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Abstract. The interest in dynamic processes on networks is steadily ris-
ing in recent years. In this paper, we consider the (α, β)-Threshold Net-
work Dynamics ((α, β)-Dynamics), where α ≤ β, in which only structural
dynamics (edge dynamics of the network) are allowed, guided by local
threshold rules executed by each node. In particular, in each discrete
round t, each active pair of nodes u and v, computes a value E(u, v) (the
potential of the pair) as a function of the local structure of the network
at round t around the two nodes. If E(u, v) < α then the link (if it exists)
between u and v is removed; if α ≤ E(u, v) < β then an existing link
among u and v is maintained; if β ≤ E(u, v) then a link between u and
v is established if not already present. New nodes cannot be inserted as
a result of the protocol, and existing nodes cannot be removed.

The microscopic structure of (α, β)-Dynamics appears to be simple, so
that we are able to rigorously argue about it, but still flexible, so that
we are able to design meaningful microscopic local rules that give rise
to interesting macroscopic behaviors. Our goals are the following: a) to
investigate the properties of the (α, β)-Threshold Network Dynamics and
b) to show that (α, β)-Dynamics is expressive enough to solve complex
problems on networks.

Our contribution in these directions is twofold. We rigorously exhibit the
claim about the expressiveness of (α, β)-Dynamics, both by designing a
simple protocol that provably computes the k-core of the network as
well as by showing that (α, β)-Dynamics are in fact Turing-Complete.
Second and most important, we construct general tools for proving sta-
bilization that work for a subclass of (α, β)-Dynamics and prove speed
of convergence in a restricted setting.
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1 Introduction

The interplay between the microscopic and the macroscopic in terms of emer-
gent behavior shows an increasing interest. The most striking examples come
from biological systems that seem to form macroscopic structures out of local
interactions between simpler structures (e.g., computation of shortest paths by
Physarum Polycephalum [26] or of maximal independent sets by the fly’s ner-
vous systems [1]). The underlying common characteristic of these systems is the
emergent behavior at the macroscopic level out of simple local interactions at
the microscopic level. This is one of the reasons why we are interested on how
very simple distributed protocols can give rise to complex emergent behavior
due to their synergistic/antagonistic interactions [9]. In some of these systems,
the dynamic processes are purely structural with respect to the network. Exam-
ples of such systems are network generation models [7,32], community detection
[35], ”life-like” cellular automata [30], robot motion [28] and go all the way up
to being a fundamental physics theory for space [33,34]. In view of this recent
trend, a stream of work is devoted to the study of such dynamics per se, with-
out a particular application in mind (e.g., [16]). Motivated by such a plethora
of examples, we study the stabilization properties of protocols that affect solely
the structure of networks.

Henceforth, we will use the term dynamic network to represent networks that
change due to some process, although in the literature one can find other terms
like adaptive networks, time-varying networks, evolving networks and tempo-
ral networks that essentially refer to the same general idea of time-dependent
networks w.r.t. structure and states. The study of the processes that drive dy-
namic networks and their resulting properties has been the focus of many differ-
ent fields but in general one can discern between two distinct viewpoints with-
out excluding overlap: a) complex systems viewpoint (physics, sociology,
ecology, etc.): the main focus is on modeling (e.g., differential/difference equa-
tions, cellular automata, etc. - see [29]) and qualitative analysis (by means of
mean field approximations, bifurcation analysis etc.). The main questions here
are of qualitative nature and include phase transitions, complexity of system
behavior, etc. Rigorous analysis is not usual and simulation is the main tool for
providing results. b) computational viewpoint (mainly computer science
and communications): the main focus is on the computational capabilities
(computability/complexity) of dynamic networks in various settings and with
different assumptions adopting a rigorous approach or simulation.

When designing local rules aiming at some particular global/emergent behav-
ior, it is usually difficult, or at the very least cumbersome, to prove correctness
[9]. This is why most studies in complex systems of this sort are based on exper-
imental evidence for their correctness. Indeed, having a general framework for
modeling algorithmic emergence and proving related properties, would impact
directly the distributed computing field as well as provide another tool for anal-
ysis of natural systems that exhibit emergence. To accomplish such a feat, one
should start from analyzing simple systems that give rise to interesting macro-
scopic behaviors. In this paper, we study a dynamic network driven by a simple
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protocol that depends only on the network’s structure. This protocol is executed
by each node in a synchronous manner. The protocol is the same for all nodes
and can only affect the structure of the network and not the state of edges or
nodes. The locality of the protocol is defined with respect to the available in-
teractions for each node. We define the (α, β) edge dynamics (we call the model
(α, β)-Dynamics henceforth) and discuss related work in Section 2. In Section 3,
we discuss a particular protocol that computes the α-core and the (α− 1)-crust
[8] of an arbitrary provided network. In Section 4, we provide guarantees on the
speed of stabilization for a subclass of (α, β)-Dynamics while in Section 5 we
provide a proof of stabilization for a more general class of such protocols. In this
way, we provide general results for (α, β)-Dynamics that may be directly applied
elsewhere, e.g., in the case of restricted Network Automata [30]. In Section 6, we
prove that (α, β)-Dynamics is Turing-Complete. Finally, in Section 7, we discuss
some extensions of the proposed model and we conclude in Section 8.

2 Preliminaries

Assume that an undirected simple network G(0) = (V,E(0)) evolves over discrete
time steps based on a set of rules that we specify later. We represent the network
at time t by G(t) = (V,E(t)). We denote the distance between two nodes u, v in
G(t) as d(t)(u, v). Let n = |V |, m(t) = |E(t)| and let NG(t)(u) be the set of all
neighbors of node u and dG(t)(u) be the degree of node u in network G(t). We
define

∣∣E(t)(u, v)
∣∣ to be the number of edges between u and v at time t (either

0 or 1), and more generally
∣∣E(t)(U)

∣∣ to be the number of edges between nodes

in the set U ⊆ V at time t. It follows that
∣∣E(t)(NG(t)(u) ∩NG(t)(v))

∣∣ is the

number of edges between common neighbors of u and v at time t. Let G(t)[S]
represent the induced subgraph of the node set S ⊆ V in G(t).

Finally, we define a particular type of potential functions, that we call proper
functions. Informally, these functions can be used to describe “rich get richer”
behavior. We provide several results related to proper functions in Sections 4
and 5.

Definition 1. We say that a function f : N2 → R is proper if it has the following
two properties: i) Non-decreasing, that is f(x, y+ϵ) ≥ f(x, y) for ϵ > 0 (similarly
f(x+ ϵ, y) ≥ f(x, y)) and ii) Symmetric, f(x, y) = f(y, x).

The second property is related to the fact that we consider undirected net-
works.

2.1 (α, β)-Dynamics - Threshold Network Dynamics

From a bird’s eye view, (α, β)-Dynamics is a discrete-time dynamic network of
agents. The dynamics are applied only on the edges, while there is no insertion
or removal of agents. The agents update their neighborhood synchronously by
executing the same protocol. At the beginning of each time step, a (possibly
adversarial) scheduler chooses a set of so-called “active pairs” that interact in this
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step; the active pairs may change in each step. The protocol applies a threshold
over the value of a function defined on the active pair of nodes u and v. The
function depends only on the c-neighborhood of the active pair of nodes. The
value of the function on u and v determines whether the undirected edge uv will
be inserted (if not present), deleted (if present) or remain unchanged.

More precisely, the (α, β)-Dynamics is a discrete-time dynamic stateless net-
work of agents G(t) = (V,E(t)). It is stateless because the dynamics driven by
the protocol depend only on the structure of the network and not on state infor-
mation stored in each node/edge. The dynamics involve the edges of the network
while the set of agents is static. All interactions are pairwise and for each inter-
action between nodes u and v, these execute the same protocol that affects the
edge between them. The protocol is consistent, in the sense that it comes to the
same decision about the existence of the edge between u and v, both when exe-
cuted by u and by v. The execution evolves in synchronous discrete time rounds.
In the following, the edge e(t) is also used as a boolean variable. In particular,
when e(t) = 0 then e(t) /∈ E(t), while e(t) = 1 means that e(t) ∈ E(t). Let α and β
be parameters that correspond to a lower and an upper threshold, respectively.
Initially, the network G(0) is given as well as the constant thresholds α and β.
Formally, (α, β)-Dynamics is a triple (G(0),S,A(α, β)) defined as follows:

– G(0) = (V,E(0)) : A network of nodes V and edges E(0) between nodes at
time 0. This is the initial configuration of the dynamic process. Each node
v ∈ V has a distinct id and maintains a routing table with all its edges.

– S : A set that contains the pairwise interactions between nodes. We represent
it by a possibly infinite series of sets of pairwise interactions C(t). Each
set C(t) contains the pairwise interactions between nodes activated at time
step t in the network G(t). If the pair uv ∈ C(t), then we call the pair uv
active at time instance t. An interaction between nodes u and v, assumes
direct communication between u and v irrespectively of whether u and v
are connected by an edge in G(t). In the following, we refer to C(t) as the
interaction set for time step t.

– A(α, β, E) : The protocol executed in each round by each active pair of nodes
as defined by the interaction set C(t). The (α, β)-Dynamics is defined for the
following family of protocols:

Protocol A(α, β, E) at node u for an active pairwise interaction uv ∈
C(t):

Compute the potential E(u, v).
1. If E(u, v) < α then edge uv(t+1) = 0.

2. If α ≤ E(u, v) < β then edge uv(t+1) = uv(t).

3. If E(u, v) ≥ β then edge uv(t+1) = 1.

The potential of a pair of nodes u and v at round t is a function related to

this pair and is represented by E(t)

G(t)(u, v) : G
(t)[Suv] → R, for some Suv ⊆ V .

The domain of the potential is the induced subgraph G(t)[Suv] defined by
the set of nodes Suv.
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Discussion on the potential function: In this paper Suv contains the nodes
of the local neighborhood of nodes u and v. In particular, we consider Suv to
consist of all nodes that are within a constant distance from u or from v (the
constant is 1 throughout the paper, except for Section 6 where it is 3). The local
structure is defined explicitly by the potential function. We write E(t)(u, v) or
E(u, v) when the network and the time we are referring to are clear from the
context. An example of such a function defined in [35] that is used to detect
communities in networks is the following:

E(t)(u, v) = |NG(t)(u) ∩NG(t)(v)|+ |E(t)(u, v)|+ |E(NG(t)(u) ∩NG(t)(v))|

The potential is equal to the number of common neighbors between u and v,
plus the number of edges between u and v (0 or 1), plus the number of edges
between the common neighbors of u and v. Finally, the fact that the protocol is
consistent imposes the restriction on the potential function to be computationally
symmetric for an arbitrary active pair uv, meaning that E(u, v) is the same when
computed in u and in v.

The computational capabilities of each node are similar to a Turing machine
with bounded memory (Linear Bounded Automaton - LBA). Each node has
enough memory to store its routing table as well as the topological informa-
tion necessary for computing the potential. To avoid complex computations we
impose that the potential function should be computable in polynomial time
with respect to its input size. The complexity of the protocol depends solely
on the definition of the potential function, since the rest of the protocol are
simple threshold comparisons. Similarly to consensus dynamics [9], we require
our protocol to be simple and lightweight [10] and to realize natural, local and
elementary rules subject to the constraint that structural dynamics are con-
sidered. To this end, we require the potential function to respect the following
constraints:

1. The potential function has access to a small constant distance c away from
the two interacting nodes.

2. The potential function must not distinguish between nodes - thus not allow-
ing for special nodes (e.g., leaders) [10] 4.

3. The potential function must be network-agnostic, in the sense that it is
designed without having any access to the topology of G(0).

These restrictions combined with the computational capabilities of nodes do
not allow the protocol to use shortcuts for computation in terms of hardwired
information in the potential function (node ids) or in terms of replacing large
subgraphs by other subgraphs.

Execution of the protocol: In each round, the protocol is executed on nodes
of active pairs determined by the current interaction set. A pairwise interaction
between nodes u and v requires the computation of the potential between the

4 Therefore, we only use identifiers of nodes for analysis purposes
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two nodes and then a decision is made as for the edge between them based on the
thresholds α and β. Each round of the computation for node u (symmetrically
for v) is divided into the following phases:

1. u sends messages to its local neighborhood (with the exception of v, if edge
uv exists) requesting information related to the computation of the potential
function

2. u receives the requested information
3. u sends its information to v
4. u receives v’s information
5. u computes the potential
6. u decides as for the edge uv w.r.t. thresholds.

There is no restriction on the size of the messages sent and received by each
node. Direct communication is assumed (in phases (3) and (4)) between u and
v irrespectively of the existence of edge uv. The consistency of the protocol
guarantees that the result of its execution is the same for both nodes.

Some Notes on the Interaction Sets: The interaction set C(t) at time t
supports parallelism since it is a set of pairwise interactions with size at most(
n
2

)
. Thus, there may be many active pairs in each step. For example, consider

the case where all
(
n
2

)
possible pairs are active. This means that simultaneously

the potential is computed for all possible pairwise interactions and the edges are
updated analogously. In [35], a serialization of this setting is used to detect com-
munities in networks. In general, we may assume anything about the generation
of the interaction sets (adversarial, stochastic, etc.). Arguing about an arbitrary
set of active pairs for each time instance t is the most general case, since A can
make no assumption at all about the active pairs within each step.

On a more technical note, the notion of the interaction sets has two different
but not necessarily mutually exclusive uses. On the one hand, the interaction
sets model restrictions set by the environment on the interactions. For example,
in a social network the interaction pairs may be the established friendship links
but interactions can also be imposed from other activities external to the social
network, such as a random meeting in a cafeteria; interaction sets can thus
differ from the edges of the network. On the other hand, interaction sets are
used as a tool for analysis reasons, to describe the communication links that the
protocol A enforces on G(t) (e.g., when a node only communicates with nodes
at distance at most 2). In this paper, we present some general results w.r.t. the
choice of the interaction sets. For example, C(t) may be adversarial for all t,
and, under a weak fairness condition, our algorithms are still able to stabilize
(see the following discussion on convergence/stabilization for a formal definition
of the weak fairness condition and stabilization, as well as Sections 3 and 5 for
the aforementioned results).

Convergence/Stabilization: (α, β)-Dynamics is stateless, in the sense that
the dynamics driven by the algorithm A consider only the structure of the net-
work. No states that are stored at nodes or edges are considered in the dynamic
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evolution expressed by (α, β)-Dynamics. As a result, the network G(t) completely
defines the configuration of the system at time t. We say that G(t) yields G(t+1),
when a transition takes place from G(t) to G(t+1) after time step t, represented

as G(t) C(t)

−−−→ G(t+1), which is the result of the A protocol for all active pairs
in the interaction set C(t). Similarly, we write G(t) ⇝ G(t′), for t′ > t, if there

exists a sequence of transitions G(t) C(t)

−−−→ G(t+1) C(t+1)

−−−−→ · · · C(t′−1)

−−−−−→ G(t′). An
execution of (α, β)-Dynamics is a finite or infinite sequence of configurations
G(0), G(1), G(2), . . . such that for each t, G(t) yields G(t+1), where G(0) is the
initial network.

We say that the algorithm converges or stabilizes when ∃t such that ∀t′ > t it
holds that G(t) = G(t′), meaning that the network does not change after time t.
The output of the (α, β)-Dynamics is the network that results after stabilization
has been reached. The time complexity of the protocol is the number of steps
until stabilization. The time complexity of the protocol heavily depends on C(t).
If, for example, there exists a T where for all t ≥ T it holds that C(t) is always
the null set, then the algorithm stabilizes although it would not stabilize for a
different choice of C(t). To avoid stalling, we employ the weak fairness condition
[2,3] that essentially states that all pairs of nodes interact infinitely often, thus
imposing that at some point of time an interaction set will trigger a change in
the network, if one is possible.

2.2 Related Work
The main work on dynamic networks stems either from computer science or from
complex systems and is inherently interdisciplinary in nature. In the following,
we only highlight results that are directly related to ours (a more extensive dis-
cussion can be found in [23]). In computer science, a nice review of the dynamic
network domain [25] proposes a partitioning of the current literature into three
subareas: Population Protocols ([3], [4]), Powerful Dynamic Distributed Sys-
tems (e.g., [27]) and models for Temporal Graphs (e.g., [12]). (α, β)-Dynamics
can be compared to Population Protocols, where anonymous agents with only
a constant amount of memory available interact with each other and are able
to compute functions, like leader election. Their scheduler determines the set of
active pairs of nodes at each time step. The choice is made by a scheduler ei-
ther arbitrarily (adversarial scheduler) or uniformly at random (uniform random
scheduler). The uniform scheduler is used for designing various protocols due to
the probabilistic accommodations for analysis it provides. The major differences
to our approach are with respect to dynamics and the scheduler. Population
protocols study state dynamics while in our case we study stateless structural
dynamics. In addition, in our approach, the scheduler consists of a set of pairwise
interactions, thus allowing for many computations between pairs of nodes during
a time step (parallel time). This parallelism of the scheduler may ”artificially”
reduce the number of rounds but it can also complicate the protocol leading to
interesting research questions. Similarly to population protocols, the notion of
consensus dynamics [10,9] that refers to distributed processes that resemble in-
teracting particle systems considers simple and lightweight protocols on states of
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agents. (α, β)-Dynamics could be cast in such a framework as purely structural
dynamics that on the one hand supports simple, uniform and lightweight proto-
cols while on the other hand requires necessarily the communication of structural
information between nodes. In the same manner, motivated by population pro-
tocols, the Network Constructors model also studies state dynamics that affect
the structure of the network resulting in structural dynamics as well, and thus
it is much closer to (α, β)-Dynamics. In [23,24] the authors study what stable
networks can be constructed (like paths, stars, and more complex networks) by
a population of finite-automata. Among other complexity related results they
also argue that the Network Constructors model is Turing-Complete. Our main
differences to the network constructors model are the following:

1. Our motivation comes from the complex systems domain as well, and thus
we are more interested in as general as possible convergence/stabilization
theorems apart from particular network constructions (like the α-core in our
case).

2. They use states for the structural dynamics while in our case the dynamics
are stateless. This means that Network Constructors use states that change
according to the protocol, which in turn drive the structural changes of the
network (coupled dynamics). In our case, we use only the knowledge of the
structure of the network to make structural changes.

3. They always start from a null network while we start from an arbitrary one.

A similar notion is graph relabeling systems [21], where one chooses a subgraph
and changes it based on certain rules. These systems are usually applied on
static graphs but they have also been applied to dynamic graphs [11]. The focus
in this case is to impose properties on the dynamic graphs so that a particular
computation is possible, assuming adversarial dynamic graphs. (α, β)-Dynamics
is also related to - in fact can easily simulate - graph generating models. The
Barabási–Albert model [7] can be simulated by simply setting A to add an edge
between two nodes in G(t) for each interacting pair in C(t). These interact-
ing pairs in C(t) are specified based on the stochastic preferential-attachment
mechanism. Similarly, the Watts-Strogatz model [32] can be simulated by start-
ing with a regular ring lattice and then in each step set the appropriate edges
stochastically in C(t) to rewire them. Finally, (α, β)-Dynamics is also related to
topological self-stabilization [14], which aims at allowing the nodes themselves to
establish a desired overlay network, independently of the initial configuration by
forwarding, inserting and deleting links to adjacent nodes. Although our model
could also be used for topological self-stabilization it would do so under a more
restrictive setting since the protocol has a very particular form.

In the study of complex systems, one of the tools used for modeling is cellular
automata. Cellular automata use simple update rules that give rise to interesting
patterns [6], [17]. Structurally Dynamic Cellular Automata (SDCA) that couples
the topology with the local site 0/1 value configuration were introduced in [19].
They formalize this notion and move to an experimental qualitative analysis of
its behavior for various parameters. They left as an extension (among others) of
SDCA purely structural CA models in which there are no value configurations
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as it holds in the (α, β)-Dynamics studied in this paper. A model for coupling
topology with functional dynamics was given in [30], termed Functional Network
Automata (FNA), and was used as a model for a biological process. They also de-
fined the restricted Network Automata (rNA), which as (α, β)-Dynamics allows
only for stateless structural network dynamics. rNA forces every possible pair
of interactions to take place, meaning that for all t it holds that C(t) contains
all

(
n
2

)
possible edges of the n nodes. All their results are qualitative and are

based on experimentation. By using the machinery built in Section 5, we show
that for the family of protocols we consider, rNA always stabilizes. To further
stimulate the reader as for the need of looking at (α, β)-Dynamics, the author in
[28] looked at modular robots as an evolving network with respect only to their
topology. The author designed a protocol common to all modules of the robot,
that turns a tree topology to a chain topology conjecturing that stabilization is
always achieved, but to the best of our knowledge it is still unresolved.

3 Taking the Minimum

As a motivation and exhibition of (α, β)-Dynamics, we first discuss the follow-
ing interesting example. We define the potential of a pair of nodes u and v as
E(u, v) = min{dG(t)(u), dG(t)(v)}, that is the potential is equal to the minimum
degree of the two nodes.

This potential function respects all constraints described in 2.1. As required,
computing the function can be done in linear time. Additionally, the potential
function only depends on nodes at a constant distance (at most 1) from either
u or v. It is also computationally symmetric and thus the protocol is consistent.

It is interesting to notice the similarity of our process, and the process of ac-
quiring the k−core (or complementary the (k−1)−crust) of a simple undirected
graph [8,31].

Definition 2. The k-core H of a graph G is the unique maximal subgraph of
G such that ∀u ∈ H it holds that degH(u) ≥ k. All nodes not in H form the
(k − 1)-crust of G.

The k-core plays an important role in studying the clustering structure of net-
works [22]. In [8] it was proved that the following process efficiently computes
the k-core of a graph:

Lemma 1. Given a graph G and a number k, one can compute G’s k-core by
repeatedly deleting all nodes whose degree is less than k.

The following theorem states that stabilization to the k-core is achieved for
an arbitrary set of interaction sets S. Furthermore, the stabilization occurs after
O(m) rounds of changes in the network, where m is the number of edges in G(0).
Note that this is not the time complexity of the protocol, since there may be
many idle rounds between rounds with changes, depending on the interaction
sets.
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Theorem 1. When E(u, v) = min{dG(t)(u), dG(t)(v)}, (α, β)-Dynamics for any
value of α ≤ n − 1 < β and any S, stabilizes in a network where all isolated
nodes form the (α − 1)-crust and the rest the α-core of G(0) in O(m) rounds
where changes happen, where m is the number of edges in G(0).

Proof. First of all, even if a node connects with any other node, its degree will
be n− 1. Thus, it holds that min{d(u), d(v)} ≤ n− 1 < β. This ensures that no
edge will ever be created by the (α, β)-Dynamics. Thus, only deletions of edges
can be performed. As a result, the maximum number of rounds where a change
happens is a straightforward O(m). What we need to show is that the output of
the protocol is a network where all isolated nodes belong to the (α− 1)-crust of
G(0) and the rest of the nodes belong to the α-core of G(0).

To prove our claim we change slightly the algorithm described in Lemma 1 to
process edges instead of nodes. This change is made so that the (α, β)-Dynamics
described in this section will be in fact a realization of this main memory algo-
rithm and thus its output will be the α-core of G(0). Indeed, one can compute
G’s α-core by repeatedly deleting all edges for which one of its endpoints has
degree < α. The procedure stops when there is no such remaining edge, that is,
all edges have endpoints with degree ≥ α. The order in which the edges are con-
sidered is irrelevant. It is easy to see that this algorithm computes the α-core of
the given network and in fact it is the (α, β)-Dynamics described in this section.

⊓⊔

A final note concerns the time complexity. Note that the aforementioned
theorem does not state anything about the time complexity of the protocol; it
just states the maximum number of rounds where a change happens. We can
compute the time complexity if we describe the interaction sets S. If we assume
that ∀t : C(t) = E(t), that is the interaction sets contain all edges and only those
of the G(t) network then the time complexity is O(n). This is because, at each
round it is guaranteed that one node will become isolated unless stabilization
has been achieved. Similarly, if we assume that at each time step only one pair of
nodes is active and it is chosen uniformly at random, then the (α, β)-Dynamics
stabilizes in O(mn2 logm) steps by a simple application of the coupon collector
problem [15] on the selection of edges.

4 Speed of stabilization results

In this section we study (α, β)-Dynamics where the potential of a pair of nodes
is any symmetric non-decreasing function on the degrees of its two endpoints, as
we saw in Section 3. We prove stabilization as well as that the number of steps
needed until stabilization is O(n), assuming α = β and that each interaction
set contains always all possible pairs. More formally, we define the potential of
a pair uv to be E(u, v) = f(dG(t)(u), dG(t)(v)), where f is a proper (symmetric
and non-decreasing in both variables) function. S is fixed and contains all

(
n
2

)
possible pairwise interactions.

For the graph G(t), let R(t)(u, v) be an equivalence relation defined on the set
of nodes V for time t, such that uv ∈ R(t) if and only if dG(t)(u) = dG(t)(v). The



Threshold-based Network Structural Dynamics 11

equivalence class R
(t)
i corresponds to all nodes with degree d(R

(t)
i ), where i is the

rank of the degree in decreasing order. This means that the equivalence class R
(t)
1

contains all nodes with maximum degree in G(t). Assuming that n = |V |, the
maximum number of equivalence classes is n− 1, since the degree can be in the
range [0, n−1] and no pair of nodes u, v with d(u) = 0 and d(v) = n−1 can exist.
Let |G(t)| be the number of equivalence classes in graph G(t). Before moving to
the proof, we give certain properties of the dynamic process that hold for all
t ≥ 1, that is they hold after at least one round of the process (initialization).
These properties will be used in the proof for stabilization.

From a bird eye’s view of what follows, we notice that in this framework two
nodes behave in the same way if their degrees are the same, due to the definition
of the potential function and the interaction set. Furthermore, if at any time a
node u has degree at least as large as the degree of another node v, then it will
form at least as many edges in the next time step, thus preserving the relative
order of their degrees. These observations lead us to define the aforementioned
equivalence classes related to the degrees of the nodes, whose properties allow
us to inductively prove our upper bounds. This intuition is formalized in the
following properties:

Property 1 If dG(t)(u) ≥ dG(t)(w), then NG(t+1)(u) ⊇ NG(t+1)(w).

Proof. As each interaction set contains all pairs of nodes and α = β, if v is
a neighbor of w in G(t+1), then in the previous time-step the potential was
E(t)(v, w) ≥ β. Then it also holds that E(t)(v, u) ≥ β, since f is non-decreasing.
This implies that v is also a neighbor of u in G(t+1). ⊓⊔

Nodes that have the same degree at time t, share the same neighbors at time
t+ 1.

Property 2 If dG(t)(u) = dG(t)(w), then NG(t+1)(u) = NG(t+1)(w).

Proof. As in the proof of Property 1, due to the equality of the degrees, it also
holds that any neighbor v of u is a neighbor of w and respectively any neighbor
v of w is a neighbor of u. ⊓⊔

In the following, we discuss properties related to equivalence classes.

Property 3 The number of equivalence classes in G(t+1) is less than or equal
to the number of equivalence classes in G(t).

Proof. By Property 2, nodes that belong to the same equivalence class at time
t > 0 will always belong to the same equivalence class for all t′ > t. ⊓⊔

Property 4 If G(t+1) has the same number of equivalence classes as G(t), then

∀i, R(t)
i = R

(t+1)
i .
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Proof. By Property 2, all nodes in R
(t)
i are in the same equivalence class in

G(t+1). Furthermore, for any i < i′ such that the nodes of R
(t)
i are in R

(t+1)
j

and the nodes of R
(t)
i′ are in R

(t+1)
j′ , it holds that j ≤ j′ by Property 1. As the

number of equivalence classes stay the same, it must be that j ̸= j′. This can

only happen if for all i we have R
(t)
i = R

(t+1)
i . ⊓⊔

The following lemma shows how equivalence classes behave w.r.t. edge dis-
tribution.

Lemma 4. If an arbitrary node u in R
(t)
i is connected with some node w in

R
(t)
j , then u is connected with every node x in every equivalence class R

(t)
k , such

that k ≤ j and t > 0.

Proof. By definition of equivalence classes, for all nodes x ∈ R
(t)
k it holds

that dG(t)(x) ≥ dG(t)(w). If dG(t−1)(x) < dG(t−1)(w), then by Property 1 we
have NG(t)(x) ⊆ NG(t)(w); since dG(t)(x) ≥ dG(t)(w), this can only happen if
NG(t)(x) = NG(t)(w), meaning that x is also connected with u.

Else, we have dG(t−1)(x) ≥ dG(t−1)(w). As each interaction set contains all
pairs of nodes, w being connected with u at time step tmeans that E(t−1)(u,w) =
f(dG(t−1)(u), dG(t−1)(w)) ≥ β. But f is proper, meaning that E(t−1)(u, x) =
f(dG(t−1)(u), dG(t−1)(x)) ≥ f(dG(t−1)(u), dG(t−1)(w)) ≥ β. ⊓⊔

We prove by induction that this (α, β)-Dynamics always stabilizes in at most
|G(0)| + 1 steps. To begin with, it is obvious that the clique Kn as well as the
null graph Kn both stabilize in at most one step, for any value of β. The follow-
ing renormalization lemma describes how the number of equivalence classes is
reduced and is crucial to the induction proof.

Lemma 5. If d(R
(t)
1 ) = n − 1, ∀t ≥ c, c ∈ N, and the subgraph G(c) \ R

(c)
1

stabilizes for any value of β and proper function f , then G(c) stabilizes as well.

Similarly, if d(R
(t)

|G(t)|) = 0, ∀t ≥ c, c ∈ N, and the subgraph G(c)\R(c)

|G(c)| stabilizes

for any value of β and proper function f , then G(c) stabilizes as well. The time
it takes for G(c) to stabilize is the same as the time it takes for the induced
subgraph to stabilize for both cases.

Proof. The main idea is that we consider two different sets of nodes: R
(c)
1 and

V \R(c)
1 . Due to our hypothesis, at all future time steps the edges between these

two groups, and the edges with both endpoints in R
(c)
1 are fixed. Concerning

the edges with both endpoints in V \ R(c)
1 , we can almost study this subgraph

independently. That’s because the effect of R
(c)
1 on V \ R(c)

1 is completely pre-
dictable: it always increases the degree of all nodes by the exact same amount.

The same reasoning applies for R
(c)

|G(c)|.

More formally, by Property 1, for all t ≥ c it holds that R
(t)
1 ⊆ R

(t+1)
1 . This

means that the nodes in R
(c)
1 are always connected to every node after time c.

As a result, for all u ∈ V \R(c)
1 it holds that their degree in the induced subgraph
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G(t) \R(c)
1 is dG(t)(u)−|R(c)

1 |. As each interaction set contains all pairs of nodes,

the decision for the existence of an edge uv, where u, v ∈ G(t) \ R(c)
1 only relies

on:

E(t)(u, v) = f(d
G(t)\R(c)

1
(u) + |R(c)

1 |, d
G(t)\R(c)

1
(v) + |R(c)

1 |) ≥ β

which can be written as:

E(t)(u, v) = g(d
G(t)\R(c)

1
(u), d

G(t)\R(c)
1
(v)) ≥ β

where

g(x, y) = f(x+ |R(c)
1 |, y + |R(c)

1 |)

Clearly, g is a proper function assuming that f is a proper function. Thus,
the choice of whether the edge exists between u and v is equivalent between G(t)

and G(t) \ R
(c)
1 by appropriately changing f to g. But due to our hypothesis

G(c) \R(c)
1 stabilizes, and thus G(c) also stabilizes in the same number of steps.

Note that we need not compute g since this is only an analytical construction;
the dynamic process continues as defined. The proof of the second part of the
lemma is similar in idea but much simpler since function f does not change due
to the fact that the removed nodes have degree 0. ⊓⊔

The following theorem establishes that this (α, β)-Dynamics stabilizes in lin-
ear time.

Theorem 5. When α = β, f is proper, E(u, v) = f(dG(t)(u), dG(t)(v)), and
all interaction sets C(t) contain all

(
n
2

)
possible pairwise interactions, (α, β)-

Dynamics stabilizes on given G(0) in at most |G(0)|+ 1 steps.

Proof. By Property 3 we have that |G(1)| ≤ |G(0)|. Therefore, it suffices to prove
that (α, β)-Dynamics stabilizes in at most |G(1)|+ 1 steps, or equivalently that
it stabilizes in at most |G(1)| steps after time 1; for technical reasons, we prove
that for any t0 > 0, (α, β)-Dynamics stabilizes in at most |G(t0)| steps after t0.
This is necessary for some of the needed tools to work (for example Lemma 4,
which doesn’t work for time 0).

We prove our claim inductively, on the number of equivalence classes at time
t0. Recall that each interaction set contains all pairs of nodes. For the base

case, if |G(t0)| = 1, then we have a regular graph. If f(d(R
(t0)
1 ), d(R

(t0)
1 )) <

β, we get that G(t0+1) is the null graph Kn, which indeed stabilizes because

f(d(R
(t0+1)
1 ), d(R

(t0+1)
1 )) = f(0, 0) ≤ f(d(R

(t0)
1 ), d(R

(t0)
1 )) < β. Similarly, if

f(d(R
(t0)
1 ), d(R

(t0)
1 )) ≥ β we get that G(t0+1) is the complete graph Kn, which

stabilizes because f(d(R
(t0+1)
1 ), d(R

(t0+1)
1 )) = f(n − 1, n − 1), which is at least

f(d(R
(t0)
1 ), d(R

(t0)
1 )) ≥ β, due to f being proper.

For the inductive step, suppose that |G(t0)| > 1. If |G(t0+1)| < |G(t0)|, then
the lemma follows by our inductive hypothesis. From now on we thus assume
that |G(t0+1)| = |G(t0)|. We discern two cases, namely whether f(n − 1, 0) < β
or f(n− 1, 0) ≥ β.
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We begin with the case f(n− 1, 0) < β. If at some time step t ≥ t0 it holds

that d(R
(t)

|G(t)|) = 0, then the assumption that f(n − 1, 0) < β guarantees that

for all t′ ≥ t it still holds that d(R
(t′)

|G(t′)|) = 0. To see this, notice that if it does

not hold, then there exists a minimal t′ > t such that a node u ∈ R
(t)

|G(t)| has

degree d(t
′)(u) > 0. But this means that there exists some vertex v ̸= u such

that f(d(t
′−1)(v), d(t

′−1)(u)) = f(d(t
′−1)(v), 0) ≥ β. But since d(t

′−1)(v) ≤ n− 1,
and f(n− 1, 0) < β, we reach a contradiction.

If d(R
(t0+1)

|G(t0+1)|) = 0, then the observation of the previous paragraph shows

that we can use Lemma 5. The graph we get by removing the nodes of degree
0 has one less equivalence class and by the inductive hypothesis it stabilizes in
|G(t0+1)|−1 steps; Lemma 5 thus ensures stabilization of G(t0) in 1+(|G(t0+1)|−
1) = |G(t0+1)| = |G(t0)| steps. Notice that if d(R

(t0)

|G(t0)|) = 0, then we would also

get d(R
(t0+1)

|G(t0+1)|) = 0.

Therefore, we are only left with the case where |G(t0+1)| = |G(t0)| and no
node has degree 0, neither in G(t0) nor in G(t0+1). By Lemma 4, each of the
|G(t0)| equivalence classes at time t0 has only |G(t0)| + 1 possible values for its
degree, and, by definition, no two classes have the same degree. However, one
of these values is 0, which we ruled out for any equivalence class, meaning that
there are only |G(t0)| possible values for the |G(t0)| pairwise disjoint degrees. The
same argument can be made for t0 + 1. However, by Property 4 and Lemma 4,
we get that the possible values for both time steps are the same, concluding that

for all i ∈ {1, . . . , |G(t0)|}, we have d(R(t0)
i ) = d(R

(t0+1)
i ). Then Lemma 4 implies

that the two graphs are equal, and thus we have stabilization in 0 steps.
The case f(n− 1, 0) ≥ β is completely similar, by using the degree n− 1 in

place of degree 0.
⊓⊔

5 (α, β)-Dynamics Stabilization for Arbitrary Interaction
Sets

In this section, we prove stabilization (with no speed bound) for any α ≤ β
in an adversarial setting where the set of interaction sets S may be completely
arbitrary subject to the fairness condition. In addition, we further generalize
by changing the definition of potential, from E(u, v) = f(dG(t)(u), dG(t)(v)) to
E(u, v) = f(gG(t)(u), gG(t)(v)), for a family of functions gG : Rk → R, k ∈ N. We
call a function gG(u) degree-like if it only depends on the neighborhood NG(u)
of node u and has the following property: assuming that the neighborhood of
node u at time t is NG(t)(u), and the neighborhood of v at time t′ is NG(t′)(v),
and NG(t)(u) ⊇ NG(t′)(v), then we require that gG(t)(u) ≥ gG(t′)(v). The reason
we extend the notion of degree is to represent more interesting rules as shown
in the toy model of social dynamics of Section 7.

The potential function is computationally symmetric since f is proper and
g is common for u and v. The protocol in Section 4 is a special case of this
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protocol, where g is the degree of the node, each interaction set contains all
(
n
2

)
possible pairwise interactions at each time step and α = β. We first need the
following definition:

Definition 3. A pair (t,D) is |D| − Done if t ∈ N, D ⊆ V and ∀u ∈ D it
holds that their neighborhood does not change after time t. That is, NG(t′)(u) =
NG(t)(u), for t′ ≥ t.

Our stabilization proof repeatedly detects |D| −Done pairs with increasing |D|.
When D = V , all neighborhoods do not change, and thus the process stabilizes.

Lemma 6. If there exists a |D| −Done pair (t,D) at round t with |D| < |V |,
then ∃t′ > t such that at round t′ there exists a (|D|+ 1)−Done pair (t′, D′).

Proof. The core idea is to find a time-step t1 where a node u ̸∈ D maximizes g,
as specified in the next paragraph; if u never drops any edge in subsequent time
steps, we prove that its neighborhood is stabilized, and we extend D by u; if it
drops an edge with a node w, this node w is not able to preserve any other edge,
due to the selection of u, and we are able to extend D by w.

More formally, we denote by t1 ≥ t the time-step where there is some node
u ̸∈ D such that gG(t1)(u) ≥ g

G(t′1)(v), for all t′1 ≥ t1 and v ̸∈ D. If there are
many choices for t1 and u, we pick any t1 and u such that u has the highest
degree possible. Note that, later in time (say at t′1 > t1), it is entirely possible
that u’s neighborhood shrinks and thus its g value drops (g

G(t′1)(u) < gG(t1)(u)).
It is guaranteed that t1 exists, as there are finitely many graphs with |V | nodes,
and finitely many nodes. Thus, there are finitely many values of gG(u) to appear
after time t. Additionally, the fairness condition guarantees that the pairwise
interaction between u and v will be eventually activated, for any v.

If u never drops any edge after t1, then its neighborhood can only grow or
stay the same. But if its neighborhood grows, due to the properties of function
g, its value will not drop and the degree of u will increase. However, the way we
picked u and t1 does not allow this. We conclude that the neighborhood of u does
not change after time t1, and thus we can extend D by {u}, that is (t1, D∪{u})
is (|D| + 1) − Done. Else, if u drops an edge after t1, let t2 > t1 be the first
time step that a neighbor w of u in G(t2−1) is not a neighbor of u in G(t2).
Since u’s neighborhood stays the same until t2 − 1, it follows that gG(t1)(u) =
gG(t2−1)(u). The neighborhood of w does not grow at subsequent time steps, that
is N

G(t′2)(w) ⊇ N
G(t′2+1)(w), t′2 ≥ t2 − 1. To prove this, we show that w never

forms a new edge after t2 − 1. Suppose it does at t′2 + 1 for the first time. Then
w forms an edge with some node v ̸∈ D, due to the definition of D. However,
we know that β ≥ α > f(gG(t2−1)(u), gG(t2−1)(w)) = f(gG(t1)(u), gG(t2−1)(w)) ≥
f(g

G(t′2)(v), gG(t′2)(w)), due to f being non-decreasing, g being degree-like, and
the definition of u and t1. Thus, an edge between v and w cannot be formed.

We conclude that the neighborhood of w can only shrink after time t2. But
there are only finitely many options for the neighborhood of w, and thus there is
a time t3 ≥ t2 where the neighborhood of w is the same in all subsequent graphs.
Therefore, we can extend D by {w}, that is (t3, D ∪ {w}) is (|D| + 1) −Done.

⊓⊔



16 E. Kipouridis et al.

Theorem 6. For E(u, v) = f(gG(t)(u), gG(t)(v)), (α, β)-Dynamics stabilizes for
any α ≤ β, proper function f , degree-like function g and arbitrary set of inter-
action sets S subject to the fairness condition.

Proof. It trivially holds that (0, ∅) is 0−Done. By applying Lemma 6 once, we
increase the size of D by 1. Thus, by applying it |V | times, we end up with a
|V |−Done pair (t, V ). Since all neighborhoods stay the same for all future steps,
G(t′) = G(t) for all t′ ≥ t. ⊓⊔

Theorem 6 can directly prove stabilization of the protocol in Section 3.

6 Turing-Completeness

In this section we describe the (α, β)-Dynamics that is able to simulate Rule 110,
a one-dimensional Cellular Automaton (CA) that Cook proved to be Turing-
Complete [13]. Thus, we prove that (α, β)-Dynamics is Turing-Complete as well,
meaning that it is computationally universal since it can simulate any Turing
machine (or in other terms any algorithm).

We first provide a short discussion on CA and Rule 110.

Cellular Automata and Rule 110: A one-dimensional cellular automaton, or, as
called by Wolfram, an elementary cellular automaton, is a discrete model of
computation. It consists of a one-dimensional grid of infinitely many cells, each
containing a binary value. The value of all cells is updated synchronously, in
discrete time steps. Each cell updates its value based on its own value and the
values of its two neighboring cells.

Since the new value of each cell depends on 3 binary values, there are only 8
different cases for this update. We write 001 for the case where the left neighbor’s
value and the current value of a cell is 0 while the right neighbor’s value is 1,
101 for the case where both neighbors have value 1 while the current value is
0, and so on. Wolfram proposed the following numbering scheme for elementary
cellular automata. Suppose we create a binary number whose most significant
bit is the updated value of a cell in case 111, the second most significant bit
is the updated value in case 110, and so on until the least significant bit, the
updated value in case 000. If we acquire number X by translating this binary
number to decimal, then this particular cellular automaton is Rule X.

Therefore, Rule 110 is the cellular automaton corresponding to the binary
number 01101110; simply put, the updated value of a cell is equal to its right
neighbor’s value, if its current value is 0. Else, it is 0 iff both its neighbors have
value 1. What is interesting about Rule 110 is that although it is very easy
to describe, Cook proved it to be Turing-Complete [13]. One shall think of the
initial configuration of the cells to contain both the program and its input; if the
Turing machine corresponding to the program would halt on this input, then
Rule 110 stabilizes to a state that keeps on repeating forever. From this state,
one is able to directly retrieve what the Turing machine would output. This
allows us to prove Turing Completeness for some model of computation by just



Threshold-based Network Structural Dynamics 17

showing that it is able to simulate Rule 110, which is much simpler than a Turing
machine.

Definition 4. Rule 110 is a one-dimensional CA. Let cell(t)(i) be the binary
value of the i-th cell at time t. If cell(t)(i) = 0, then cell(t+1)(i) = cell(t)(i+ 1).
Else, cell(t+1)(i) is 0 if cell(t)(i− 1) = cell(t)(i+ 1) = 1, and 1 otherwise.

In more detail about this section’s result, we design a potential function, a
transformation from the initial configuration of Rule 110 to a graph G(0) with
a constant number of nodes per cell of Rule 110, and an injection from cells of
Rule 110 to pairs of nodes in G(0). Our claim is that the value of a particular
cell of Rule 110 at time t is 1 if and only if the corresponding pair of nodes is
connected in G(t).

We note that this does not imply that we can reach any desirable graph Gd.
In fact, certain pairs of nodes (not corresponding to any cell of Rule 110) are
either always connected or always disconnected, in all graphs G(t).

Let CN (t)(u, v) = |NG(t)(u)∩NG(t)(v)| be the number of common neighbors
of u and v at time t, and CE(t)(u, v) =

∣∣E(CN (t)(u, v))
∣∣ be the number of

edges between the common neighbors of u and v at time t. We also introduce
F (t)(u, v) = CN (t)(u, v) + |E(t)(u, v)| to make the presentation clearer.

For the following simulation we assume w.l.o.g. that α = β and that the S
contains all possible

(
n
2

)
interactions, for all time steps. The potential between

nodes u and v is defined as follows:

E(t)(u, v) =


β + 60 + CE(t)(u, v)− CN (t)(u, v) if 66 ≤ F (t)(u, v) ≤ 70

β + 12− CE(t)(u, v) if F (t)(u, v) = 71

β − |E(t)(u, v)| if 40 ≤ CN (t)(u, v) ≤ 41

β − 1 + |E(t)(u, v)| otherwise

The first 2 branches are the ones that are actually related to Rule 110, and are
used only in Lemma 8. As we sketch later, our construction uses certain gadgets
which allow us to simulate cells of Rule 110; some of these gadgets always follow
the behavior dictated by the first branch, and the rest of them always follow
the behavior dictated by the second. The rest of the branches are only used in
Lemma 7 and ensure technical details, namely that some pairs of nodes always
flip the status of their connection (Branch 3), effectively providing us with a
clock, and some of them always preserve it (Branch 4).

As required, computing the function only uses a constant number of words
in the working memory, which have logarithmic size in bits compared to the
input memory (which contains the neighborhoods of u and v), and requires
polynomial time in the size of the input memory. For example, to compute
CN (t)(u, v), one could iterate over all pairs u′v′ such that u ∈ NG(t)(u), v ∈
NG(t)(v), and increment a counter initially set to zero, every time u′ = v′.
Similarly, to compute CE(t)(u, v), one can iterate over quadruples u′, u′′, v′, v′′

and increment a counter whenever u′ = v′, u′′ = v′′ and there exists an edge
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between u′ and u′′. Additionally, the potential function only depends on nodes
at a constant distance (at most 1) from either u or v, and it is network-agnostic
(not assuming access on the topology of G(0)). Finally, it is computationally
symmetric and thus the protocol is consistent.

Informally, our simulation of Rule 110 consists of the following steps. First,
we design a primitive cell-gadget (henceforth PCG) that stores binary values,
but fails to capture Rule 110 since it doesn’t distinguish between the left and
the right cell. Then, by making use of the PCG as a building block, we build
the main cell-gadget (henceforth CG) that is used to simulate a single cell of
the CA. Then, each time step from Rule 110 is simulated using 2 rounds of the
(α, β)-Dynamics; on the first round, some PCGs acquire their proper value while
on the second round, the rest of the PCGs copy the correct value from the ones
that already acquired it. Finally, the two steps are merged into one in order to
achieve stabilization of the dynamics when Rule 110 has also stabilized.

For clarity purposes, we slightly abuse notation, and we count the rounds of
the (α, β)-Dynamics by multiples of 0.5 instead of 1. Thus, we write that the
sequence of configurations is G(0), G(0.5), G(1)..., where configurations G(t+0.5),
for t ∈ N, are transitional states of the network and have no correspondence
with cell states of the CA.

In order to construct the PCG and the CG, we first construct two auxiliary
gadgets, the always-on (x, y)-gadget and the flip (x, y)-gadget. The always-on
(x, y)-gadget is simply a clique of 22 nodes. 20 of them have no edges to other
nodes in the network, while 2 of them (namely x and y) may be connected with
other nodes. The flip (x, y)-gadget is basically two always-on (x, y)-gadgets, with
nodes x and y being the same for both gadgets, with the exception that the edge
between x and y may not exist. See Figure 1 for both of these gadgets. We later
show that, under certain conditions, the edge between x and y always exists in
an always-on gadget, and flips its state at each time step, in a flip gadget.

A PCG consists of a pair of nodes hl, such that the existence of an edge
between them corresponds to value 1 and otherwise it corresponds to value 0, and
60 auxiliary nodes a1, . . . a60. Furthermore, for each of the 120 pairs of the form
hai and lai, there exists a corresponding (h, ai) and (l, ai)−flip gadget. When we
have two different PCGs, say A and B, we write A(h), A(l), A(a1), . . . , A(a60)
for the nodes of A and similarly B(h), B(l), B(a1), . . . , B(a60) for the nodes of
B. We write A(t) to denote the value of A at time t; in other words A(t) =
|E(t)(A(h), A(l))|.

In order to connect two different PCGs (say A and B) we add 4 always-
on gadgets: the always-on (A(h), B(h)) gadget, the always-on (A(h), B(l)) gad-
get, the always-on (A(l), B(h)) gadget and the always-on (A(l), B(l)) gadget, as
shown in Figure 1. Intuitively, this relates CE(t)(A(h), A(l)) to the sum of values
of the connected PCGs.

The i-th CG that corresponds to the i-th cell (we write CG(i)) consists of
4 PCGs, which we identify as A1(i), A2(i), B1(i) and B2(i). At time t = 0,
the edge in each flip gadget of A1(i), A2(i) exists, while the edge in each flip
gadget of B1(i), B2(i) does not exist. We connect each Aj(i) with each Bk(i) (4
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1 2 20. . .

x y

1 2 20. . .

x y

21 22 40. . .

h

l

160 . . . 60′1′ . . .
h′

l′

Fig. 1. To the left, we have an always-on (x, y) gadget. In the middle, we have a flip
(x, y) gadget; the dotted line between x, y denotes that this particular edge may or may
not exist. To the right, we have two PCGs. The dashed lines denote flip gadgets, the
dotted lines denote that these particular edges may or may not exist. The continuous
lines denote always-on gadgets; these 4 always-on gadgets is how we connect PCGs.

connections in total, where each connection uses 4 always-on gadgets, as depicted
in Figure 1). In order to connect CG(i) (cell i) with CG(i + 1) (cell i + 1) we
connect Aj(i) with Aj(i + 1), and Aj(i) with Bj(i + 1), as shown in Figure 2.
A CG is said to have value 0 if all 4 of its PCGs are set to 0 and 1 if all PCGs
are set to 1. We guarantee that no other case can occur in G(t), t ∈ N, although
this is not guaranteed for the intermediate configurations G(t+0.5), t ∈ N.

To conclude the construction of G(0), each cell of Rule 110 corresponds to
a CG in G(0), and neighboring cells have their corresponding CGs connected.
Finally, we set the value of its CG (that is the value of its 4 PCGs) equal to the
initial value of the corresponding cell.

Notice that all our gadgets are defined for a single time-step, namely for t = 0.
One could imagine that in subsequent time-steps, nodes contained in the same
gadget in G(0) are no longer connected in the same way (effectively destroying
the gadget), or even that new gadgets are formed. The following lemma shows
that this is not the case. Informally, it shows that no new gadgets are created,
and that the only difference between graphs at different time steps concern edges
that do not destroy the existing gadgets. For example, in the definition of a flip
gadget, there is only one pair of nodes (its two special nodes) for which it does
not matter whether they share an edge or not; the lemma shows that between
nodes that belonged in the same flip gadget in G(0), only this special pair may
change its connection (existence or not of an edge between them) through time.

Lemma 7. If there exists a flip (x, y)-gadget connected to an Aj(i) PCG in
G(0), then the edge xy at time t exists if and only if t ∈ N ∪ {0}. Similarly, if
there exists a flip (x, y)-gadget connected to a Bj(i) PCG in G(0), then the edge
xy exists if and only if t ̸∈ N∪{0}. Finally, all other edges exist at any time step
if and only if they exist in G(0), with the exception of edges between h, l nodes of
a PCG.

Proof. We prove our claim using induction on the time step t. The base case
t = 0 holds by the construction of G(0). Suppose our claim holds for time step
t − 0.5, we show that it also holds for time step t. We first prove our claim for
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Fig. 2. Each circle represents a PCG and each line represents a connection be-
tween PCGs (4 always-on gadgets) as in Figure 1. Only connections relevant to
A1(i), A2(i), B1(i), B2(i) are shown. The 4 connections in the second column (again
each one is 4 always-on gadgets) are internal connections of CG(i). All other connec-
tions correspond to how CG(i − 1) is connected with CG(i) and CG(i) is connected
with CG(i + 1). We prove that these connections are always preserved.

the pairs of nodes sharing an edge in G(0), except for the pairs hl of PCGs, as
the Lemma makes no claim about them. Notice that it suffices to argue about
always-on and flip gadgets, as this is the only way we added non-hl edges to
G(0).

Let us first focus on the nodes that, at G(0), are contained in the same always-
on (x, y)-gadget. We argue that for any two such nodes x′, y′, the edge between
them exists on time step t, except possibly for the xy edge; more formally, the
unordered pair {x′, y′} is assumed to be different from {x, y}. By definition of
the always-on gadget and the inductive hypothesis, x′ and y′ have exactly 20
common neighbors in G(t−0.5), and thus they continue sharing an edge in G(t).
Concerning the x, y nodes of the gadget, we take cases depending on whether
they also happen to be the two special endpoints of a flip (x, y) gadget in G(0)

or not. In the former case, by the inductive hypothesis, they have between 40
and 41 common neighbors in G(t−0.5), depending on the existence of edges not
defined by our induction hypothesis. Thus, these edges always flip their status at
t, as the lemma dictates. In the latter case they have between 20 and 24 common
neighbors in G(t−0.5), depending on the existence of edges not defined by our
induction hypothesis. Thus, these edges continue to exist in G(t).

We are only left to argue about pairs of nodes with no edge connecting them
in G(0). For a non-existent edge to become existent, it must be that its two
endpoints have at least 40 common neighbors, by the potential function. But,
by the inductive hypothesis and the construction of G(0), this only happens for
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endpoints x, y for which there exists a flip (x, y)-gadget (we already argued about
such cases) and for endpoints h, l of some PCG (for which case our lemma does
not claim anything). Thus, no other edge is ever created. ⊓⊔

Our next step is to discuss how hl edges of PCGs change. The number of
common neighbors of an hl pair of an Aj(i) is CN (t)(h, l) = 70, for all integer
time steps t and valid i, j, as it has 5 neighboring PCGs (each contributing 2),
and 60 auxiliary nodes within the PCG (by Lemma 7). For non-integer time steps
t+ 0.5, t ∈ N∪ {0}, by Lemma 7, the 60 auxiliary nodes are not connected with
h and l, and so CN (t)(h, l) = 10. Similarly, the number of common neighbors of
an hl pair of a Bj(i) is CN (t)(h, l) = 66, for all non-integer t and valid i, j, and
CN (t)(h, l) = 6 for integer t.

Furthermore, for all t, it holds that CE(t)(Aj(i)(h), Aj(i)(l)) = 8 + A
(t)
j (i−

1) + B
(t)
1 (i) + B

(t)
2 (i) + A

(t)
j (i+ 1) + B

(t)
j (i+ 1), as the edges between common

neighbors are the internal edges of connected PCGs, plus the connection between

A
(t)
j (i − 1) and B

(t)
j (i) (4 edges), plus the connection between A

(t)
j (i + 1) and

B
(t)
j (i + 1) (4 edges). Similarly, for a Bj(i) we have that CE(t)(Bj(i)) = 4 +

A
(t)
j (i− 1) +A

(t)
1 (i) +A

(t)
2 (i).

Lemma 8. It holds that A
(t)
j (i) = B

(t)
j (i) = cell(t)(i) for j ∈ {1, 2} and all

i, t ∈ N.

Proof. It holds that A
(0)
j (i) = B

(0)
j (i) = cell(0)(i) by the initialization of our

construction. Suppose that A
(t)
j (i) = B

(t)
j (i) = cell(t)(i) for an integer t ≥ 0. By

using induction we show that the lemma holds for time t+ 1.

First of all, we prove that A
(t+0.5)
j (i) = cell(t+1)(i). If cell(t)(i) = 0, then

it holds that cell(t+1)(i) = cell(t)(i + 1) = A
(t)
j (i + 1) = B

(t)
j (i + 1), due to

our inductive hypothesis. Furthermore, due to our inductive hypothesis it holds

that A
(t)
j (i) = B

(t)
1 (i) = B

(t)
2 (i) = 0. Thus, since CN (t)(Aj(i)(h), Aj(i)(l)) =

70 and |E(t)(Aj(i)(h), Aj(i)(l))| = 0 (there is no edge between the h, l nodes
in Aj(i)) the potential between the pair of nodes is E(t)(Aj(i)(h), Aj(i)(l)) =
CE(t)(Aj(i)(h), Aj(i)(l)) + β − 10. To find the potential of the pair of nodes
Aj(i) we compute:

CE(t)(Aj(i)(h), Aj(i)(l)) =

8 +A
(t)
j (i− 1) +B

(t)
1 (i) +B

(t)
2 (i) +A

(t)
j (i+ 1) +B

(t)
j (i+ 1) =

8 + cell(t)(i− 1) + 2cell(t)(i+ 1)

Thus, it follows that the potential of Aj(i)(h) and Aj(i)(l) is β+ cell(t)(i− 1)+
2cell(t)(i + 1) − 2, which is at least β if and only if cell(t)(i + 1) = 1. Thus, in

the case where cell(t)(i) = 0 we proved that indeed it holds that A
(t+0.5)
j (i) =

cell(t+1)(i).
We use a similar reasoning for the case where cell(t)(i) = 1. In particular,

since CN (t)(Aj(i)) = 70 and |E(t)(Aj(i))| = 1 (there is an edge between the h, l
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nodes inAj(i)) the potential between the pair of nodes is E(t)(Aj(i)(h), Aj(i)(l)) =
β + 12− CE(t)(Aj(i)). We compute:

CE(t)(Aj(i)(h), Aj(i)(h)) =

8 +A
(t)
j (i− 1) +B

(t)
1 (i) +B

(t)
2 (i) +A

(t)
j (i+ 1) +B

(t)
j (i+ 1) =

10 + cell(t)(i− 1) + 2cell(t)(i+ 1)

Thus, it follows that the potential of Aj(i)(h) and Aj(i)(l) is E(t)(Aj(i)) =
β+2−cell(t)(i−1)−2cell(t)(i+1), which is less than β if and only if cell(t)(i−1) =

cell(t)(i+ 1) = 1. This proves that A
(t+0.5)
j (i) = cell(t+1)(i).

Since CN (t+0.5)(Aj(i)(h), Aj(i)(l)) = 10, we have A
(t+1)
j (i) = cell(t+1)(i).

Therefore A
(t+1)
j (i) = A

(t+0.5)
j (i). Similarly, since CN (t)(Bj(i)(h), Bj(i)(l)) = 6,

it holds that B
(t+0.5)
j (i) = B

(t)
j (i).

The potential ofBj(i) at t+0.5 is (recall that CN (t)(Bj(i)(h), Bj(i)(l)) = 66):

E(t+0.5)(Bj(i)(h), Bj(i)(l)) = CE(t+0.5)(Bj(i)(h), Bj(i)(l)) + β − 6 =

β + 2A
(t+0.5)
j (i) +A

(t+0.5)
j (i− 1)− 2

This is at least β if and only if A
(t+0.5)
j (i) = 1, which proves that B

(t+1)
j (i) =

cell(t+1)(i). ⊓⊔

The following corollary is a straightforward consequence of this lemma.

Corollary 1. It holds that cell(t)(i) = CG(t)(i).

The above construction simulates Rule 110. The only problem is that it
takes two time steps to simulate a single time step of Rule 110, meaning that
even if Rule 110 converges, our construction infinitely flips between two different
configurations, due to the flip gadgets, and as a result it does not stabilize.
To overcome this problem, we use the aforementioned construction and make
changes that allow us to remove the intermediate steps in the simulation, that
is the steps t+ 0.5, t ∈ N ∪ {0}.

Theorem 7. The (α, β)-Dynamics is Turing-Complete.

Proof. By Lemma 7 and Corollary 1 it follows that Rule 110 would be cor-
rectly simulated by the particular (α, β)-Dynamics constructed above, if the
transitional non-integer time steps were missing, and thus the convergence of
an instance of Rule 110 would mean the stabilization of the constructed (α, β)-
Dynamics . To achieve this, we simulate the two steps of the constructed (α, β)-
Dynamics in one step based on the observation that the defined potential for each
pair of nodes x, y depends only on the graph induced by the nodes at distance
at most 1 from either x or y. As a result, if nodes x and y at time step t could
’guess’ what this induced graph would look like in the transitional, non-integer,
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time step t + 0.5, they could immediately use this to deduce their potential in
time step t+ 0.5.

We are left to argue about how x and y get information about this in-
duced graph. Notice that a node u may get connected with another node v
at any time step t′ only if d(t

′−0.5)(u, v) ≤ 2. Thus, in order for x and y to
be able at time step t, to know this induced graph at time step t + 0.5, it suf-
fices to compute the connections at time t + 0.5 between all nodes u for which
min{d(t)(x, v), d(t)(y, v)} ≤ 2. In turn, in order to compute such a potential, they
need to have information about nodes at distance 1 from these nodes that lie at
distance at most 2. In conclusion, it suffices to access all nodes at distance at
most 3 at time t; notice that by Lemma 7 and the construction of G(0), there is
a constant number of such nodes, for any pair xy and time t.

Therefore, the new (α, β)-Dynamics starts with the same G(0) and computes
the new potential between any two nodes x, y in two conceptual steps. In the first
step, it uses the old potential function, and information from nodes at distance
at most 3 from either of them, to compute how the graph induced by all nodes
u for which min{d(t)(x, u), d(t)(y, u)} ≤ 2 would look like at time t+ 0.5. Then,
by applying the old potential function on this computed graph, it computes
the final potential between x and y, effectively simulating the transitional time
step. Therefore, the potential function only acquires information from nodes at
a constant distance (at most 3) from either x or y, as required. It is also clear
that it is network-agnostic, or in other words that it is designed without access
to the topology of G(0).

To see that this new potential function is computationally symmetric, notice
that the auxiliary graph is computed both by x and by y by accessing the same
information and using the same computationally symmetric potential function,
meaning both x and y end up with the same auxiliary graph. Then, they apply
the same computationally symmetric function on this graph, meaning that they
acquire the same value.

Finally, we have shown that at any time step, each node only has a constant
number of neighbors. Therefore, the auxiliary graph also has a constant number
of nodes, and we only need a constant number of words to represent the auxiliary
graph. The computation of each such edge in the auxiliary graph, as well as the
final computation, uses the old potential function; all these computations are
using the same working memory. Thus, the new potential function respects the
restriction of having a working memory at most (asymptotically) logarithmic
in size, compared to the input memory (which contains the neighborhoods of u
and v), since the old potential function does as well. The time needed is also
polynomial in the input size, as the same holds for the time needed to compute
the old potential function.

⊓⊔

7 Extensions

We briefly discuss two straightforward extensions of (α, β)-Dynamics and provide
related examples. To begin with, we can add static information to nodes/edges
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(e.g., weights). This information is encoded by the potential function and does
not change with time. The degree-like function defined in Section 5 can be used
to assign a time-independent importance factor (e.g. a known centrality mea-
sure in G(0)) while letting g(u) be the sum of these factors of nodes in NG(t)(u).
To demonstrate it, we provide a small example with a toy model inspired by
Structural Balance Theory [18] of networks with friendship and enmity relations
[5]. This example is more reminiscent of population dynamics rather than dis-
tributed protocols. Assume that the network of agents corresponds to people
(nodes) with friendship relations (edges). Each agent v is defined by how nice
she is n(v), how extrovert she is x(v) as well as by the set of her enemies EN (v).
We wish to design a model that captures how friendships change in this setting
when enemies do not change5 as well as when friendships are lost in case of very
few common friends, while friends are made in the opposite case.

To define the social dynamics we need to define the interaction sets and the
potential function that essentially describe our toy model. The interaction sets
captures the interactions between the agents enforced by the model. This toy
model is only for the purpose of highlighting our convergence results and we do
not claim to realistically capture certain social phenomena. The interaction sets
are defined as follows: (a) if two agents u and v are enemies then they never
become friends (no pairwise interaction between them in C(t), for any t), (b) if
two agents u and v are not connected by an edge in G(t) (they are not friends)
but their distance is at most the sum of their extrovertedness, then they interact
- that is, if at time t it holds that 1 < dist(u, v) ≤ x(u) + x(v) then there is an
edge uv in C(t), (c) if two agents are connected by an edge in G(t), then there is
a pairwise interaction between them in C(t) if their number of common friends
is ≤ γ. If their common friends are > γ then their friendship is strong and it
will not be affected at this round, and thus no edge in C(t) is introduced. This
concludes the description of S.

As for the potential function, we define the potential between u and v in
G(t) to be E(u, v) = (n(u)+

∑
w∈N(u) n(w))+(n(v)+

∑
w∈N(v) n(w)), capturing

our intuition that friendships are created or stopped based on how nice the two
agents and their neighbors are. This is a computationally symmetric function
and thus the protocol is consistent. The function g corresponds to the sum of
the niceness of a node plus the niceness of its neighbors and thus it is degree-
like. The function f is proper since it is a simple sum between u and v w.r.t.
the output of the function g in each node. Thus, (α, β)-Dynamics on this social
network stabilizes by Theorem 6 (the proof holds without any modification,
even in this somewhat extended version of (α, β)-Dynamics). Theorem 6 also
allows us to add any rules with respect to S like imposing a maximum number
of friends, allowing for additional random connections (to achieve long-range
interaction), etc. Similarly, we can change the definition of potential and still
prove stabilization as long as the assumptions of Theorem 6 are valid. If these
assumptions are violated, as it would be in the case of a potential function that

5 The permanence of enmity is in fact not exactly compatible with structural balance
theory on networks.
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applies to a subset of neighbors (e.g., common neighbors between u and v), then
a new analysis is required to prove stabilization, if stabilization can be reached.
Finally, the interaction sets allows us to remove the assumption of permanence
on enmity by allowing under certain conditions particular pairwise interactions,
thus dynamically changing the set EN (v).

Another straightforward generalization is to allow for general stateless pro-
tocols A targeting at providing algorithmic solutions for specific problems. An
example of such a generalization is given below for constructing a spanning
star. We show in simple terms the stateless approach when compared to state-
dependent approaches for constructing a network (e.g., Network Constructors
model [23,24]). In some sense, we already provide such an example of explicit net-
work construction in the case of the α-core. We assume that in each time step t a
pairwise interaction uv is chosen uniformly at random and we set C(t) = {uv}. In
[23] they provide a simple protocol that uses states on the nodes, which, starting
from the null graph, constructs the spanning star in optimal Θ(n2 log n) expected
time. We discuss a protocol A that computes a spanning star starting from any
network. It is reminiscent of the random copying method [20] for generating
power law networks. It would be interesting to find out whether hub-and-spoke
networks (essentially star networks) can be generated by some similar social
process. In this case, the probability of choosing pairwise interactions should be
related to the degree of the involved nodes.

To describe the protocol let u and v be two nodes that interact at time t as

determined by C(t). Assume w.l.o.g. that d
(t)
G (u) > d

(t)
G (v). Then, the protocol

dictates that all edges of v are to be moved to u. In case d
(t)
G (u) = d

(t)
G (v) ̸= 1,

we break symmetry (symmetry breaking was also needed in [23], which was
implemented with the help of the scheduler) by tossing a fair coin in each node
as to which node is going to transfer its neighbors6. The nodes communicate
the result of their toss and if found equal no change happens in the current
round, otherwise we again move all edges from the one node to the other. In
both cases if no edge exists between u and v, an edge uv is added. Finally, if

d
(t)
G (u) = d

(t)
G (v) = 1, then no change happens.

On the positive side, the difference of this protocol to the one given in [23]
is that no state dynamics are used and we start from an arbitrary network.
However, on the negative side, a pairwise interaction between u and v may affect
all nodes up to distance 2 since the move of all these edges can affect nodes of
distance 2 from u and v. Correctness is proved based on the observation that in
each round either one node becomes a leaf transferring all its adjacent nodes to
the other node, or nothing happens. The latter case can only happen infinitely
often if the graph has become a star, otherwise by fairness, at some point of
time an interaction that makes progress will happen. Because of this stalling,
the time complexity analysis is more involved but we conjecture only by a poly-
logarithmic factor away from the one in [23]. Although no such definition have

6 The coin toss can be implemented by denoting randomly in the active pair uv one
node as the initiator and the other as the responder, as it usually happens in popu-
lation protocols[2].
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been provided for our model, the described protocol is self-stabilizing and silent.
Looking at more detail in these protocols constitutes very interesting research
direction.

8 Conclusion

(α, β)-Dynamics are stateless structural dynamics of a network. The protocol
allows for two thresholds that affect the existence of the edges in the pairwise
interactions determined by an interaction set at each time step. Since the dy-
namics are purely structural, the output of the protocol is another network, and
thus (α, β)-Dynamics can be considered as a network transformation process.
Such a process for example has been used in [35] to detect communities. In fact,
the authors wondered whether conditional convergence could be proved. It is a
matter of technical details to show that for regular networks one can choose α
and β such that the protocol never stabilizes.

For future research, it would be very interesting to look at the notion of
parallel time in (α, β)-Dynamics. Another interesting research direction is to
see the effect of higher order structural interactions as well as look at how the
model is affected when messages are restricted in size. Finally, inspired by the
computation of the α-core in Section 3, a very interesting question is to look at
more involved problems w.r.t. emergent behavior from simple protocols.
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