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Abstract: Fluoroquinolones (FQ) are commonly used in dogs with bacterial skin infections. Their use
as first choice, along with the increased incidence of FQ-resistance, represents a risk to animal and
public health. Our study determined minimum inhibitory (MIC) and bactericidal (MBC) concentra-
tions of five FQs in Staphylococcus aureus, Staphylococcus pseudintermedius, and Escherichia coli, together
with FQ-resistance mechanisms. MICs, efflux pump (EP) overexpression and MBCs were measured
in 249 skin infection isolates following CLSI guidelines (CLSI VET01-A4, CLSI M26-A). Chromosomal
and plasmid-mediated resistance genes were investigated after DNA extraction and sequencing.
FQ-resistance was detected in 10% of methicillin-susceptible (MS), 90% of methicillin-resistant (MR)
staphylococci and in 36% of E. coli. Bactericidal effect was observed except in 50% of MRSA/P for
ciprofloxacin and in 20% of MRSPs for enrofloxacin. Highest MICs were associated with double
mutation in gyrA (Ser83Leu + Asp87Asn), efflux pumps and three PMQR genes in E. coli, and grlA
(Ser80Phe + Glu84Lys) in S. aureus. EP overexpression was high among E. coli (96%), low in S. aureus
(1%) and absent in S. pseudintermedius. Pradofloxacin and moxifloxacin showed low MICs with
bactericidal effect. Since in vitro FQ resistance was associated with MR, FQ use should be prudently
guided by susceptibility testing.

Keywords: canine pyoderma; staphylococci; S. pseudintermedius; S. aureus; E. coli; antimicrobial
resistance; methicillin-resistance

1. Introduction

Canine pyoderma, a cutaneous pyogenic bacterial infection [1], represents one of the
most common skin diseases in dogs [2], and is caused, in almost 90% of cases, by Staphy-
lococcus pseudintermedius [3]. Other less-frequently isolated pathogens include Escherichia
coli, Pseudomonas aeruginosa, and Streptococcus spp. [1,4]. S. aureus is rarely found on canine
skin [5], and the majority of isolates are human-related [6]. However, the increased inci-
dence of infections caused by multidrug-resistant (MDR) and methicillin-resistant (MR)
staphylococci (MRSP and MRSA) in dogs is a public health concern [7,8], along with the
increased frequency of infections caused by E. coli [9–11].

Fluoroquinolones (FQ) are efficacious and licensed for the systemic treatment of
bacterial skin infections in dogs [12–16], and their use is advocated in deep pyoderma [17],
or widespread and severe superficial pyoderma when antimicrobial susceptibility testing
(AST) results are compatible.
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FQs have a broad spectrum of activity and are listed as second choice antimicro-
bials [18], or also classified as category B “prudent” by the European Medicine Agency
(EMA), following WHO guidelines on critically important antimicrobials (CIA) in human
medicine [19,20]. Their use should be prudently limited to clinical cases where first-line
antibiotics have been ineffective [13,21,22], to reduce the risk of antimicrobial resistance
both in commensal and pathogenic bacteria [23]. FQ-resistance usually arises in a stepwise
manner, when bacteria are sequentially exposed to the drug, and is mediated by muta-
tions of genes encoding for DNA gyrase (gyrA and gyrB), and topoisomerase IV (parC
and parE in Gram-negative, or grlA and grlB in Gram-positive). As a result, FQ binding
affinity to the topoisomerases is reduced due to alteration of the target protein structure
secondary to amino acid substitution [24,25]. Other resistance mechanisms described
include: (1) decreased permeability of bacterial cell wall due to down-regulation and
under-expression of outer membrane porins, (2) overexpression of efflux pumps [26–32],
(3) resistance conferred by plasmid-mediated quinolone resistance (PMQR) genes, which
includes FQ degradation (aac(6′)-Ib-cr) [33], efflux pumps (qepA) [28,29] or disruption of the
interaction with FQs by binding to topoisomerases (Qnr family) [34]. Efflux pump upreg-
ulation can cause a 4–8-fold increase in MIC. However, major contributions in decreased
susceptibility are caused by multiple mutations (up to 128-fold) and, in Gram-negatives by
PMQR genes [35].

Previous studies have investigated the susceptibility and prevalence of resistance
mechanisms among staphylococci and E. coli of canine origin [6,31,36–46], but limited
information exists on the bactericidal activity of isolates collected from canine pyoderma or
wound infection cases.

Early veterinary FQs can bind both topoisomerases, conferring bactericidal activ-
ity. However, their primary targets are specific for bacterial species: DNA gyrase for
Gram-negative and Topoisomerase IV for Gram-positive bacteria, respectively [47–49]. In
comparison, newer generation pradofloxacin and moxifloxacin may represent an advantage
in reducing the likelihood of resistance development as the drugs target both bacterial
topoisomerases with increased affinity, conferring low minimum inhibitory concentrations
(MIC) and mutant prevention concentrations (MPC) [50,51].

Pradofloxacin, licensed for dogs in Europe in oral formulations [52], has a very similar
molecular structure to moxifloxacin, a drug licensed for human use [53]. Silley et al. [54],
showed that pradofloxacin exhibits bactericidal activity with regards to minimum bacteri-
cidal concentration (MBC), the minimum concentration that kills 99.9% of bacteria. The
MBC values were within two MIC doubling dilutions against 90% of selected isolates from
unspecified animal species and body sites, but to date no veterinary studies have compared
MBC of pradofloxacin with other FQs in isolates specifically from canine skin.

Here we compared MICs and MBCs distributions of selected veterinary and human
fluoroquinolones in S. pseudintermedius, S. aureus, and E. coli isolates from canine pyoderma
or skin wound infections, with a particular focus on the correlation between methicillin
and FQ resistance. It was hypothesized that MICs and MBCs distributions of clinical
isolates differed between FQs, and MR in staphylococci was associated with increased
MICs and MBCs that predicted FQ-resistance. We also evaluated chromosomal mutations,
efflux pump overexpression and the presence of PMQR genes amongst FQ-resistant skin
pathogens, with the objective to correlate the resistance mechanisms with susceptibility.
We hypothesized that the presence of multiple chromosomal mutations, efflux pumps, and
PMQR genes were associated with increased MICs.

2. Results

MICs, MBCs values, MBC/MIC ratios and their respective ranges are shown in Table 1.
MICs graphical distributions are shown in Figure 1. Chromosomal mutations, PMQR genes,
and efflux pump overexpression detection are represented in Table 2. Supplementary
Materials comprise QC growth ranges (Table S1), clinical breakpoints (Table S2), graphical



Antibiotics 2022, 11, 1204 3 of 14

MBCs distributions (Figure S1) and statistical analyses comparing MICs (Table S3) and
MBCs (Table S4).

Table 1. MIC, MBC values and MBC/MIC ratios of five fluoroquinolones among a total of 249 isolates
of three bacterial species (S. aureus, S. pseudintermedius, E. coli) and their subtypes (MS and MR
staphylococci), isolated from canine pyoderma and/or wound infection cases.

Bacterial Type Fluoroquinolone
MIC (µg/mL) MBC (µg/mL) MBC/MIC Ratio *

MIC50 MIC90 Range MBC50 MBC90 Range MBC50/MIC50 MBC90/MIC90 Range

MSSA
(n = 34)

ENR 0.25 2 0.125–16 0.25 2 0.125–16 1 2 1–8

MAR 0.5 1 0.25–32 1 2 0.25–32 1 2 1–4

PRA 0.06 0.125 0.03–2 0.125 0.25 0.03–4 1 2 1–2

CIP 0.5 2 0.25–32 0.5 8 0.25–64 1 2 1–4

MOX 0.125 0.5 0.03–4 0.25 0.5 0.06–4 1 2 1–4

MRSA
(n = 45)

ENR 16 32 0.25–128 32 64 0.5– ≥512 2 4 1–8

MAR 32 64 0.5–128 64 64 0.5–128 1 2 1–2

PRA 4 4 0.125–32 4 8 0.25–32 1 2 1–4

CIP 128 128 0.5–256 256 ≥512 0.5 – ≥512 4 16 1–32

MOX 4 8 0.125–16 8 16 0.125–32 1 2 1–8

MSSP
(n = 53)

ENR 0.125 2 0.125–32 0.25 2 0.125–64 1 2 1–4

MAR 0.25 2 0.25–32 0.5 2 0.25–64 1 2 1–4

PRA 0.06 0.25 0.016–4 0.06 0.25 0.03–4 1 2 1–8

CIP 0.25 1 0.125–16 0.25 2 0.125– ≥512 1 2 1–64

MOX 0.06 0.5 0.03–4 0.06 0.5 0.03–8 1 2 1–2

MRSP
(n = 52)

ENR 32 64 0.06–64 64 ≥512 0.125– ≥512 2 32 1–64

MAR 32 64 0.25–64 64 64 0.5–64 1 2 1–2

PRA 2 4 0.03–8 4 4 0.06–16 1 2 1–2

CIP 32 32 0.125–128 256 512 0.125– ≥512 8 16 1–64

MOX 4 8 0.06–8 0.06 8 0.125–32 2 2 1–8

E. coli
(n = 65)

ENR 0.06 128 0.016–512 0.06 256 0.016–512 1 2 1–4

MAR 0.06 64 0.016–256 0.125 64 0.016–512 1 2 1–8

PRA 0.03 32 0.016–128 0.03 32 0.016–128 1 2 1–4

CIP 0.03 256 0.008– ≥512 0.03 256 0.008– ≥512 1 2 1–8

MOX 0.125 64 0.016–512 0.125 64 0.016–512 1 2 1–4

* Bactericidal effect if MBC/MIC ratio ≤ 4.
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Figure 1. MIC distributions in S. aureus (first row), S. pseudintermedius (second row) and E. coli (third row) of five fluoroquinolones. Blue-dotted lines indicate the 
clinical breakpoint, the highest MIC value considered susceptible, and the epidemiological cut-off (ECOFF), the MIC value that separates wild-type from non-
wild-type bacteria.

Figure 1. MIC distributions in S. aureus (first row), S. pseudintermedius (second row) and E. coli (third row) of five fluoroquinolones. Blue-dotted lines indicate
the clinical breakpoint, the highest MIC value considered susceptible, and the epidemiological cut-off (ECOFF), the MIC value that separates wild-type from
non-wild-type bacteria.
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Table 2. Molecular analysis of 18 selected FQ-resistant isolates. Comparison between chromosomal mutations on DNA gyrase (gyrA) and topoisomerase IV
(grlA/parC), plasmid mediated quinolone resistance (PMQR), ratio between MIC of pradofloxacin and MIC with pradofloxacin + efflux pump inhibitor (MICepi) in
selected resistant isolates. The isolates were chosen based on their pradofloxacin susceptibility.

ISOLATE ID
MIC

Enrofloxacin
(µg/mL)

MIC
Marbofloxacin

(µg/mL)

MIC
Pradofloxacin

(µg/mL)

MIC
Ciprofloxacin

(µg/mL)

MIC
Moxifloxacin

(µg/mL)
gyrA grlA (parC) PMQR MIC/MICepi

MSSA B053 16 32 1 16 4 Ser84Leu Ser80Phe NA 1
MSSA B071 8 16 1 16 4 No mutation No mutation NA 16 *
MSSA B074 8 16 2 32 4 Ser84Leu Ser80Phe NA 1
MRSA A019 16 32 1 128 4 Ser84Leu Ser80Phe NA 1
MRSA A069 64 128 4 256 1 Ser84Leu, Gly90Cys Ser80Phe NA 1
MRSA A132 16 64 32 256 16 Ser84Leu, Gly90Cys Ser80Phe, Glu84Lys NA 1

MSSP 098 4 4 0.5 4 0.5 Glu88Gly Ser80Arg NA 1
MSSP 115 16 16 2 16 2 Ser84Leu Asp84Asn NA 1
MSSP 099 32 32 4 16 4 Ser84Leu Ser80Ile NA 2
MRSP 045 32 32 1 32 4 Ser84Leu Ser80Ile NA 1
MRSP 038 64 32 2 32 2 Ser84Leu Ser80Ile NA 1
MRSP 067 64 64 4 32 4 Ser84Leu Ser80Ile NA 2

E. coli 10L-2253 8 32 4 32 16 Ser83Leu, Asp87Asn Ser80Ile, Ala108Val - 4 *
E. coli 16L-4063 64 32 4 128 16 Ser83Leu, Asp87Asn Ser80Ile, Glu84Val aac-(6’)-lb-cr 2
E. coli 15L-3275 128 64 32 64 64 Ser83Leu, Asp87Asn Ser80Ile QnrB 4 *
E. coli 282305 128 64 32 64 64 Ser83Leu, Asp87Asn Ser80Ile QnrB 8 *

E. coli 13L-4865 256 128 64 256 128 Ser83Leu, Asp87Asn Ser80Ile, Ala108Val QnrS 8 *
E. coli 13L-5283 128 256 64 128 256 Ser83Leu, Asp87Asn Ser80Ile QnrS, aac-(6’)-lb-cr 8 *
E. coli 13L-6009 512 256 128 256 512 Ser83Leu, Asp87Asn Ser80Ile QnrB, QnrS, aac-(6’)-lb-cr 8 *

(*): Efflux pump overexpression (MIC/MICepi ≥ 4). Yellow colour Resistant, Green colour Susceptible, increased exposure (according to EUCAST) NA= not assessed.
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2.1. Minimum Inhibitory Concentration

MICs distributions were bimodal for the three species (Figure 1). In staphylococci, MS
and MR resistant isolates showed different modes within each distribution.

S. aureus: 31 out of 34 MSSA (91.2%) and 2 out of 45 MRSA (4.4%) were FQ-susceptible.
Among the resistant isolates, two MSSA and two MRSA were resistant to all FQs except for
pradofloxacin (MIC 1 µg/mL). Pradofloxacin and moxifloxacin had lower MICs (p < 0.0001)
both for MRSA and MSSA (Table S3), compared with enrofloxacin, marbofloxacin and
ciprofloxacin. No statistical difference (p > 0.05) was observed between marbofloxacin and
ciprofloxacin (p = 0.87) and between pradofloxacin and moxifloxacin (p = 0.34). MICs for
MRSA were higher than for MSSA (p < 0.0001) for all FQs tested.

S. pseudintermedius: 50 out of 53 MSSP (94.3%) and 3 out of 52 MRSP (5.8%) were FQ-
susceptible. Among the resistant isolates, one MSSP was resistant to all FQs except for
pradofloxacin and moxifloxacin (MIC 0.5 µg/mL with both drugs) and two MRSP were
susceptible to pradofloxacin (1 µg/mL).

MICs were lower for each FQ tested in MSSP compared with MRSP (p < 0.0001) and
lower MICs were observed between both pradofloxacin, moxifloxacin (p < 0.0001) and the
other FQs tested.

E. coli: 41 out of 65 isolates (63%) were FQ-susceptible except for moxifloxacin (36
out of 65, 55%). Highly significant differences in MICs and MBCs distribution between
fluoroquinolones (p < 0.0001) were observed, and pradofloxacin showed the lowest MICs
and MBC (p < 0.0001) when compared with the other FQs tested.

2.2. Minimum Bactericidal Concentration

MBCs distributions were bimodal for the three species (Figure S1). In staphylococci,
MS and MR isolates showed different modes within each distribution.

S. aureus: bactericidal effect was observed in all the isolates with an MBC within four
two-fold dilutions of the MIC value, except for enrofloxacin (1 out of 34 MSSA, 2.9% and 1
out of 45 MRSA, 2.2%), ciprofloxacin (22 out of 45 MRSA, 48.8%) and moxifloxacin (1 out of
45 MRSA, 2.2%). Pradofloxacin and moxifloxacin had lower MBC values (Table S4), both
for MSSA and MRSA, in comparison with the other FQs (p < 0.0001) and higher values
were associated with methicillin resistant isolates (p < 0.0001). MBCs for MRSA were higher
than MSSA (p < 0.0001) for all FQs tested.

S. pseudintermedius: pradofloxacin and moxifloxacin had lower MBCs (p < 0.0001)
compared to the other FQs tested. All the isolates showed MBCs within four doubling
dilutions except for enrofloxacin (10 out of 52 MRSP, 19.2%), ciprofloxacin (29 out of
52 MRSP, 55.7%).

E. coli: pradofloxacin showed the lowest MBCs (p < 0.0001) when compared with
the other FQs tested. MBC/MIC ratios were within four doubling dilutions only with
pradofloxacin and moxifloxacin.

2.3. Resistance Mechanism Detection

S. aureus: in five selected resistant isolates (two MSSA and three MRSA), gyrA showed
either single (Ser84Leu, three out of six isolates) or double (Ser84Leu + Gly90Cys, two out
of six isolates) chromosomal mutations. A single mutation (ser80Phe) was observed on
grlA (Table 2) in four out of six isolates with pradofloxacin MIC ≤ 4 µg/mL whereas two
mutations were observed in one out of six isolates with high pradofloxacin MIC (32 µg/mL).
No mutations were detected in one isolate showing efflux pump overexpression, which
represented 1% (1 out of 79) of the resistant isolates.

S. pseudintermedius: in six selected resistant isolates (3 MSSA and 3 MRSA), sin-
gle mutations were found on gyrA (Ser84Leu, five out of six, and Glu88Gly, 1 out of
six) and on grlA (Ser80Ile, Ser80Arg, Asp84Asn; four, one and one out of six, respec-
tively) (Table 2) both in isolates with intermediate susceptibility (MIC < 2 µg/mL) or
low resistance (MIC ≥ 2 µg/mL) to pradofloxacin. None of the isolates showed efflux
pump overexpression.
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E. coli: all FQ-resistant selected isolates showed double mutations on gyrA (Ser83Leu +
Asp87Asn) and single (Ser80Ile) mutation on parC. Double mutations (Ser80Ile + Ala108Val)
on parC were observed in three out of six isolates (Table 2).

MICs in the presence of an efflux pump inhibitor (EPI) Phenylalanine-arginine beta-
naphthylamide (PAβN) were 4- to 32-fold (median 8-fold) lower (p < 0.0001) than pradofloxacin
MICs and 23 out of 24 (96%) of the resistant isolates showed efflux pump overexpression.

Eleven out of twenty-four (46%) resistant E. coli carried PMQR genes: 8 out of 24 (33%)
were aac-(6′)-lb-cr, 3 out of 24 (12.5%) qnrS and 2 out of 24 (8.3%) qnrB, whereas the qnrA
gene was not detected. Two isolates with high MICs were associated double PMQR genes,
the first one with qnrS and aac-(6′)-lb-cr, and the second one with qnrS and qnrB. qepA and
oqxAB genes were not detected.

3. Discussion

Our data indicate that pradofloxacin and moxifloxacin overall show low MICs with
bactericidal effect both in staphylococci and E. coli, compared to earlier generation vet-
erinary and human FQs. The results are compatible with and expand those previously
published on MICs [31,38,40,42,51,55–57], in isolates collected from canine skin infections.
However, this is the first veterinary study that examined a substantial number of MS and
MR staphylococci in canine pyoderma. The percentages of FQ-resistances were high among
MR staphylococci (90%) and E. coli (36–40%), in line with previous studies, where resistance
was also detected among four non-β-lactam classes [40,58–60]. Since the MIC data are
obtained from different countries and periods of time, future analysis is needed to investi-
gate the differences in terms of antibiotic pressure and the related resistance development
between old and new generation FQs.

This is the first report on MBC of veterinary and human FQs in canine skin isolates.
Previous studies showed that the MBC of ciprofloxacin, moxifloxacin, and pradofloxacin
in MS and MR S. aureus [61], and pradofloxacin in S. pseudintermedius [54], was within
four doubling dilutions of the MIC in all isolates. In E. coli, ciprofloxacin [62], and prad-
ofloxacin [54], showed bactericidal effect in almost all isolates. Our study confirmed the
high bactericidal effect in E. coli collected from canine pyoderma and extended to other
veterinary and human FQs. However, in staphylococci no bactericidal effect (MBC/MIC
ratio > four) was observed for ciprofloxacin in 50% of MRSA and MRSP and in 20% of
enrofloxacin in MRSP. A comparison of the MBC90 of ciprofloxacin in MRSA in our study
with results from a similar study by Smith and Eng [63], reflects an alarming increase of
more than 512-fold over a 30-year period.

Mutations on S. pseudintermedius isolates were found in codons gyrA84 and grlA80
in all selected FQ-resistant isolates as previously reported [45,64], except in one isolate
with intermediate/increased susceptibility to pradofloxacin (0.5 µg/mL) with a single
mutation on codon 88 (Glu88GLy). The same mutation was previously identified by
Descloux et al. [45], in one FQ-resistant isolate with an MIC of enrofloxacin at the breakpoint
(4 µg/mL) and one isolate from Japan [65], with intermediate susceptibility to ofloxacin
and resistance to enrofloxacin and levofloxacin. In S. aureus, mutations on gyrA (Ser84Leu)
and grlA (Ser80Phe) were identified both in isolates with intermediate susceptibility and
resistance to pradofloxacin. However, the presence of an additional mutation on gyrA
(Gly90Cys), together with grlA (Glu84Lys) as reported by Hiasa et al. [66], conferred high
resistance to pradofloxacin (32 µg/mL) and moxifloxacin (16 µg/mL). Further screening is
therefore necessary to understand the molecular mechanisms that confer low resistance
profiles in pradofloxacin and moxifloxacin when compared to higher resistant MICs in
early generation FQs.

All E. coli had two mutations on gyrA (Ser83Leu, Asp87Asn) and one mutation on parC
(Ser80Ile). However, additional mutations on parC (Ala108Val, Glu84Val) were screened in
isolates with both moderate and, if associated with plasmid genes, high resistance profiles.

Mutations were found to be within the quinolone resistance determining region
(QRDR), which are in the proximity of the FQ-binding sites of the primary targets (Tyr122
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in E. coli gyrA and Tyr119 in staphylococcal grlA). Mutations are known to reduce the
hydrogen bond with FQs [67], with the addition of loss in negative charge with mutations
in parC [68]. However, in silico tools such as molecular docking of FQs into the native and
mutated protein are necessary to elucidate the primacy of enzyme targeting in veterinary
FQs and their associated reduced resistance emergence.

Resistance conferred by efflux pumps was observed to be highly prevalent in E. coli
(96%), compared to in S. aureus (1%) or absent in S. pseudintermedius. Pradofloxacin was the
only FQ tested against all three bacterial species to detect efflux pump overexpression. Fur-
ther research is therefore needed to investigate the susceptibility of other fluoroquinolones.
It has been suggested that more lipophilic FQs (such as enrofloxacin, and moxifloxacin)
are more readily excreted by efflux pumps in comparison to hydrophilic FQs (such as
ciprofloxacin, pradofloxacin, and marbofloxacin) [38,69–73]. In S. pseudintermedius, the
mechanism was not detected in our study, which is in accordance with previous stud-
ies [31,32]. Although efflux pump overexpression was observed in only 1 out of 79 of
S. aureus isolates, to our knowledge, this is the first report of FQ resistance due to an efflux
pump mechanism in S. aureus from canine pyoderma. Similar results were obtained by
Schmitz et al. [74], with moxifloxacin, where the change in MIC after exposure to reserpine
were negligible (1–2 dilutions), compared to ciprofloxacin (1–4 dilutions). In contrast to
staphylococci, almost all the E. coli isolates showed efflux pump overexpression mechanism,
and we identified a higher percentage compared to previous studies on E. coli collected
from canine otitis or different body sites [37,38].

With regards to PMQR, nearly 50% of FQ-resistant isolates were associated with
at least one PMQR gene. Among the genes screened for, aac-(6′)-lb-cr (33%) and QnrS
(12.5%) were the most prevalent, followed by QnrB (8.3%) as also demonstrated in other
studies [37,38,75], whereas no QnrA was found. The presence of QnrB together with QnrS
was associated with high MICs.

Limitations of the study are represented by the lack of veterinary CBPs for moxifloxacin
and ciprofloxacin, that were extrapolated from human guidelines. The higher percentage of
resistance of moxifloxacin in E. coli may be associated with discrepancies between EUCAST
and CLSI breakpoints guidelines. As other authors have highlighted, this addresses
the need for harmonized guidelines across countries [76]. Moreover, CBPs were not
available for S. pseudintermedius and were extrapolated from S. aureus as adopted by
previous investigators [51].

4. Materials and Methods
4.1. Bacterial Pathogens

A total of 249 isolates from canine skin or wound infections were included in this study.
S. aureus (n = 79, 34 methicillin susceptible [MSSA] and 45 methicillin resistant [MRSA])
and S. pseudintermedius (n = 105, 53 MSSP and 52 MRSP), were collected from Germany
between 2005–2006 and 2010–2011, respectively. E. coli (n = 65) were collected from the
UK (Royal Veterinary College and University of Liverpool) from 2010 and 2017. Species
identification was confirmed by the presence of the genes nucA [77,78], in staphylococci and
uidA [79], and uspA [80], in E. coli. Methicillin resistance in staphylococci was investigated
by the presence of the mecA gene [81].

4.2. Antimicrobial Agents Tested

Enrofloxacin, marbofloxacin, ciprofloxacin, and moxifloxacin were purchased from
Merck (Steinheim, Germany). Pradofloxacin was provided by Bayer Animal Health (Mon-
heim, Germany). Stock solutions (1 mg/mL) were dissolved in deionized water, filter steril-
ized, adjusted for potency according to Clinical and Laboratory Standard Institute guide-
lines (CLSI VET01-A4, 2013) [82], and stored in darkness at −80 ◦C for up to one month.
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4.3. Minimum Inhibitory and Bactericidal Concentrations

MICs were determined by broth microdilution (CLSI VET01-A4) [82]: isolates were
recovered from Brain Heart Infusion (BHI, ThermoFisher, Basingstoke, UK) with 25%
glycerol at −80 ◦C, subcultured onto 5% sheep blood (TCS Bioscience, Botolph Claydon,
UK) agar plates (BA, Merck, Steinheim, Germany) and incubated at 37 ◦C for 18–24 h. After
incubation, 3–5 colonies were suspended into glass tubes containing phosphate buffer saline
(PBS ThermoFisher, Basingstoke, UK). A spectrophotometer (Densichek®, Biomérieux,
Marcy L’Étoile, France) was used to standardize optical density to 0.5 McFarland, equal to
1–2 × 108 colony forming unit/mL (CFU/mL) and the bacterial suspension was diluted
to achieve a final concentration of 5 × 105 CFU/mL in a 96-well MIC plate (Sarstedt®,
Nümbrecht, Germany) containing two-fold dilution series of the antimicrobial agents.
Plates were incubated at 37 ◦C for 18–24 h and after incubation were manually read against
a black paper background; MIC was considered as the lowest concentration where no
visible growth was observed for each isolate. MIC50 and MIC90 (50th and 90th percentiles
of the distribution) were calculated as the lowest concentrations that inhibited the growth
of 50% and 90% of the isolates, respectively. S. aureus ATCC 29213 and E. coli ATCC 25922
were included for quality control purposes. Their respective ranges of MICs are shown
in Table S1. Inoculum density and culture purity were confirmed according to EUCAST
guidelines (2022) [83].

MICs data were compared with clinical breakpoints published by CLSI guidelines
VET01S (2020) [84], for veterinary fluoroquinolones, and CLSI M100 (2022) [85], for human
fluoroquinolones. Isolates with “intermediate” susceptibility were considered susceptible
with increased exposure as reported by EUCAST. Epidemiological cut-offs (ECOFFs) were
also included, if available from datasets, to distinguish between wild- and non-wild-
type isolates. Moxifloxacin clinical breakpoints for E. coli were obtained from EUCAST
guidelines (2022) [86]. For S. pseudintermedius, moxifloxacin and ciprofloxacin CBPs were
adopted from CLSI for S. aureus as previously described in a veterinary study [51]. Clinical
breakpoints are listed in Table S2.

After MIC determination, MBC was measured according to CLSI M26-A “Methods for
Determining Bactericidal Activity of Antimicrobial Agents; Approved Guidelines” [87].

MBC50 and MBC90 (50th and 90th percentiles of the distribution) were calculated as
the lowest concentrations that produced at least a 3log10 reduction (99.9% bacterial killing)
of viable bacterial populations (i.e., <5 × 102 CFU/mL) in antibiotic-treated wells where no
visible growth was observed in 50% and 90% of the isolates, respectively. Moreover, drugs
were considered bactericidal if the MBC/MIC ratio was ≤4.

4.4. Efflux Pump Overexpression

Resistant isolates were tested, according to the same MIC method previously described
(CLSI VET04), with the addition of EPIs: 20 µg/mL of reserpine and 80 µg/mL of PaβN
for E. coli were added to MIC plates containing 2-fold pradofloxacin (used as standard FQ)
dilutions. Overexpression of efflux pump was detected if the ratio between MIC in the
absence and MIC in the presence of EPI (MIC/MICEPI) was ≥4.

4.5. Chromosomal Mutations and PMQR Genes

Eighteen FQ-resistant isolates (6 S. aureus, 6 S. pseudintermedius, and 6 E. coli, Ta-
ble 2) were chosen to represent different resistance profiles based on pradofloxacin MICs
(low/susceptible with increased exposure, medium, and high resistance).

DNA was sequenced for the presence of chromosomal mutations on the first subunit of
the two topoisomerases (DNA gyrase and topoisomerase IV) targeted by fluoroquinolones,
namely gyrA and grlA (parC for E. coli).

DNA was extracted from bacterial cells: 5–6 colonies of an overnight culture on sheep
blood agar were suspended into Eppendorf tubes containing 1 mL of PBS and centrifuged at
5000 g for 10 min to pellet cells. The supernatant was removed, cell pellet was resuspended
in 100 µL of Tris EDTA (TE) buffer and heated at 100 ◦C for 10 min. For staphylococci, the
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heated suspension was incubated on ice for 1 min to degrade the cell wall. The final step
involved centrifugation at 5000 g for 30 s to pellet cell debris and collect supernatant into
sterile Eppendorf tubes.

GyrA and grlA (parC) genes were amplified with polymerase chain reaction (PCR) us-
ing previously published protocols [64,88,89]. PCR products were run with electrophoresis
on 2% agarose gel together with a positive and a negative control. Results were read with a
transilluminator, and results saved on electronic files.

DNA concentration was measured with a fluorometer (Qubit, Invitrogen) and diluted
to a standard concentration of 10 ng/mL. Each primer (both forward and reverse) was
separately diluted to a standard concentration of 1.3 nmol/µL. Samples were analyzed by
Source bioscience (Cambridge) and genetic sequences were aligned and compared with
QC isolates with Bioedit 7.2 version.

Moreover, all FQ-resistant E. coli were screened for carriage and prevalence of plasmid-
mediated quinolone resistance (PMQR) genes: QnrA, QnrB, QnrS [90], aac(6')-lb-cr, qepA,
and oqxAB [91], genes were amplified by PCR according to previously published methods.

4.6. Statistical Analysis

MICs and MBCs data were log2 transformed before statistical analysis and a Shapiro–
Wilk test was used to assess normality of the distributions. MS and MR staphylococci were
considered as two different bacterial types within the same species.

MICs and MBCs distributions were compared between 5 fluoroquinolones within
bacterial type (MS, MR staphylococci and E. coli) using Anderson Darling and Friedman’s
tests. Dunn’s post hoc analysis was carried out for pairwise comparisons.

Wilcoxon signed-rank tests were used to compare the median MICs distributions of
pradofloxacin in presence and absence of EPI. Analyses were performed using Graph-
Pad Prism version 9.0 statistical software package (San Diego, CA, USA) with p < 0.05
for significance.

5. Conclusions

Lowest MICs and MBCs were measured with pradofloxacin and moxifloxacin. The
presence of methicillin resistance can predict FQ-resistance in more than 90% of MR staphy-
lococci and in 36% of E. coli. Bactericidal effect may not be achieved in MR staphylococci
with enrofloxacin and ciprofloxacin.

Since FQ-resistance is multifactorial, further molecular screening of resistance mecha-
nisms and its correlation with antimicrobial susceptibility are necessary.

These findings address the need for prudent use of FQs that should be preventively
guided by antimicrobial susceptibility testing prior to systemic treatment.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antibiotics11091204/s1, Table S1: QC growth ranges, Table S2:
clinical breakpoints, Figure S1: graphical MBCs distributions, Tables S3 and S4: statistical analysis of
MICs and MBCs values.
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