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Abstract: Particle size and morphology analysis is a problem common to a wide range of appli- 1

cations, including additive manufacturing, geological and agricultural materials’ characterisation, 2

food manufacturing and pharmaceuticals. Here we review the use of microfocus X-ray computed 3

tomography (X-ray CT) for particle analysis. We give an overview over different sample preparation 4

methods, image processing protocols, the morphology parameters that can be determined, and types 5

of materials that are suitable for analysis of particle size using X-ray CT. The main conclusion is that 6

size and shape parameters can be determined for particles larger than approximately 2 to 3 µm, given 7

adequate resolution of the X-ray CT setup. Particles composed of high atomic number materials 8

(Z > 40) require careful sample preparation to ensure X-ray transmission. Problems occur when 9

particles with a broad range of sizes are closely packed together, or when particles are fused (sin- 10

tered or cemented). The use of X-ray CT for particle size analysis promises to become increasingly 11

widespread, offering measurements of size, shape, and porosity of large numbers of particles within 12

one X-ray CT scan. 13

Keywords: X-ray computed tomography; Particle size distribution; Particle shape measurements; 14

Powder sample preparation 15

1. Introduction 16

Over the last 20 years (Figure 1a), more than 60 publications [1–61] have utilised mi- 17

crofocus X-ray computed tomography (also known as micro-CT, µX-ray CT, and XCT) for 18

the analysis of particles in the range of micro- to millimetres. The applications derive from 19

such diverse fields as additive manufacturing [8,19,21,23,28,31–35,37,40,43,45,46,52,58,61], 20

granular packing studies [1,5,11,17,49,59,62], food processing [12,20,24], and pharmaceuti- 21

cal applications [10,51,55,57], because they all involve finely divided materials and benefit 22

from particle size characterisation.The ease of sample preparation (section 2.1) and the 23

amount of information available for each single particle (section 2.5) are other reasons for 24

the breadth of use of X-ray CT. The 3D size, morphology, internal porosity, and the position 25

of a given particle in the granular assembly are types of information that are available 26

from a single scan (Figure 2). Due to the non-destructive nature of X-ray CT imaging, 27

repeated scans of the same sample after an intervention such as loading [11,16,49,56] or 28

heating [3] are possible and allow for time-lapse (4D) studies of changes in the assembly 29

[53]. The digital data, collected with each scan, can feed directly into computed models 30

about the particles and their behaviour in the granular assembly [27,47,48,54]. After early 31

use of synchrotron beam lines [1,3,6,7,14,28,33,34,46], the emergence of laboratory X-ray 32

CT instruments [2,4,8–13,18,20–27,30–32,36–45,47–52,54,55,57–60] has made the technique 33

more widely accessible (Figure 1b). 34

This review summarises studies that have utilised X-ray CT for particle size (and 35

morphology) quantification. In this context, a particle is a small (micro- to millimetre 36

scale) rigid body. The distribution of particle properties, such as size and shape over a 37

large number of similar particles, rather than the properties of a specific single particle, 38
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Figure 1. Diagrams summarising the history of use of X-ray CT for particle size characterisation. (a)
The number of publications for different material categories. The category ”natural minerals” contains
studies that used naturally occurring minerals, such as naturally occurring sand [6,11,14,27,49,56,59]
or crushed granite [42], while the category ”manufactured materials” contains purposefully made
particles, such as beads made from glass [1], acrylic [5], gypsum [17], or ceramic [39]. The particle
size ranges measured within each category are shown on the x-axis. (b) The number of publications
utilising particle size characterisation with X-ray CT since the year 2000, split into use of synchrotron
vs. laboratory X-ray sources.

is typically of interest to the analysis. In different research fields, individual particles 39

might also be called grains; similarly, a collection of particles may be known as a granular 40

assembly, a powder, or bulk material. We will refer to “loose particles” for a collection of 41

particles that have no strong binding forces or adhesion between them and will flow freely 42

if not constrained in a container. To be clear, terms such as grain size analysis or powder 43

analysis are equally used for the same methodology in different scientific disciplines. 44

Reviews of the general use of X-ray CT for the broad field of materials research [63], and 45

specifically additive manufacturing [64,65], have recently been published, but these did 46

not focus on particle characterisation. A detailed description of the experimental approach 47

to particle size analysis that was employed by a single laboratory is available [52], but 48

it excludes methods used at other institutions. The use of X-ray CT for the time-lapse 49

study of particulate systems has also been recently published [53], but omitted the basic 50

characterisation of the loose particles, which is our focus here. 51

The aim of this review is to address particle characterisation using X-ray CT, answering the 52

following specific questions: 53

• What materials and particle sizes have been analysed with this method? 54

• What are the options for sample preparation, and are they influenced by the particles 55

to be measured? 56

• What influence does the image processing methodology have on the results? 57

• Where are the limits of the method in terms of material suitability and particle size 58

range? 59

We intend that this review will serve as a guide for researchers and others new to particle 60

analysis with X-ray CT, who are considering using this method for their own samples. A 61

further objective of this review is to develop a common language related to particle size 62

analysis that can be adopted across different disciplines. 63

1.1. History of particle analysis with X-ray CT 64

X-ray computed tomography, the method of taking a series of X-ray projection images 65

around the object of interest, and computing a tomographic dataset (a 3D image) from the 66

result, has become a major diagnostic tool since the first commercial medical scanner was 67

built in 1973 [67]. Since then, the development of industrial scanners [68] and improvements 68

to microfocus X-ray sources and detectors to enable micron and submicron-range resolution 69

[69,70] (often termed micro-CT) opened the door to characterise a wide range of materials, 70

including particles of the µm to mm range. 71
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Figure 2. Micrometre-size glass bead quantification with X-ray CT. (a) Glass beads coloured according
to size from blue (60 µm) to red (220 µm). (b) The same glass beads coloured according to Zingg’s
[66] shape classification (discs (I): purple, spheres (II) grey, blades (III): orange, rods (IV): green). (c)
Only beads with internal pores shown (beads in blue, pores in red).

A simple schematic diagram of the X-ray CT data acquisition system is presented in Figure 3. 72

More comprehensive descriptions are available elsewhere [63,68], but a brief summary is 73

included here. In laboratory X-ray CT instruments, typically a sample is positioned upright 74

between the microfocus X-ray source, and the detector. The X-ray source usually allows 75

variation of the maximum energy of the X-ray beam, with common maximum energies 76

up to 225 keV. Beam filters can be used to remove the low-energy component of the X-ray 77

spectrum and achieve a higher relative transmission through the sample. The X-ray beam 78

is transmitted through the sample and attenuated by the materials that compose it. The 79

attenuation of the beam is revealed in the intensity distribution recorded by the detector for 80

each projection image. The detector consists of a scintillator, and a photon counting device. 81

Flat panel detectors are most commonly used, but some high-resolution instruments utilise 82

multiple objectives with different optical magnification instead (typically called X-ray 83

microscopes). A series of projection images are captured while rotating the sample. While 84

a rotation of 180◦ is sufficient for parallel-beam geometries, such as in synchrotrons, cone- 85

beam laboratory instruments generally require a rotation over 360◦ [71]. The projection 86

images are converted into a stack of slice images by a reconstruction algorithm, typically a 87

variation of the FDK-algorithm for divergent (cone) beam systems [72]. The study of small 88

particles with X-ray CT started in 2000, when the individual positions of 63 µm diameter 89

glass beads were determined at beamline 20-ID at the Advanced Photon Source, USA, 90

to study 3D granular packing [1]. In the first decade of the millennium, approximately 91

half of the published studies were undertaken at synchrotron beamlines; however, the 92

increasing availability of laboratory-based X-ray CT instruments has meant that, in the 93

last 10 years, 90% of the published studies were carried out using laboratory systems 94

(Figure 1b). Laboratory-based X-ray CT systems are typically easier to use and timelier 95

to access than synchrotron beamlines, and they are also easily available for commercial 96

companies to carry out their own testing, which is an advantage for regular quality control 97

of, for example, manufacturing feedstocks, products or food powders. 98

1.2. Summary of materials examined 99

X-ray CT methods are suitable for a broad range of materials, and a summary of 100

those particles characterised with this method is given in Figure 1a. The characterisa- 101

tion of metal powders is of great interest for powder-based additive manufacturing (AM) 102

processes, where powder properties such as particle size distribution and particle shape 103

affect the flow and spreadability of the powder [73]. Imperfections, such as pores inside 104

powder particles, or contamination of the powder with particles of a different material, are 105

also of great interest since they can affect the strength of the final build-part [74]. Metal 106

powders analysed by X-ray CT, of interest to the AM industry, include titanium alloys 107
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Figure 3. Schematic of a typical laboratory microfocus X-ray CT acquisition system, showing the
source, sample with sample holder, and flat-detector. Source-sample, and sample-detector distances
affect image magnification in addition to the objective. A series of projection images is captured while
rotating the sample, commonly over 360◦, which is then reconstructed into the slice images that form
the 3D data volume.

[8,21,28,31,33,34,46,52,58,64], steels [40,43,46,61] and nickel-based alloy [37]. These studies 108

aimed to evaluate the quality and suitability of a powder, for example after several rounds 109

of recycling, or of powder particles made by different production processes [8,34,37]. Other 110

objectives have included understanding if the porosity inside the powder particles transfers 111

into the build part, or how particles change during sintering [3] or compaction [16]. 112

X-ray tomography has been used to study geological material, mainly quartz-rich sand 113

[9,11,13,18,49,50,56], but also ores and coal [4,7,25,38,48]. A field of interest is the behaviour 114

of sand particles during deformation [11,13,36,49,53,56]. Other studies have been concerned 115

with the development of image processing methods to aid with the identification, descrip- 116

tion, and tracking of particles during deformation [6,44], and often use a specific reference 117

material, such as Caicos ooids [36], ceramic proppant [39], or industrially-made zeolite 118

particles [44]. Related is the analysis of granular assemblies to describe pore networks and 119

grain contacts [15,17,59]. Another field of research is the development of digital models of 120

sand grains to virtually study particle breakage or failure modes [27,47,48]. 121

Granulated organic materials, including foods, such as milk powder [12] or maltodextrin 122

[24], pesticide-containing dust from seeds [20] and pharmaceutical powders (lactose, [51], 123

hexamine [57], L-glutamic acid [55], acetylsalicyl acid [10]) have also been studied using 124

X-ray CT. 125

1.3. Particle size ranges 126

Along with different material size classes, Figure 1a also shows the particle size ranges 127

that have been studied. The smallest particle sizes analysed involve studies of metal powder, 128

with successful analysis of particles as small as 5 µm to 25 µm [40]. However, it was noted 129

that shape analysis of the smallest particles was not possible with the employed X-ray CT 130

setup, which had a voxel (a 3D pixel) size of 2.9 µm. The largest particles studied that are 131

included in this review are in the centimetre range [25,75]. Only a few dozen large particles 132

fit the field of view at higher resolution, but scans of small particles, such as in metal 133

powders, typically contain tens of thousands of particles; multiple scans along a sample 134

can detail over 100,000 particles [19]. Most studies have been of spherical or equiaxial 135

particles (e.g., sand grains). Needle or disk-shape particles have not been extensively 136

examined, although dust particles, with more complex shapes, have been scanned [20], and 137

irregular agglomerates resulting from spray fluidisation have been analysed [24]. As well 138

as characterising the particle size and morphology, the internal porosity of particles has 139

also been examined [21,23,58] (Figure 2c). 140

2. Scanning protocol for particle size analysis 141

Figure 4 illustrates the steps taken to analyse particles with X-ray CT. Several variations 142

of the individual steps have been employed; they will be compared and discussed in this 143

section. 144
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Figure 4. Generalised scanning and analysis workflow for particle characterisation with X-ray CT.
After sample preparation (section 2.1), the X-ray CT data are acquired and reconstructed. The
resulting greyscale data are usually pre-processed, for example for noise smoothing, before further
processing. To enable quantification, each particle must be segmented (or labelled) individually
(section 2.4), which typically follows a general binarisation step that separates all particles from
the surrounding medium. Once segmented, individual particle size and shape parameters can be
determined (section 2.5).

2.1. Step 1: Sample preparation 145

In a typical laboratory X-ray CT scanner, the ideal sample is cylindrical and positioned 146

upright with the base securely fixed (Figure 3). To enable scanning of powders, the loose 147

particles must be held in a form that is compatible with this geometry. Four common 148

sample preparation methods, discussed below, are illustrated in Figure 5. 149

150

The simplest preparation method is to pour loose particles into a capillary, or similar 151

cylindrical container (Figure 5a) [8,20,21,35,51,55]. The diameter of the capillary is adjusted 152

to the particle size to ensure enough particles are in the field of view. Both full field of view 153

(full diameter of the capillary) and scans of an internal region of the capillary are possible 154

to further adjust the resolution. This method is suitable for a large range of materials, 155

additional steps at the image processing stage typically are later needed to separate the 156

touching particles into individual ones (see section 2.4). 157

To avoid the need to separate the particles with image processing steps, particles have also 158

been dispersed in a containing medium at the sample preparation stage. One method is to 159

mix the powder with a viscous epoxy and let this cure either inside a capillary (Figure 5b) 160

[7,19,31–33,43,52,58,61] or as a block, which can then be cored (Figure 5d) [18,23]. The 161

downside of this method is that it takes longer to prepare the sample than pouring loose 162

material into a capillary and it is not suitable for all materials (e.g., carbon-based materials 163

such as pharmaceuticals) due to low contrast with the epoxy, or even a possible chemical 164

reaction between the sample and the epoxy. Size segregation, for example by preferential 165

settling of large particles during curing, is a concern, and it has been proposed that the 166

epoxy plus powder mixture in the capillary should be agitated by shaking until the epoxy 167

has set [29]. Furthermore it is not easy to discern if mixing with epoxy has actually separated 168

all particles, or if small agglomerates have been adhered together. Because of this particle 169
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a b c d

Figure 5. Sample preparation methods for loose particles. (a) Particles can be poured into a capillary.
(b) Particles can be mixed with epoxy and cured inside a capillary. (c) Particles can be sprayed onto
adhesive material such as wax or adhesive tape, and rolled into a cylinder. (d) Larger assemblies of
particles can be infused with resin and then cored to obtain a smaller cylindrical sample.

agglomeration, there might still be a need to subsequently separate particles digitally 170

in the dataset. Alternatively, even though the agglomerates might be of interest in the 171

characterisation, they can be excluded from quantification out of caution [40]. 172

A different way of dispersing the particles is to spray them as a thin layer on a flat adhesive 173

material, such as adhesive tape [40] or wax [37], which can then be rolled into a cylindrical 174

shape for scanning (Figure 5c). The downsides of this method are like those due to mixing 175

with epoxy, in that contrast might be low and an even distribution of particles on the 176

material cannot easily be ascertained. 177

For samples in which particle arrangement needs to be preserved, a way of preparing 178

samples is to impregnate a larger core or sample with resin, and then use a small core drill 179

to extract samples with a diameter suitable for scanning [18]. Such an approach has the 180

advantage of leaving the grains in their natural position, so that features such as grading of 181

sand grains can be studied (Figure 5d). 182

A special case involves studies that place high priority on accurate shape description, such 183

as those working on particle modelling. In such cases, individual particles are typically 184

spaced manually inside a larger container, and supported in a high-viscosity matrix, for 185

example silicon oil [26,42,54]. 186

2.2. Step 2: Data acquisition and reconstruction 187

X-ray CT data acquisition parameters, such as source energy and image exposure 188

times, depend on the specific instrument, and a comparison is not very informative. Of the 189

62 studies surveyed in this review, 29 included laboratory X-ray source energy parameters. 190

There was a wide range of source accelerating voltages, for example, quartz sand and 191

glass containing samples were scanned at accelerating voltages between 25 kV and 150 kV. 192

Exposure times for the projection images, which are dependent on the detector sensitivity, 193

the source parameters, the sample attenuation, and the source-detecor distance, are largely 194

not available in the methods descriptions. In general, it must be assumed that scan data 195

acquisition and reconstruction were carried out with settings that ensure good quality data 196

[68]. Apart from the capabilities of the instrument, consideration must be given to the 197

sample material composition and attenuation, the sample size, and the resolution required 198

to image the particles. These parameters are discussed in more detail in section 3.2 and 199

section 3.1 below. 200

2.3. Step 3: Image pre-processing 201

As image noise is an inherent feature of X-ray CT images [76], a noise-smoothing 202

filter is typically applied as a first step. Smoothing of images not only suppresses localised 203

deviations in brightness, which could be noise, but also sharpens peaks in the histogram, 204

which helps with image segmentation [77]. Due to low computational costs, and wide 205
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implementation in image processing software, many authors apply simple median or 206

Gaussian filters [23,24,32]. However, as those filters tend to blur edges, other researchers 207

have employed bilateral [46] or non-local means filters [51,55], which have become more 208

usable for large datasets with increasing computer performance. Instead of using an image- 209

smoothing filter, some authors prefer to set a minimum voxel or volume cut-off limit to 210

remove the smallest artefacts before quantification [52,58]. 211

2.4. Step 4: Image binarisation and segmentation 212

Before quantification of particle size and shape is possible, the borders of each particle 213

in the dataset must be identified and the particle given an individual number in a process 214

called segmentation or labelling. The process usually begins with binarising the image into 215

particles and background (which might be air or a surrounding medium such as epoxy), 216

followed by separation and labelling of individual particles. For binarisation, typically a 217

simple greyscale threshold is set or found with an algorithm such as Otsu’s method [78]. 218

Thresholding can be difficult if there is a strong variation in brightness across the image 219

or between particles, in which case a machine learning tool such as the trainable WEKA 220

segmentation tool implemented in ImageJ [79] might provide better results [22]. If the 221

particles are physically separate, such as when intentionally spaced apart, or separated 222

by another medium such as epoxy, they can be labelled directly from the binary image by 223

cluster detection [29]. However, in cases where particles are touching, such as when loose 224

particles have been scanned in a capillary, particle boundaries fall below the resolution 225

limit, and the particles may appear to be merged. An underlying assumption must be made 226

that the particles are indeed separate and are not fused or cemented together. In these 227

cases, additional image processing methods need to be employed to separate them into 228

individual particles. The challenge is to find particle boundaries that preserve the actual 229

shape of the particles, without breaking single particles into multiple ones, or merging 230

multiple particles together. A common approach is to use a distance transform-based

a b c

d e f

Figure 6. Particle separation process with a distance-transform watershed method. (a) Unprocessed
image, (b) smoothed image (non-local means filter), and (c) binarised image, (d) distance-transform
of the binary image shown in Figure 6c, (e) distance transform with the extended maxima markers
(purple) and watershed lines (blue) shown, (f) segmented particles resulting from re-flooding the
image from the markers to the boundaries of the binary mask image and the watershed lines.



Version January 16, 2023 submitted to Materials 8 of 18
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f

Figure 7. Segmentation errors and their effect on the particle size distribution of a copper powder
with a manufacturer’s size range of 15-45 µm. Top row: (a) over-segmentation with increased splitting
of particles (red arrows), (b) visually correct segmentation, (c) under-segmentation with increased
merging of particles (yellow arrows). Segmentation differences are a result of varying the extrema
marker extend (Figure 6e) during the watershed process. Segmentation with the open-source ImageJ
plugin MorphoLibJ [82]. Bottom row: Particle size distributions for the full datasets: (d) 8800 particles
(e) 5700 particles, (f) 3300 particles) resulting from the segmentations shown in top row a, b, and c.

watershed to separate particles, illustrated in Figure 6. A distance map of the particle phase 231

is calculated by successive erosion of the border of particles, the centres of the particles 232

identified and labelled as markers, and the final label image created by re-flooding the 233

binary image by a watershed process [77,80]. While this approach works very well for 234

spherical, equant particles, complex particle shapes present additional challenges. For 235

example, the erosion process of complex particle shapes often leads to multiple central 236

spots, which, if uncorrected, result in over-segmentation by splitting whole irregular 237

particles into multiple parts. A range of approaches exist to correct the marker image, for 238

example by eliminating weak markers with an h-extrema filter [81] or by stopping the 239

erosion early [60]. Removing too many markers results in under-segmentation and the 240

artificial merging of separate particles. Figure 7 illustrates over- and under-segmentation, 241

and the resulting particle size distributions. As can be seen, care must be taken to choose 242

appropriate watershed parameters, and human supervision of the process is recommended. 243

Unsupervised algorithms can be used to evaluate the segmentation if a particular particle 244

shape is expected and can be used as a quality marker [39]. 245

2.5. Step 5: Measurements and quantification 246

Once particles have been separated in a satisfactory way, each particle can be measured. 247

Table 1 presents an overview of the most commonly employed size and shape parameters 248

to describe particles. 249

While each particle is originally represented by a cluster of voxels in the segmented 3D data 250

set, it can be advantageous for data storage demands and processing speeds to approximate 251

the particle surface with either a triangular surface mesh [83] or with a series of spherical 252

harmonics (SH) functions [2,27]. Approximating the particle surface in either of those ways 253
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also introduces a degree of surface smoothing, which can help deal with unrealistic effects 254

of surface voxelisation. However, it is difficult to use SH functions to describe particles 255

with more complex shapes, for example, when the centre of gravity lies outside of the 256

particle [52]. Most morphological parameters can be calculated directly from the voxelised 257

representation, though it can be faster to calculate them from the mesh or SH approximation 258

of the particle. Table 1 list the alternative approaches to calculate each measure. Currently, 259

no agreement over the best approach exists, and various software solutions implement 260

one or more of the methods. While, in general, results from different approaches should 261

be similar, small deviations of results exist due to the different approximations employed, 262

which might limit the usefulness of specific approaches [46]. This especially affects surface 263

area measurements. Simply counting the faces of the surface voxels usually leads to over- 264

estimation of the surface area, and approximation approaches with surfaces meshes, SH 265

functions, or algebraic estimation [84,85] give more realistic results [86]. 266

The 3D data allows the measurement of the length (L), width (W), and breadth (B), also 267

called depth or thickness, of each particle, which again can be found in multiple ways, but 268

most commonly by determining the principal axes of the inertia tensor and computing the 269

moments of inertia (with mass represented by voxel intensity) [87]. Knowing the three 270

dimensions L, W, and B, can improve the comparison with other particle measurement 271

methods; for example, one study found that the width of a particle correlated well with 272

sieve analysis data, while the length correlated well with laser diffraction data [7]. The 273

dimensions also allow calculation of the aspect ratios, which can be used to classify the 274

particles, for example by the four Zingg classes [66] of discs, spheres, blades, and rods 275

(Figure 2b). 276

Apart from the morphological parameters mentioned in Table 1, many other parameters 277

can be calculated; for example, particle projections at different angles [52] can be directly 278

compared with 2D measurements, e.g., from microscopy images. Careful analysis of the 279

surface curvature allows for determination of particle roundness in 3D [26,42,75], which is 280

more difficult than in 2D [88], and thus not commonly implemented in analysis software. 281

In addition to measuring each particle, properties of the granular assembly, such as the 282

packing density or bulk porosity can also be quantified, if the sample was prepared in a 283

bulk state (and not diluted by, for example, epoxy). 284

Resulting measurement data is usually presented in tabular form or summarised statisti- 285

cally. However, it is often also possible to visualise results by combining them graphically 286

with image data, for example as colour coding of the original 3D data (Figure 2). 287

288

3. Outlook and limits of the method 289

After here summarising the range of work already undertaken, two research questions 290

with regards to the limits of particle characterisation by X-ray CT will be subsequently 291

discussed. Following the development of sub-micrometre commercial X-ray CT systems, 292

the first question concerns the smallest particle size that can be successfully characterised 293

using laboratory equipment. The second question concerns the types of materials that can 294

be used for powder analysis using X-ray CT, especially regarding highly X-ray attenuating 295

materials. 296

3.1. Limits of particle size and resolution 297

Currently the highest resolving commercial X-ray CT systems advertise a sub-micrometre 298

resolution, as small as 0.5 micrometres. This limit results from hardware parameters, such 299

as the the source spot size and the physical detector resolution [68]. The definition of 3D 300

spatial resolution in X-ray CT is complicated, and a topic of current debate [96]. The 2D 301

resolution of each projection can be measured with resolution targets such as the JIMA 302

(Japan Inspection Instruments Manufacturers’ Association) chart [97] or by evaluation of 303

the modulation transfer function [98]. However, the true 3D resolution can vary from scan 304

to scan due to additional factors such as the number of projections, the reconstruction 305
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Table 1. Overview of common particle size measures, and their methods of calculation from the
digital image data. The same measure can often be calculated in multiple ways, as listed in the right-
hand column. SH refers to approximating the particle surface with spherical harmonics functions.

Sketch Measure Methods of calculation

Volume
Counting of all voxels belonging to a particle [89], integral
over SH functions [87], integral over the surface covered
by a mesh [90].

Surface Area
Counting all faces of surface voxels, estimation of the
surface area [84,85], measuring a surface mesh (marching
cubes [90]), or calculate from the SH functions [87].

Three dimensions of the parti-
cle – length (L), width (W), and
breadth (B) (also called depth or
thickness). These are mutually
orthogonal and L ≥ W ≥ B

Derived from the moments of inertia (with mass repre-
sented by voxel intensity) [52,87], edge length of the small-
est box that contains the particle [91,92],searching the SH
parameters [52], or by calculating length as the maximum
Feret [93] or caliper diameter, the maximum distance be-
tween two tangential planes of the particle surface and
finding W and B orthogonally [94].

Z

X

Y

Position of the particle within
the data set

Centroid (centre of mass) position [89], as the origin of a
square box containing the particle, or as the first point of
the particle encountered in searching direction.

φ

θ

Z

X

Y

Orientation of principal axes, ϕ,
θ

Principal axis orientation derived from moments of inertia
(or volume) tensor [87].

Local Thickness

The diameter of the largest sphere that fits inside the
particle at a local point. [95]. The local thickness differs
from the total thickness especially in cases of porous or
cup-shaped particles.

Equivalent Diameter of a sphere
of the same volume as the parti-
cle

Derived measure from volume (V): Equivalent diameter
= 3

√
6V/π

~
Sphericity measures between 0
and 1, and shows how closely the
shape matches a perfect sphere

Derived measure from volume (V) and surface area (A):
Sphericity = 3

√
(36πV2)/A
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algorithm, the complex energy spectrum and the sample shape relationship. Standardised 306

measurement test samples (phantoms) and defining standards for 3D resolution are under 307

active development [96]. In the following section, it is assumed that the approximate 308

highest resolution is 0.5 µm. It should be noted that in most X-ray CT systems the pixel size 309

(and resulting voxel size) does not equal the spatial resolution of the system at the current 310

conditions. Firstly, it is often possible to decrease the pixel size significantly to below 311

the current spatial resolution by increasing the magnification (oversampling). Secondly, 312

according to the Nyquist-Shannon sampling theorem, the sampling rate must be at least 313

twice as high as the signal, which means at least two pixels are needed to detect a feature. 314

For example, to achieve a spatial resolution of 0.5 µm, a pixel size of at least 0.25 µm should 315

be used. 316

To characterise loose particles, three conditions must be met: the particle must be observ- 317

able over the resolution limit, it must be separate from neighbouring particles, and it must 318

be made up of enough voxels to describe its size and shape. 319

Fewer voxels are needed if the absorption contrast to the surrounding medium is high and 320

only the general position needs to be determined. In the case of spaced-apart particles, 321

two voxels are enough to identify a particle. With more densely packed particles, this 322

identification is more difficult, because the size of gaps between the particles typically 323

becomes the limiting factor. This is especially true in case of spherical particles, where the 324

convex shape reduces the gap between particles to less than the resolution limit. In such 325

cases, enough of the particle must be without surface contact to be able to separate it from 326

its neighbours by e.g., a watershed process (section 2.4). Broad particle size distributions 327

(e.g., in poorly sorted samples), where smaller particles fill the gap between larger ones, 328

make this separation even more challenging. 329

It is easily understandable that more voxels per particle result in a more accurate shape 330

description, but the question is how few voxels could be considered to be enough? In prac- 331

tice, often a voxel, or volume, cut-off limit is defined, under which particles are not further 332

evaluated, even though this can affect the resulting particle size distribution. 512 voxels 333

are commonly used for particles separated in epoxy [52], which is an 8 × 8 × 8 cube, or a 334

sphere with a diameter of 10 voxels. Other studies have used a much lower limit, such as 335

8 or 10 voxels [37,45]. Assuming a sub-micrometre resolution X-ray CT system, an approxi- 336

mate smallest voxel size at the highest resolution is approximately 0.2 to 0.3 µm. Using the 337

512 voxel cut-off limit, this means the smallest characterisable particle size is approximately 338

2 to 3 µm. However, calculating the average amount of voxels across the smallest particles, 339

in our survey of published research [1–61], has revealed that typically approximately 25 340

voxels are used, which equates to the smallest characterisable particle size being 5 µm. A 341

small voxel size necessitates a similarly small field of view (of e.g., 500 × 500 µm for a 342

0.25 µm voxel size with a 2000 × 2000 pixel detector), and very high-resolution scans might 343

not be feasible if the sample size cannot be sufficiently reduced, or if insufficient numbers 344

of larger particles can fit into the field of view. Many commercial X-ray CT systems also 345

cannot achieve their highest resolution at high power [68], mainly due to source point 346

spread with increasing power [99] and increased detector blurring [100], which limits the 347

materials that can be analysed at high resolution. 348

3.2. Limits of material suitability 349

While X-ray CT analysis has been applied successfully to characterise particles made 350

from a wide range of materials, a limiting factor is the requirement for X-ray transmission 351

through the sample, given that X-ray transmission reduces with increasing atomic number. 352

The higher the atomic number, the thinner a sample has to be for sufficient X-ray transmis- 353

sion, assuming constant energy of the beam (Figure 8). In the following, we will establish 354

the approximate thickness of single-element samples that are possible to scan with a typical 355
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Figure 8. Estimation of sample thickness for a loose particle sample in a capillary for a material with
atomic number Z. Calculations assume a packing density of 60%, an X-ray transmission of 20% and
an effective energy of 60 keV [101], for which mass attenuation coefficients µ/ρ have been taken
from in the National Institute of Standards and Technology’s (NIST, USA) X-ray Mass Attenuation
Coefficients database [102]. The grey line shows estimated sample thickness for all elements (Z=8 to
Z=92, excluding gases), while the coloured dots highlight selected elements. The colour represents
the linear attenuation coefficient, µ, calculated from the mass attenuation coefficient µ/ρ and the
density ρ.

laboratory X-ray CT instruments. In principle, the thickness t for a given transmission I/I0 356

can be calculated by re-arranging the Lambert-Beer equation: 357

I = I0e−
µ
ρ ·ρt ⇔ t = 1/µ · ln(I0/I) (1)

with I intensity, I0 initial intensity, ρ density, and µ/ρ mass attenuation coefficient. The 358

Lambert-Beer equation assumes a monochromatic, parallel beam and single-material sam- 359

ple of constant thickness. Those assumptions are not met in the reality of laboratory X-ray 360

sources with polychromatic and divergant beams, detectors with unknown energy response 361

functions, and multi-material, irregularly shaped samples. However, an approximation of 362

the sample thickness can still be made to understand the limits of the current methodology. 363

Most modern laboratory X-ray CT systems operate with a polychromatic source, often with 364

a tuneable accelerating voltage up to 160 kV or 225 kV. However, because of the nature of 365

the bremsstrahlung spectrum, the proportion of high-energy photons within the spectrum 366

is very small. As a first step in simplifying the problem, the polychromatic spectrum can 367

be approximated by a single effective energy [101]. This energy is typically considerably 368

lower than the maximum possible energy for the system, for example the effective energy 369

of a 225 kV tungsten target source has been calculated to be between 40 kV and 80 kV, 370

depending on accelerating voltage [101]. Once a suitable energy has been estimated, the 371

mass attenuation coefficient and the density for a given material for that energy can be 372

found from tabulated values [102,103]. Further assuming a collimated X-ray beam and 373

a flat sample (or the centre of a cylinder), the thickness t for a given transmission can be 374

calculated with the Lambert-Beer equation above (Eq. 1). To derive Figure 8, an effective 375

energy of 60 keV has been assumed, along with a transmission of 20%. Additionally, it 376
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has been assumed that the sample is a granular material with a packing density of 60%. 377

Samples made of materials with atomic numbers higher than 40 (zirconium) would have 378

to be thinner than <1 mm to achieve sufficient transmission. As samples under 1 mm 379

become difficult to handle in practice, an alternative way of dealing with particles of high-Z 380

materials is to disperse them in epoxy resin to achieve a reduced packing density. This in 381

turn allows for thicker samples of an equivalent X-ray transmission. 382

3.3. Outlook and future developments 383

As this review has shown, particle analysis with X-ray CT has become an often-used 384

methodology. However, there is scope for the method to become more widely used, as 385

thus far, the majority of publications citing the use of this technique stem from additive 386

manufacturing, with only a few examples from other disciplines, such as geological studies 387

or pharmaceutical development. Particle size, if over a few micrometres, and material 388

composition are not necessarily limiting factors, as long as the samples are adequately 389

prepared. The non-destructive nature of X-ray imaging, along with the potential to prepare 390

samples without the need to embed them in resin, makes the method especially suitable 391

for substances that might react with epoxy, or have a similar composition to epoxy, which 392

would decrease contrast. 393

Although considerable increases in spatial resolution of laboratory X-ray CT instruments 394

seems to be unlikely in the near future, improvements might be possible with regards to 395

the field of view. The development of larger detectors, or of projection image stitching 396

methods, would allow for a larger FoV with a similar voxel size. Especially for spaced-apart 397

particles, a larger FoV would enable scans to simultaneously cover a larger quantity of 398

particles. Currently, a limiting factor with regards to image size, is the size of the resulting 399

data files. However, with increasing computer memory capacity, this limitation is likely 400

to be overcome. Further improvements are also likely with regards to noise and other 401

image artifact reduction, through improved image filters and machine learning routines. 402

This would enable clearer segmentation, especially of closely packed particles, which is 403

currently a limiting factor for loose particle samples. 404

4. Conclusions 405

1. Particle characterisation with X-ray CT has become a widely used method over the 406

last 20 years. 407

2. The advantages of X-ray CT are the ease of sample preparation, and the available 408

measures of the 3D size and morphology of the particles, as well as internal features 409

such as intra-particle porosity. 410

3. Since each X-ray CT scan typically encompasses tens of thousands of particles, it is 411

easy to achieve statistically significant results. 412

4. Modern sub-micrometre X-ray CT systems are able to scan particles as small as 5 µm, 413

or potentially as small as 2 to 3 µm, if the particles are spaced apart. 414

5. Using theoretical approximations, we have shown that X-ray CT is suitable for charac- 415

terising materials with atomic numbers up to Z = 40 when the sample is prepared in 416

form of loose particles in a capillary. 417

6. Materials with an atomic number greater than 40 need special sample preparation 418

methods such as diluting in epoxy to achieve enough X-ray transmission from a 419

typical laboratory source. 420
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