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Abstract—Distributed acoustic sensing (DAS) has been shown
to be a reliable tool for monitoring highways traffic in an efficient
and cost-effective fashion. Nevertheless, multiple-lane highways
and noise sources reduce the vehicle detection capabilities of
DAS sensors, especially in high-traffic scenarios. In this paper,
we propose a novel approach derived from harmonic analysis
techniques to estimate vehicle trajectories from DAS data. Our
method aims to detect closely-spaced lines by iteratively notching
the contribution of the lines already estimated. The results show
the remarkable performance of the proposed method compared
to the Hough transform, proving the potential of the notched
power vehicle detector in a wide range of noise levels.

Index Terms—Distributed acoustic sensing (DAS), vehicle de-
tector, line detector, notch periodogram.

I. INTRODUCTION

In recent years, distributed acoustic sensing (DAS) has be-
come one of the most promising solutions to provide effective
and inexpensive monitoring systems for assets requiring long-
distance continuous monitoring, e.g., highways, pipelines and
borders [1]. DAS exploits Rayleigh scattering to turn an optical
fibre deployed for telecommunication purposes into a sensing
element, allowing to locate any dynamic strain induced by
acoustic events with a meter-scale resolution [2], [3].

DAS-based systems have been deployed to detect and
localise acoustic events such as pipeline leaks [4], [5], border
intrusions [6], and utility poles [7]. Furthermore, several works
already demonstrated the feasibility of DAS to detect traffic
flow [8]–[11]. The layout of a typical DAS system includes an
optical fibre cable deployed along the road, and an interrogator
sending laser pulses from one end of the fibre. The output data
is usually represented in a spatio-temporal map, often called
a waterfall [12]. Fig. 1 reports an example of waterfall in a
traffic monitoring scenario.

The high sensitivity, low-cost and low-maintenance require-
ments make DAS an attractive solution for traffic monitoring
compared to other sensors, i.e. cameras, inductive loops, radars
and wireless sensors [12]. The installation cost of DAS is
lower compared to more traditional systems due to the ability
to deploy the fibre in parallel with the road instead of above
or under it and reuse existing telecommunication fibre as the
sensing element of the system. Furthermore, DAS provides
a spatial resolution of the order of meters without consid-
erable infrastructure installed in or around the road, making
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the conventional traffic monitoring systems more expensive.
Nevertheless, the optical fibre output is highly affected by
cabling, soil condition, and proximity of noise sources, which
lead to time-varying and position-dependent signal-to-noise
ratio (SNR).

In the context of highway monitoring, the vehicle speed
is almost constant in relatively short time periods and free
traffic conditions. The vehicle trajectories usually appear as
straight lines in the waterfall, where the spacing between the
trajectories depends on the number of lanes and the traffic
levels, see Fig. 1 for an example. Line detection methods
represent a natural approach to obtain noise-resistant and
consistent vehicle detections from the sensor’s output.

Line detection has been traditionally performed by using
the Hough Transform and its variations [13]–[15] to detect
continuous straight edges in images, corresponding to physical
phenomena [16], semantic lines [17] and geological features
[18], among many others. The Hough transform has been
used for traffic monitoring based on DAS data in [19],
showing impressive performance in detecting trucks on the
highway. Nevertheless, the approach has several limitations, as
it struggles to detect low-intensity lines, close range vehicles
and overlapping lines.

In this paper, we propose a new method to iteratively detect
and estimate an unknown number of lines (representing vehicle
trajectories) in the waterfall. The algorithm uses the concept
of notch periodogram [20], [21] to iteratively remove the
contribution of the lines in the objective function, allowing us
to detect closely-spaced lines related to vehicles running next
to each other on the highway. The proposed method is tested
both on a synthetic and a real-world dataset, demonstrating
remarkable performance even in low-SNR scenarios.

The remainder of the paper is organised as follows: Section
II describes the proposed detector; Section III shows results
and Section IV summarises our conclusions.

II. NOTCHED POWER DETECTOR

A. DAS system model
We model a DAS system with C sensing units, also called

channels, along a fibre sensor of length L. Each channel
is indexed by c ∈ {1, 2, . . . , C} and is located at a fixed
position xc = dc, where d is the uniform distance between
the channels.

At each time step k, each channel measures a noisy acoustic
energy signal yc(k) that depends on the neighbouring vehicles,



23 23.6 24.2 24.9 25.5

Distance (km)

8

6

4

2

T
im

e
 (

m
in

)

(a) DAS output
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(b) Vehicle trajectories

Figure 1: Example of a waterfall of 500 channels containing 14 vehicle
trajectories. The x-axis represents the distance from the interrogator,
while the y-axis shows the time.

Figure 2: Schematic of the DAS system configuration in a traffic
monitoring scenario. Each channel measures a noisy acoustic energy
signal yi(t) from nearby vehicles.

as depicted in Fig. 2. The value of the signal yc(k) is
represented by the pixel with coordinates (k, c) in Fig. 1,
where each column shows a channel signal yi in a short
window of N time steps, and the entire image is the collection
of C channel signals. We process the N ×C acoustic energy
matrix Y = [y1, . . . ,yC ] expressed by the images of this kind,
and we refer to them as waterfalls.

We aim to estimate an unknown number of vehicles traject-
ories in the waterfall, i.e., the parameters of the lines appearing
in Y. Assume the waterfall contains M lines, each of which
is defined by a parameter θi ∈ A, where A is the parameter
space. The entire set of lines is described by the vector of
parameters θ = [θ1, . . . , θM ]T we aim to estimate.

We model the channel signal yc as a linear combination of
M + 1 basis functions gθ,c associated to the channel c and
defined by θ

yc= Gθ,cbc + wc (1)

where bc = [bc,0, bc,1, . . . , bc,M ]T is the unknown vector of
amplitudes and wc ∈ RN is a zero-mean additive white
Gaussian noise (AWGN) with covariance matrix σ2

cIN×N .
The matrix

Gθ,c = [1N×1,gθ1,c, . . . ,gθM ,c]. (2)

has dimensions N × (M + 1), and each column i > 1 is
a basis function gθi,c evaluated at each point in the time
series, and represents the line defined by the parameter θi
at the distance xc in the chosen time window. Each basis
function gθi,c is defined by setting value to 1 at time point

at which the modelled condition is defined, i.e., the vehicle
is present, and 0 at all other time points. For example, if the
vehicle is detected at the time instant k in the channel c, the
corresponding basis function gθi,c is the standard basis ek of
the N -dimensional space of the channel signals, where the
standard basis is defined such that yc =

∑N
i=1 yc(i)ei.

B. Maximum likelihood estimation

Suppose M is known for now and the unknown parameter
set is ΘM = {θ,b1:C , σ

2
1:C}, where b1:C and σ2

1:C are, re-
spectively, the sets of amplitudes and noise variances over the
C channels. Under the AWGN assumption, the log likelihood
can be written as [22]

LM (ΘM )

=

C∑
c=1

[
−N log σc −

‖yc −Gθ,cbc‖2

2σ2
c

]
+ CL (3)

where CL is a constant term. To compute the maximum
likelihood estimate (MLE), we seek to maximise (3) with
respect to the parameter set ΘM . Fixing θ and b1:C , we can
maximise with respect to σ2

c for each channel [22]

σ̂2
c =

1

N
‖yc −Gθ,cbc‖2 . (4)

Substituting (4) into (3), we obtain

max
θ,b1:C

LM (θ,b1:C , σ̂
2
1:C)

= min
θ,b1:C

C∑
c=1

N

2

[
log

(
1

2
‖yc −Gθ,cbc‖2

)
+ 1

]
(5)

= min
θ,b1:C

JM (θ,b1:C) (6)

where

JM (θ,b1:C) =

C∑
c=1

log
(
‖yc −Gθ,cbc‖2

)
(7)

=

C∑
c=1

JMc (θ,b1:C) (8)

is the sum of the log power of the estimated error signals
JMc (·).

For a given θ, we can minimise (7)-(8) with respect to b1:C

by solving the least log squares problem for each channel c

b̂c = (GT
θ,cGθ,c)

−1GT
θ,cyc. (9)

Substituting (9) in (7), we can rewrite the log likelihood, as a
function of theta, for the optimal b̂1:C and σ̂2

1:C as

SM (θ) = J(θ, b̂1:C) =

C∑
c=1

SMc (θ) (10)

where the log power of the estimated error signal is

SMc (θ) = log
(∥∥yc −Gθ,c(GT

θ,cGθ,c)
−1GT

θ,cyc
∥∥2
)
. (11)



Introducing the projection operators onto the span(Gθ,c) and
its orthogonal complement, respectively [23]

P
‖
Gθ,c

= Gθ,c(G
T
θ,cGθ,c)

−1GT
θ,c (12)

P⊥Gθ,c
= I −P

‖
Gθ,c

= I −Gθ,c(G
T
θ,cGθ,c)

−1GT
θ,c (13)

, we can rewrite the log power of the estimated error signal
in (11) as

SMc (θ) = log

(∥∥∥yc −P
‖
Gθ,c

yc

∥∥∥2
)
. (14)

Thus, the parameter estimation is performed by minimising
(10) over the parameter space AM . Each channel signal yc
contributes equally to the estimation of the global parameter
θ, which represents a set of lines spanning through the C
channels in the waterfall Y.

C. Notched power
Assuming M is unknown, we proceed to minimise (10)

iteratively. Suppose the vector of parameters θv = [θ1, . . . θr],
r < M , is known from previous estimations; we refer to
θv as the notch vector. Assuming A is a finite alphabet of
parameters, we aim to estimate the unknown parameter θi ∈ A
such that the estimated vector of parameters is the augmented
set θa= [θv, θi].

The ML criterion for a model with r+1 parameters is given
by [20]

Sr+1(θa) =

C∑
c=1

log

(∥∥∥yc −P
‖
Gθa,c

yc

∥∥∥2
)

(15)

=

C∑
c=1

log (expSrc (θv)− Pv,c(θi;θv)) (16)

where
Pv,c(θi;θv) =

∥∥∥P‖g̃θi,cyc∥∥∥2

(17)

is the notched power of the channel signal yc with respect
to the notch vector θv . The derivation of (16) is available in
the appendix. The term P

‖
g̃θi,c

is the projector onto the space
defined by the residual vector of gθi,c onto span(Gθv,c)

g̃θi,c = P⊥Gθv,c
gθi,c (18)

such that g̃θi,c ⊥ span(Gθv,c). We define the objective
function F r+1(·) as

F r+1(θa) = −S
r+1(θa)

dT (θi)
(19)

where dT (θi) is the number of channels in which the trajectory
θi is supposed to exist. The parameter estimation is performed
by maximising the objective function

arg max
θi∈A

F r+1(θa) = arg max
θi∈A

− Sr+1(θa)

dT (θi)
= θ̂i . (20)

If we assume that θv is the optimal value of of the previous
estimations, the lines corresponding to the parameters θv are
notched, and thus contribute nothing to the notched power.
Note that the proposed approach performs an estimation of
the global of parameters θ by modelling and notching each
channel signal independently.

(a) Iteration 1

(b) Iteration 2

(c) Iteration 3

(d) Iteration 4

Figure 3: Evolution of the notched power throughout the estimation
process. The red markers represent the estimated parameters in the
alphabet A at each iteration.

D. Iterative parameter estimation

The log power of the estimated error signal (16) can be
iteratively computed on the subset of parameters defined by
θv to detect the trajectories in the waterfall, as detailed in Alg.
1.

Assuming the average speed of the vehicles on the highway
is known, we can efficiently compute the channel notched
power (17) by defining Gθ,c on a finite alphabet A of
candidate parameters, such that θi ∈ A. The local maxima
of the objective function (20) are then used to estimate a set
of candidate parameters θ̃i.

Fig. 3 shows the notched power evaluated at each iteration in
the alphabet A. The parameters estimated at the first iteration
are represented by red markers in Fig. 3a, and their contribu-
tion to the notched power is zero at second iteration, as shown
in Fig. 3b. The same applies to the subsequent iterations, until
the objective function F r+1(·) shows no relevant peaks. The
algorithm terminates when the value of one of the detected
peaks is below the threshold ΓP , which is defined on the
mean value of the objective function F r+1(·) at the current
estimation.

The local maxima of the objective function are due to the
sum of the contributions from several basis functions, with
peaks related mainly to noise or partially overlapping tra-
jectories. We consider the subset of the candidate parameters
θ̄i ⊂ θ̃i that gives the greatest contribution in the objective
function by the following procedure.

To reduce the number of false target detections, it is
convenient to cluster the candidate parameters θ̃i based on
their mutual orthogonality, such that each of the basis function
gθi,c of a cluster is approximately orthogonal to the basis
functions belonging to the other clusters. The preliminary set
of estimated parameters θ̄i at the current iteration is defined
by the maximum of the objective function evaluated on the
subset of parameters in each cluster.

As the evaluation of the objective function is computa-
tionally expensive, we estimate the parameters in two steps
based on different alphabets. The first step evaluates the



Algorithm 1 Notched power detector
Input: {y,A, αi} Output: {θa}

1: θa ← {}
2: r = 0
3: P

‖
c ← 0N×N , ∀c ∈ {1, 2, . . . , C}

4: do
5: θv ← θa
6: for all channels c ∈ {1, 2, . . . , C} do
7: for all parameters θi ∈ A do
8: g̃θi,c ← P⊥Gθv,c

gθi,c

9: Pv,c(θi;θv)←
∥∥∥P‖g̃θi,cyc∥∥∥2

10: end for
11: end for
12: Sr+1([θv, θi])←

∑C
c=1 log (expSrc (θv)− Pv,c(θi;θv))

13: F r+1 ← −Sr+1([θv, θi])/dT (θi)
14: if F r+1([θv, θi]) < ΓP then
15: θ̄i ← local maxima of F r+1([θv, θi])
16: {θ̄i,q}q∈{1,...,Q} ← Q clusters of θ̄i
17: for all clusters q ∈ {1, . . . , Q} do
18: θ̄i,q ← arg maxθi∈θ̃i,q F

r+1([θv, θi])

19: θ̂i ← arg maxθi∈Bθ̄i,q
F r+1([θv, θi])

20: end for
21: for all parameters θi ∈ θ̂i do
22: for all channels c ∈ {1, 2, . . . , C} do
23: P

‖
c = P

‖
c + P

‖
g̃
θ̂i,c

24: end for
25: end for
26: θa ← {θv, θ̂i}
27: r ← r + size(θ̂i)
28: end if
29: while F r+1([θv, θi]) > ΓP

objective function on a relatively sparse alphabet A, and
allows us to efficiently obtain a preliminary set of estimated
parameters θ̄i. The second step refines the estimation of each
parameter θ̄i ∈ θ̄i by recomputing the objective function on a
denser dataset Bθ̄i centred on θ̄i, such that Bθ̄i ∩ A = {θ̄i}.
This procedure improves the accuracy of the estimations and
reduces the false target error, as the notched power manages to
suppress the components of the detected lines with a greater
precision.

The resulting parameters θ̂i are used to define the basis
functions g̃θ̂i,c as in (18) and extend the space of the detected
lines. Note that it is possible to model the width wi of the
detected lines by defining the associated basis function as
a linear combination of the standard basis ej of the N -
dimensional space of the channel signals

gθi,c =

kc+
wi−1

2∑
j=kc−

wi−1
2

ej (21)

where kc ∈ [1, N ] is the time instant at which the line is
detected in the channel c and wi is odd.
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(d) Hough transform detec-
tions

Figure 4: Synthetic waterfall with SNRc = −5 dB.

Figure 5: Performance comparison between vehicle detector based on
notched power (solid lines) and Hough transform (dotted lines), averaged
on 100 synthetic waterfalls for several noise levels. The coloured areas
represent the standard deviation from the mean value.



III. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed method both on a
synthetic and a real-world dataset. In both cases, we report the
performance by means of the metric for sets of trajectories [24]
with parameters c = 5 m, p = 1, and γ = 1. The trajectory
metric error measures localisation error, missed and false target
errors, and track switching. The Matlab implementation of the
proposed algorithm has been tested on a laptop equipped with
Intel (R) Core(TM) i7-8850H @ 2.60 GHz and 16 GB of
memory.

1) Evaluation on a synthetic dataset: First, we evaluate the
performance of the proposed vehicle detector on a dataset of
100 synthetic waterfalls with C = 100 channels and N =
150 data points. We assume that we know that each waterfall
contains the trajectories of M = 10 vehicles in both directions
of travel, and the vehicle speed in each direction is assigned
according to a Gaussian distribution of mean v1 = 50 km/h or
v2 = 90 km/h and standard deviation σ1 = σ2 = 5 km/h. The
finite alphabet A is the union of two sub-alphabets A1 and
A2 centred on v1 and v2, respectively; each sub-alphabet Ai
represents lines of slope m ∈ {vi− 7, vi− 6, . . . , vi + 7} and
offset bL ∈ [1, N ]. Each trajectory i has a signal power Pi ∈
[2, 5], and the SNR in each channel is assigned according to
a Gaussian distribution of mean SNRc and standard deviation
σw = 5 dB.

Fig. 4a shows an example of synthetic waterfall for SNRc =
−5 dB, and the related ground truth is depicted in Fig. 4b. The
scenario is designed to provide closely-spaced lines repres-
enting vehicles running next to each other on the highway,
potentially on different lanes. The lines resulting from the
parameters estimation are shown in Fig. 4c, where the colour
map reflects the order of detection, and it is irrelevant in this
context.

We compared the proposed method with a detector based
on the Hough transform [13] and Roberts cross edge detector
[25]. The threshold ΓE of the edge detector has been set
to ΓE = 0.12, while the spacing of Hough transform bins
was dH = 0.7. Both ΓE and dH have been determined by
minimising the false and missed target errors for all the noise
levels evaluated in the simulation. We consider the peaks of
the Hough transform in a range θH ∈ [65, 85] degrees with
resolution dθH = 0.5 degrees; the selected range expresses
the average speed of the vehicles on the highway, which is
supposed to be known. The peaks are selected among those
exceeding the 30% of the maximum of the Hough transform,
and suppression neighbourhoods of dimensions 11×11 around
each identified peak have been set to avoid double detections
in the Hough transform matrix.

The mean total trajectory metric and its standard deviation
is reported in red in Fig. 5 for both the notched power and
Hough transform detectors, along with its components. Note
that the track switching error is not displayed because it is
negligible. The total error of the Hough transform detector
has a trend similar to the total notched power detector error,
but it results considerably larger for all the noise levels. The
error composition is quite different among the detectors, as the
main contribution for the Hough transform detector is due to

Table I: Performance comparison between notched power detector and
Hough transform detector based on the real dataset.

Trajectory metric error

Total Localization False
Target

Missed
Target

Mean Notched power 15.62 6.52 5.16 3.94
Hough transform 20.99 6.65 7.69 6.65

Std.
deviation

Notched power 6.34 2.22 3.48 2.39
Hough transform 8.02 2.82 4.1 3.02

the localisation error, while the notched power detector shows
a very low error of this kind for all the noise levels evaluated.
False and missed target errors appear to be highly correlated
for both the detectors, with particularly low values in the range
SNRc ∈ [−5, 5] dB. Again, the notched power detector shows
better performance than the Hough transform detector for all
the noise levels. The proposed detector runs for an average
number of 2.67 iterations, and the mean execution time per
iteration is 7.52 s.

2) Evaluation on a real dataset: We process data from
a DAS system deployed along a 28-km long highway. The
system provides 4431 channel signals spaced of 6.38 m at a
data-rate of 4 Hz. We consider a dataset of 36 waterfalls with
C = 256 channels and N = 128 data points. Each waterfall
contains an average of 9 trajectories and it is recoded by the
system on one of the two different sets of channels selected for
this evaluation. Fig. 6a and 6b show an example of waterfall
in the dataset, where the ground truth in Fig. 6b has been
manually generated by visual inspection.

We have adjusted the parameters of the notched detector
to deal with the real data set. The alphabet A of the notched
power detector has been defined on lines with slopes corres-
ponding with the speed range v ∈ ±[55, 125] km/h, and the
range of θH has been set to θH ∈ ±[15, 45]. For the Hough
transform detector, the threshold ΓE of the edge detector has
been lowered to ΓE = 0.09 to allow more points to be used
as input of the transform. An example of the edge detector’s
output is reported in Fig. 6d.

To reduce the likelihood of multiple detections of the same
line, we set a constant line width to wi = 23 for the
notched power detector, and we increased the suppression
neighbourhoods up to 79×29 in the Hough transform matrix.

Tab. I compares the performance of the two detectors,
with the notched power detector outperforming the Hough
transform detector in terms of total error and in its single com-
ponents. As in the previous experiment, the track switching
error is not reported because it is negligible. The error is higher
compared to the synthetic dataset due to a more complex
noise pattern and the non-uniform width of the trajectories.
Moreover, the wider range of possible slopes increases the
chance of multiple detections of the same trajectory for both
the detectors. An example of this type can be observed in Fig.
6e, where one of the trajectories has been detected three times,
each time with a different slope.

IV. CONCLUSIONS

In this paper, we have presented a novel approach for vehicle
detection suitable for DAS data. The method is based on
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Figure 6: Example of trajectory detection in the real dataset.

an iterative procedure that removes the contribution of the
detected vehicle’s trajectories in the notched power, which
is evaluated on a finite alphabet of parameters. We have
described a procedure to estimate multiple parameters from
a single evaluation of the notched power, refining each estim-
ation on a denser alphabet. The comparison of the algorithm
performance with a detector based on the Hough transform
shows greater accuracy in terms of localisation, false targets
and missed targets with both the synthetic and the real datasets.

Although the execution time of the notched power detector
is considerably higher than the Hough transform detector, the
proposed algorithm managed to detect vehicles in real-time
in both datasets, assuming a data rate of 4 Hz. Nevertheless,
future work will focus on improving computational time and
performance by estimating the width of the lines and refining
the criteria to determine the number of trajectories.

NOTCHED POWER

Assume the notch vector θv of r parameters estimated in
the previous iterations, and consider the augmented set θa =
[θv, θi] with the correspondent basis function Gθa,c in the
channel c. Let g̃θi,c = P⊥Gθv,c

gθi,c be the residual vector,
s.t. g̃θi,c⊥span(Gθi,c). The projection matrix of Gθa,c can be
decomposed as

P
‖
Gθa,c

= P
‖
Gθv,c

+ g̃θi,c(g̃
T
θi,cg̃θi,c)

−1g̃Tθi,c (22)

Consider the notch power of the channel signal yc with respect
to the parameter θv

Src (θv) = log

(∥∥∥yc −P
‖
Gθv,c

yc

∥∥∥2
)

(23)

= log

(
‖yc‖2 −

∥∥∥P‖Gθv,c
yc

∥∥∥2
)
. (24)

Inserting (22) in (24), we can rewrite the sum of the log power
of the estimated error signals Sr+1(θa). Noting that the two
terms in (22) are projectors associated with two orthogonal
subspaces [20], we have

Sr+1(θa) =

C∑
c=1

log

(
‖yc‖2 −

∥∥∥P‖Gθv,c
yc

∥∥∥2

(25)

−
∥∥g̃θi,c(g̃Tθi,cg̃θi,c)−1g̃Tθi,cyc

∥∥2
)

(26)

=

C∑
c=1

log

(
expSrc (θv)−

∥∥∥P‖g̃θi,cyc∥∥∥2
)
. (27)
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