (b0, positive, numbers L−2T−1),276

the proportional rate of increase of polyp number on substrate by budding of polyps on substrate (b1,277

positive, T−1) and the proportional death rate of polyps on substrate (b2, negative, T
−1).278

We measure interaction strengths using the community matrix of partial derivatives of proportional279

rates of change with respect to relative abundances of polyps and potential competitors. This is an280

appropriate choice of interaction strength measurement for our experiment, because it does not require281

the assumption of equilibrium (Laska and Wootton, 1998). We include effects on settlement, because282

we want to measure the overall effects on proportional rates of change of relative abundances. However,283

if we wanted a measure of habitat quality alone, it would be more appropriate to exclude effects on284

settlement (Drake and Richards, 2018). In the supporting information (section S9), we show that the285

signs of the elements in the community matrix are286

− −

− −

 , (5)287

where element (1, 1) is the intra-group effect of potential competitors, element (1, 2) is the proportional288
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effect of polyps on potential competitors, element (2, 1) is the proportional effect of potential competitors289

on polyps, and element (2, 2) is the intra-group effect of polyps. Thus, each group of organisms in the290

model has overall negative intra-group density dependence, and potential competitors and polyps on291

substrate have negative effects on each other.292

2.3.2 Mechanisms for positive effects of polyps on potential competitors293

Inspection of experimental data suggested positive effects of polyps on potential competitors. The basic294

model only allows negative effects (Expression 5, element (1, 2)). We therefore considered four mecha-295

nisms by which positive effects could occur: facilitation of settlement, facilitation of growth, overgrowth296

of polyps by potential competitors, and protection from predators. Each requires a change to Equation297

3 and one new parameter, and overgrowth also requires a change to Equation 4. For each, we briefly298

outline possible biological justifications. In the supporting information, section S11, we show that each299

can give a positive effect of polyps on potential competitors, for some values of x, y1 and parameters.300

We modelled facilitation of settlement as follows:301

dx

dt
= (a0 +m0δy1) (1− x− δy1) + a1x (1− x− δy1) + a2x, (6)302

where the positive parameterm0 (T
−1) represents the increase in settlement rate of potential competitors303

for a unit increase in the proportion of space occupied by polyps. Settlement by one species may facilitate304

settlement by other species through changes to the properties of the substrate, including hydrodynamics305

and the microbial biofilm (Wieczorek and Todd, 1998). A linear effect is the simplest plausible model.306

Similarly, we modelled facilitation of growth as follows:307

dx

dt
= a0 (1− x− δy1) + (a1 +m1δy1)x (1− x− δy1) + a2x, (7)308

where the positive parameter m1 (T−1) represents the increase in rate of growth of potential competitors309

onto unoccupied space for a unit increase in the proportion of space occupied by polyps. Mechanisms for310

facilitation of growth are less obvious than those for facilitation, but it is known that A. aurita polyps311

support a microbial community distinct from that of their surroundings (Weiland-Bräuer et al., 2015),312

and that ascidians can retain particles as small as bacteria (Petersen, 2007), although the extent to which313

the A. aurita polyp microbiome can affect the microbiome ingested by filter-feeders is unknown. Again,314

a linear effect is the simplest plausible model.315

Overgrowth of polyps by potential competitors requires modelling the loss of polyps due to over-316
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growth, as well as the gain in space occupied by potential competitors:317

dx

dt
= a0 (1− x− δy1) + a1x (1− x− δy1) + a1,y1xy1 + a2x, (8)318

dy1
dt

= b0 (1− x− δy1) + b1y1 (1− x− δy1)−
a1,y1

δ
xy1 + b2y1, (9)319

320

where the positive parameter a1,y1
(numbers−1L2T−1) represents the rate at which potential competitors321

overgrow polyps. Temporal and spatial variation in polyp abundance suggest that A. aurita competes322

with other sessile organisms (Watanabe and Ishii, 2001; Ishii and Katsukoshi, 2010). It seems plausible323

that potential competitors, particularly the larger ones, could overgrow A. aurita polyps. As above, a324

linear effect is the simplest plausible model.325

Protection from predators requires a slightly different approach, because the final term in Equation326

3, representing death of potential competitors, must always be negative. We used the modification327

dx

dt
= a0 (1− x− δy1) + a1x (1− x− δy1) + a2e

−m2δy1x, (10)328

where the positive parameter m2 (dimensionless) represents the rate at which increases in the proportion329

of space covered by polyps reduce the death rate of potential competitors. Predation can have substantial330

effects on the abundance of early life stages of solitary and colonial ascidians (Osman and Whitlatch,331

2004). In contrast, relatively few species appear to feed on A. aurita polyps, and some of those that332

do show evidence of being deterred by nematocysts in polyp tentacles (Takao et al., 2014). Thus, it is333

plausible that A. aurita tentacles could deter predators from feeding on other species. A brief justification334

for the modelling approach is as follows. Assume that the proportion of space swept by polyp tentacles335

or within which a predator is close enough to polyps to be deterred visually is proportional to the336

proportion of substrate occupied by polyps (δy1), with constant of proportionality k (dimensionless).337

Call this the proportion of space affected by polyps. This involves the implicit assumption that no part338

of the substrate is affected by more than one polyp, which will be approximately true when polyps occupy339

only a small proportion of space. Suppose that a predator moves at a constant speed across the surface340

in a randomly-oriented straight line in order to consume a potential competitor. Then the expected341

proportion of its path affected by polyps is kδy1 (Kaiser, 1983). Suppose that a predator will feed only if342

it does not have a physical or visual encounter with a polyp (a deterrence event), and that these events343

happen at rate 0 in areas unaffected by polyps, and rate p (dimensions T−1) in areas affected by polyps.344

Then the overall rate will be (1 − kδy1) · 0 + kδy1p = kδy1p. Let a unit of time be the time needed345

for the predator to travel the full path needed to feed. Then the probability that no deterrence events346

happen during this time is e−kpδy1 . Let death happen at rate a2 when y1 = 0. Then the death rate in347

the presence of predators will be a2e
−kpδy1 , which is the exponential model above, with m2 = kp. Note348
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that this does not explicitly account for other causes of death. However, unless m2 is large, the death349

rate will not be close to zero when δy1 = 1.350

2.3.3 Application to experimental data351

We fitted versions of Equations 3 and 4, with each of the modifications in section 2.3.2 in turn, to the352

experimental data from all weeks and panels, as described in the supporting information, sections S12,353

S13 and S14.354

2.3.4 Visualization of results355

For each model, we plotted posterior mean predicted relative abundances against time in a typical panel356

from each combination of treatment and depth, with 95% highest posterior density credible bands. A357

typical panel is one having the most common series of treatment applications for the combination of358

treatment and depth: no treatment applications in the control; treatment applications from the third359

week onwards in the A. aurita removal treatment; treatment application from the second week onwards360

in the potential competitor removal treatment.361

To understand the effect of A. aurita polyps on the proportional rate of change of potential competi-362

tors, we plotted the posterior mean of this effect on a grid of points in the simplex, for each model at363

each depth, and overlaid trajectories of posterior mean predicted relative abundances for typical panels364

from each combination of treatment and depth.365

Comparison of fitted models suggested that estimates of the proportion rA of A. aurita removed in366

the A treatment differed between models. As a visual check on the plausibility of each model, we plotted367

post-treatment against pre-treatment sample proportions of space covered by A. aurita each week in the368

A. aurita removal treatment, along with lines through the origin with slope 1 − rA (with 95% highest369

posterior density credible bands), representing predictions from each model.370

As noted above, experimental data suggested positive effects of polyps on potential competitors. In371

order to rule out the possibility that these effects arose from accidental removal of potential competitors372

in the A. aurita removal treatment, we plotted post-treatment against pre-treatment sample proportions373

of space covered by potential competitors each week in the A. aurita removal treatment. If A. aurita374

removal is not also removing potential competitors, we would expect points in these plots to fall along a375

line through the origin with slope 1.376
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3 Results377

3.1 Environmental data378

There was little evidence for systematic differences in dissolved oxygen (supporting information, Figure379

S5a, mean difference −0.73mgL−1, central 95% credible interval [−1.74, 0.29]mg L−1) or salinity (sup-380

porting information, Figure S5c, mean difference 0.09 psu, central 95% credible interval [−0.06, 0.23] psu)381

between 3m and 1m. However, water at 3m was systematically colder than water at 1m (supporting382

information, Figure S5a, mean difference −0.26 ◦C, central 95% credible interval [−0.47,−0.05] ◦C).383

3.2 Panel communities384

All panels were initially empty. Early colonizers included colonial arborescent bryozoans (Bugula spp.),385

colonial ascidians (Botrylloides spp. and Botryllus schlosseri) and Aurelia aurita polyps, all of which386

appeared within the first two weeks. The solitary ascidian Molgula tubifera had become abundant within387

four weeks of the start of the experiment. The solitary ascidian Ascidiella aspersa began to appear after388

seven weeks. By the final week of the experiment, the organisms occupying at least one randomly-chosen389

sampling point out of 100 on at least one panel were (in descending order of proportion of space occupied)390

Molgula tubifera, Bugula spp., Botrylloides spp., Aurelia aurita and Ascidiella aspersa. Examples of391

panels from all treatments from the final week of the experiment are shown in Figure 2. Many of the392

Molgula tubifera had died and dropped off the panels by 29 October 2019, roughly one month after the393

end of the experiment, so the final week of the experiment may be close to the peak of competition for394

space.395

3.3 Analysis of final composition396

All the results for final composition reported below are based on a model with depth and treatment397

effects, but without an interaction between them. The difference in expected log predictive density for a398

new block between the full model and a model with no interaction was negligible (Table 1, row 2), and399

the graphical and numerical summaries discussed below were similar between models with and without400

an interaction. In contrast, models without an interaction and a removal treatment effect, or without401

an interaction and a depth effect, were much worse than the model with depth and removal treatment402

effects but no interaction (Table 1, rows 3 and 4). Parameter estimates for the selected model are given403

in the supporting information, Table S1.404

Overall, panels at 3m had relatively more A. aurita and bare panel, and less space occupied by405

potential competitors, than panels at 1m (Figure 3a, filled vs open large circles, Figure 2, d, e and f vs.406

a, b, and c). At each depth, there was relatively little difference between the control and A. aurita removal407

treatments (Figure 3a, green vs orange large circles are close together, with overlapping 95% credible408
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regions, Figure 2, a vs. c and d vs. f), although there was a tendency towards relatively more bare panel409

in the A. aurita removal treatment. Composition in the potential competitor removal treatment appeared410

distinct from the other two treatments, with relatively less space occupied by potential competitors and411

slightly more A. aurita (Figure 3a, purple vs green and orange large circles, Figure 2, b and e). Treatment412

and depth had little effect on the subcomposition of potential competitors (Figure 3b), with overlapping413

95% credible regions for all combinations, although there was some tendency for panels at 3m to have414

relatively more Botrylloides spp. and less Bugula spp., compared to those at 1m (Figure 3b, filled vs415

open circles).416

Aurelia aurita responded positively to removal of potential competitors at both 1m (Figure 4a,417

purple: posterior mean logit difference 1.68, 95% credible interval (1.15, 2.21)) and 3m (Figure 4b,418

purple: posterior mean logit difference 0.50, 95% credible interval (0.07, 0.93)), although the posterior419

mean effect was further from zero at 1m than at 3m. Unexpectedly, potential competitors responded420

negatively to removal of A. aurita at both 1m (Figure 4a, orange: posterior mean logit difference -0.66,421

95% credible interval (−1.12,−0.20)) and 3m (Figure 4b, orange: posterior mean logit difference -0.64,422

95% credible interval (−1.10,−0.18)).423

Both among-panel variation and among-block variation (described by the covariance matrices Σ and424

Z respectively) were non-negligible. In particular, there was variation at panel level in the geometric mean425

of potential competitors relative to A. aurita and bare panel (supporting information, Figure S6: green426

ellipses are stretched out towards the gm(potential competitors) vertex). Within the subcomposition of427

potential competitors, panel-level variation appeared to be more important than block-level variation428

(supporting information, Figure S7: green ellipses generally lie outside orange ellipses).429

3.4 Models for community dynamics430

Polyps of A. aurita first appeared two weeks after panels were put in the water, but their relative431

abundance remained low throughout the experiment (Figure 5a, faint lines). Throughout, they tended432

to have higher relative abundance at 3m than at 1m (Figure 5a: faint solid lines generally above faint433

dashed lines). By the end of the experiment, they tended to have the highest relative abundance in434

the potential competitor removal treatment and the lowest relative abundance in the A. aurita removal435

treatment (Figure 5a: faint purple lines generally above faint green lines, and faint green lines generally436

above faint orange lines, by the end of the experiment). The relative abundance of bare panel was clearly437

higher at 3m than at 1m by the end of the experiment (Figure 5b: faint solid lines above faint dashed438

lines). Conversely, the relative abundance of potential competitors was clearly higher at 1m than at 3m439

by the end of the experiment (Figure 5c: faint dashed lines generally above faint solid lines). As noted440

above in the analysis of final composition, there was an unexpected tendency for the relative abundance441

of potential competitors to be higher in the controls than the A. aurita removal treatment by the end of442
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the experiment (Figure 5c: faint green lines tend to be above faint orange lines; Figure 4: orange density443

curves).444

The overgrowth model partially reproduced the unexpected pattern of potential competitors having445

higher relative abundance in the controls than the A. aurita removal treatment, but only at 3m (Figure446

5c: solid green line above orange green line). Furthermore, the estimated effect of A. aurita on the pro-447

portional growth rate of potential competitors was positive for the overgrowth model at 3m (supporting448

information, Figure S8b), but negative at 1m (supporting information, Figure S8a), for all compositions.449

Although we did not attempt any systematic direct observations of overgrowth, it does appear that at450

least Botrylloides is able to overgrow A. aurita polyps (supporting information, Figure S9). There was451

some evidence from cross-validation that the overgrowth model was better than all the others, although452

the difference in expected log predictive density from the next best model was less than 2 standard453

errors of the difference (Table 2). At 1m, where the proportion of space covered by polyps was low,454

the estimated rate of overgrowth of polyps by potential competitors in the overgrowth model was small455

compared to the rate of growth of potential competitors over bare panel (supporting information, Table456

S2, a1,y∗
1
and a1 respectively). However, at 3m, the estimated rate of overgrowth of polyps by potential457

competitors was much larger than the estimated rate of growth of potential competitors over bare panel.458

Models other than overgrowth were more or less indistinguishable from each other in terms of expected459

log predictive density for a new observation (Table 2), and none of them reproduced the unexpected460

pattern of higher relative abundance of potential competitors in the controls than the A. aurita removal461

treatment (supporting information, Figures S10, S11, S12, S13). The only other model to produce a462

positive effect of A. aurita on the proportional growth rate of potential competitors was the settlement463

facilitation model, but only in a very small set of compositions with low relative abundance of potential464

competitors, high relative abundance of bare panel, and moderately low relative abundance of A. aurita465

(supporting information, Figure S8g, very small blue area in bottom right corner). This positive effect in466

the settlement facilitation model has little relevance to predicted dynamics, because typical trajectories467

(supporting information, Figure S8g, lines) do not pass through it. All models reproduced the other468

qualitative features of the observed time series described above.469

The estimated proportions removed in treatments in the overgrowth model were approximately 0.2 for470

A. aurita in the A treatment and 0.42 for potential competitors in the O treatment (Table S2, rA and rO471

respectively). These were clearly below the target values of 0.5 for each, but well above zero. Estimates472

for other models were very similar for rO, but larger for rA. Plots of post- against pre-treatment473

proportions of space filled by A. aurita in the A treatment did not strongly distinguish between the474

plausibility of estimates of rA from different models, although if anything models other than overgrowth475

appeared to represent the post- vs pre-treatment A. aurita data better, and there was a tendency for476

all models to underestimate the proportion of A. aurita removed for larger pre-treatment proportions of477
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space occupied by A. aurita (supporting information, Figure S14: points for larger pre-treatment values478

generally lay below lines through the origin with slope 1 − rA). There was no evidence that potential479

competitors were being accidentally removed along with A. aurita: post- and pre-treatment proportions480

of space filled by potential competitors in the A treatment lay approximately on a line through the origin481

with slope 1 (supporting information, Figure S15).482

The overgrowth model appeared moderately plausible, but there was still room for improvement.483

Posterior predictive simulation from the overgrowth model (supporting information, Figure S16) showed484

that although this model captured some of the main features of dynamics as noted above, it underes-485

timated the amount of variability among panels within a treatment combination, compared to the real486

data (Figure 5, wide spread of faint lines for each combination of line style and colour). In particular,487

this model did not reproduce the large variation in the proportion of space filled by potential competitors488

on the real panels at 1m in the A and C treatments, at the end of experiment (Figure 5c, faint lines, vs.489

supporting information, Figure S16c, orange and green dashed lines). This failure is perhaps not sur-490

prising, because our dynamic models were deterministic, while variation among panels may be strongly491

driven by stochastic variation in settlement. On simulated data, although there was no evidence of gross492

errors, 95% HPD intervals did not often contain the true parameter value for the parameters a0 at 1m493

(supporting information, Figure S17a, 3/10 simulated data sets), a1 at 1m (supporting information,494

Figure S17c, 0/10 simulated data sets), a2 at 1m (supporting information, Figure S17e, 0/10 simulated495

data sets), δb0 at 3m (supporting information, Figure S17h, 3/10 simulated data sets) and b2 at 3m496

(supporting information, Figure S17l, 3/10 simulated data sets). In all but the first of these cases, the497

posterior modes tended to be pulled towards zero compared to the true true parameter values, which498

may indicate a strong influence of the half-normal priors with modes at zero. Furthermore, the posterior499

distributions for the proportional death rates of potential competitors a2 at 3m (supporting information,500

Figure S17f) and of polyps b2 at 1m closely matched the prior distributions, suggesting that there was501

little information in the data on these parameters. This may be a consequence of the low proportional502

cover of potential competitors at 3m and of polyps at 1m, respectively (Figure 5c, faint solid lines, and503

a, faint dashed lines, respectively). Thus, even this most successful model should be viewed as at best a504

rough approximation to the processes generating the data.505

Discussion506

As predicted, removal of potential competitors resulted in a relative increase in A. aurita, which did not507

appear to depend on depth. This is consistent with previous observational (e.g. Watanabe and Ishii, 2001;508

Colin and Kremer, 2002; Willcox et al., 2008; Ishii and Katsukoshi, 2010) and experimental (Gröndahl,509

1988; Feng et al., 2017) studies. Below, we suggest that this interaction may, over time, moderate the510
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response of jellyfish populations to the creation of new habitat such as offshore wind farms. Unexpectedly,511

removal of A. aurita resulted in a relative decrease in potential competitors, which did not appear to512

depend on depth. Although we predicted an asymmetric interaction, we did not predict a reversal of sign.513

The lack of dependence on depth may be because oxygen was not limiting in our study system during the514

experiment, although it might be at other times. Our models of competition for space were only partially515

able to generate the observed pattern. The most successful of these models suggested overgrowth of A.516

aurita by potential competitors as a possible mechanism, but only generated the observed pattern at 3m,517

and gave only a modest improvement in ability to predict new observations. Below, we suggest some518

possible approaches to understanding this unexpected result. Finally, Roughgarden (1986) suggested519

that subtidal communities similar to our study system may be lattice communities, in which density-520

independent mortality is low relative to the rate of settlement, and in which growth stops and density-521

dependent mortality is low once space is exhausted. In a separate classification, Roughgarden (1986) also522

suggested that such subtidal communities are CNP communities (Closed because most of the organisms523

involved have relatively short dispersal distances, and limited by space, which is Not Partitionable). We524

evaluate the evidence for these suggestions, and the implications for future approaches to community525

dynamics in subtidal hard substrate communities.526

Removal of potential competitors resulted in a relative increase in A. aurita. Both physical pre-527

emption of space (“founder control”, as in our basic model) and overgrowth (“dominance”, as in our528

overgrowth model) might contribute to this effect (Yodzis, 1986). A. aurita is a rapid colonizer of empty529

space. Thus, we expect that when new habitat is created by coastal or offshore development, there will530

be a rapid initial increase in polyp density, ephyra production and medusa abundance. Our experimental531

evidence for a negative effect of potential competitors on relative abundance of A. aurita polyps implies532

that as potential competitors increase in relative abundance over a time scale of years to decades (e.g.533

Whomersley and Picken, 2003), relative abundance of A. aurita polyps will decrease again, so that the534

increase in medusa abundance may be transient (Feng et al., 2017). However, sessile organisms including535

solitary ascidians and M. edulis provide suitable substrate for A. aurita polyps (Rekstad et al., 2021).536

There were few A. aurita polyps on these organisms in our experiment, but this is not the case in537

every year (M. Spencer, personal observation). Extensive settlement of polyps on potential competitors538

could change the sign of effect of potential competitors (supporting info, section S8), and thus alter the539

long-term consequences of habitat creation for jellyfish populations.540

Removal of A. aurita polyps resulted in an unexpected relative decrease in potential competitors, at541

both depths. The evidence from this experiment was clear, but it will be important to determine whether542

it replicates across years and study locations. In particular, the substantial mortality of the potential543

competitor M. tubifera observed after the end of the experiment was unexpected, as the closely-related544

M. manhattensis is thought to live for about one year (Zvyagintsev et al., 2003). Thus, replication will545

17



be important to establish whether the outcome was a consequence of unusual conditions towards the546

end of the experiment. Although we do not have an explanation for the effect of A. aurita on potential547

competitors, there are some possibilities that seem unlikely. We do not think this is likely to be an exper-548

imental artefact, because panels were removed from the water in sets of three (one from each treatment,549

arranged in a random order) and placed together in a tank of dock water for photography. Other than550

the treatments, all panels experienced the same conditions. Accidental removal of potential competitors551

along with A. aurita polyps also seems unlikely. Polyps were removed individually by hand, and the552

appearance of polyps is quite different from that of potential competitors. Furthermore, comparison of553

proportions of space filled by potential competitors before and after polyp removal suggests that acciden-554

tal removal was negligible (supporting information, Figure S15). Any mechanism that depends on depth555

seems unlikely, because in the analysis of final composition, a model without an interaction between556

treatment and depth had similar ability to predict new observations to a model with such an interaction.557

We did not observe low-oxygen events during the experiment, although it is possible that some such558

events might have occurred between sampling dates. Settlement facilitation can be important in fouling559

communities (e.g. Dean and Hurd, 1980), but our dynamic models did not support this explanation,560

and the experiments in Dean and Hurd (1980) did not rule out other mechanisms. Nevertheless, it is561

possible that removal of biofilm along with A. aurita polyps could have influenced settlement of poten-562

tial competitors. Although some of our potential competitors are known to be vulnerable to predators,563

particularly when small (e.g. Botrylloides, Vieira et al., 2018), and the stinging tentacles of polyps might564

deter predators, a dynamic model with protection from predators did not perform better than the basic565

model. Growth facilitation might plausibly occur through the distinct microbiome of A. aurita polyps566

(Weiland-Bräuer et al., 2015), but again this was not supported by the dynamic models. The dynamic567

models suggested that enhanced overgrowth of A. aurita polyps by potential competitors compared to568

growth onto bare panel was the most plausible mechanism. However, the details of how this mechanism569

might operate remain unclear, and even our overgrowth model did not capture the positive effect of A.570

aurita polyps on potential competitors at 1m. The sea anemone Metridium senile can have short-term571

positive effects on other sessile organisms, perhaps through disrupting boundary layer flow (Nelson and572

Craig, 2011). It is possible that a dense carpet of A. aurita polyps could have a similar effect, leading573

to increased food supply to nearby potential competitors and subsequent overgrowth. However, the low574

relative abundance of A. aurita makes this an unlikely explanation in the 1m treatment. The A. aurita575

polyp microbiome (Weiland-Bräuer et al., 2015) might plausibly affect overgrowth rather than growth576

onto bare panel. However, it is important not to overinterpret the evidence for mechanisms from our577

dynamic models, given the modest differences in expected log predictive density between the overgrowth578

model and other models. Further experiments might therefore be the best way to distinguish between579

possible mechanisms. For example, detailed observation of community development on panels in the580
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laboratory could confirm that the apparent effect is real, whether it is caused by overgrowth, and would581

allow manipulation of factors such as larval supply and predation. If settlement facilitation is impor-582

tant, the positive effect of polyps on potential competitors would disappear if there was no settlement,583

while if protection from predators is important, the positive effect would disappear when predators were584

excluded. An artefact of biofilm removal along with polyp removal could be ruled out using a removal-585

control treatment in which the polyp removal method was applied to areas of bare panel. Distinguishing586

between overgrowth and growth facilitation would require measurement of the rates at which potential587

competitors grow onto bare panel and over polyps. More generally, it seems somewhat unrealistic that in588

our most successful model, the effect of A. aurita on the proportional population growth rate of poten-589

tial competitors did not depend on the relative abundance of A. aurita (supporting information, section590

S11.3). Although this property is shared by the Lotka-Volterra model (and is therefore less surprising591

than it initially appears), it would be worth designing experiments with a sufficiently wide range of A.592

aurita relative abundances that more flexible models could be evaluated.593

Two classifications of competitive communities may help in understanding the nature of interactions594

in this system. Roughgarden (1986, pp. 509-513) suggested that subtidal communities might often be595

lattice communities, with low density-dependent and density-independent mortality rates, high settle-596

ment rate relative to density-independent mortality rate, growth that stops when space is exhausted,597

and close to 100% cover. Our results do not support this suggestion. For both A. aurita polyps and598

potential competitors, estimated density-independent mortality in the best-fitting dynamic model had599

a substantially greater magnitude than settlement (supporting information, Table S2, settlement rates600

a0, δb0, density-independent mortality rates a2, b2, in potential competitors and A. aurita polyps re-601

spectively), although these estimates should be interpreted cautiously, given the extent to which they602

depend on the choice of suitable model structure, including simplications such as using deterministic603

models for underlying dynamics. The best-fitting model had overgrowth of A. aurita polyps by potential604

competitors, so that growth does not necessarily stop when space is exhausted. Except in the controls at605

1m, most panels had a large proportion of free space at the end of the experiment, and our communities606

appear to be a closer match to the high free-space community type, with low settlement rate relative to607

density-independent mortality and limitation by recruitment (Roughgarden, 1986, p. 512). Surveys of608

nearby dock walls suggest that a substantial proportion of free space will remain in the long term (Chong609

and Spencer, 2018). Roughgarden (1986, p. 515) also classified competitive communities by whether610

the system is open or closed, and whether the limiting resource is partitionable. It was suggested that611

subtidal communities might be CNP systems (Closed, due to short dispersal distances, but with space612

being Not Partitionable). However, it does not make sense to model experimental systems of settlement613

panels, or newly-constructed structures such as offshore wind farms, as closed systems. Thus, ONP614

(Open, but with a Non-Partitionable limiting resource) seems a more appropriate classification for such615
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communities. Despite their limited success in reproducing the patterns seen in our experiments, models616

with the structure that we used, and those of Muko et al. (2001), are a natural choice for ONP systems.617

If they are of the high free-space type, for which stochastic fluctuations in settlement rate can strongly618

affect relative abundances, it is likely that a stochastic differential equation formulation, with temporal619

variation in settlement rates, would be a productive approach. Nevertheless, it is reasonable to hope that620

deterministic models such as those considered here will be of some use in understanding the qualitative621

behaviour of ONP systems.622

In conclusion, although potential competitors for space such as ascidians and bryozoans had the623

expected negative effect on A. aurelia polyps, the positive effect of A. aurita polyps on potential com-624

petitors was unexpected and remains unexplained. A combination of new experiments (involving detailed625

monitoring of growth rates onto bare panel and polyps, and manipulation of larval supply and predation)626

and mathematical models is needed to confirm that this is a real effect, and to determine the mechanism627

behind it. These results are important because they suggest that interspecific interactions in a canonical628

example of a competitive system are more complex than is generally believed.629
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Table 1: Model selection for compositional manovas, data from final week, based on expected log predic-
tive density for a new block. Each row shows the difference in expected log predictive density (∆elpdloco)
between a given model and the best model in the top row, and the standard error (SE) of the difference.
Formulae in the Model column give the effect of a combination of depth j and removal treatment k in
the simplex (ϕ′

jk) in terms of depth effect α′
j , removal treatment effect β′

k and interaction γ′
jk. Expected

log predictive density was estimated for a new block of panels by leave-one-cluster-out cross-validation,
with Monte Carlo integration over the distributions of block and panel effects.

Model ∆elpdloco SE
no interaction: ϕ′

jk = α′
j ⊕ β′

k 0 0

full: ϕ′
jk = α′

j ⊕ β′
k ⊕ γ′

jk -25.0 20.2

no interaction, no removal treatment effect: ϕ′
jk = α′

j -1005.4 66.9

no interaction, no depth effect: ϕ′
jk = β′

k -1510.9 102.1
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Table 2: Model selection for ordinary differential equation models based on expected log predictive
density for a new observation calculated using Pareto-smoothed importance sampling. Each row shows
the difference in expected log predictive density (∆elpdloo) between a given model and the best model
in the top row, and the standard error (SE) of the difference.

Model ∆elpdloo SE
overgrowth 0 0
protection -32.0 18.1

basic -32.0 18.2
settlement facilitation -33.4 17.4
growth facilitation -34.3 16.1
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free space

x potential competitors

y1 A. aurita polyps

ao settlement

a2 death

bo settlement

b2 death

a1 growth

b1 budding

Figure 1: A basic model for the dynamics of polyps and potential competitors, as in Equations 3 and 4.
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Figure 2: Panel photographs from the end of the experiment (2019-09-24, pre-treatment) at 1m (a, b, c)
and 3m (d, e, f). Photos a and d are controls (C), b and e are potential competitor removal treatment
(O), and c and f are A. aurita removal (A). The panels shown here are a single block. The white
rectangle in the bottom right of b encloses an area dominated by A. aurita polyps. A closeup of the
bottom right corner of b, appparently showing overgrowth of polyps by Botrylloides sp., is shown in the
supporting information, Figure S9. Note that the A treatment was mistakenly applied to the control
panel in a on 2019-08-13.
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A. aurita Bare panel

gm(potential competitors) 1 m, C
3 m, C
1 m, A
3 m, A
1 m, O
3 m, O

a

Botrylloides spp. Bugula spp.

Molgula tubiferab

Figure 3: Effects of removal treatments and depth on community composition at the end of the ex-
periment. a: orthogonal projection onto the 2-simplex with parts representing A. aurita, bare panel
and gm (potential competitors), where gm () denotes the geometric mean. b: orthogonal projection onto
the subcomposition of potential competitors. Open circles and dashed lines are from 1m, filled circles
and solid lines from 3m. Colours represent removal treatments: control (C) green, A. aurita removal
(A) orange, potential competitor removal (O) purple. Small circles represent observations (final week,
pre-treatment), large circles estimated treatment effects from manova. Lines are the boundaries of 95%
highest posterior density credible intervals. For plotting, zero counts are replaced by 1/2.
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Figure 4: Responses of potential competitors to removal of A. aurita (orange), and of A. aurita to
removal of potential competitors (purple) at 1m (a) and 3m (b), estimated from manova on final week,
pre-treatment data. The response of potential competitors is the difference in logit potential competitors
between the A. aurita removal (A) and control (C) treatments. The response of A. aurita is the difference
in logitA. aurita between the potential competitor removal (O) and control (C) treatments. Posterior
distributions of responses represented using kernel density estimates. Vertical grey lines indicate null
response.
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Figure 5: Modelled (bold lines, overgrowth model) and observed (faint lines) time series for proportional
cover of (a) A. aurita, (b) bare panel and (c) potential competitors. Each bold line is the posterior
mean for a typical panel from a combination of treatment and depth. Each faint line is the time series
of observations from a single panel. Dashed lines represent panels at 1m, and solid lines panels at 3m.
Colours represent treatments: control (C) green, A. aurita removal (A) orange, potential competitor
removal (O) purple. 95% highest posterior density credible bands are shown for modelled time series,
but are usually too narrow to be visible. Panels were put in the water on 2019-07-30. Open green circle
on 2019-08-13: control panel at 1m to which A treatment was mistakenly applied on the second sampling
date.
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