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ABSTRACT 6 

Prediction of the site amplification is of primary importance for a site-specific seismic hazard 7 

assessment. A large suite of both empirical and simulation-based site amplification models has 8 

been proposed. Because they are conditioned on a few simplified site proxies including time-9 

averaged shear wave velocity up to a depth of 30 m (VS30) and site period (TG), they only 10 

provide approximate estimates of the site amplification. In this study, site amplification 11 

prediction models are developed using two machine learning algorithms, which are random 12 

forest (RF) and deep neural network (DNN). A comprehensive database of site response 13 

analysis outputs obtained from simulations performed on shallow bedrock profiles is used. 14 

Instead of simplified site proxies and ground motion intensity measures, matrix data which 15 

include the response spectrum of the input ground motion and shear wave velocity profile. Both 16 

machine learning based models provide exceptional prediction accuracies of both the linear 17 

and nonlinear amplifications compared with the regression-based model, producing accurate 18 

predictions of both binned mean and standard deviation of the site amplification. Among two 19 

machine learning techniques, DNN-based model is revealed to produce better predictions. 20 
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1. INTRODUCTION 23 

The vertically propagating shear waves are generally amplified as they radiate upwards from 24 

the bedrock through soil layers, which have relatively lower stiffness and density. This 25 

phenomenon is referred to as the seismic site amplification. The prediction of site-specific 26 

seismic amplification is critical for estimation of the design ground motion and seismic design 27 

of various types of structures and facilities.  28 

Regression-based site amplification models that are linked to ground motion models (GMMs) 29 

have been developed from both recorded ground motions and numerical simulation outputs. 30 

The models are based on site proxies, which include the time-averaged shear wave velocity of 31 

top 30 m (VS30), depth at which shear wave velocity (VS) reaches 1 km/s or greater (Z1), and 32 

natural site period (TG). They are also conditioned on motion proxies including peak ground 33 

acceleration (PGA) and spectral acceleration (SA) at selected periods. Although widely used 34 

because of their ease of use, the regression-based site amplification models inevitably contain 35 

large levels of uncertainty. 36 

A number of studies proposed to use machine learning (ML) algorithms instead of regression 37 

equations to develop site amplification models [1-7]. Kamatchi et al. [3] developed an artificial 38 

neural network (ANN)-based methodology to predict site-specific acceleration response using 39 

the outputs from one-dimensional (1D) equivalent linear (EQL) site response analyses 40 

performed for a selected site in Delhi, India. The input parameters of the ANN model were the 41 

moment magnitude of the earthquake (Mw), VS profile, depth of the soil stratum, damping ratio, 42 

and vibration period of the single degree-of-freedom (SDOF) oscillator. Derras et al. [4] also 43 

developed an ANN model to predict ground motions using the Reference database for Seismic 44 

ground-motion prediction in Europe (RESORCE). The input data set consists of 1,088 45 

recordings from 320 earthquakes. The five parameters that are considered include Mw, Joyner-46 

Boore distance (RJB), VS30, the fault mechanism, and the hypo-central depth. It was revealed 47 
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that Mw, RJB, and VS30 are the most important parameters. The results are compared to the 48 

outputs from conventional GMMs. The SAs of the ANN model were reported to be closer to 49 

those of the recordings compared with the conventional GMMs. Ilhan et al. [5] developed an 50 

ANN-based site amplification model using the calculated site amplification factors for Central 51 

and Eastern North America. The ANN model was trained using the 1,745,055 simulation results. 52 

Four parameters were selected as the input features: VS30, TG, depth to weathered rock (ZSoil), 53 

and PGA. The ANN models were reported to reduce the root-mean-square (RMS) error by 54 

approximately 30% compared with the regression-based models. Roten and Olsen [6] trained 55 

a convolutional neural network (CNN) and a multilayer perceptron (MLP) to predict surface-56 

to-borehole amplification functions. The models were trained and tested by using a total of 57 

13,120 events from 662 vertical arrays of the Kiban-Kyoshin network (KiK-net). The spectral 58 

frequency, VS, and a compressional wave velocity (VP) profile were used as input features of 59 

the CNN and MLP model. The results showed that the mean squared logarithmic error (MSLE) 60 

of the CNN model is significantly reduced compared with the theoretical amplification and 61 

MLP models. Zhu et al. [7] developed the amplification model using a random forest (RF) 62 

algorithm with topographic and site proxies. The between-site variability is reduced by up to 63 

38% throughout the whole frequency range. Overall, the ML-based models have been reported 64 

to provide more accurate predictions compared with the regression-based models. 65 

Proxy-based models provide quick estimates of the site amplification, but they cannot 66 

accurately predict the nonlinear wave propagation through heterogeneous soil layers. Simple 67 

models are most appropriate as substitutes for regression-based models, many of which are 68 

compatible with GMMs. The local site amplification for a seismic design is most often 69 

characterized using the 1D site response analysis, where earthquake induced elastic wave 70 

transmission is idealized as a 1D propagation problem modeling only the vertically propagating 71 
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horizontal shear waves [8-11]. The required inputs for a site response analysis include a Vs 72 

profile, nonlinear soil curves, and an input acceleration time history. 73 

Whereas a number of proxy-conditioned ML-based models have been developed [1-7], they 74 

do not fully utilize their full capability including the potential to use vector or matrix data for 75 

which the ordering is crucial. Matrix data in a site response analysis include the response 76 

spectrum of the input motion and the Vs profile. Such a model, if successfully trained, can 77 

potentially replace the numerical site response analysis to predict the seismic amplification.  78 

One may question the need for a rigorous ML-based model considering the relatively low 79 

computational cost of performing a 1D site response analysis. However, an effectively trained 80 

ML-based model trained with matrix data has a number of advantages compared with a 81 

numerical model. An important advantage is that such a ML-based model requires only the 82 

input motion response spectrum, instead of the acceleration time history used in a nonlinear 83 

site response analysis. It is particularly useful because the uniform hazard or conditional mean 84 

spectra calculated from a probabilistic seismic hazard analysis can be directly used without 85 

having to develop spectrally matched ground motions.  86 

A rigorous ML-based model potentially has a series of applications. One application is 87 

utilization in a probabilistic assessment, which involve the use of a large number of Vs profiles 88 

and nonlinear curves, along with a series of input motions. Although the computational cost of 89 

performing multiple 1D analyses is trivial, developing a significant number of input files and 90 

extracting the outputs is extremely time consuming. It can also be utilized for regional 91 

assessments including seismic microzonation, which requires a paramount number of analyses. 92 

Because of difficulties in performing analyses for a large area, GMMs and associated site 93 

amplification factors have been utilized [12]. The technique to fully utilize the broadband 94 

response spectrum and Vs profile can be applied to develop empirical site amplification models. 95 

Good examples are the comprehensive downhole array data including KiK-net and Kyoshin 96 
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network (K-NET), for which the Vs profiles and motion time histories are available. Until now, 97 

only proxy-based models have been developed [13]. Additionally, it can be used for extensive 98 

probing to better understand the mechanism of site amplification. 99 

The primary challenge of developing such a model is training with a large volume of input data 100 

from outputs involving a comprehensive range of site structures and broadband input motions. 101 

In this study, ML-based models were developed for site amplification prediction of shallow 102 

bedrock sites composed of non-cohesive soils, representative of inland sites of Korea. The 103 

results of 1D site response analyses performed for shallow bedrock sites in Korea were utilized 104 

to develop and train the ML-based models. Two ML algorithms were used, which are the RF 105 

and deep neural network (DNN). The performance of the RF and DNN models are evaluated 106 

through comparisons with the site amplifications calculated from numerical analyses. It is also 107 

compared with a regression-based site amplification model (hereafter denoted as a regression-108 

based model) that is developed using the identical training dataset. 109 

The focus of this study is to evaluate the potential for an ML-based model to replace the 110 

numerical analysis to predict wave propagation for this specific site condition. It should be 111 

noted that the proposed ML-based models, which were solely developed from numerical 112 

simulation outputs, are not intended to be routinely used for developing site-specific ground 113 

motions. For such a purpose, the numerical model needs to be validated against a 114 

comprehensive set of recordings including downhole arrays for the site condition of interest. It 115 

is also worth noting that the 1D site response analysis model often fails to predict the site 116 

amplification due to various physical processes including basin effects and wave scattering, as 117 

reported in a number of studies [7, 14, 15]. Although 1D site response analysis does not always 118 

provide an accurate prediction of the site amplification, it is worth noting that it is still most 119 

often utilized in design to develop site-specific ground motions. 120 

 121 
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2. TRAINING DATASET 122 

Vertically propagating and horizontally polarized shear waves dominate earthquake ground 123 

motion wave field. Therefore, in most cases 1D site response analysis is performed to assess 124 

the effect of soil conditions on ground shaking. Site response analysis requires the definition 125 

of input ground motions and information on dynamic soil properties such as the VS profile, the 126 

modulus reduction and damping curves. After site response analysis, surface acceleration time 127 

series, surface acceleration response spectra, and spectral amplification factors are provided. 128 

The most common methods to perform this analysis are the frequency domain EQL [16] and 129 

time domain nonlinear analyses [17]. 130 

The training dataset used in this study was taken from Aaqib et al. [18]. In their study, a series 131 

of linear and nonlinear site response analyses was performed in order to derive a regression-132 

based model for shallow bedrock sites in Korea with a depth to bedrock less than 30 m. The 133 

suite of ground motions, the site profiles and the analysis methods used to perform the site 134 

response analyses are summarized in the following. 135 

 136 

2.1 Input ground motions 137 

A total of 51 recorded ground motions were used in the site response analyses. The recorded 138 

rock outcrop ground motions were selected from the NGA-West2 database 139 

(https://ngawest2.berkeley.edu/) and U.S. Nuclear Regulatory Guide (NUREG-6729) [19]. 140 

Selected recordings from the 2016 Gyeongju and 2017 Pohang earthquakes which occurred in 141 

Korea were also used. The Mw and rupture distance (Rrup) ranges from 5 to 7.5 and 0 to 100 km, 142 

respectively. The significant duration of the motion (D5-95) ranges from 1.89 to 42.78 s. The 143 

peak ground acceleration of the recorded rock outcrop ground motions (PGArock) ranges from 144 

0.01 to 0.50 g. The acceleration response spectrum of all ground motions used in the analyses 145 

are shown in  146 
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Figure 1. The information on Mw, Rrup, and D5-95 of the motions are displayed in Figure 2. 147 

 148 

2.2 Site profiles 149 

Forty VS profiles in inland Korea were used as baseline profiles. The VS30 of the baseline 150 

profiles range from 227 to 703 m/s. The TG ranges from 0.08 to 0.48 s. The depth to bedrock 151 

(H) ranges from 7 to 29 m. The baseline VS profiles are shown in Figure 3(a). Due to an 152 

insufficient number of measured profiles, additional randomized site characterizations 153 

generated from the baseline profiles were used. Twenty randomized VS profiles were generated 154 

for each baseline profile using the procedure of Toro [20]. To avoid the reversals and unrealistic 155 

velocity realization in VS profiles, the distribution of VS was perfectly correlated and bounded 156 

within ±2lnVS. Examples of realizations of a baseline profile with VS30 = 398 m/s and H = 25 157 

m are shown in Figure 3(b). Detailed information including the distribution of VS30 for all 158 

velocity profiles can be found in Aaqib et al. [18]. 159 

 160 

2.3 Site response analysis 161 

The site response analyses were performed using 1D site response analysis program 162 

DEEPSOIL v7 [17]. The shear modulus reduction and damping curves proposed by Darendeli 163 

[21], which is widely used in practice to simulate the nonlinear behavior of soils, were used. 164 

The overconsolidation ratio (OCR) was set to 1.0 and the plasticity index (PI) was assumed as 165 

zero. The number of cycles of loading and the excitation frequency were defined as 10 and 1.0 166 

Hz, respectively. The horizontal at-rest earth pressure factor (K0) was calculated using the 167 

empirical equation of Jaky [22]. 168 

Because the shear modulus reduction curve is reported to provide poor estimate of the nonlinear 169 

soil response at strains exceeding 0.5% , shear strength correction has been applied to overcome 170 

this shortcoming [23]. The General Quadratic/Hyperbolic (GQ/H) constitutive model of 171 
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Groholski et al. [24] implemented in DEEPSOIL v7 [17] was used to apply the strength 172 

correction, which was reported to be important even for shallow deposit regions of moderate 173 

to low seismicity [25]. To define the shear strength for the GQ/H constitutive model, the Mohr-174 

Coulomb model was used. The cohesion of the Mohr-Coulomb model was calculated as a 175 

function of VS as recommended in Hashash et al. [17]. It is a common practice to estimate the 176 

friction angle (') from standard penetration test (SPT) blow count (N) measurement. Because 177 

of the unavailability of SPT N measurements, they were estimated from the empirical N versus 178 

VS correlation developed specifically for Korea by Sun et al. [26]. The friction angle for each 179 

layer was then calculated using the empirical N versus ' correlation proposed by Wolff [27]. 180 

The GQ/H model was fitted to the baseline Darendeli [21] curves using the non-Masing fitting 181 

tool described as the modulus reduction and damping curve-fitting procedure (MRDF) [23] 182 

implemented in DEEPSOIL v7 [17]. The procedure has been reported to produce curves that 183 

fit well with any target curve. 184 

The number of analyses performed for linear and nonlinear analyses was 42,840 (85,680 in 185 

total) using 840 VS profiles and 51 motions. In this study, the results are used to train the ML-186 

based models, as presented in the following sections. 187 

 188 

2.4 Reference regression-based site amplification model 189 

Based on the site response analysis, a regression-based site amplification model was developed 190 

by Aaqib et al. [18], which is referred to as the AEA21 model hereafter. The amplification 191 

model consists of two additive components as follows: 192 

𝐴𝑚𝑝 (𝑓) =  𝐹௟௜௡(𝑓) + 𝐹௡௟(𝑓) (1) 

where f is the frequency, Amp (f) represents the total site amplification in natural logarithmic 193 

units, Flin (f) represent linear amplification dependent on VS30 and TG, and Fnl (f) is the nonlinear 194 
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component of site amplification dependent on the intensity of the motion. In the following, the 195 

symbol, f, is omitted in the amplification equations for simplicity.  196 

The linear amplification component, Flin, represents the ratio of the 5% damped surface 197 

acceleration response spectrum calculated from a linear analysis to the input ground motion 198 

spectrum. Aaqib et al. [18] defines Flin using the following functions, which consists of a flat 199 

region at slow VS30 followed by a linear region with negative slope: 200 
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The model has three regions with two transitional velocities VL and Vc. VL represents the lower 201 

end of the flat-region at slow VS30, whereas Vc is the limiting velocity above which there is no 202 

amplification. c1, VL and Vc are period-dependent parameters. c1 is the slope parameter which 203 

represents the VS30 scaling. It was also reported that the prediction of the linear model increases 204 

if the TG is accounted for. The following function developed to capture the TG effect was 205 

proposed: 206 

  2 3
G

lin GT
F c R c T   (3) 

Where c2 and c3 are period-dependent regression coefficients. R is defined as: 207 
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where  is a regression coefficient and β is defined as: 208 
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where T is the spectral period under consideration and ϒ is the coefficient for TG-dependent 209 

model. The c2R is a Ricker wavelet that captures the effect of site resonance of the fundamental 210 

mode whereas c3TG term captures the amplification at soft sites. 211 

The nonlinear component is used with the linear site amplification to decrease amplification 212 

for strong excitations. The nonlinear term is defined as zero for PGArock  0.1 and becomes 213 

negative at higher intensities. The regression equation for the nonlinear component is defined 214 

as follows: 215 

3
1 2

3

ln rock
nl

PGA f
F f f

f

 
   

 
 (6) 

where f1, f2, and f3 are coefficients of the model. It should be noted that Fnl decreases with an 216 

increase in the intensity of the rock motion. The coefficients of the model were shown to be 217 

dependent on VS30. The coefficients of the linear amplification and nonlinear model parameters 218 

are provided in Aaqib et al. [18]. 219 

 220 

3. PROPOSED ML- BASED SITE AMPLIFICATION MODEL 221 

As presented in the previous section, ML algorithms that were used to train the site 222 

amplification models were DNN and RF. The RF-based model was developed using Scikit-223 

learn package [28], whereas Tensorflow [29] was used for the DNN-based model. The basic 224 

principles of an RF as well as a DNN, the differences between ANN and DNN, and the 225 

proposed ML-based models are presented in the following section. 226 

After training, the ML-based model must be evaluated in order to assess its generalization 227 

performance. The ML-based model which overfits will yield favorable results for the training 228 

dataset, but produce poor results for the test dataset. A well-trained model which does not 229 

overfit can reproduce results with acceptable accuracy for unseen input features. For accurate 230 

results, these input features should have the same value ranges as those used for the training. 231 
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This fact can be considered as a shortcoming, but an ML can always be improved and the 232 

predictions can be extended for further data ranges by training the network further with new 233 

additional datasets. 234 

 235 

3.1 Random forest 236 

An ensemble technique is often used to aggregate better predictions by a group of predictors 237 

rather than the best prediction by a predictor. An RF is an ensemble of decision trees that consist 238 

of a root node, child (or split) nodes, and leaf nodes (i.e., these have no child nodes). Each node 239 

has a criterion with respect to one of the input features. From the root node to the leaf node, it 240 

is determined whether it is true or false based on the criteria. 241 

The RF algorithm is widely used because of its simplicity and powerful performance in both 242 

classification and regression. The RF algorithm [30] was developed by combining a bootstrap 243 

aggregating [31] and a random selection of features [32]. Bootstrap aggregating (bagging) is 244 

generally preferred to train the RF model. A regression using the RF is performed by controlling 245 

hyperparameters: the number of estimators, the maximum number of features, bootstrap, etc. 246 

The bootstrap is a random sampling technique that splits training data into various random 247 

subsets. The use of bootstrap produces a higher level of diversity in the subsets and less 248 

correlation between the predictors, eventually leading to a lower variance of the RF model. The 249 

bagging is performed by randomly sampling the train data with replacement. After bootstrap 250 

sampling, the decision trees are trained using corresponding random subsets. The prediction of 251 

an individual subset is also calculated by averaging the outputs in the largest number of samples. 252 

Finally, the prediction is calculated by averaging predictions of whole subsets. 253 

 254 
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3.2 Deep neural networks 255 

The ANN is a computing technique designed to simulate the human brain’s method of problem-256 

solving. The similarity between the ANNs and the human brain is that both acquire the skills 257 

in processing data and finding solutions through training [33]. ANNs consist of simple 258 

computing units referred to as “artificial neurons”, and each unit is connected to other units via 259 

weight connectors. These units calculate the weighted sum of incoming inputs and determine 260 

the output using an activation function [34]. 261 

The process of calibrating the values of weights and biases of the network is called training of 262 

the neural network to perform the desired function correctly [35]. In case of supervised learning, 263 

the data is presented in a form of couples (input, desired output) and then the learning algorithm 264 

will adapt the weights and biases depending on the error between the predicted output and the 265 

real output [35]. This error is calculated using the “loss function” which is defined as follows: 266 

  2

1

1 N

i i
i

L y f x
N 

   (7) 

where N is the number of input-output data sets, f denotes the output estimated by the ANN 267 

model, and ∥·∥ represents a metric that computes the distance between the real and the 268 

estimated value of the output. The optimal ANN for a given training set is obtained by 269 

minimizing the loss function using an optimization algorithm. The DNN is an ANN with a 270 

relatively large number of hidden layers, each providing a different interpretation to the data it 271 

feeds on. Hence, critical features of input data can be identified, and hidden patterns of highly 272 

complex problems can be found, obtaining superior predictions compared to ANNs. DNNs also 273 

tend to perform better with large datasets. 274 

 275 
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3.3 Input features for the machine learning based model 276 

In order to train ML-based models efficiently, parameters that describe the input ground 277 

motions and soil properties must be selected. The natural log of 5% damped spectral 278 

acceleration, ln Sa (T), of bedrock motion in the period range from 0.01 to 10 s (total 113 steps) 279 

was selected as input feature. With respect to the soil properties, the array of the layer thickness 280 

(t) and Vs of the entire soil column was used as input. The maximum number of layers of the 281 

soil profiles was set to 29, resulting in a 58×1 vector for each profile. It should be noted that 282 

because the orderings of the SA and layer data are crucial in vertical propagation of the seismic 283 

waves, this information is retained in the machine learning training. For the RF-based model, 284 

along with the aforementioned two sets of input features, M, Rrup, VS30, average VS of the soil 285 

profile (VS,soil), and TG were also used as inputs. 286 

 287 

3.4 Detailed architecture of the machine learning models 288 

Figure 5 illustrates the architecture of the proposed DNN-based model. For the first group of 289 

input features, which is ln Sa (T) of bedrock ground motion, a 113×1 vector, four fully 290 

connected hidden layers were created. They have 128, 256, 128, 64 hidden units, respectively. 291 

The second group of input features is the site and soil properties, which is a 58×1 vector for 292 

each profile. Five hidden layers are used to process this group of features with 64, 128, 256, 293 

128, 64 units, respectively. After processing each group of features individually, a 294 

concatenation layer was created to merge the processed information. Four hidden layers were 295 

used after the concatenation layer with 1024, 512, 256, 128 hidden units, respectively. The 296 

output layer gives the prediction of ln Sa (T) of the surface, which is 113×1 vector. In all hidden 297 

layers, except for the output layer, the rectified linear unit (ReLU, [36]) activation function was 298 

applied. Batch normalization (BN) is applied after all activation functions, ReLU, to reduce 299 

internal covariate shift and achieve a stable distribution throughout training [37]. The linear 300 
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activation function was applied at the output layer, which gives the prediction of ln Sa (T) of 301 

the surface. 302 

For the RF, the feature extraction should be preceded before the training. The input features for 303 

the RF-based model consist of 176 variables, which are 113 ln Sa (T) of bedrock ground motion, 304 

Mw, Rrup, VS30, VS,soil, TG, and 58 soil profile VS properties. To find the best estimator, 305 

GridSearchCV from Scikit-Learn package [28] was used by varying the number of estimators 306 

(512, 1,024, 2,048, 4,096) and the maximum number of features (64, 128, 176). The best 307 

estimator turned out to be a combination of 2,048 estimators and 176 features. Figure 4 308 

illustrates the schematic of the RF model. The training data are randomly sampled with 309 

replacement and divided into N subsets. The N decision trees are generated and assigned to 310 

each subset. In the first decision tree, for example, the subset data are divided by the value of 311 

VS30 at the root node. The data, greater than x1, are divided again with respect to the value of 312 

Mw. 313 

 314 

3.5 Training data pre-processing 315 

The dataset was processed before being employed as the input and output of the proposed ML-316 

based models in order to achieve improved accuracy in a relatively small training time. To 317 

resolve the skewness, the natural logarithm was applied to the input bedrock motion Sa (T) and 318 

the output surface motion Sa (T). The values of the period, T, are not used in the training because 319 

the Sa (T) is defined at specific period values. 320 

As described previously, the soil and site properties are a 58×1 vector, considering a maximum 321 

of 29 layers in a profile and 2 properties for each layer. However, not all the profiles had this 322 

number of layers. As a result, the SQLite table where the soil and site properties were stored 323 

had a lot of null values. Having these null values during training affects the accuracy and the 324 
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training time of the ML models. In order to resolve this issue, all null values were replaced 325 

with zeros, while the site and soil property values were used unchanged. 326 

 327 

3.6 Training and evaluation 328 

To check whether the trained model overfits, the whole dataset was split into training and test 329 

sets. Eighty percent of the dataset, 34,272 data points were used for training. The remaining 330 

20%, 8,568 data points were used to evaluate the performance of the trained ML models. To 331 

ensure similar data ranges for the training and test data sets, the site profiles were first grouped 332 

into 15 bins based on VS30. The training and test data were selected within each bin. Additionally, 333 

5-fold cross-validation was performed to avoid overfitting. It was shown that the differences 334 

between the results of predictions are marginal. Among, five folds, the dataset which produces 335 

the lowest residuals compared with the computational outputs was utilized. Mean squared error 336 

(MSE) as well as mean absolute error (MAE) were calculated for both training and test sets. 337 

Two ML-based models were trained on a Windows-based operating system with 64 GB GPU 338 

NVIDIA RTX A6000 and 32GB RAM. The computational times needed for training were 339 

approximately 5 hours and an hour for the RF- and DNN-based models, respectively. 340 

The RF-based model was trained with 2,048 estimators and 176 features. With bagging, the 341 

training dataset was sampled several times but the whole dataset was not used for training. 342 

Assuming the data set has n samples, the probability that one data is not sampled is calculated 343 

as follows: 344 

11
lim 1    0.368

n

n
e

n




    
 

 (8) 

It means that 36.8% of the training data are not sampled, which is called out-of-bag (oob). Thus, 345 

the number of samples at the root node is 21,659, which is the remaining 76.2% of the training 346 

set. The RF was evaluated using oob scores without sampling an additional validation set. 347 
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Before starting the training of the DNN, the layer weights were initialized using Glorot uniform 348 

initializer [38] and the biases were set to zero. The Adam optimizer [39, 40] was selected as 349 

the optimization algorithm to reduce the MSE, which was used as the loss function. The 350 

selection of the hyperparameters was determined by varying the batch size, the learning rate, 351 

and the epoch number. The batch size of 512, the learning rate of 0.005, and the epoch of 2,000 352 

showed the lowest MSE, while the training was early stopped before 2,000 epochs. 353 

For both the linear and nonlinear analysis cases, the amplification ratios of the calculated 354 

surface response spectra to those of the input motion were trained. The linear amplification, 355 

Flin, was trained by the ML-based linear model. The total amplification, Amp, was trained by 356 

the ML-based nonlinear model. Using equation (1), the nonlinear amplification, Fnl, was 357 

calculated by subtracting Flin from Amp. 358 

 359 

4. PREDICTION ACCURACY – RESULTS 360 

The results of MAE and MSE of the training and test sets for both ML-based models are 361 

presented in   362 
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Table 1. MSE and MAE for both sets are calculated for the natural logarithm of the output 363 

acceleration response spectrum. It is clearly shown that the trained network does not overfit, as 364 

MSE and MAE of the test set are almost identical with those of the training set.  365 

Figure 6 and Figure 7 plot the calculated and predicted amplifications in log normal unit for 366 

linear and nonlinear components, respectively. The amplifications of the AEA21 model, the 367 

equations of which are listed in Section 2.4, are also compared with the calculated 368 

amplifications. The ln(Flin) is plotted against VS30, whereas ln(Fnl) is plotted against PGArock. 369 

Significant scatter of ln(Flin) plotted against VS30 is observed. The trends also vary greatly with 370 

the spectral periods. The AEA21 model captures the median output favorably, but it fails to 371 

predict the variability of the outputs. The level of scatter of the ML-based models fits well with 372 

that produced by the site response analyses. In case of ln(Fnl), it is shown to decrease with an 373 

increase in the intensity of the ground motion. Again, the AEA21 model provides reasonable 374 

estimates of the median response, except for spectral periods of 2.0 s. A positive nonlinear 375 

component was intentionally constrained for the AEA21 model, and therefore it displays zero 376 

values. The AEA21 model is unsuccessful in capturing high level of dispersion. On the contrary, 377 

the ML-based models agreeably estimate the nonlinear amplification component. 378 

Figure 8 and Figure 9 illustrate the comparison between the calculated and predicted 379 

amplifications by three models with respect to the selected spectral periods. The ML-based 380 

models predicted the calculated amplifications, whereas The AEA21 model deviates from the 381 

calculated amplifications. Although the AEA21 model can capture the median of ln(Flin), most 382 

of ln(Flin) higher than 1.0 were not considered. However, the ML-based models can predict 383 

high levels of ln(Flin) throughout the spectral periods. The nonlinear components of the AEA21 384 

model converge to unity at T=5.0 s. The ML-based models predicted well with the nonlinear 385 

components at this period, which results in overcoming the range of amplifications. 386 
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The calculated MSE values of both linear and nonlinear amplifications are listed in Table 2. 387 

The MSE values of the AEA21 model are significantly higher than those of the ML-based 388 

models. For the linear amplifications at shorter periods, the MSE values of the RF-based model 389 

are slightly higher than those of the DNN-based model. At higher periods, on the contrary, the 390 

ML-based models show similar predictions. For the nonlinear amplifications, the MSE values 391 

of the RF-based model are slightly higher than those of the DNN-based model. 392 

For the detailed comparisons of calculated and predicted amplifications, the residuals of ln(Flin) 393 

and ln(Fnl), both calculated as ln(F) (calculated) – ln(F) (predicted), are shown in Figure 10 394 

and Figure 11, respectively. Also shown are the binned means of the AEA21 and ML-based 395 

models, as well as ± 1 of the residuals. For the residuals of the ln(Flin), Figure 11, both the 396 

AEA21 and DNN-based models produce binned means that are centered around zero residuals. 397 

However, the calculated s show significant differences. The maximum values of  are 0.332 398 

at T = 2.0 s and 0.141 at T = 0.1 s for the residuals of the AEA21 model and the DNN-based 399 

model, respectively. The ML-based model yields greatly lower uncertainty compared with that 400 

of the AEA21 model, displaying a pronounced superiority in the prediction performance. For 401 

the residuals of ln(Fnl), Figure 11, the AEA21 model results in binned means that deviate from 402 

zero residuals, whereas the ML-based models are again successful in yielding values well 403 

centered around them. The residual s for the linear and nonlinear components are presented 404 

in Figure 12 and Figure 13. For the AEA21 model, the residual  for ln(Flin) is larger compared 405 

with that for ln(Fnl). However, the residual s for both the ln(Flin) and ln(Fnl) are extremely low 406 

for the ML-based models. By using the ML-based models, the uncertainty caused by the 407 

prediction model can be reduced. 408 

The extensive comparisons highlight that the performance of the ML-based models is 409 

exceptional. Among the three prediction models, the remarkable performance of the ML-based 410 
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models to predict the site amplification demonstrates that it can be potentially used as an 411 

alternative to the 1D numerical model for the prediction of site amplification for shallow 412 

bedrock sites. Although both ML-based models show agreeable fits with the numerical outputs, 413 

it is also worth noting that the DNN-based model provides marginally more favorable 414 

predictions of the site response, producing lower scatter and standard deviations for both linear 415 

and nonlinear amplifications. Considering up to five times lower computational cost for 416 

training, it is therefore recommended to use DNN for training the seismic site response.  417 

It should be noted that the favorable predictions of the ML-based models were achieved 418 

without using shear modulus reduction and damping curves, as well as shear strength data, as 419 

inputs. It is possible that shallow sites subjected to low to moderate intensity motions produced 420 

low strain levels, thereby limiting the effect of nonlinearity. Additionally, the use of only 421 

cohensionless soil layers representative of inland profiles of Korea may have reduced the 422 

variability produced by the soil type. The effect of soil nonlinearity for various soil types and 423 

a wide range of site profiles should be comprehensively explored in a future study. However, 424 

it is demonstrated that the ML-based models have a capacity to learn the complex nonlinear 425 

soil response observed in vertical propagation of shear waves.  426 

The comparison of the regression and ML-based models may be viewed as unfair because of 427 

the critical differences in the input features. Whereas the regression model only uses scalar 428 

proxies for both the site profile and input motion, the ML-based model utilizes matrix data. It 429 

should be noted that the performances would have been not as much different if identical input 430 

features were used. The primary purpose of this comparison, as presented in the introduction 431 

of this paper, is not to highlight the enhanced performance of the ML algorithms, but to 432 

demonstrate the importance of using matrix data in the training. In a classical regression 433 

procedure, the application of vector or matrix data is not possible. 434 

 435 
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5. SUMMARY AND CONCLUSION 436 

In this study, two ML-based site amplification models were developed using a comprehensive 437 

database of both linear and nonlinear site response analysis outputs obtained from 1D 438 

simulations performed on shallow bedrock profiles. ML algorithms used were RF and DNN, 439 

both widely used in practice for training. In performing the site response analyses, the measured 440 

and randomized VS profiles were used. The shear strength adjustment was applied in 441 

performing the nonlinear analyses. Whereas scalar data which include site and motion proxies 442 

have been used in previous studies, matrix data were used for training, including the response 443 

spectrum of the input ground motion and full VS profile. 444 

For the ML-based models, linear and total amplifications were trained separately. The nonlinear 445 

amplification was calculated by subtracting the linear amplification from the total amplification. 446 

Linear and nonlinear site amplifications are then compared separately with the simulated 447 

outputs. The residuals of the calculated and predicted amplifications are also determined. The 448 

performances of the ML-based models are also compared with a regression-based site 449 

amplification model which is conditioned on the TG and VS30, as well as the ground motion 450 

intensity. 451 

It is demonstrated that both the linear and nonlinear amplifications predicted with the ML-452 

based models produce exceptional fits with the numerically calculated results and significantly 453 

outperform the regression-based model. The regression-based model is successful in providing 454 

acceptable binned mean results. However, it cannot capture the pronounced variations in the 455 

surface responses.  456 

The DNN-based model produces lower MSEs than those predicted by the RF-based model 457 

across despite using fewer input features. Although the RF-based model is an explainable 458 

model which can provide information on the relative importance of input features, the model 459 

should be trained repeatedly with new input features. However, the DNN-based model can 460 
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perform the feature extraction and the training simultaneously via its network. Moreover, the 461 

computational cost is significantly lower compared with that of the RF-based model. The 462 

comparisons highlight that the ML-based models have the potential to replace the numerical 463 

model for use in the prediction of the site amplification for shallow bedrock sites if trained with 464 

sufficient data that covers a wide range of profiles and motions. 465 

The comparison of the ML-based models with the regression-based model was not intended to 466 

demonstrate the higher performance of the former algorithm to yield predictions given an 467 

identical set of input features. Rather, it is designed to show the importance of the ability to 468 

utilize vector or matrix data in the training. By using the period-dependent SA and depth-469 

dependent VS array in training, prediction accuracy is dramatically improved. 470 

It should also be highlighted that they were solely developed from numerical simulation outputs, 471 

without validation against earthquake recordings. Therefore, the models should be constrained 472 

to measurements including downhole arrays for possible application in practice. It should also 473 

be noted that the predictions were made for relatively simple site structures, which are shallow 474 

bedrock sites with no stress reversals composed of non-cohesive soils. The predictions are 475 

shown to be favorable for this However, extensive training should be succeeded to develop a 476 

ML-based site response model for a broad range of site profiles. 477 
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Table 1 Comparison of the MSE and the MAE for the deterministic DNN between the train 
and the test dataset. 

 
Analysis Dataset MSE MAE 

Linear 
Training 0.000404 0.014312 

Test 0.000568 0.016076 

Nonlinear 
Training 0.000644 0.017714 

Test 0.001210 0.022163 
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Table 2. MSE of three models for linear and nonlinear amplifications 

Linear Nonlinear 

T (s) AEA21 RF DNN VS30 T (s) AEA21 RF DNN 

0.01 0.0667 0.0026 0.0007 

200~250 

0.01 0.0955 0.0058 0.0016 

0.1 0.0535 0.0020 0.0007 0.2 0.1006 0.0059 0.0022 

0.2 0.0395 0.0014 0.0005 0.5 0.1527 0.0045 0.0021 

0.5 0.0147 0.0005 0.0004 

300~350 

0.01 0.1024 0.0058 0.0018 

1.0 0.0160 0.0002 0.0003 0.2 0.1058 0.0045 0.0018 

2.0 0.0160 0.0001 0.0002 0.5 0.0876 0.0021 0.0012 
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Figure 1. Acceleration response spectra of all ground motions used in the present study. 
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Figure 2. Distribution of moment magnitude (Mw) of input ground motions with respect to (a) 

rupture distance (Rrup) and (b) significant duration (D5-95). 
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Figure 3. Shear wave velocity profiles: (a) selected 51 baseline profiles, (b) randomized 

realizations for one selected baseline profile with VS30 = 398 m/s. 
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Figure 4. Schematic of the RF algorithm with N decision trees. The decision trees are shown 
up to depth of 2 with input features. The subset data are sampled N times with replacement. 
The prediction is calculated by aggregating and averaging ln Sa,Surface from all decision trees. 
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Figure 5. Architecture of the proposed DNN model. BN in the figure represents batch normalization. 
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Figure 6. Comparison of the linear amplification components predicted from the AEA21, RF-
based and DNN-based models against VS30 for selected spectral periods: (a) 0.01 s, (b) 0.1 s, 

(c) 0.2 s, (d) 0.5 s, (e) 1.0 s, and (f) 2.0 s. 
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Figure 7. Comparison of the nonlinear amplification components predicted from AEA21, RF-
based, and DNN-based models against PGArock at 0.01 s for (a) 200 < VS30 < 250 m/s and (b) 
300 < VS30 < 350 m/s, at 0.2 s for (c) 200 < VS30 < 250 m/s and (d) 300 < VS30 < 350 m/s and 

at 0.5 s for (e) 200 < VS30 < 250 m/s and (f) 300 < VS30 < 350 m/s. 
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Figure 8. Comparison of the linear amplification components between calculated 
amplification and predicted amplifications by AEA21, RF-based and DNN-based models for 

selected spectral periods: (a) 0.01 s, (b) 0.1 s, (c) 0.2 s, (d) 0.5 s, (e) 1.0 s, and (f) 2.0 s. 
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Figure 9. Comparison of the nonlinear amplification components between calculated 
amplification and predicted amplification by AEA21, RF-based, and DNN-based models at 
0.01 s for (a) 200 < VS30 < 250 m/s and (b) 300 < VS30 < 350 m/s, at 0.2 s for (c) 200 < 
VS30 < 250 m/s and (d) 300 < VS30 < 350 m/s and at 0.5 s for (e) 200 < VS30 < 250 m/s 

and (f) 300 < VS30 < 350 m/s. 
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Figure 10. Comparison of the residuals of linear amplification component predicted from  
AEA21, RF-based and DNN-based models against Vs30 for selected spectral periods: (a) 0.01 

s, (b) 0.1 s, (c) 0.2 s, (d) 0.5 s, (e) 1.0 s, and (f) 2.0s. 
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Figure 11. Comparison of the residuals of nonlinear amplification component predicted from 
AEA21, RF-based and DNN-based models against PGArock at 0.01 s for (a) 200 < VS30 < 
250 m/s and (b) 300 < VS30 < 350 m/s, at 0.2 s for (c) 200 < VS30 < 250 m/s and (d) 300 < 
VS30 < 350 m/s and at 0.5 s for (e) 200 < VS30 < 250 m/s and (f) 300 < VS30 < 350 m/s. 
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Figure 12. Comparison of standard deviation (SD) of the residuals of linear amplification 
component predicted from AEA21, RF-based and DNN-based models against Vs30 for 
selected spectral periods: (a) 0.01 s, (b) 0.1 s, (c) 0.2 s, (d) 0.5 s, (e) 1.0 s, and (f) 2.0s. 
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Figure 13. Comparison of standard deviation (SD) the residuals of nonlinear amplification 
component predicted from AEA21, RF-based and DNN-based models against PGArock at 
0.01 s for (a) 200 < VS30 < 250 m/s and (b) 300 < VS30 < 350 m/s, at 0.2 s for (c) 200 < 
VS30 < 250 m/s and (d) 300 < VS30 < 350 m/s and at 0.5 s for (e) 200 < VS30 < 250 m/s 

and (f) 300 < VS30 < 350 m/s. 

 


