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Abstract: In this paper we consider a risk model with two independent classes of insurance risks in
the presence of a multi-layer dividend strategy. We assume that both of the claim number processes
are renewal processes with phase-type inter-arrival times. By analysing the Markov chains associated
with the two given phase-type distributions of the inter-arrival times, algorithmic schemes for the
determination of explicit expressions for the Gerber–Shiu expected discounted penalty function, as
well as the expected discounted dividend payments are derived, using two different approaches.

Keywords: two-classes of claim; renewal risk processes; multi-layer dividend strategy; phase-type
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1. Introduction

Dividend strategies for insurance risk models were first proposed by De Finetti (1957)
to describe more realistically the surplus cash flows in insurance portfolios. Most of the
dividend strategies within the literature are of the following two kinds: constant barrier
strategy or threshold strategy. Strategies involving a single horizontal barrier have been
studied by Lin et al. (2003) for the classical compound Poisson risk model and by Li and
Garrido (2004) for the renewal generalized Erlang risk model. On the other hand, strategies
involving a single dividend threshold have been studied by Lin and Pavlova (2006) for
the classical compound Poisson risk model, by Albrecher et al. (2005) for the generalized
Erlang renewal risk model and Badescu et al. (2007a) for the Markovian arrival risk model.

The multi-layer dividend strategy, as an extension of the threshold dividend strategy,
has been investigated in several papers. For example, Zhou (2006), Lin and Sendova (2008)
and Albrecher and Hartinger (2007) considered a multi-layer setting within the framework
of the classical risk model, Yang and Zhang (2008) for a generalized Erlang renewal risk
model and more recently, Jiang et al. (2012) for a phase-type renewal model. Moreover,
Badescu et al. (2007b) consider a general framework for the multi-layer model via a Marko-
vian arrival process for which they derive the Laplace–Stieltjes transform of the distribution
of the time to ruin as well as the discounted joint density of the surplus prior and deficit at
ruin. Finally, Zhou et al. (2015) fill in some gaps in the paper of Badescu et al. (2007b) by
considering a special case of the Markov arrival process in the form of a Markov-dependent
risk model in which the claim frequency and severity distributions are influenced by an
external Markov chain.

The Gerber–Shiu (G-S) function, first introduced in Gerber and Shiu (1998), and other
risk related quantities, such as the moments of the expected dividend payments have been
extensively studied for the aforementioned models under the multi-layer dividend strategy
based on a layer-by-layer recursive approach, for which certain disadvantages have been
identified (risk quantities in the top layers must be calculated in order to obtain results
for the lower layers). In particular, Badescu and Landriault (2008) use this approach to
calculate the moments of the dividend payments within the Markovian arrival risk model.
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To overcome the disadvantages of the aforementioned technique, recursive approaches with
respect to the number of layers (number of layers recursive approach) have been developed.
Albrecher and Hartinger (2007) considered the classical risk model and derived a number
of layers based scheme for the determination of explicit expressions for the G-S discounted
penalty function and the expected discounted dividend payments. To a certain extent, this
approach allows one to improve upon computational disadvantages of the layer-by-layer
techniques that have been proposed throughout the literature.

In this paper, we consider a multi-layer risk model with two classes of claims, in
which the two claim number processes are independent renewal processes with phase-type
inter-arrival times (for details on how this can be re-composed to a correlated (dependent)
risk model, see Yuen et al. (2002) or Li and Garrido (2005)). Although this risk model lies
within the class of Markovian arrival risk models, we aim to fill in some gaps for the G-S
function using the layer-by-layer approach and further provide an alternative number of
layers based approach for the aforementioned risk quantities.

Consider a surplus process with ν layers 0 = b0 < b1 < · · · < bν = ∞, such that
whenever the surplus is in layer k, i.e., in the interval [bk−1, bk) for k = 1, . . . , ν, the insurer
collects premiums at a constant rate pk, with p1 > p2 > · · · > pν > 0, and pays dividends
at a constant rate 0 ≤ dk ≤ pk. Hence the surplus process increases with rate ck = pk − dk
until a claim causes a jump to a lower layer or the surplus grows to the next layer [see e.g.,
Albrecher and Hartinger (2007)]. Let {Uν(t)}t≥0 be the surplus process at time t ≥ 0 under
the multi-layer dividend strategy, with initial surplus Uν(0) = u. Then, for k = 1, . . . , ν, the
dynamics of Uν(t) are given by

dUν(t) = ckdt− dS(t), bk−1 ≤ Uν(t) < bk, (1)

where the aggregate claim amount process, {S(t)}t≥0, is generated by two classes of
insurance risks, namely

S(t) = S1(t) + S2(t) =
N1(t)

∑
i=1

Xi +
N2(t)

∑
i=1

Yi, t ≥ 0, (2)

where S1(t) and S2(t) are stochastically independent processes, representing the aggregate
claims up to time t ≥ 0 from the first and second class, respectively. The inclusion of
the second class of claims allows us to model the different characteristics of two different
risk groups within a portfolio. For example, ‘Good’ and ‘Bad’ drivers for auto-mobile
insurance. The random variables (r.v.) {Xi}i≥1 denote the positive claim severities from
the first class, which are independent and identically distributed (i.i.d.) r.v. with common
distribution function (d.f.) F1(x) = P(X ≤ x), probability density function (p.d.f.) f1(x),
mean m1 and Laplace transform (LT) f̂1(s) =

∫ ∞
0 e−sx f1(x)dx. Similarly {Yi}i≥1 denote the

positive claim severities from the second class, also assumed to be i.i.d. r.v., with common
d.f. F2(x) = P(Y ≤ x), p.d.f. f2(x), mean m2 and LT f̂2(s) =

∫ ∞
0 e−sx f2(x)dx. The claim

number process {N1(t)}t≥0 is considered to be a renewal process with inter-claim arrival
times {Vi}i≥1 which are assumed to be i.i.d. r.v. with common d.f. Q1(x) = P(V ≤ x).
Similarly, the claim number process {N2(t)}t≥0 is considered to be a renewal process with
inter-claim arrival times {Wi}i≥1 which are assumed to be i.i.d. r.v. with common d.f.
Q2(x) = P(W ≤ x). Finally, we assume that {N1(t)}t≥0, {N2(t)}t≥0, {Yi}i≥1 and {Xi}i≥1
are all mutually independent.

In this paper, the distribution of the inter-arrival times Q1 is considered to be a Phase-
type distribution with representation (~α>, A,~a ), where A =

(
aij
)n

i,j=1 is a matrix of order

n× n with aii < 0, aij ≥ 0 for i 6= j, ∑n
j=1 aij ≤ 0 for i = 1, . . . , n,~α> =

(
α1, . . . , αn

)
with

αi ≥ 0, ∑n
i=1 αi = 1 and~a =

(
a1, . . . , an

)> with ~a = −A~en, where ~en denotes a column
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vector of length n ∈ N+ with all its elements equal to one. Then, (from Theorem 1.5 of
Chapter VIII in Asmussen (2000)) we have that

Q1(t) = 1−~α>eAt~en, t ≥ 0.

In fact, the r.v’s {Vi}i≥1 are known to be equivalent in distribution to the time to ab-

sorption in a terminating continuous-time Markov chain (CTMC), say {I(i)t }t≥0, i = 1, 2, . . . ,
with transient states {E1, . . . , En}, and absorbing state {E0} [see Asmussen (2000) for de-
tails]. Similarly, the distribution of the inter-claim arrival times Q2 is considered to be a

Phase-type distribution with representation (~β
>

, B,~b ), where B =
(
bij
)m

i,j=1 is a matrix of

order m×m, with bii < 0, bij ≥ 0 for i 6= j, ∑n
j=1 bij ≤ 0 for i = 1, . . . , m, ~β

>
=
(

1, . . . , βm
)

with βi ≥ 0, ∑m
i=1 βi = 1 and~b =

(
b1, . . . , bm

)> with~b = −B~em. Then,

Q2(t) = 1− ~β
>

eBt~em, t ≥ 0,

and let {J(i)t }t≥0, i = 1, 2, . . . , be the corresponding terminating CTMC of {Wi}i≥1, with
transient states {G1, . . . , Gm}, and absorbing state {G0}.

Now, let {
(

I(t), J(t)
)
}t≥0 be the underlying state process, which [see for details in

Ji and Zhang (2010)] is defined by

I(t) = I(1)t , 0 ≤ t < V1, I(t) = I(2)t−V1
, V1 ≤ t < V1 + V2, . . . ,

J(t) = J(1)t , 0 ≤ t < W1, J(t) = J(2)t−W1
, W1 ≤ t < W1 + W2, . . .

Then, {
(

I(t), J(t)
)
}t≥0 is a two-dimensional CTMC with states {(E1, G1), . . . , (En, G1),

(E1, G2), . . . , (En, G2), . . . , (E1, Gm), . . . , (En, Gm)}, intensity matrix K = Im ⊗A + B⊗ In +

Im ⊗ (~a~α>) + (~b~β
>
)⊗ In and initial distribution ~ρ> = ~β

> ⊗~α>, where In is the identity
matrix of order n× n and ⊗ is the Kronecker product for matrices.

The main interest of this paper is to derive expressions for the G-S penalty function,
which provides access to a variety of ruin related quantities for our risk model defined in
Equations (1) and (2). To define the G-S function, let τν(u) = inf{t ≥ 0 : Uν(t) < 0|Uν(0) =
u} (τν(u) = ∞ if the set is empty) be the time of ruin from initial surplus level u ≥ 0. Then,
the G-S function denoted by φ(u, ν), is defined as

φ(u, ν) = E
(

e−δτν(u)w(Uν(τν(u)), |Uν(τν(u))|)1(τν(u)<∞)

)
, u ≥ 0, (3)

where δ ≥ 0 is interpreted as the force of interest, Uν(τν(u)−) is the surplus immediately
before ruin, |Uν(τν(u))| is the deficit at ruin, τν(u)− is the left limit of τν(u), w(x, y) is
a non-negative bivariate penalty function of x, y ≥ 0 and 1(·) represents the indicator
function. It is well known that the expected discounted penalty function (3) provides a
unified approach to many important quantities related to the ruin time.

The paper is organised as follows. In Section 2, we derive results for the G-S func-
tion based on a layer-by-layer approach. In more details, we derive a system of integro-
differential equations for the G-S function, conditioned on the layer from which the process
begins and the class of claim causing ruin. We then discuss the so-called generalized
Lundberg’s equation and, based on its solution, derive a bi-directional recursive approach
to provide a solution for the aforementioned system of integro-differential equations. In
Section 3, we derive a number of layer approach for the G-S function and the expected
discounted dividend payments. We derive results for some upper exit-type problems,
which are then used to derive a classical (forward)-type recursive relationship for the G-S
functions and the expected discounted dividends until ruin.
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2. Layer-by-Layer Approach

Let us first introduce the notation φk(u, ν) to denote the G-S function φ(u, ν) when
bk−1 ≤ u < bk for k = 1, . . . , ν such that

φ(u, ν) =


φ1(u, ν), 0 ≤ u < b1

φ2(u, ν), b1 ≤ u < b2
...

φν(u, ν), u ≥ bν−1.

(4)

Moreover, in a similar way to Ji and Zhang (2010), we consider the function

φk,`(u, ν) = E
(

e−δτν(u)w(Uν(τν(u)−), |Uν(τν(u))|)1(τν(u)<∞,R=`)

)
, bk−1 ≤ u < bk,

to be the G-S function at ruin from the k-th layer, if ruin is caused by a claim from class
` = 1, 2, where R is defined as the cause of ruin r.v., i.e., R = ` if ruin is caused by
class ` = 1, 2. Then, the G-S functions defined in (34) can be decomposed as φk(u, ν) =
φk,1(u, ν) + φk,2(u, ν), for bk−1 ≤ u < bk and k = 1, . . . , ν.

For notational convenience, throughout the rest of this paper, letPij = P(·|(I(0), J(0)) =
(Ei, Gj)) and Eij to be the expectation w.r.t. Pij, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then, for 1 ≤ i ≤ n,
1 ≤ j ≤ m, let for k = 1, . . . , ν, ` = 1, 2

φij,k,`(u, ν) = Eij

(
e−δτν(u)w(Uν(τν(u)−), |Uν(τν(u))|)1(τν(u)<∞,R=`)

)
, bk−1 ≤ u < bk, (5)

to be the G-S function from the k-th layer if ruin is caused by a claim from class ` = 1, 2,
given the initial state (Ei, Gj). Consequently, we have that

φk(u, ν) = ~ρ>
(
~φk,1(u, ν) + ~φk,2(u, ν)

)
, bk−1 ≤ u < bk, k = 1, . . . , ν,

where ~φk,`(u, ν) =
(
φ11,k,`(u, ν), . . . , φn1,k,`(u, ν), φ12,k,`(u, ν), . . . , φn2,k,`(u, ν), . . . , φ1m,k,`(u,

ν), . . . , φnm,k,`(u, ν)
)>.

2.1. Piecewise Integro-Differential Equation for ~φk,`(u, ν)

In this subsection, using arguments as in Song (2008) [see also Ji and Zhang (2010)],
we obtain a piecewise integro-differential equation system for the Gerber–Shiu functions
φij,k,`(u, ν) and, consequently, using matrix notations obtain a piecewise integro-differential
equation for ~φk,`(u, ν).

Theorem 1. For k = 1, . . . , ν and ` = 1, 2, ~φk,`(u, ν) satisfies the following piecewise integro-
differential equation

ck~φ
′
k,`(u, ν) = (δInm − Im ⊗A− B⊗ In)~φk,`(u, ν)−

∫ u−bk−1

0

(
Im ⊗ (~a~α>) f1(x)

+(~b~β
>
)⊗ In f2(x)

)
~φk,`(u− x, ν)dx−~ζk,`(u), bk−1 ≤ u < bk, (6)

where

~ζk,`(u) =
k−1

∑
i=1

∫ u−bi−1

u−bi

(
Im ⊗ (~a~α>) f1(x) + (~b~β

>
)⊗ In f2(x)

)
~φi,`(u− x, ν)dx

+(~em ⊗~a)w1(u)1(`=1) + (~b⊗~en)w2(u)1(`=2),

wj(u) =
∫ ∞

u
w(u, x− u) f j(x)dx, j = 1, 2, (7)
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with boundary conditions

~φk,`(bk−, ν) = ~φk+1,`(bk+, ν) and ck~φ
′
k,`(bk−, ν) = ck+1~φ

′
k+1,`(bk+, ν). (8)

Proof. Consider an infinitesimal time interval (0, dt). Then, conditioning on whether or
not the state of

{
I(t), J(t)

}
t≥0, associated with the surplus process in the layer [bk−1, bk),

changes accompanied by a claim or by no claim in (0, dt), we have that

eδdtφij,k,`(u, ν) =
(

1 + (aii + bjj)dt
)

φij,k,`(u + ckdt, ν)

+(1 + bjjdt)
n

∑
ν1=1,ν1 6=i

aiν1 dtφν1 j,k,`(u + ckdt, ν)

+(1 + aiidt)
m

∑
ν2=1,ν2 6=j

bjν2 dtφiν2,k,`(u + ckdt, ν)

+(1 + bjjdt)aidt
m

∑
ν1=1

αν1

(∫ u+ckdt−bk−1

0
φν1 j,k,`(u + ckdt− x, ν) f1(x)dx

+
k−1

∑
l=1

∫ u+ckdt−bl−1

u+ckdt−bl

φν1 j,l,`(u + ckdt− x, ν) f1(x)dx + w1(u + ckdt)1(`=1)

)
+(1 + aiidt)bjdt

m

∑
ν2=1

βν2

(∫ u+ckdt−bk−1

0
φiν2,k,`(u + ckdt− x, ν) f2(x)dx

+
k−1

∑
l=1

∫ u+ckdt−bl−1

u+ckdt−bl

φiν2,l,`(u + ckdt− x, ν) f2(x)dx + w2(u + ckdt)1(`=2)

)
+o(dt).

Dividing both sides by dt, letting dt→ 0 and using the fact that wj(u) are continuous
functions of u, (implying that limdt→0 wj(u + ckdt) = wj

(
limdt→0(u + ckdt)

)
= wj(u)), for

j = 1, 2, yields that

ckφ′ij,k,`(u, ν) = δφij,k,`(u, ν)−
n

∑
ν1=1

aiν1 φν1 j,k,`(u, ν)−
m

∑
ν2=1

bjν2 φiν2,k,`(u, ν)

−ai

n

∑
ν1=1

αν1

(∫ u−bk−1

0
φν1 j,k,`(u− x, ν) f1(x)dx

+
k−1

∑
l=1

∫ u−bl−1

u−bl

φν1 j,l,`(u− x, ν) f1(x)dx + w1(u)1(`=1)

)

−bj

m

∑
ν2=1

βν2

(∫ u−bk−1

0
φiν2,k,`(u− x, ν) f2(x)dx

+
k−1

∑
l=1

∫ u−bl−1

u−bl

φiν2,l,`(u− x, ν) f2(x)dx + w2(u)1(`=2)

)
.

Rewriting the above equations in matrix form and rearranging the resulting matrix
equation we get immediately the integro-differential Equation (6). To obtain the boundary
conditions (8), we can apply similar arguments as in Lin and Sendova (2008) to show
that the G-S penalty function for a multi-layer model continuous for all u ≥ 0, even at
the even at the seeming discontinuity points. Thus, ~φk,`(u, ν) is a continuous function at
each bk, k = 1, . . . , ν, i.e., it holds that ~φk,`(bk−, ν) = ~φk+1,`(bk+, ν), k = 1, . . . , ν, ` = 1, 2.
Furthermore, the G-S function itself is not differentiable at the bi’s but its left and right
derivative exist. Then, from Equation (6) and the continuity of the G-S function, it is not
difficult to see that the second set of boundary conditions (8) holds.
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Remark 1. Note that the inclusion of the lower boundary bk−1 within the constraints of Equation (6)
follows from the existence of the right derivative of ~φk,`(u, ν). We hereafter assume that a derivative
is always a right derivative if a proper derivative does not exist. Moreover, for ν = 1 and c1 = c,
we obtain the renewal risk model with two classes of claims in a barrier free environment, and thus
Equation (6) reduces, for ` = 1 and ` = 2, to Equations (2.3) and (2.4), respectively, of Ji and
Zhang (2010).

2.2. Analysis of the Piecewise Integro-Differential Equation System for u ≥ bk−1

Similar to the methodology of Lin and Sendova (2008) [see also Yang and Zhang (2008)],
the non-homogeneous piecewise integro-differential Equation (6) heavily depends on the
solution of the corresponding piecewise non-homogeneous integro-differential equation
for u ≥ bk−1. As such, in the following, we will consider an auxiliary vector function
~ϕk,`(u) =

(
ϕ11,k,`(u), . . . , ϕn1,k,`(u), ϕ12,k,`(u), . . . , ϕn2,k,`(u), . . . , ϕ1m,k,`(u), . . . , ϕnm,k,`(u)

)>
defined as the solution, for k = 1, . . . , ν and ` = 1, 2, to the non-homogenous integro-
differential equation

ck~ϕ
′
k,`(u) = (δInm − Im ⊗A− B⊗ In)~ϕk,`(u)−

∫ u−bk−1

0

(
Im ⊗ (~a~α>) f1(x)

+(~b~β
>
)⊗ In f2(x)

)
~ϕk,`(u− x)dx−~ζk,`(u), u ≥ bk−1. (9)

A change of variable y = u− bk−1 and gij,k`(y) = ϕij,k`(y + bk−1),~gk,`(y) = ~ϕk,`(y +

bk−1) and~zk,`(y) = ~ζk,`(y + bk−1) for k = 1, . . . , ν, ` = 1, 2, brings the non-homogeneous
integro-differential Equation (9) into the form

ck~g
′
k,`(y) = (δ− Im ⊗A− B⊗ In)~gk,`(y)−

∫ y

0

(
Im ⊗ (~a~α>) f1(x)

+(~b~β
>
)⊗ In f2(x)

)
~gk,`(y− x)dx−~zk,`(y), y ≥ 0. (10)

In order to find the solution for~gk,`(y), we first consider the corresponding homoge-
neous integro-differential equation of (10), with solution~hk,`(y) satisfying

ck~h
′
k,`(y) = (δInm − Im ⊗A− B⊗ In)~hk,`(y)−

∫ y

0

(
Im ⊗ (~a~α>) f1(x)

+(~b~β
>
)⊗ In f2(x)

)
~hk,`(y− x)dx, y ≥ 0. (11)

Let ~̂hk,`(s) =
∫ ∞

0 e−sy~hk,`(y)dy, for k = 1, . . . , ν, ` = 1, 2 and Re(s) ≥ 0, to be the
(element-wise) LT of the vector~hk,`(y). Then, taking LT on both sides of Equation (11) and
rearranging, we have

Lk,δ(s)
~̂hk,`(s) = ck~hk,`(0), (12)

where

Lk,δ(s) = (cks− δ)Inm + Im ⊗A + B⊗ In + Im ⊗ (~a~α>) f̂1(s) + (~b~β
>
)⊗ In f̂2(s).

The equation det Lk,δ(s) = 0 is called the characteristic equation for the risk process
(1) and (2), and its roots, given by the following proposition, play an important role in
determining the solution of the integro-differential Equation (9).

Proposition 1. Given the value of δ, the following hold:

(i) In the complex plane, for δ > 0, the characteristic equation det Lk,δ(s) = 0 has exactly nm
roots with positive real parts.

(ii) In the complex plane, for δ = 0, the characteristic equation det Lk,0(s) = 0 has exactly one
root at zero and nm− 1 roots with positive real parts.
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Proof. (i) The proof for the case when δ > 0 is equivalent to that of Theorem 3.1 in
Ji and Zhang (2010). (ii) For the case when δ = 0, it is clear to see that s = 0 is a root of
the characteristic equation. The proof that the remaining nm− 1 roots all have positive
real parts follows similar arguments to that of Adan and Kulkarni (2003) and, as such, is
omitted here.

We turn our attention back now to the determination of the solution of the non-
homogeneous integro-differential Equation (9). In the following, we will denote the nm
roots of the equation det Lk,δ(s) = 0 by ri,k(δ) ≡ ri,k, i = 1, . . . , nm and will assume that
r1,k . . . , rnm,k are distinct, for each k = 1, . . . , ν.

Let the matrix Γk(y) =
(
γij,k(y)

)nm
i,j=1, 0 ≤ y < ∞, be the nm × nm matrix whose

columns are the linearly independent solutions to the homogeneous Equation (11) (deter-
mined later on in this section), with Γk(0) = Inm. Then, by Theorem 2.3.1 of Burton (2005),
the solution to Equation (10) is given by

~gk,`(y) = Γk(y)~gk,`(0)−
∫ y

0
Γk(x)~zk,`(y− x)dx, y ≥ 0. (13)

Replacing the variable y = u− bk−1, we obtain the solution of the integro-differential
Equation (9) as it is given in the following proposition.

Proposition 2. For k = 1, . . . , ν, ` = 1, 2, let Γk(y) =
(
γij,k(y)

)nm
i,j=1, y ≥ 0, be a square matrix

of order nm, whose columns are the linearly independent solutions to the homogeneous Equation (11)
with Γk(0) = Inm. Then the solution to the integro-differential Equation (9) it is given by

~ϕk,`(u) = Γk(u− bk−1)~ϕk,`(bk−1)−
∫ u−bk−1

0
Γk(x)~ζk,`(u− x)dx, u ≥ bk−1, (14)

where ~ζk,`(u) is given in Theorem 1.

In order to complete the solution for~ϕk,`(u), given by Equation (14) of Proposition 2,
it remains to determine the initial values ~ϕk,`(bk−1) for k = 1, . . . , ν, ` = 1, 2, which is
considered in the next subsection, as well as to calculate the form of the matrix Γk(y), which
is done by using LT as follows:

Let Γ̂k(s) =
(
γ̂ij,k(s)

)nm
i,j=1 be the square matrix of order nm × nm, with elements

γ̂ij,k(s) =
∫ ∞

0 e−syγij,k(y)dy denoting the LT of γij,k(y). Then, since the columns of Γk(y)
are solutions to Equation (11) and consequently their LT solutions to Equation (12), it
follows that

Γ̂k(s) = ck
[
Lk,δ(s)

]−1
=

ckL∗k,δ(s)
det Lk,δ(s)

, (15)

using the fact that Γk(0) = Inm and L∗k,δ(s) denotes the adjoint matrix of Lk,δ(s). To invert
the above LT, let us consider the case where the claim amount densities ( f1 and f2) belong
to the rational family of distributions which include, the Erlang, Coxian, Phase-type and
their mixtures, among others. That is, the LT f̂i for i = 1, 2 is of the form

f̂i(s) =
pki−1(s)

pki(s)
, pki−1

(0) = pki
(0), i = 1, 2, (16)

where pki−1
(s) is a polynomial of degree ki−1 and pki

(s) is a polynomial of degree ki with
leading coefficient 1 and with only negative roots.

Proposition 3. Assume that the LT of the claim amount densities, f̂i(s), i = 1, 2, are defined
according to Equation (16). Then, the elements of the matrix Γk(y), k = 1, . . . , ν, are given by
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γij,k(y) =
nm

∑
`1=1

ᾱij,k(`1)e
r`1,ky +

(k1+k2)nm

∑
`2=1

β̄ij,k(`2)e
−R`2,ky, y ≥ 0,

with

ᾱij,k(`1) =

(
∏2

z=1 pkz(r`1,k)
)nm(L∗k,δ(r`1,k)

)
i,j

cnm−1
k ∏nm

ν=1,ν 6=`1
(r`1,k − rν,k)∏

(k1+k2)nm
z=1 (r`1,k + Rz,k)

,

β̄ij,k(`2) =

(
∏2

z=1 pkz(−R`2,k)
)nm(L∗k,δ(−R`2,k)

)
i,j

(−1)(k1+k2)nmcnm−1
k ∏nm

z=1(rz,k + R`2,k)∏
(k1+k2)nm
ν=1,ν 6=`2

(Rν,k − R`2,k)
,

where
(
L∗k,δ(s)

)
i,j is the (i, j)-th element of the matrix L∗k,δ(s), r`1,k with Re(r`1,k) > 0 for `1 =

1, . . . , nm, and −R`2,k with Re(R`2,k) > 0 for `2 = 1, . . . , (k1 + k2)nm are the roots of the
characteristic equation det Lk,δ(s) = 0.

Proof. Multiplying both the numerator and the denominator of (15) with
(
∏2

z=1 pkz(s)
)nm,

the (i, j)-th element of the matrix Γ̂k(s) is given by

γ̂ij,k(s) =
ck
(
∏2

z=1 pkz(s)
)nm(L∗k,δ(s)

)
i,j

Ck(s)
, k = 1, . . . , ν, (17)

where Ck(s) =
(
∏2

z=1 pkz(s)
)nm det Lk,δ(s) is a polynomial of degree (k1 + k2 + 1)nm in s

with leading coefficient cnm
k and thus the equation Ck(s) = 0 has (k1 + k2 + 1)nm roots.

Since, from Proposition 1, the det Lk,δ(s) = 0 has exactly nm roots ri,k, i = 1, . . . , nm, with
positive real parts, then Ck(s) = 0 has the above ri,k and (k1 + k2)nm roots, say −Rj,k,
j = 1, . . . , (k1 + k2)nm with negative real parts, since the polynomial pk1(s) and pk2(s) have
only roots with negative real parts. Thus, Ck(s) may be written as

Ck(s) = cnm
k

(
nm

∏
i=1

(s− ri,k)

)(
(k1+k2)nm

∏
j=1

(s + Rj,k)

)
.

Inserting the above equation into Equation (17) and using partial fraction techniques,
we get that

γ̂ij,k(s) =
nm

∑
l1=1

ᾱij,k(l1)
s− rl1,k

+
(k1+k2)nm

∑
l2=1

β̄ij,k(l2)
s + Rl2,k

,

from which by inverting w.r.t. s, we obtain the required result.

2.3. Initial Values

In this subsection we use an approach similar to Badescu (2008), to determine the
unknown vector~ϕk,`(bk−1) for k = 1, . . . , ν, ` = 1, 2. To do this, we require the roots of the
characteristic equation det Lk,δ(s) = 0 given by Proposition 1 and a matrix/vector operator
Tr, the scalar version of which was first introduced in the actuarial literature by Dickson
and Hipp (2001).

As in Lu and Li (2009) , let P(x) be a matrix/vector whose elements are real-valued
integrable functions of x. Then, the operator TrP(x) w.r.t. a complex number r ∈ C is
defined by

TrP(x) =
∫ ∞

x
e−r(u−x)P(u)du, Re(r) ≥ 0.
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Pre-multiplying Equation (9) with e−s(u−bk−1) and integrating the resulting equation
w.r.t. u from bk−1 to ∞, yields

Lk,δ(s)Ts~ϕk,`(bk−1) = ck~ϕk,`(bk−1)− Ts~ζk,`(bk−1), (18)

for k = 1, . . . , ν and ` = 1, 2.
Note, that for each s = ri,k the matrix Lk,δ(ri,k), i = 1, . . . , nm, has a zero eigenvalue.

Hence, for each ri,k, let~q>i,k be the left eigenvector (of order 1× nm) of the matrix Lk,δ(ri,k)

w.r.t. the zero eigenvalue, such that~q>i,kLk,δ(ri,k) =~0>nm, for every i = 1, . . . , nm.
Substituting s = ri,k and then left-multiplying both sides of Equation (18) with~q>i,k, we

have that for k = 1, . . . , ν, ` = 1, 2,

~q>i,k
(

ck~ϕk,`(bk−1)− Tri,k
~ζk,`(bk−1)

)
= ~q>i,kLk,δ(ri,k)Tri,k~ϕk,`(bk−1) = 0,

which gives
~q>i,kck~ϕk,`(bk−1) = ~q>i,kTri,k

~ζk,`(bk−1).

Equivalently, if we let Qk =
(
~q1,k, . . . ,~qnm,k

)> be a square matrix of order nm× nm
denoting the (left) eigenvector matrix, then the above equation can be written in matrix
form as

Qk~ϕk,`(bk−1) =
1
ck

diag
(

Qk ·
(

Tr1,k
~ζk,`(bk−1), . . . , Trnm,k

~ζk,`(bk−1)
))

~enm.

Finally, the assumption that ri,k are distinct implies that ~q1,k, . . . ,~qnm,k are linearly
independent and thus Qk is invertible. As such, for k = 1, . . . , ν, ` = 1, 2, ~ϕk,`(bk−1) is
given by

~ϕk,`(bk−1) =
1
ck

Q−1
k diag

(
Qk ·

(
Tr1,k

~ζk,`(bk−1), . . . , Trnm,k
~ζk,`(bk−1)

))
~enm. (19)

which fully identifies the solution given in Proposition 2.

2.4. Recursive Expressions for ~φk,`(u, ν)

Finally, in this subsection we use the results for the auxiliary function~ϕk,`(u), i.e., with
‘relaxed’ constraints u ≥ bk−1 given in Proposition 2, to derive a recursive expression for
~φk,`(u, ν) with bk−1 ≤ u < bk.

We first note that if, in Equation (6), we extend the co-domain from bk−1 ≤ u < bk to
u ≥ bk−1, then ~φk,`(u, ν) satisfies Equation (9) and thus, its solution can be derived from
Proposition 2 after restricting the general co-domain u ≥ bk−1 to bk−1 ≤ u < bk, i.e., for
k = 1, . . . , ν

~φk,`(u, ν) = Γk(u− bk−1)~φk,`(bk−1, ν)−
∫ u−bk−1

0
Γk(x)~ζk,`(u− x)dx, bk−1 ≤ u < bk, (20)

where the case u = bk−1 holds from the continuity conditions of Equation (8).

Remark 2. Note from Equation (9) that for the function~ϕk,`(u), the dynamics of the underlying
process remain constant above the level bk−1. However, for the multi-layered risk model (1) and
(2), the dynamics change after crossing the level bk. As such, ~φk,`(bk−1, ν) and~ϕk,`(bk−1) are not
necessarily equal for all k = 1, . . . , ν− 1. For the case k = ν, the dynamics of both underlying
processes are equivalent above the level bν−1 and thus for ` = 1, 2, we have

~φν,`(u, ν) = ~ϕν,`(u), u ≥ bν−1. (21)
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On the other hand, for bk−1 ≤ u < bk, the term
∫ u−bk−1

0 Γk(x)~ζk,`(u − x)dx in
Equations (14) and (20) are identical for all k = 1, . . . , ν and thus, taking the difference of
these equations, yields

~φk,`(u, ν) = Γk(u− bk−1)~φk,`(bk−1, ν) +~ϕk,`(u)− Γk(u− bk−1)~ϕk,`(bk−1)

= ~ϕk,`(u) + Γk(u− bk−1)
(
~φk,`(bk−1, ν)−~ϕk,`(bk−1)

)
= ~ϕk,`(u) + Γk(u− bk−1)~ηk,`, bk−1 ≤ u < bk, (22)

where ~ηk,` = ~φk,`(bk−1, ν) −~ϕk,`(bk−1) is an unknown vector which can be determined
as follows:

Using the continuity conditions in Equations (8) and (22), it follows that for k =
1, . . . , ν− 1, ` = 1, 2,

~ϕk,`(bk) + Γk(bk − bk−1)~ηk,` = ~ϕk+1,`(bk) + Γk+1(0)~ηk+1,`

and thus, since Γk+1(0) = Inm, ~ηk+1,` satisfies a recursive equation of the form

~ηk+1,` = ~ϕk,`(bk)−~ϕk+1,`(bk) + Γk(bk − bk−1)~ηk,`,

where~ϕk,`(bk) can be determined from Equation (14) and~ϕk+1,`(bk) is given by Equation (19).
Moreover, from Equations (22) and (21) we obtain that ~ην,` =~0nm.

Finally, to summarize our results for ~φk,`(u, ν) we have the following theorem.

Theorem 2. For k = 1, . . . , ν, ` = 1, 2, the vector of the expected discounted penalty functions,
~φk,`(u, ν), is given by

~φk,`(u, ν) = ~ϕk,`(u) + Γk(u− bk−1)~ηk,`, bk−1 ≤ u < bk, (23)

where~ϕk,`(u) satisfies

~ϕk,`(u) = Γk(u− bk−1)~ϕk,`(bk−1)−
∫ u−bk−1

0
Γk(x)~ζk,`(u− x)dx, u ≥ bk−1

and ~ηk,` are obtained recursively by{
~ηk+1,` = ~ϕk,`(bk)−~ϕk+1,`(bk) + Γk(bk − bk−1)~ηk,`, k = 1, . . . , ν,
~ην,` =~0nm.

Remark 3. We point out here that as well providing a recursive expression for the G-S function of
a multi-layer dividend strategy, Theorem 2 can also be used to approximate the G-S function for a
risk model with a general level dependent premium rate function c(·), such that

dUt = c(Ut)− dSt, (24)

where c(·) is a non-decreasing and locally Lipschitz continuous function (this guarantees that the
above SDE has a weak solution). In this case, it is known that one can use piecewise constant
functions for the premium rate (as in Equation (1)) to (strongly) approximate the above, general
level model [see Czarna et al. (2019) for details].

Theorem 2 provides a recursive approach to calculating ~φk,`(u, ν) starting from the
first layer, i.e., k = 1. In this case,~ϕ1,`(u) corresponds to the expected discounted penalty
function in the absence of a dividend barrier strategy and can be calculated from Theorem
4 of Ji and Zhang (2010) or equivalently from Proposition 2 (above). However, to calculate
~η1,`, it is necessary to apply the recursive approach for ~ηk,` from the final layer and solve
backwards or equivalently, by solving for ~η1,` in terms of ~ην,`. The result is a ‘bi-directional’
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type recursion (‘up and down’ as phrased by Albrecher and Hartinger (2007)), which
clearly produces a computational disadvantage and makes the method rather tedious and
computationally heavy, even for the first layer, for large ν. Hence, in the next section, by
adopting the alternative methodology of Albrecher and Hartinger (2007), we will pursue
an alternative approach based on level crossings, in which explicit solutions for the G-S
function and, additionally, the expected discounted dividends until ruin, for a model with
ν layers can be obtained solely in term of quantities from a model with ν− 1 layers. The
advantage of this method is that the recursive method derived is only in one direction,
which reduces the complexity present in the method above.

3. Number of Layers Approach

The method presented in this section is based on a recursive approach in terms of the
number of layers within the model rather than the initial starting layer given in the previous
section. In this case, a model with ν layers can be fully characterised by determination of
quantities in a model with ν− 1 layers alone. Within this approach, the event of up-crossing
or ‘upper-exit’ from a given layer is of vital importance and as such, we will first present
some results relating to these quantities.

3.1. Time Value of “Upper Exit”

Let us introduce stopping times for our risk model with ν layers, such that for a ≤ b
and u ∈ [a, b]

τ+
ν (u, a, b) = inf{t ≥ 0 : Uν(t) ≥ b|Uν(0) = u}

τ−ν (u, a, b) = inf{t ≥ 0 : Uν(t) < a|Uν(0) = u}. (25)

We remark that the stopping time τ+
ν (u, a, b) can be interpreted as the first time of

exiting through the upper level b (which can only occur via the continuous premium
income), whilst τ−ν (u, a, b) represents the first time of dropping below the lower level a
(which can only occur by downward jumps due to the occurrence of a claim). In particular,
the time of ruin in a risk model with ν layers can now be denoted by τν(u) ≡ τ−ν (u, 0, ∞).

For 1 ≤ i, k ≤ n, 1 ≤ j, ` ≤ m, let

Bij,k`,ν(u, b) = Eij

(
e−δτ+ν (u,0,b)1[I(τ+ν (u,0,b))=k,J(τ+ν (u,0,b))=`,τ+ν (u,0,b)<τ−ν (u,0,b)]

)
, (26)

denote the LT of the stopping time τ+
ν (u, 0, b), given that the surplus process reaches the

upper level b (for the first time) in states (Ek, G`) from initial states (Ei, Gj) and initial
surplus u, provided that ruin has not occurred. In the remainder of this paper, we will omit
the latter condition from the notation for conciseness but remind the reader this is implicitly
included within the quantities. Moreover, let Bν(u, b) denote the nm× nm square matrix
with elements Bij,k`,ν(u, b) defined above.

Remark 4. In a similar manner to that pointed out by Albrecher and Hartinger (2007), we note
here that for a model with ν layers, by shifting the top barrier, bν−1, to infinity then Bν(u, b) is
equivalent to Bν−1(u, b).

The main result of this subsection (Proposition 4) shows that the matrices Bν(u, b) for
a risk model with ν layers can be expressed solely in terms of matrices for risk model(s)
with ν− 1 layers and a corresponding model with only a single layer (see below).

In the following, when we consider a model with k < ν layers, we mean a risk model
which has k layers equivalent to those of the first k layers of our ν layer model, i.e., the
barriers bi for 0 ≤ i ≤ k− 1 are equivalent, as are the dynamics of the process within these
layers, and bk = ∞. In addition, we introduce a corresponding one-layer risk model with
surplus process denoted by U(1,ν)(t), having premium income pν and dividend rate dν, i.e.,
net premium cν = pν − dν. That is, a one-layer risk model whose dynamics behave in the
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same manner as in the final (upper) layer of the model with ν layers. We also introduce
the subscript {·}(1,ν), which refers to the corresponding one-layer model equivalent of
previously defined quantities, e.g., τ(1,ν)(u) denotes the time of ruin for the surplus process
U(1,ν)(t).

Remark 5. In the case of a single layer, the risk model defined in Equations (1) and (2) reduces to a
special case of a Markov Additive Process, which have been extensively studied in the literature and
a number of results regarding exit times have been derived. See, for example, Ivanovs and Palmowski
(2012) who provide expressions for a number of exit problems in terms of so-called scale matrices.

Lemma 1. For ν ∈ N+ and δ ≥ 0 it holds that:

(i)

Bν(u, b) = Inm, if u ≥ b,

Bν(u, b) = 0nm, if u < 0,

where 0nm is a square matrix of order nm× nm with all its elements being equal to zero.
(ii) For 0 ≤ u < bν−1

Bν(u, b) =
{

Bν−1(u, b), if b ≤ bν−1,
Bν−1(u, bν−1)Bν(bν−1, b), if b > bν−1

. (27)

(iii) For bν−1 ≤ u ≤ b

Bν(u, b) = B(1,ν)(u− bν−1, b− bν−1) + Gν(u− bν−1)

−B(1,ν)(u− bν−1, b− bν−1)Gν(b− bν−1),

where Gν(u) is an nm× nm square matrix with elements, for 1 ≤ i, k ≤ n, 1 ≤ j, ` ≤ m

Gij,k`,ν(u) = Eij

( n

∑
k1=1

m

∑
k2=1

e−δτ(1,ν)(u)Bk1k2,k`,ν
(
bν−1 −

∣∣U(1,ν)
(
τ(1,ν)(u)

)∣∣, b
)

×1[I(τ(1,ν)(u))=k1,J(τ(1,ν)(u))=k2]

)
and G1(u) ≡ 0nm, for all u ≥ 0.

Proof. (i) Follows directly from the definitions of τ+
ν (u, 0, b) and Bν(u, b), given in

Equations (25) and (26) respectively.
(ii) For 0 ≤ u < bν−1, first note that the surplus process with ν layers coincides

with the surplus process with (ν− 1) layers before the first exit of the interval [0, bν−1).
Thus, it follows that τ+

ν (u, 0, b) = τ+
ν−1(u, 0, b) and hence Bij,k`,ν(u, b) = Bij,k`,ν−1(u, b) for

0 < b ≤ bν−1, from which the first part of (ii) follows. For b ≥ bν−1, in order for the surplus
process to up-cross the level b, it must first up-cross bν−1 at which point the process renews
with initial surplus bν−1, given the states of I(t) and J(t) at this time. Thus, we have

Bij,k`,ν(u, b) = Eij

(
e−δ[τ+ν−1(u,0,bν−1)+τ+k (bν−1,0,b)]1[I(τ+ν (u,0,b))=k,J(τ+ν (u,0,b))=`]

)
=

n

∑
k1=1

m

∑
k2=1

Eij

(
e−δτ+ν−1(u,0,bν−1)1[I(τ+ν−1(u,0,bν−1))=k1,J(τ+ν−1(u,0,bν−1))=k2]

)
×Ek1k2

(
e−δτ+ν (bν−1,0,b)1[I(τ+ν (bν−1,0,b))=k,J(τ+ν (bν−1,0,b))=`]

)
=

n

∑
k1=1

m

∑
k2=1

Bij,k1k2,ν−1(u, bν−1)Bk1k2,k`,ν(bν−1, b),
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or equivalently, in matrix form

Bν(u, b) = Bν−1(u, bν−1)Bν(bν−1, b), b ≥ bν−1.

(iii) For bν−1 ≤ u ≤ b, there are two possible events that can occur in order to reach the level
b: (1) the surplus process up-crosses the level b before dropping below the level bν−1, and
(2) the process drops below bν−1 before crossing the level b and does so without causing
ruin at which point the process renews, given the states of I(t) and J(t), and then crosses b
from this new level. Thus, we have

Bij,k`,ν(u, b) = Eij

(
e−δτ+ν (u,bk−1,b)1[τ+ν (u,bν−1,b)<τ−ν (u,bν−1,b),I(τ+ν (u,bν−1,b))=k,J(τ+ν (u,bν−1,b))=`]

)
+Eij

(
e−δτ∗(u,bν−1,b)1[τ−ν (u,bν−1,b)<τ+ν (u,bν−1,b),I(τ∗(u,bν−1,b))=k,J(τ∗(u,bν−1,b))=`]

)
= M1,ν(u) + M2,ν(u), (28)

where τ∗(u, bν−1, b) := τ−ν (u, bν−1, b) + τ+
ν (Ub(τ

−
ν (u, bν−1, b)), 0, b).

Now, in a similar way to Albrecher and Hartinger (2007), by using a shifting argument
we can re-write Equation (28) in terms of the one-layer risk model. That is, if we shift the
surplus process down by bν−1, such that the lower level bν−1 = 0, the upper level becomes
b− bν−1 and the initial surplus u− bν−1, it follows that

M1,ν(u) = Eij

(
e−δτ+

(1,ν)(u−bν−1,0,b−bν−1)1[I(τ+
(1,ν)(u−bν−1,0,b−bν−1))=k,J(τ+

(1,ν)(u−bν−1,0,b−bν−1))=`]

)
= Bij,k`,(1,ν)(u− bν−1, b− bν−1). (29)

Moreover, for M2,ν(u), we note that after shifting the process down by bν−1 event (2)
is equivalent to the process U(1,ν)(t), with initial surplus u− bν−1, experiencing ruin before
hitting the level b− bν−1 and then continuing with a new initial surplus which is related
to the deficit at ruin, i.e.,

∣∣U(1,ν)(τ(1,ν)(u− bν−1))
∣∣. Note that the magnitude of the deficit

cannot exceed bν−1 as this would cause ultimate ruin in the corresponding model with ν
layers. At this point, if we shift the process back up by bν−1, we remain with a situation
described in part (ii). Hence, M2,ν(u) can be alternatively expressed by

M2,ν(u) = Eij

{
n

∑
k1=1

m

∑
k2=1

e−δτ(1,ν)(u−bν−1)Bk1k2,k`,ν
(
bν−1 −

∣∣U(1,ν)(τ(1,ν)(u− bν−1))
∣∣)

×1[I(τ(1,ν)(u−bν−1))=k1,J(τ(1,ν)(u−bν−1))=k2]

}

−
n

∑
k3=1

m

∑
k4=1

Bij,k3k4,(1,ν)(u− bν−1, b− bν−1) (30)

×Ek3k4

{
e−δτ(1,ν)(b−bν−1)Bk1k2,k`,ν

(
bν−1 −

∣∣U(1,ν)(τ(1,ν)(u− bν−1))
∣∣, b
)

×1[I(τ(1,k)(b−bk−1))=k1,J(τ(1,k)(b−bk−1))=k2]

}

= Gij,k`,ν(u− bν−1)−
n

∑
k3=1

m

∑
k4=1

Bij,k3k4,(1,ν)(u− bν−1, b− bν−1)Gk3k4,k`,ν(b− bν−1),

where the last term corrects for those trajectories of U(1,ν)(t) reaches b− bν−1 before ruin.
Then from Equations (28)–(31) we find that
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Bij,k`,ν(u) = M1,ν(u) + M2,ν(u)

= Bij,k`,(1,ν)(u− bν−1, b− bν−1) + Gij,k`,ν(u− bν−1)

−
n

∑
k3=1

m

∑
k4=1

Bij,k3k4,(1,ν)(u− bν−1, b− bν−1)Gk3k4,k`,ν(b− bν−1),

or, equivalently, in matrix form

Bν(u, b) = B(1,ν)(u− bν−1, b− bν−1) + Gν(u− bν−1)− B(1,ν)(u− bν−1, b− bν−1)Gν(b− bν−1).

Finally, note that in the single-layer model bν−1 = b0 = 0 and thus, τ(1,ν)(u) ≡ τ−u,0,b(u).
Hence, it is impossible for the surplus to drop below the bν−1 barrier without causing
ultimate ruin and consequently, G1(u) ≡ 0nm, for all u ≥ 0. This completes the proof.

Lemma 1 provides a method for determining the upper exit quantities for a model
with ν layers, depending on the value of the initial surplus u ≥ 0. However, by applying
the results of this Lemma, we can derive recursive expressions for which the upper exit
for a model with ν layers can be completely determined via quantities from a model with
ν− 1 layers only. The following proposition corresponds to the matrix generalisation of
Proposition 3.1 in Albrecher and Hartinger (2007).

Proposition 4. For ν ∈ N+ and δ ≥ 0 it holds that:

(i) For 0 ≤ u < bν−1

Bν(u, b) =

{
Bν−1(u, b), if b ≤ bν−1,
Bν−1(u, bν−1)[Inm −Kν(bν−1)]

−1B(1,ν)(0, b− bν−1), if b > bν−1,

where
Kν(u) = Hν(u− bν−1)− B(1,ν)(u− bν−1, b− bν−1)Hν(b− bν−1),

and Hν(u) is a square matrix of order nm× nm with elements

Hij,k`,ν(u) = Eij

( n

∑
k1=1

m

∑
k2=1

e−δτ(1,ν)(u)Bk1k2,k`,ν−1
(
bν−1 −

∣∣U(1,ν)
(
τ(1,ν)(u)

)∣∣, b
)

×1[I(τ(1,ν)(u))=k1,J(τ(1,ν)(u))=k2]

)
. (31)

(ii) For bν−1 ≤ u ≤ b

Bν(u, b) = B(1,ν)(u− bν−1, b− bν−1) + Hν(u)[Inm −Kν(bν−1)]
−1B(1,ν)(0, b− bν−1).

Proof. To begin, first note that if we insert result (ii) of Lemma 1 into the definition of the
elements Gij,k`,ν(u), then we have

Gij,k`,ν(u) = Eij

( n

∑
k1=1

m

∑
k2=1

e−δτ(1,ν)(u)
n

∑
k3=1

m

∑
k4=1

Bk1k2,k3k4,ν−1
(
bν−1 −

∣∣U(1,ν)
(
τ(1,ν)(u)

)∣∣, b
)

×Bk3k4,k`,ν
(
bν−1, b

)
1[I(τ(1,ν)(u))=k1,J(τ(1,ν)(u))=k2]

)
=

n

∑
k3=1

m

∑
k4=1

Eij

( n

∑
k1=1

m

∑
k2=1

e−δτ(1,ν)(u)Bk1k2,k3k4,ν−1
(
bν−1 −

∣∣U(1,ν)
(
τ(1,ν)(u)

)∣∣, b
)

×1[I(τ(1,ν)(u))=k1,J(τ(1,ν)(u))=k2]

)
Bk3k4,k`,ν

(
bν−1, b

)
,



Risks 2022, 11, 1 15 of 21

or, alternatively, in matrix form

Gν(u) = Hν(u)Bν(bν−1, b),

where Hν(u) is a square matrix of order nm× nm with elements defined in Equation (31).
As such, (iii) of Lemma 1, can be written in the alternative form

Bν(u, b) = B(1,ν)(u− bν−1, b− bν−1)

+
[
Hν(u− bν−1)− B(1,ν)(u− bν−1, b− bν−1)Hν(b− bν−1)

]
Bν(bν−1, b). (32)

= B(1,ν)(u− bν−1, b− bν−1) + Kν(u)Bν(bν−1, b),

where Kν(u) = Hν(u− bν−1)− B(1,ν)(u− bν−1, b− bν−1)Hν(b− bν−1). Now, letting u =
bν−1, in the above equation, gives

Bν(bν−1, b) = B(1,ν)(0, b− bν−1) + Kν(bν−1)Bν(bν−1, b),

(33)

which, after solving for Bν(bν−1, b), yields that

Bν(bν−1, b) = [Inm −Kν(bν−1)]
−1B(1,ν)(0, b− bν−1),

where the existence of the inverse matrix follows due to diagonal dominance. Finally, sub-
stituting this result into Equations (27) and (32), prove results (i) and (ii), respectively.

Remark 6. We point out that the matrix Hν(u), and consequently Kν(u), are defined in terms of
τ(1,ν)(u) and elements of Bν−1(·, b) only. As such, these matrices also solely depend on quantities
of risk model(s) with ν− 1 layers or fewer.

3.2. The Expected Discounted Penalty Function

In this subsection, we show how to use the ‘upper-exit’ quantities of the previous
subsection to derive a layer-based approach for the expected discounted penalty function
φ(u, ν), for a model with ν layers.

Let φij,`(u, ν) denote the general collection (over k) of the individual G-S functions
φij,k,`(u, ν) defined in Equation (5). That is,

φij,`(u, ν) =


φij,1,`(u, ν), 0 ≤ u < b1

φij,2,`(u, ν), b1 ≤ u < b2
...

φij,ν,`(u, ν), u ≥ bν−1.

(34)

Then, for 0 ≤ u < bν−1, by conditioning on the events {τ+
ν (u, 0, bν−1) < τ−ν (u, 0, bν−1)}

or {τ+
ν (u, 0, bν−1) > τ−ν (u, 0, bν−1)} respectively, we obtain
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φij,`(u, ν) = Eij

(
n

∑
k1=1

m

∑
k2=1

e−δτ+ν (u,0,bν−1)φk1k2,`(bν−1, ν)

×1[τ+ν (u,0,bν−1)<τ−ν (u,0,bν−1),I(τ+ν (u,0,bν−1))=k1,J(τ+ν (u,0,bν−1))=k2]

)
+Eij

(
e−δτ−ν (u,0,bν−1)w

(
Uν(τ

−
ν (u, 0, bν−1))−,

∣∣Uν(τ
−
ν (u, 0, bν−1))

∣∣) (35)

×1[τ+ν (u,0,bν−1)>τ−ν (u,0,bν−1),R=`]

)
=

n

∑
k1=1

m

∑
k2=1

Bij,k1k2,ν(u, bν−1)φk1k2,`(bν−1, ν) + Cij,`(u, ν),

where

Cij,`(u, ν) = Eij

(
e−δτ−ν (u,0,bν−1)w

(
Uν(τ

−
ν (u, 0, bν−1))−,

∣∣Uν(τ
−
ν (u, 0, bν−1))

∣∣)
×1[τ+ν (u,0,bν−1)>τ−ν (u,0,bν−1),R=`]

)
(36)

= φij,`(u, ν− 1)−
n

∑
k1=1

m

∑
k2=1

Bij,k1k2,ν(u, bν−1)φk1k2,`(bν−1, ν− 1).

Combining Equations (35) and (36) and using result (ii) of Lemma 1, we have

φij,`(u, ν) = φij,`(u, ν− 1) +
n

∑
k1=1

m

∑
k2=1

Bij,k1k2,ν−1(u, bν−1)
[
φk1k2,`(bν−1, ν)

−φk1k2,`(bν−1, ν− 1)
]
, (37)

or equivalently, in matrix/vector notation

~φ`(u, ν) = ~φ`(u, ν− 1) + Bν−1(u, bν−1)
[
~φ`(bν−1, ν)− ~φ`(bν−1, ν− 1)

]
, (38)

where ~φ`(u, ν) = (φ11,`(u, ν), . . . , φnm,`(u, ν))>.
On the other hand, for u ≥ bν−1, we can condition on the size of first drop below

the level bν−1 which, by applying a similar shifting argument as in the proof of (iii) in
Lemma 1 (shifting down by bν−1), for 1 ≤ i ≤ n, 1 ≤ j ≤ m and ` = 1, 2, gives

φij,`(u, ν) = Eij

( n

∑
k1=1

m

∑
k2=1

e−δτ(1,ν)(u−bν−1)φk1k2,`(bν−1 − |U(1,ν)(τ(1,ν)(u− bν−1))|, ν)

×1[I(τ(1,ν)(u−bν−1))=k1,J(τ(1,ν)(u−bν−1))=k2,|U(1,ν)(τ(1,ν)(u−bν−1))|≤bν−1]

)
+Eij

( n

∑
k1=1

m

∑
k2=1

e−δτ(1,ν)(u−bν−1)w
(
bν−1 + U(1,ν)(τ(1,ν)(u− bν−1)−),

bν−1 − |U(1,ν)(τ(1,ν)(u− bν−1))|
)
1[I(τ(1,ν)(u−bν−1))=k1,J(τ(1,ν)(u−bν−1))=k2]

×1[U(1,ν)(τ(1,ν)(u−bν−1))>bν−1,R=`]

)
,
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which, after using Equation (37) in the first term, becomes

φij,`(u, ν) = Aij,`(u− bν−1, ν)

+Eij

( n

∑
k1=1

m

∑
k2=1

e−δτ(1,ν)(u−bν−1)1[I(τ(1,ν)(u−bν−1))=k1,J(τ(1,ν)(u−bν−1))=k2]

×
n

∑
k3=1

m

∑
k4=1

Bk1k2,k3k4,ν−1(bν−1 − |U(1,ν)(τ(1,ν)(u− bν−1))|, bν−1)

×
(
φk3k4,`(bν−1, ν)− φk3k4,`(bν−1, ν− 1)

))
,

where

Aij,`(u− bν−1, ν) = Eij

( n

∑
k1=1

m

∑
k2=1

e−δτ(1,ν)(u−bν−1)

×φk1k2,`(bν−1 − |U(1,ν)(τ(1,ν)(u− bν−1))|, ν− 1)

×1[I(τ(1,ν)(u−bν−1))=k1,J(τ(1,ν)(u−bν−1))=k2,|U(1,ν)(τ(1,ν)(u−bν−1))|≤bν−1]

)
+Eij

( n

∑
k1=1

m

∑
k2=1

e−δτ(1,ν)(u−bν−1)

×w
(
bν−1 + U(1,ν)(τ(1,ν)(u− bν−1)−), bν−1 − |U(1,ν)(τ(1,ν)(u− bν−1))|

)
×1[I(τ(1,ν)(u−bν−1))=k1,J(τ(1,ν)(u−bν−1))=k2]

×1[U(1,ν)(τ(1,ν)(u−bν−1))>bν−1,R=`]

)
.

Equivalently, in matrix/vector form, for u ≥ bν−1, we have

~φ`(u, ν) = ~A`(u− bν−1, ν) + Hν(u− bν−1)
(
~φ`(bν−1, ν)− ~φ`(bν−1, ν− 1)

)
. (39)

Now, due to the continuity of ~φ`(u, ν) at u = bν−1, from Equations (38) and (39),
we obtain

~φ`(bν−1, ν− 1) +
(
~φ`(bν−1, ν)−~φ`(bν−1, ν− 1)

)
= ~A`(0, ν) + Hν(0)

(
~φ`(bν−1, ν)− ~φ`(bν−1, ν− 1)

)
,

since, from Lemma 1 Bν−1(bν−1, bν−1) = Inm, and thus

~φ`(bν−1, ν)− ~φ`(bν−1, ν− 1) = [Inm −Hν(0)]
−1
(
~A`(0, ν)− ~φ`(bν−1, ν− 1)

)
,

where the inverse matrix exists by diagonal dominance. The above results are summarised
in the following proposition.

Proposition 5. For a risk model with ν layers and ` = 1, 2, the G-S function ~φ`(u, ν) is given by

~φ`(u, ν) =



~φ`(u, ν− 1) + Bν−1(u, bν−1)[Inm −Hν(0)]
−1
(
~A`(0, ν)− ~φ`(bν−1, ν− 1)

)
,

for 0 ≤ u < bν−1,
~A`(u− bν−1, ν) + Hν(u− bν−1)[Inm −Hν(0)]

−1
(
~A`(0, ν)− ~φ`(bν−1, ν− 1)

)
,

for u ≥ bν−1.

Remark 7. In a similar way to Remark 6, we point out that the vector ~A`(u, ν) is actually
defined solely in terms of quantities for a model with ν − 1 layers and a single layer. As such,
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Proposition 5 provides a recursive formula for ~φ`(u, ν) in terms of quantities from models with
ν− 1 (or fewer) layers.

Remark 8. To see the difference in the two methods (‘layer-by-layer’ and ‘number of layers’) via a
numerical example, we direct the reader to Albrecher and Hartinger (2007) who demonstrate the
results for a compound Poisson risk model with exponential claims in a ν = 2 barrier model.

3.3. The Expected Discounted Dividends

For the multi-layer risk model defined in Equations (1) and (2), recall that whilst
the surplus is in layer k, i.e., in the interval [bk−1, bk), the insurer pays out dividends at a
constant rate dk ≥ 0. Hence, in this subsection we will use the results of Lemma 1 and apply
similar techniques as above, to obtain a recursive expression for the expected discounted
dividend payments until ruin.

Let {D(t)}t≥0 denote the accumulated dividends paid up to time t ≥ 0 having dynamics

dD(t) = dk dt, whilst bk−1 ≤ Uν(t) < bk,

and define

Du,ν =
∫ τν(u)

0
e−δtdD(t),

to be the present value of the total discounted dividends until ruin for a risk model with
ν layers and Du,ν = 0 for u < 0. Then, the expected discounted dividends until ruin is
defined by V(u, ν) = E

(
Du,ν

)
, which can be decomposed, for 1 ≤ i ≤ n, 1 ≤ j ≤ m and

` = 1, 2, into quantities of the form

Vij,`(u, ν) = Eij
(

Du,ν1(R=`)

)
such that

V(u, ν) = ~ρ>
(
~V1(u, ν) + ~V2(u, ν)

)
,

where ~V`(u, ν) =
(
V11,`(u, ν), . . . , Vnm,`(u, ν)

)> for ` = 1, 2.
Then, in a similar way as in Section 3.2, by conditioning on the events {τ+

ν (u, 0, bν−1) <
τ−ν (u, 0, bν−1)} or {τ+

ν (u, 0, bν−1) > τ−ν (u, 0, bν−1)} respectively, for 0 ≤ u < bν−1, 1 ≤ i ≤
n, 1 ≤ j ≤ m and ` = 1, 2, we obtain

Vij,`(u, ν) = Eij

(∫ τν(u)

0
e−δtdD(t)1(R=`)

)
= Eij

(
n

∑
k1=1

m

∑
k2=1

[∫ τ+ν (u,0,bν−1)

0
e−δtdD(t) +

∫ τν(u)

τ+ν (u,0,bν−1)
e−δtdD(t)

]
×1(τ+ν (u,0,bν−1)<τ−ν (u,0,bν−1),I(τ+ν (u,0,bν−1))=k1,J(τ+ν (u,0,bν−1))=k2,R=`)

)
+Eij

(∫ τ−ν (u,0,bν−1)

0
e−δtdD(t)1(τ−ν (u,0,bν−1)<τ+ν (u,0,bν−1),R=`)

)
(40)

= Eij

(∫ τ+ν (u,0,bν−1)

0
e−δtdD(t)1(τ+ν (u,0,bν−1)<τ−ν (u,0,bν−1),R=`)

)

+
n

∑
k1=1

m

∑
k2=1

Bij,k1k2,ν−1(u, bν−1)Vk1k2,`(bν−1, ν)

+Eij

(∫ τ−ν (u,0,bν−1)

0
e−δtdD(t)1(τ−ν (u,0,bν−1)<τ+ν (u,0,bν−1),R=`)

)
,



Risks 2022, 11, 1 19 of 21

where we have used result (ii) of Lemma 1 in the final equality. Moreover, since this
equation holds for an arbitrary number of layers, it also follows for 0 ≤ u < bν−1 that

Vij,`(u, ν− 1) = Eij

(∫ τ+ν−1(u,0,bν−1)

0
e−δtdD(t)1(τ+ν−1(u,0,bν−1)<τ−ν−1(u,0,bν−1),R=`)

)

+
n

∑
k1=1

m

∑
k2=1

Bij,k1k2,ν−1(u, bν−1)Vk1k2,`(bν−1, ν− 1) (41)

+Eij

(∫ τ−ν−1(u,0,bν−1)

0
e−δtdD(t)1(τ−ν−1(u,0,bν−1)<τ+ν−1(u,0,bν−1),R=`)

)
.

Now, by noting that τ+
ν (u, 0, bν−1) ≡ τ+

ν−1(u, 0, bν−1) and τ−ν (u, 0, bν−1) ≡ τ−ν−1(u, 0, bν−1),
combining Equations (40) and (41), we get that

Vij,`(u, ν) = Vij,`(u, ν− 1)

+
n

∑
k1=1

m

∑
k2=1

Bij,k1k2,ν−1(u, bν−1)
(
Vk1k2,`(bν−1, ν)−Vk1k2,`(bν−1, ν− 1)

)
, (42)

or in matrix/vector form

~V`(u, ν) = ~V`(u, ν− 1) + Bν−1(u, bν−1)
(
~V`(bν−1, ν)− ~V`(bν−1, ν− 1)

)
. (43)

For u ≥ bν−1, we consider a similar argument to that of the previous section, that is by
apply a shifting argument, conditioning on whether or not the process drops below the
level bν−1 and if so, the corresponding size of the drop, which gives

Vij,`(u, ν) = Vij,`,(1,ν)(u− bν−1) +Eij

( n

∑
k1=1

m

∑
k2=1

e−δτ(1,ν)(u−bν−1)

×Vk1k2,`(bν−1 −U(1,ν)(τ(1,ν)(u− bν−1)), ν)

×1[I(τ(1,ν)(u−bν−1))=k1,J(τ(1,ν)(u−bν−1))=k2]

)
,

where Vij,`,(1,ν)(u) denotes the expected discounted dividends until ruin for a risk model
with only a single layer, paying out dividends continuously at rate dν ≥ 0. Then, after
substituting the result of Equation (42) into the second term and writing in matrix/vector
form, for u ≥ bν−1, we obtain

~V`(u, ν) = ~V`,(1,ν)(u− bν−1) + ~D`(u− bν−1, ν) (44)

+Hν(u− bν−1)
(
~V`(bν−1, ν)− ~V`(bν−1, ν− 1)

)
,

where ~V`,(1,ν)(u) =
(

V11,`,(1,ν)(u), . . . , Vnm,`,(1,ν)(u)
)>

and ~D`(u, ν) = (D11,`(u, ν), . . . ,

Dnm,`(u, ν))> with ij-th element

Dij,`(u, ν) = Eij

(
n

∑
k1=1

m

∑
k2=1

e−δτ(1,ν)(u)

×Vk1k2,`(bν−1 −U(1,ν)(τ(1,ν)(u)), ν− 1)1[I(τ(1,ν)(u))=k1,J(τ(1,ν)(u))=k2]

)
.

Finally, due to the continuity at the barrier, we can equate Equations (43) and (44)
with u = bν−1 and re-arrange the resulting equation to find

~V`(bν−1, ν)− ~V`(bν−1, ν− 1) = [Inm −Hν(0)]
−1
(
~D`(0, ν) + ~V`,(1,ν)(0)− ~V`(bν−1,ν−1)

)
.
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To summarize our results, we give the following proposition.

Proposition 6. For a risk model with ν layers and ` = 1, 2, the expected discounted dividends
until ruin, ~V`(u, ν), is given by

~V`(u, ν) =



~V`(u, ν− 1) + Bν−1(u, bν−1)[Inm −Hν(0)]
−1

×
(
~D`(0, ν) + ~V`,(1,ν)(0)− ~V`(bν−1,ν−1)

)
, for 0 ≤ u < bν−1,

~V`(u, ν− 1) + ~D`(u− bν−1, ν) + Hν(u− bν−1)[Inm −Hν(0)]
−1

×
(
~D`(0, ν) + ~V`,(1,ν)(0)− ~V`(bν−1,ν−1)

)
, for u ≥ bν−1.

Remark 9. The vector ~D`(u, ν) is similar to that of ~A`(u, ν) in Proposition 5 in the sense that it
is defined in terms of quantities from models with ν− 1 layers or fewer. As such, Proposition 6
provides a recursive expression for calculating the expected discounted dividends for a risk model
with ν layers, in terms of corresponding quantities for models with fewer layers, i.e., a classic
one-way ‘forward’ type recursion.
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