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a b s t r a c t 

The idea of colour opponency maintains that colour vision arises through the comparison of two chromatic mech- 

anisms, red versus green and yellow versus blue. The four unique hues, red, green, blue, and yellow, are assumed 

to appear at the null points of these the two chromatic systems. Here we hypothesise that, if unique hues represent 

a tractable cortical state, they should elicit more robust activity compared to other, non-unique hues. We use a 

spatiotemporal decoding approach to report that electroencephalographic (EEG) responses carry robust informa- 

tion about the tested isoluminant unique hues within a 100–350 ms window from stimulus onset. Decoding is 

possible in both passive and active viewing tasks, but is compromised when concurrent high luminance contrast is 

added to the colour signals. For large hue-differences, the efficiency of hue decoding can be predicted by mutual 

distance in a nominally uniform perceptual colour space. However, for small perceptual neighbourhoods around 

unique hues, the encoding space shows pivotal non-uniformities which suggest that anisotropies in neurometric 

hue-spaces may reflect perceptual unique hues. 
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. Introduction 

The idea of colour opponency maintains that colour vision arises

hrough the comparison of two chromatic mechanisms, red versus green

RG) and blue versus yellow (BY). The four unique hues, red, green,

lue, and yellow, are assumed to appear at the null points of these the

wo chromatic systems ( De Valois and De Valois, 1993 ; Hering, 1920 ;

ameson and Hurvich, 1964 ). Colour vision starts in the retina, where

ight is absorbed in receptors (long-, medium, and short-wavelength sen-

itive cone receptors – L, M, S) and small bistratified ganglion cells that

eceive S-( M + L ) cone input have been postulated to be the retinal ori-

in of the BY channel, while midget ganglion cells that take the differ-

nces between the L and M cone output were believed to be the retinal

rigin of the RG channel ( Lee et al., 2010 ). However, it has now been

onfirmed that the chromatic tuning of behaviourally characterised op-

onent channels differs from these early cone-opponent mechanisms,

ence another transformation of chromatic signals must take place be-

ween the Lateral Geniculate Nucleus (LGN) and the primary or ex-
✰ Abbreviated title : Decoding unique hues from EEG signals 
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rastriate visual cortex ( De Valois and De Valois, 1993 ; Wuerger et al.,

005 ). 

While some neuroimaging studies have attempted to identify a

eural basis for unique hues, their results remain controversial.

toughton and Conway (2008) reported neuronal clusters which were

referentially tuned to unique hues in the posterior inferior temporal

PIT) cortex of macaques. However, their findings have been challenged

n the grounds that the study was not fully controlled for low-level

ifferences in neuronal tuning, which could provide a more parsimo-

ious explanation for their results ( Bohon et al., 2016 ; Conway and

toughton, 2009 ; Mollon, 2009 ). Similarly Forder et al. (2017a ) re-

orted that event-related potentials (ERPs) for unique hues show de-

reased latencies compared to non-unique hues. But the reported differ-

nce in peak latencies could, once again, have stemmed from differen-

ial activation of low-level, cone-opponent processes, to which ERPs are

articularly sensitive ( Knoblauch et al., 1998 ; Rabin et al., 1994 ). Thus,

he neural basis of these cortical hue-opponent chromatic systems, and

onsequently, the unique hues, still remains an open problem. 
vic). 
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One of the major reasons for the failure to address this issue has been

he fact that neural activity is rich in coding possibilities which compli-

ate our understanding of the relationship between external stimuli and

he evoked response ( Jazayeri and Afraz, 2017 ; Johnson, 2000 ). This is

articularly true if potential low-level confounds can lead to a stronger,

verlapping signal. This seems to be the case for unique hues, whose

ncoding is bound to overlap with, and be influenced by, the encoding

f luminance contrast (for human fMRI see Goddard and Mullen, 2020 ;

or macaque neurophysiology see Namima et al., 2014 ; for human EEG

ee Nunez et al., 2017 ). Ritchie et al. (2019) suggest that an ideal way to

tilise neural decoding is to reconstruct an activation space from mul-

ivariate neural data and make psychological inferences by assessing

hether such activation spaces correspond to psychological constructs.

ecent studies have begun to apply this approach to challenges in colour

euroscience such as identifying the neural representations that under-

ie colour geometries ( Rosenthal et al., 2021 ). 

We hypothesise that, if there is indeed a distinct and discernible neu-

al signature for unique hues, it should be reflected in the structure of

he neurometric hue-representational space described by EEG signals.

e used a decoding paradigm to test this hypothesis in two stages. First,

e demonstrate that under isoluminant conditions, hue information can

ndeed be extracted from EEG signals, and that crucially, the encoding

or unique hues is more robust than non-unique hues. To establish that

ur predictions generalise beyond a single decoding context (stimulus

r task-wise), we test our decoding prediction using both active and

assive viewing tasks. Second, we show that the structure of the neuro-

etric space which encodes hue is distorted in the local neighbourhood

f unique hue representations – suggesting an anisotropic mapping be-

ween perceptual colour and its cortical representation. Taken together,

ur findings suggest that the neural basis of perceptual unique hues may

eside in a set of stable fixed-points of a spatiotemporal population code

or colour representations in the cortex. 

. Methods 

.1. Participants 

In Experiment 1, twenty participants (16 females, 4 males) com-

leted the study, ranging in age from 18 to 38 y.o. a. (mean age 21

.o.a). In Experiment 2, 16 participants (all female) completed the study,

anging in age 19 – 32 years old (mean age 22 years). All participants

eported normal or corrected-to-normal visual acuity, In Experiment 1,

heir colour vision was verified using the Trivector Cambridge Colour

est ( Regan et al., 1994 ). In Experiment 2, we relied on the City Uni-

ersity Colour Vision Test (Fletcher, 1975). Participants gave written

nformed consent and were reimbursed for their effort and time. The

tudy was approved by the ethics committee of the School of Psychol-

gy, University of Aberdeen, and was in accordance with the Declaration

f Helsinki. 

.2. Stimuli 

The experiments were programmed using the CRS Toolbox and color

oolbox (CRS, UK) for MATLAB (Mathworks, USA). In Experiment 1,

timuli were rendered on a 21-inch Viewsonic P227F CRT Monitor

hich was placed 70 cm away from the participant. The monitor was

ontrolled through a Visage system (CRS, UK) and calibrated using Col-

rCAL2 (CRS, UK). Colours were generated on the basis of measure-

ents taken with a SpectroCAL (CRS, UK). Participants gave their re-

ponses using a Cedrus R530 response box (San Pedro, USA). In Exper-

ment 2, colours were presented on a Display ++ (CRS, UK) device, and

esponses were recorded using a CT-6 button box (CRS, UK). 

Different sets of colours were used in the two experiments. In Exper-

ment 1, stimulus colours were selected from a large, normative dataset

f unique hues ( Wuerger and Xiao, 2015 ). Fig. 1 B shows the coordi-

ates of the stimuli in CIE 1976 Uniform Colour Space (CIE 1976 UCS;
2 
ee Schanda, 2016 ), while Supplementary Table S1 lists the coordinates

n cone-activation space. The hue angles for unique red (UR) and unique

reen (UG) stimuli corresponded to mean values in the dataset – in CIE

976 UCS, the angles were 14.4° and 133.4° for UR and UG respec-

ively. Orange and turquoise stimuli were chosen such that they bisected

he hue angles between the two adjacent unique hues. Orange (hue an-

le 41.5°) was the intermediate hue between UR and unique yellow,

nd turquoise (hue angle 185.1°) was the intermediate hue between UG

nd unique blue. While there is indeed variation in individual unique

ue settings, the choice of stimuli in this experiment was motivated by

he fact that intra-observer variability in unique hues is consistently re-

orted to be much lower than inter-observer variability. For instance,

iao et al. (2011) report intra-observer variability to be about half the

nter-observer variability, while Hinks et al. (2007) report this ratio to be

bout 0.15. Meanwhile, the intermediate hues were chosen to fall as far

way as possible from normative unique hue values (i.e., intermediate to

hem). Thus, the chosen stimulus colours were suitable for investigating

symmetries in the neural processing of hue for large colour distances.

he perceptual uniformity of the CIE 1976 UCS colour space allows us to

uantify the distances between pairs of stimulus colours. Here, they are:

7.1° between red and orange, 51.7° between green and turquoise, 91.9°

etween orange and green, 119° between red and green, 170.7° between

ed and turquoise and 143.6° between orange and turquoise. Thus, av-

rage distance from the two neighbouring colours is: 98.9° for red, 59.5°

or orange, 71.8° for green and 111.2° for turquoise. Three stimulus lu-

inance levels were used: nominal isoluminance (24 cd/m 

2 ), 45% We-

er contrast (34.8 cd/m 

2 ), and 90% Weber contrast (45.6 cd/m 

2 ). We

sed the same CIE 1976 UCS coordinates for a given colour at all lu-

inance values, ensuring that the colours at each luminance level were

qually saturated in the CIE 1976 UCS plane. The background had the

ollowing CIE 1931 xyY coordinates ( Smith and Guild, 1931 ): 0.3127,

.3290, 24 𝑐𝑑∕ 𝑚 

2 . 

In Experiement 2, stimuli were based on each participant’s individ-

al settings for two unique hues (yellow and green) and two interme-

iate hues (orange and turquoise). For a given observer, the final set

f 12 stimulus colours consisted of the average individual setting for

ach hue as well as hues situated 10° to the left and right of these in-

ividual settings in CIELCh colour space ( Fig. 1 C; see Supplementary

igure S 1 for the coordinates in cone-activation space). In the EEG ex-

eriment, these hues were presented at a Lightness value of 45 and a

hroma value of 25. The just noticeable difference (JND) in this region

f the CIELAB space is ∼ 2 . 3 Δ𝐸 𝐿𝐴𝐵 ( CIE, 2004 ; Fairchild, 2013 ). At this

evel of chroma, a difference of 10° in hue is equivalent to ∼ 4 . 36 Δ𝐸 𝐿𝐴𝐵 ,

.e., ∼ 1 . 89 JNDs. Thus, within each triplet of neighbouring colours, the

ues were discriminable but remained highly similar to each other. With

hese colour values, we effectively had four clusters of colours corre-

ponding to the hues orange, yellow, green, and turquoise for each par-

icipant, with each cluster consisting of the individual setting for that

ue, along with two flanking colours ±10 ◦ from the setting (e.g., unique

ellow, a yellow 10° counter-clockwise and a yellow 10° clockwise). All

olours were nominally isoluminant with the background (CIE 1931 xyY

oordinates: 0.3127, 0.3290, 22.93 𝑐𝑑∕ 𝑚 

2 ). 

.3. Procedure 

EEG data was recorded during a shape discrimination task. The pur-

ose of the task was to engage participants’ attention in a stimulus di-

ension orthogonal to colour - i.e., shape. The stimuli consisted of uni-

ormly coloured shapes shown against a grey background. Each trial

egan with the appearance of a fixation cross, followed by a 2-degree

ircular stimulus (passive viewing event) which changed shape (shape

hange event) into either a diamond or a square ( Fig. 1 ). The passive

iewing event occurred 700 ± 200 ms after the appearance of the fixa-

ion cross, and the shape change event occurred 800–1500 ms after the

assive viewing event. 
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Fig. 1. Experimental design. A. Trial design. Each 

trial started with the appearance of a fixation cross, 

which was followed by the presentation of a circu- 

lar uniformly-coloured stimulus at a random offset of 

700 ± 200 ms. At a random time-point 800–1500 ms af- 

ter stimulus onset, the shape of the stimulus changed 

from circular to either square or diamond. Participants 

were instructed to discriminate the final shape via a 

button press as quickly and as accurately as they could. 

Each trial ended 2 s after stimulus onset. Two events 

were defined during each trial: a passive viewing event 

defined by the appearance of the stimulus, and a shape 

change event defined by the change in stimulus shape. 

B. Stimulus hues for Experiment 1. The stimuli were 

one of four hues: red (R), orange (O), green (G) or 

Turquoise (T), shown as coloured discs of the corre- 

sponding hue. The abscissa ( 𝒖 ′) and the ordinate ( 𝒗 ′) 

in the plot denote coordinates in the CIE 1976 uniform 

chromaticity space. The orientations of mean unique 

hues from Xiao et al. (2011) are also shown using 

translucent lines of the corresponding colour (unique 

red: red line, unique yellow: yellow line, etc.) passing 

through the grey background (grey disc). The R and 

G stimuli were unique hues, while the O and T stim- 

uli were chosen such that their hue angle bisected the 

nearest unique hues (O bisects unique red and unique 

yellow; T bisects unique green and unique blue). C. 

Stimuli for Experiment 2. In a psychophysical exper- 

iment before the EEG recordings, the observer settings 

for four hues (orange: O, yellow: Y, green: G, and 

turquoise: T) were measured using the method of ad- 

justment (see Methods ). Each observer was then pre- 

sented with the mean of their respective settings as 

well as hues 10° clockwise and anti-clockwise from 

their settings. Each observer’s settings ( = ) are shown 

as coloured discs of the corresponding hue (orange disc for O, yellow disc for Y, etc.). The clockwise rotations (-) are shown as darker discs of the corresponding 

hue, while the anticlockwise rotations ( + ) are shown as lighter discs. The average settings for each stimulus condition are shown as large diamond symbols of the 

corresponding colour. The background is shown as a grey disc. Like B, the CIE 1976 uniform chromaticity space is used. 
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Participants identified the final shape of the stimulus using the left

r the right button on a button box. The assignment of button to the

arget shape was counterbalanced between participants. The conditions

ere randomly intermixed, with a different order for each participant.

he entire experiment was conducted in a sound-attenuated, electrically

hielded chamber, with the screen being the only source of light. In

ddition to EEG recordings (described below), two other task-related

ariables were measured – task accuracy and reaction time. For each

olour and shape combination, we had 30 trials. As diamond and square

hape-change trials were subsequently collapsed together, this resulted

n 60 trials per colour and 720 trials in total, presented in random order

nd divided into 10 blocks. This was the same for both experiments. In

ddition, Experiment 1 was preceded by a practice of 24 trials, while

xperiment 2 was preceded by a practice of 16 trials. The EEG task took

pproximately 50 min to complete. 

After the completion of the EEG experiment, participants rated each

olour on a 9-point Likert scale for the representativeness of its cate-

ory. Participants were asked to imagine the perfect representative for

 colour category and rate how representative a sample was of that

ategory, with 1 being the least representative and 9 being the most

epresentative. All colours were displayed simultaneously on the screen

uring this procedure and remained on the screen until the participants

ompleted the task. Colours were presented on the computer screen as

 set of 4 rows of squares that showed the three luminance (Experiment

) or hue (Experiment 2) values for that colour. Participants completed

he task in approximately 5 min. Note that these ratings were included

o provide data on the proximity of each stimulus colour to its focal

olour, i.e., the best example of its category and thus did not relate to

ts unique hue status. We used the ratings to conduct a control analysis
3 
o understand if the neural representations identified through informa-

ion decoding related in any way to colour categories (for previous work

n colour categories and EEG, see Clifford et al., 2010 ; Fonteneau and

avidoff, 2007 ; Forder et al., 2017b ; Holmes et al., 2009 ; Thierry et al.,

009 ). 

There were also two additional measures, specific to each experi-

ent. In Experiment 1, for each participant, heterochromatic flicker

hotometry (HCFP) at 20 Hz ( Walsh, 1958 ) was used to establish the

eparture from isoluminance for all colours. The task required the par-

icipant to adjust the luminance of the colour until perceived flicker was

inimised. Participants performed 8 trials per colour – the step size was

.5 cd/m2 and the flicker started from a randomly determined point

hat could be five steps above or below nominal isoluminance. These

easurements were conducted to evaluate any individual differences

n the amount of luminance contrast effectively present in nominally

soluminant stimuli. Rabin et al. (1994) demonstrate that departures

rom isoluminance need to be substantial to influence chromatic visual

voked potentials. Collecting HCFP data enabled us to verify that small

epartures from effective luminance did not significantly influence the

fficiency of colour decoding. 

Experiment 2 began with a hue adjustment task, in which partici-

ants made their individual hue settings for two unique hues (yellow and

reen) and two intermediate, non-unique hues (orange and turquoise).

articipants performed one block of eight trials for each hue. The order

f blocks (yellow, green, orange, turquoise) was randomized for each

articipant. Colours were defined in CIE LCh colour space to have the

ame chroma (C = 25) and lightness ( L = 55). Initial hue angles were ran-

omised to the following values: 90°+ /- 12° for yellow, 180°+ /- 12° for

reen, 45°+ /- 12° for orange and 225°+ /- 12° for turquoise. A coloured
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(

° circle was shown in the middle of the computer screen. Participants

sed the right and left buttons to change the hue along the CIE LCh hue

ircle in steps of 2° clockwise and counter-clockwise, respectively. Once

he participants were happy with their setting, they completed the ad-

ustment by pressing the top button. The task took approximately 10 min

o complete. The first 6 participants performed the task without context.

or the following 13 participants, we also presented a colour palette con-

isting of 19 squares 1° in size that ranged + /- 45° around the initial hue

alue, in steps of 5° of hue angle, positioned at 8.22° above the central

timulus. The colour palette provided context for the hue setting task.

 between-subject ANOVA showed no difference in unique hue settings

ith and without context (F(1,14) = 0.23; p = .64, 𝜂p 2 = 0.02). 

In total, the experiments lasted between two and a half and three

ours, including the time to set up and remove the EEG electrodes. 

.4. EEG recording and pre-processing 

Continuous brain activity was recorded from 64 scalp locations using

ctive Ag-AgCl electrodes and 4 ocular channels (providing VEOG and

EOG) connected to a BioSemi Active-Two amplifier system (BioSemi,

msterdam, The Netherlands) at a sampling rate of 256 Hz. Data pro-

essing was performed using EEGLAB ( Delorme and Makeig, 2004 ) for

atlab (Mathworks, UK). Epochs lasting 900 ms were extracted: 200 ms

efore the relevant event (stimulus onset or shape change) and 700 ms

fterwards. Data was low pass filtered at 40 Hz using a sinc FIR filter

ith a Kaiser window whose beta parameter was set to 5.653 (this is

imilar to a Henning window; Widmann et al., 2015 ). All trials with in-

orrect answers were excluded prior to the analysis. artefact removal

as then performed by using the FASTER toolbox ( Nolan et al., 2010 ),

he ADJUST toolbox ( Mognon et al., 2011 ), and self-written procedures

n MATLAB. FASTER is an automated procedure that detects contam-

nated trials and noisy channels that need interpolation (either in the

ntire EEG recording or on any single trials) by calculating statistical pa-

ameters of the data and using a z - score of ± 3 as the metric that defined

ontaminated data. ADJUST is an automated procedure that operates on

aps resulting from independent component analysis of EEG data, using

roperties of these components to label them as eye blinks, vertical or

orizontal eye movements, or channel discontinuities so that they can

e subtracted from the recording. We first rejected trials with global

rtifacts using FASTER, then ran an independent component analysis

nd applied ADJUST to the obtained decompositions, and finally, con-

ucted channel interpolation with FASTER. In addition, any trials with

ye movements were rejected based on ± 25 𝜇V deviations from the hor-

zontal electrooculogram in the uncorrected data. Blinks were rejected

sing a thresholding procedure similar to FASTER ( Junghöfer et al.,

000 ). 

Incorrect and rejected trials amounted to a very small proportion of

he data – in Experiment 1, between 1% and 13% of total trials, and in

xperiment 2, between 3% and 17% of total trials. 

.5. EEG classification 

The classification of EEG signals was set up as a set of time-windowed

rror-correcting output codes models (tECOC) operating on 20 ms snip-

ets of the signals (other reasonable time-windows yielded similar re-

ults, see Supplementary Figure S 2 A ) from the occipital electrodes (the

ntire set of 64 electrodes yielded similar results, see Supplementary

igure S 2 B ). Linear discriminant analysis (LDA) classifiers were em-

loyed as learning units due to their relative simplicity and computa-

ional efficiency. Denoting the EEG activity as a random multivariate

ariable 𝑿 , and the stimulus label (colour and/or luminance) by the

andom variable 𝑌 (where realisations of 𝑌 are drawn from the set of

ll possible labels denoted 𝐿 ), the probability that the observed activity

 is elicited by the stimulus described by label 𝑦 is given by the Bayes
4 
ule: 

 ( 𝑌 = 𝑦 |𝑿 = 𝒙 ) = 

𝑃 ( 𝑿 = 𝒙 |𝑌 = 𝑦 ) 𝑃 ( 𝑌 = 𝑦 ) ∑
𝑙∈𝐿 𝑃 ( 𝑿 = 𝒙 |𝑌 = 𝑙 ) 𝑃 ( 𝑌 = 𝑙 ) 

In LDA, the likelihood term is estimated by a multivariate Gaussian

ensity function: 

 ( 𝑿 = 𝒙 |𝑌 = 𝑦 ) = 

1 √ 

( 2 𝜋) 𝑁 𝑒 |Σ|
𝑒 
− 1 2 

(
𝒙 − 𝝁𝑦 

)𝑇 Σ−1 (𝒙 − 𝝁𝑦 )

Here, 𝑁 𝑒 is the number of electrodes, 𝝁𝑦 is the mean EEG activity

or the label 𝑦 , and Σ is the covariance matrix of the activity. The log-

osterior objective function 𝛿𝑦 ( 𝒙 ) for the label 𝑦 can thus be written as: 

𝑦 ( 𝒙 ) = log 𝑃 ( 𝑌 = 𝑦 ) − 

1 
2 
𝝁𝑇 
𝑦 
Σ−1 𝝁𝑦 + 𝒙 𝑇 Σ−1 𝝁𝑦 

Data for each observer was modelled separately, and the whole pro-

ess was repeated 10 times. In each repetition for any given observer,

he data were split into 5 folds containing roughly equal number of sam-

les for each label. Each of the five folds was then tested by training the

odel on the remaining 4 folds. The entire pipeline was repeated 10

imes for each observer. tECOC analysis gave us a time-series of con-

usion matrices (CMs) which characterise the model performance over

he duration of the trial (see Supplementary Video V1 ). At each time-

oint, while the diagonal of the CM gives a measure of model accu-

acy (true positive rate), the off-diagonal elements represent misclas-

ifications, which are crucial towards understanding the topography

nd information content of the representational space (see Represen-

ational Similarity Analysis below). 95% confidence intervals, reported

s shaded regions around the mean, were calculated using a two-tailed

on-parametric permutation test (1000 samples were drawn). In addi-

ion to reporting the intrinsic variability in model performance, a com-

arison with a randomised model was also made (shown as horizontal

ines under the relevant graphs). In each case, the randomised model

as trained using a shuffled set of labels to estimate empirical chance

erformance, and the performance of the randomised model was com-

ared with the actual model using a two-tailed randomisation test with

000 permutations. Furthermore, when considered on its own, the per-

ormance of the randomised models was found to be close to theoretical

hance level under the assumption of equilikelihood (see Supplementary

igure S 2 C ). 

.6. Representational similarity analysis 

The time-series of confusion matrices estimated by tECOC models

ere used to calculate pairwise dissimilarities between stimulus classes.

iven a confusion matrix 𝐶, where each element 𝑐 𝑖𝑗 denotes the prob-

bility of the stimulus type 𝑖 being labelled as 𝑗 by the model, first, a

abel-normalised matrix 𝑆 was constructed such that 𝑠 𝑖𝑗 = 𝑐 𝑖𝑗 ∕ 𝑐 𝑖𝑖 . This

symmetric measure was then used to calculate a symmetric dissimilar-

ty tensor ΔtECOC given by 

tECOC = 1 − max 
(
0 , 1 − 

√
𝑆 𝑆 

𝑇 

)
(1)

Here, the geometric mean across stimulus pairs is used to gen-

ralise distances in representational space ( Kaneshiro et al., 2015 ;

hepard, 1958 ). A similar estimation was also made for perceptual data

y considering pairwise absolute differences in CIELAB hue angles of the

timuli. These differences were used to estimate a perceptual dissimilar-

ty matrix by first normalising across the rows to get a local distance

easure which summed to one (similar to the normalisation over rows

f the confusion matrix, e.g., in Kaneshiro et al., 2015 ), and then calcu-

ating the symmetrical dissimilarity matrix using Eq. (1) . The perceptual

issimilarity was compared to Δ𝑡𝐸𝐶𝑂𝐶 using rank-correlation estimates

Kendall’s coefficient). 
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.7. Data and code availability 

The decoding scripts have been packaged as the tECOC toolbox,

hich has been made available as a public git repository here. The EEG

nd behavioural data from both experiments have been shared on the

pen Science Framework website here. 

. Results 

.1. Experiment 1: decoding unique and intermediate hues with and 

ithout luminance contrast 

We measured EEG signals in a cohort of 20 participants while they

iewed coloured stimuli (coloured shapes on a grey background) con-

isting of two unique hues – unique green and unique red, and two

on-unique hues – orange and turquoise. In each trial, a coloured disc

hanged shape to a diamond or a square at a random time-point 800–

500 ms after stimulus onset ( Fig. 1 ). The participant’s task was to

dentify the target shape. The stimuli were either isoluminant with

he background (0% luminance contrast), or presented at 45% or 90%

uminance-contrast. This gave us a dataset of EEG signals labelled both

n hue and luminance-contrast. 

The task was easy, resulting in high overall accuracy (95% ± 1% SE,

ee Supplementary Figure S 3 A ) and very fast responses (mean response

ime (RT) of 462 ± 15 ms, see Supplementary Figure S 3 B ). Response-

ime data were analysed with a 3 × 4 repeated measures ANOVA (3 lev-

ls of luminance contrast vs. 4 hues), which yielded a significant main

ffect of luminance contrast ( 𝐹 ( 1 . 49 , 28 . 28 ) = 67 . 56 , 𝑝 < 0 . 001 , 𝜇𝑝 2 =
 . 78 ) and interaction with hue ( 𝐹 ( 6 , 114 ) = 3 . 56 , 𝑝 = 0 . 003 , 𝜇𝑝 2 = 0 . 16 )
hue itself did not have an effect ( 𝐹 ( 1 . 88 , 35 . 79 ) = 2 . 93 , 𝑝 = 0 . 07 ). We

econstructed the interaction by performing separate repeated mea-

ures ANOVAs at each luminance contrast: while at isoluminance there

as a significant effect ( 𝐹 ( 3 , 57 ) = 6 . 19 , 𝑝 = 0 . 001 , 𝜇𝑝 2 = 0 . 25 ) driven

y slower RTs for green (vs. red 𝑃 = 0 . 019 ; vs orange 𝑃 = 0 . 008 , vs.

urquoise 𝑃 = 0 . 003 ), there were no differences at 45% luminance con-

rast ( 𝑝 = 0 . 16 ) or at 90% luminance contrast ( 𝑝 = 0 . 11 ). 
After the completion of the EEG experiment, participants rated each

olour on a 9-point Likert scale for its representativeness of its cate-

ory (red, orange, green or turquoise). The average ratings and their

Es were as follows (see Supplementary Figure S 3 C ): isoluminant red

.35 ± 0.48; red at 45% luminance 2.85 ± 0.32; red at 90% luminance

.90 ± 0.23; isoluminant green 7.70 ± 0.23; green at 45% luminance

.10 ± 0.35; green at 90% luminance 5.55 ± 0.43; isoluminant orange

.75 ± 0.48; orange at 45% luminance 4.15 ± 0.43; orange at 90% lu-

inance 3.60 ± 0.32; isoluminant turquoise 6.00 ± 0.47; turquoise at

5% luminance 6.75 ± 0.38; turquoise at 90% luminance 6.40 ± 0.5. 

.1.1. Unique hues can be robustly decoded from EEG signals 

First, we asked whether the measured EEG waveforms contain con-

istent, discernible information about the hue of the stimulus. To do

his, we trained tECOC models for each observer using only EEG re-

ponses to isoluminant stimuli, as this ensured minimal interference

rom luminance-contrast signals. In the first instance, we performed this

nalysis for epochs defined by the passive viewing event. We found

hat within a 100–300 ms window after stimulus onset, both unique

ues could be decoded with above-chance accuracy ( Fig. 2 A). The non-

nique hues, on the other hand, showed a much lower score ( Fig. 2 B).

his pattern is stable over a range of tECOC time-windows (Supplemen-

ary Figure S 2 A ) and also holds when the entire set of 64 electrodes is

sed (Supplementary Figure S 2 B ). Furthermore, a bootstrapped power

nalysis shows high statistical power in the time-window of maximal

iscrimination (Supplementary Figure S4 ). The presence of signal on

ll electrodes is not surprising – unlike functional magnetic resonance

maging (fMRI), EEG does not detect localised physiological activity in

 volume, but instead picks up a linear superposition of signals from a
5 
ange of physiological sources. Thus, the signal is present in some de-

ree at all sensors, with its amplitude (and thus also its signal to noise

atio) dependant on the position of the sensor relative to the source(s)

see, e.g., Maris, 2012 for a discussion of the so-called common pick-up

roblem). 

For each participant, we also measured subjective isoluminance for

ach stimulus colour (see Methods for details). While one participant

id not understand the task, the means, SEs and ranges of the settings

rom the remaining 19 participants were as follows: red 0.14 ± 0.57

𝑑∕ 𝑚 

2 ( − 6 to 5.25 𝑐𝑑∕ 𝑚 

2 ); green − 1.09 ± 0.49 𝑐𝑑∕ 𝑚 

2 ( − 6.58 to 1 𝑐𝑑∕ 𝑚 

2 );

range 0.08 ± 0.56 ( − 4.34 to 6.50 𝑐𝑑∕ 𝑚 

2 ); turquoise ( − 0.05 ± 0.65

𝑑∕ 𝑚 

2 ( − 7.08 to 7.83 𝑐𝑑∕ 𝑚 

2 ). 

Model accuracy quantifies the ability of the model to correctly iden-

ify the hue of a stimulus when presented with the corresponding EEG

esponse. Theoretically, it is the sum of hit rates (true positive rates) for

ll labels, and corresponds to the diagonal of the confusion matrix. How-

ver, a deeper insight into model performance can be obtained when,

n addition to the detection accuracy for a given input class, one also

onsiders the probability of misclassification of inputs from this class.

o investigate this, we estimated the off-diagonal elements of the confu-

ion matrix. This allowed us to infer which classes are most likely to be

onfused by the model – thus providing a means of understanding how

imilar the information contained in EEG signals corresponding to dif-

erent hues is. The subpanels of Fig. 2 C (see also Supplementary Video

1 ) show the probability (over time) with which the model assigns each

f the four hue labels to EEG responses elicited by a given input hue

the input hue is labelled above each subpanel). Thus, each subpanel in

ig. 2 C shows one row of the confusion matrix. Within a 100–300 ms

indow, each input hue is only confused with its proximal pair (red

nd orange, and green and turquoise), while the prediction probabili-

ies for non-proximal hues are below chance. This is also reflected in

he checkerboard-like pattern observed in Supplementary Video V1 .

urthermore, the model is likely to label EEG responses to non-unique

ues (orange and turquoise) as being elicited by their proximal unique

ues (red and green respectively) with almost equal probability, but not

ice-versa. Once again, this suggests that EEG signals between 100 and

00 ms carry more robust representations of unique hues compared to

on-unique hues. 

The passive viewing at trial outset was followed by a change in the

hape of the stimulus from a circle to either a square or a diamond at a

andom time-point 800–1500 ms from stimulus onset (see Fig. 1 ). The

olour of the stimulus was task-irrelevant, and the hypothesis here was

hat since the observer will be attending to the stimulus shape, the EEG

ignal would be qualitatively different between the passive and shape-

hange segments. This would, in-turn, allow us to test if this difference

s reflected in the ability of the model to classify hue information in

he signal. It has been argued that colour-related activations should still

e observed as long as the hue remains unattended and task-irrelevant

 Forder et al., 2017b ). To test this hypothesis, we trained tECOC models

n the epochs defined by the shape-change event. As expected, the two

egments were found to elicit activity which differed significantly both

n the sequence of ERP peaks as well as topography ( Fig. 3 A). However,

espite this difference, we were able to perform hue detection during

he shape-change segment with an accuracy very similar to the passive

iewing segment – both in terms of peak decoding score and its time-

ourse ( Fig. 3 B). This suggests that the temporal structure of the hue-

elated information in EEG signals is indeed robust to changes in the task

as long as the hue itself remains task-irrelevant), and can be extracted

ven when the observer is engaged in a concurrent shape discrimination

ask. 

.1.2. Luminance signals interfere with chromatic information in occipital 

RPs 

Next, we investigated whether hue identity could still be decoded

hen both chromatic and luminance information was present in the EEG

ignal. A chromatic-driven ERP is characterised by a robust negative
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Fig. 2. Decoding isoluminant Unique and Non-unique hues from EEG responses. tECOC classification models were trained on EEG responses recorded in 𝑵 = 20 
participants as they viewed isoluminant stimuli (Unique Hues: red and green; Non-unique hues: orange and turquoise). Note that all panels represent the results 

from a single set of models trained on isoluminant stimuli. A. Model accuracy for Unique hues. This corresponds to presenting the trained model with EEG responses 

to Unique Hue stimuli and estimating the probability with which the model is able to determine the correct stimulus hue (diagonal of the confusion matrix). The 

two solid lines show the mean accuracy of the model at each time-point. The hues are colour-coded, with the red and green lines representing model accuracy for 

unique red and unique green stimuli respectively. The shaded regions around the lines show bootstrapped 95% confidence intervals. A dashed line indicates the 

theoretical chance performance of the model (the empirical chance performance closely followed the theoretical chance level, and is shown in Supplementary Figure 

S2C). The two inlays show the classification accuracy (top-left: unique red, top-right: unique green) of models trained for each of the 20 observers. Only 100–300 ms 

after stimulus onset are shown in the inlays. The solid lines at the bottom show the period when the classification performance was significantly different ( 𝒑 < 0 . 05 
in a 2-tailed permutation test) from the performance of a model trained on randomly shuffled labels. B. Model accuracy for non-unique hues. The accuracy of the 

model for non-unique hues is shown in a manner analogous to A, with the orange and blue colours representing the orange and turquoise stimuli respectively. C. 

Misclassification probabilities. Given the EEG response (at a given time-point) to one of the four hues, the model can either make an accurate prediction of the label 

(panels A and B), or misclassify the input. Each of the four subpanels here shows the prediction probabilities for one particular input label (shown on the top-left, 

above each subpanel), thus corresponding to one row of the confusion matrix. For instance, the first subpanel shows the probabilities (at each time-point) that the 

model classifies EEG responses to unique red stimuli as being elicited by unique red (accuracy), unique green, orange or turquoise stimuli. The colour coding for the 

four stimulus hues in each subpanel is the same as panels A and B. Also see Supplementary Video V1, which shows how the confusion matrix changes as a function 

of time elapsed from stimulus onset. 
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eflection at about 120–220 ms after stimulus onset ( Berninger et al.,

989 ; Murray et al., 1987 ; Tobimatsu et al., 1996 ), but this response is

ignificantly altered by the addition of luminance contrast ( Rabin et al.,

994 ). Furthermore, while observer isoluminance drives ERPs in a man-

er closely resembling nominal isoluminance, any substantial changes

n luminance contrast have been found to result in highly dissimilar

aveforms ( Rabin et al., 1994 ). Xing et al. (2015) demonstrate that this

s due to non-linear interactions between colour and luminance signals,

hich is likely to result from the involvement of colour-luminance neu-

ons. To assess the impact of potential colour-luminance interactions on

lassifier performance, we constructed a model that evaluated how de-

oding performance was affected when the model was trained on inputs

hich differ not only in hue but also luminance-contrast. We trained

ECOC classifiers for each observer using 12 labels, corresponding to

hree different luminance-contrast levels for each of the four hues. In

ig. 4 , we present the performance of our model in a manner similar

o Fig. 2 C. Each panel is one row of the confusion matrix, i.e., given

he EEG signals for an input stimulus, it shows the prediction proba-

ilities for all 12 labels. The hue of the input is denoted by the row
6 
labelled in the right margin) and its luminance-contrast by the column

labelled on top). The same colours as Fig. 2 C are used to denote the

our hues. In addition, for each hue, we also use two additional bright-

ess levels to represent the two luminance contrast ratios (thus, for a

iven hue, isoluminant stimulus is the least bright, 45% luminance con-

rast is brighter, and 90% luminance contrast is the brightest). We find

hat while isoluminant signals can indeed be classified 100–300 ms af-

er stimulus onset (left column), addition of luminance information dis-

upts the model performance for all hues (middle and right columns).

urthermore, we find that the classifier does not confuse isoluminant

nd non-isoluminant stimuli. This suggests that in contrast to a change

n stimulus-shape where the temporal structure of hue-related informa-

ion was preserved ( Fig. 3 ), addition of luminance-contrast to the stim-

lus disrupts the temporal patterns which encode hue-information. The

bove observations also hold when separate models are trained for each

uminance contrast condition (Supplementary Figure S 5). 

To characterise the effect of luminance, we trained a model using

nly the luminance labels of EEG signals (i.e., we used three labels cor-

esponding to the three contrast levels). We found that all luminance
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Fig. 3. Decoding performance for active and passive tasks is very similar, despite large differences in stimulus-evoked activity. A. Global field power. The left side 

of the panel shows the topographies and the Global Field Power (GFP) for stimulus onset. The hues are colour-coded (unique green is shown in green, red in red, 

etc.), and each panel shows the GFP for one luminance-contrast condition. The stimulus onset is marked by a dashed line at 0 abscissa. The right side of the panel 

shows the same for the shape-change event. B. Robustness to task. Separate models were trained using passive viewing and shape-change segments. Each subpanel 

shows the accuracy of the two models for on a particular input hue (e.g., the leftmost panel shows the model accuracy when EEG responses to red stimuli were used 

as inputs). The performance of the passive-segment model is shown using the same colours and symbols as Fig. 2 A, while the shape-change model is shown using a 

dashed line for observer mean and darker shading for the bootstrapped 95% confidence intervals. Horizontal lines underneath show time-points where a randomised 

model trained on shuffled labels was significantly different from the model trained on correct labels. 
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onditions ( Fig. 5 A) can be decoded to above-chance levels, with the iso-

uminant and 90% contrast conditions being the most decodable. This is

ikely to reflect the fact that while both isoluminant and high-contrast

timuli are relatively easy to discriminate, the 45%-contrast stimuli are

ikely to contain characteristics resembling both these classes. An ex-

mination of the misclassification patterns of the model ( Fig. 5 B) fur-

her revealed that while isoluminant stimuli are robustly classified, the

on-isoluminant conditions are more likely to be confounded with one

nother. 

Stimuli with 45% luminance contrast have an above-chance proba-

ility of being misclassified as 90% luminance contrast. However, this

ffect is not symmetric, with 90% luminance contrast being easier to

etect compared to the 45% contrast. Thus, under non-isoluminant con-

itions, not only are the hue-driven patterns difficult to detect, but they

eem to be progressively overridden by luminance-contrast-driven pat-

erns. To ensure that this effect was driven by luminance, and not by

he chromatic content of the stimuli, we set up separate models for

ach hue, and were able to confirm that the effect was indeed inde-

endent of the stimulus hue. For each hue, the isoluminant stimuli were

obustly classified (Supplementary Figure S 6, leftmost column), while

he non-isoluminant conditions produced similar but asymmetric pre-

iction scores (Supplementary Figure S 6, middle and right columns). 

.2. Interim discussion 

Our findings are in line with Sutterer et al. (2021) who recently re-

orted that both colour and luminance content can be successfully de-

oded from EEG signals. Hermann et al. (2022) investigated decoding of

ue or luminance polarity from MEG signals and found that generalising

uminance polarity across hue works better than generalising hue across

olarity. This is consistent with our own findings that decoding of hue
7 
s strongly affected by the addition of luminance contrast. Unlike these

tudies, where only stimuli that combine colour and luminance con-

rast were used, we also included stimuli that were isoluminant with

he background. We found that decoding of hue from such nominally

soluminant stimuli is much more efficient. We also find an asymmetry

n decoding unique and intermediate hues, with superior performance

or unique hues. 

Hermann and colleagues (2022) speculate that alignment with the

aylight locus might represent an important determinant of colour de-

oding. They find that low-level, cone-opponent chromatic content im-

acts hue decoding, with differential cone-opponent inputs along the

 -M and S-( L + M ) mechanisms providing separable input into EEG sig-

als that are being decoded. This is not surprising, as l -M and S-( L + M )

one-opponent signals combine differently with luminance information

e.g., Martinovic and Andersen, 2018 ). In our data, red and turquoise

re closest to a cone opponent axis (i.e., l -M) and were also more dis-

ant to their neighbouring colours. Yet we find superior decoding for red

nd green. Despite being able to discard fully reductive cone-opponent

nput or colour-distance accounts of hue-decoding asymmetries, our ex-

eriment remains inconclusive as to the potential source of the observed

ffects. 

The stimulus set in Experiment 1 was designed to investigate

hether unique hues have more robust EEG representations. To achieve

his, we chose unique and non-unique hues that were maximally dis-

ant in a perceptual space – red and green, orange and turquoise

see details of the stimulus set in Methods). As already reported by

osenthal et al. (2021) and Hermann et al. (2022) , inter-hue differ-

nces in decoding efficiency manifest even between such evenly spaced

olours. Indeed, our findings confirm that the neurometric colour space

s non-uniform, even when stimuli are made isoluminant; but they also

uggest that unique hues may have a more distinct neural representa-
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Fig. 4. Luminance information disrupts hue decoding. EEG responses to unique (green and red) and non-unique (orange and turquoise) hues at three luminance- 

contrasts (isoluminant, 45% and 90%) were used to train a tECOC model. Each of the 12 subpanels in this figure represents one row of the confusion matrix (similar 

to Fig. 2 C). This corresponds to presenting the trained model with EEG responses to a given stimulus class, and observing the classification probabilities for all 

classes, including the input class. The hue and luminance contrast of the input labels are denoted by the row and column respectively. For each predicted label, the 

hue is represented by the corresponding colour (green, red, orange and turquoise), and the luminance-contrast by the brightness (isoluminant: lowest brightness, 

45% contrast: intermediate brightness, 90% contrast: highest brightness). Shaded region around the curves shows bootstrapped 95% confidence intervals. Horizontal 

lines underneath show time-points where the accuracy (the correct classification of the input, i.e., only diagonal elements of the confusion matrix time-series) of a 

randomised model trained on shuffled labels was significantly different from the model trained on correct labels. 
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ion, indexed through superior information decoding when compared

o intermediate hues. In our next experiment we aimed to further inves-

igate the origin of the more robust decoding for unique as opposed

o intermediate hues by introducing proximal neighbours, clockwise

nd counter clockwise to each hue. Decoding colours in such small

eighbourhoods allows us to understand how perceptual notions of hue-

ifference map to the EEG-derived neurometric space. If the decoding

anifold contains three highly-proximal stimuli, which are only about 2

erceptual JNDs apart, this may result in a failure to decode if their EEG

ignatures are too similar. If, however, unique hues have a more robust

EG signature, they may be more decodable from their neighbours. 

We also changed the four hues, replacing red with yellow. To dis-

mbiguate if unique or intermediate hue status drives a more robust

eural signal irrespective of daylight locus alignment, which has been

uggested as the source of asymmetries in the neurometric space by

ermann et al. (2022) , it would be necessary to use a unique hue that

s also more aligned with the daylight locus, such as yellow or blue. 
8 
.3. Experiment 2: decoding over small and large perceptual hue differences

In Experiment 1 we showed superior decoding performance for

nique hues compared to intermediate hues, suggesting a robust neu-

al representation for the former. In Experiment 2, this hypothesis was

urther critically tested by using both small and large hue differences.

ur aim was to re-examine decoding of nominally isoluminant unique

nd intermediate hues with a slightly modified hue set (see Interim Dis-

ussion above) and to extend it by decoding local clusters of stimuli

round each of these hues. First, we measured individual settings for

nique (yellow and green) and non-unique (orange and turquoise) hues

or each observer. Next, we made EEG measurements in a task analogous

o Experiment 1. For each observer, we used a stimulus set consisting

f their individual settings for the four hues (denoted as the = config-

ration), and two sets of stimuli generated by rotating the individual

ettings by ±10 ◦ in CIELAB colour space (denoted as the + and – config-

rations respectively) – leading to a total of 12 stimuli (4 hue-clusters
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Fig. 5. Luminance decoding from EEG signals. A. Mean classification accuracy. This panel shows the performance of the model in correctly identifying the luminance 

contrast of the stimuli (model accuracy). Each line shows the accuracy for one condition, with dark grey coding for the isoluminant condition, medium grey coding 

for 45% luminance contrast, and light grey coding for 90% luminance contrast (coding of luminance contrast using lightness is used throughout the article). B. 

Misclassification probabilities. Each subpanel shows one row of the confusion matrix analogous to Fig. 2 C. The left panel shows classification probabilities for the 

three luminance conditions when isoluminant stimulus is presented to the classifier. Similarly, the middle and right panels show prediction probabilities when 45% 

and 90% luminance contrast inputs are presented to the classifier. In all panels, the shaded area around the lines shows bootstrapped 95% confidence intervals. 

Chance performance is shown by the dashed line. Horizontal lines underneath show time-points where a randomised model trained on shuffled labels was significantly 

different from the model trained on correct labels. 
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nd 3 rotational-configurations, see Fig. 1 C). The individual hue settings

ere distributed as follows (means and SEs): yellow 101° ± 2°, orange

1° ± 3°, green 153° ± 3° and turquoise 198° ± 3°

In the shape discrimination task, grand mean accuracy was 96%

 1% SE (see Supplementary Figure S7A ) and reaction times were

06 ± 61 ms (See Supplementary Figure S7B ). Response-time data were

nalysed with a 4 × 3 repeated measures ANOVA (4 hues vs. 3 rotational

onfigurations, i.e., -, + and = sets), which yielded a significant main

ffect of hue (F (1.77, 26.5) = 5.25, p = .01, 𝜂p2 = 0.26) and an interac-

ion with the rotational configuration (F (2.16, 32.49) = 5.08, p = 0.01,

p2 = 0.25) while the effect of the rotation itself was not significant (F

1.79, 26.99) = 0.72, p = .48, 𝜂p2 = 0.05). The interaction was decon-

tructed by separate repeated measures ANOVAs at each hue: for yellow,
9 
here was a significant effect of rotation (F(1.36,20.48) = 6.23, p = 0.01,

p2 = 0.29) driven by slower RTs for the individual hue setting vs. 10°

lockwise setting ( p = .006). For green, there was also a significant ef-

ect (F(1.58,23.74) = 6.76, p = 0.007, 𝜂p2 = 0.31) driven by faster RTs

or the individual hue setting vs. 10° clockwise setting ( p = .04) as well

s vs. 10° counterclockwise setting ( p = .005); no differences were found

or orange ( p = .22) and for turquoise ( p = .11). Taken together, we can see

hat only for unique hues (yellow and green) the responses to individ-

al hue settings ( = configuration) seem to be different from responses to

10 ◦ rotated hues (i.e., – and + configurations). However, the direction

f the effect was opposite for the two hues – while participant responded

lower to their individual yellow setting, they responded faster to their

ndividual green setting. 
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Fig. 6. Representational similarity between perceived hue and decoder performance. A. Dissimilarity in classifier outputs. tECOC models were trained to classify 

twelve colours from their EEG responses. The colours sampled four clusters along the hue circle corresponding to orange (O), yellow (Y), green (G), and turquoise 

(T), with each cluster consisting of settings made by the observer in a psychophysical experiment ( = ), and colours sampled 10 ◦ clockwise (-) and anti-clockwise ( + ) 
with respect to each setting. Each panel shows a dissimilarity matrix derived from classifier output. The panels show the dissimilarity 50, 150, 250, and 450 ms 

after stimulus onset. B. Mean classifier dissimilarity. The average dissimilarity over the period where the correlation is statistically significant. C. Dissimilarity in 

perceptual space. Hue angles of the 12 stimuli (same as panel A) were used to estimate dissimilarity in the perceptual CIELAB space. D. Representational similarity. 

Rank-correlation between perceptual and classification dissimilarities using Kendall’s tau statistic. The solid curve shows the mean statistic, while the shaded envelope 

shows bootstrapped 95% confidence intervals over the observers. The horizontal line underneath shows time-points where the correlation was statistically significant 

( 𝑝 < 0 . 05 ). 
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For the categorical rating task, the average ratings and their SEs

ere as follows: individual yellow 5.62 ± 0.6; − 10° yellow 5.75 ± 0.57;

 10° yellow 2.56 ± 0.35; individual green 6.93 ± 0.26; − 10° green

.93 ± 0.17; + 10° green 3.87 ± 0.35; individual orange 6.37 ± 0.36;

 10° orange 3.93 ± 0.48; + 10° orange 7.25 ± 0.48; individual turquoise

.68 ± 0.53; − 10° turquoise 7.43 ± 0.53; + 10° turquoise 3.18 ± 0.5. We

sed these categorical ratings as a control measure, evaluating if the de-

oding performance can be reduced to proximity to focal colours. Again,

o such relations were found (See Supplementary Figure S7C ). 

.3.1. Decoding over large hue differences is predicted by hue angles 

For each observer, we trained tECOC models over all stimuli: the

our hue settings ( = group), and the eight stimuli generated by ±10 ◦ ro-

ations of each of these settings ( + and - groups respectively). Using the

lassification results, we generated a time-series of dissimilarity matri-

es (see Methods for details) and found that the stimulus representations

ere dissimilar in a 100–350 ms window after stimulus onset ( Fig. 6 A),

ith a stable mean dissimilarity ( Fig. 6 B). Similarly, we also calculated

 perceptual dissimilarity measure by using differences in hue angles of

he stimuli in CIELAB space. As expected, perceptual dissimilarity in-

reases as one moves away from a given reference stimulus ( Fig. 6 C).

sing rank-correlation analysis, we found the Kendall’s tau statistic to

e significant ( 𝑝 < 0 . 05 ) in a 100–350 ms range post-stimulus ( Fig. 6 D),

uggesting that perceptual distances are correlated with decoding out-

ut. 

.3.2. Local distortions in hue decoding 

Next, we posed the question: is the perceptual robustness of unique

ues reflected in the structure of the decoding space around their re-

pective representations? To answer this question, we trained 4 tECOC

odels – one on each of the four hue-clusters (orange, yellow, green,

nd turquoise). A hue cluster consisted of the observer’s individual set-

ings ( = ), and stimuli 10 ◦ clockwise ( + ) and counter-clockwise (-) from

he individual settings. Each model was trained to classify EEG signals

responses to stimuli drawn from the respective cluster) into one of the
10 
hree labels = , + , or –. In Fig. 7 A we show the results for the four mod-

ls, one model per row. Each subpanel is a row in the corresponding

onfusion matrix, with the test stimulus indicated on top. For instance,

he first row corresponds to the model trained on the yellow cluster. The

rst panel of this row shows the predictions of the model when stimuli

0 ◦ counter-clockwise from individual yellow settings were presented

o it (i.e., the first row of the confusion matrix for the ‘yellow’ model). 

We found that the three groups (individual settings, and the ±10 ◦ ro-

ations) cannot be decoded in non-unique hues ( Fig. 7 A, first and fourth

ows). However, for unique hues ( Fig. 7 A, second and third row), the

otated groups (first and third columns) can be decoded, while the indi-

idual settings (second column) cannot. This could reflect relative differ-

nces in visually evoked potential (Global Field Power: Fig. 7 B, Event-

elated Potentials: Fig. 7 C), and suggests that the representational space

round unique hues is anisotropic ( Fig. 8 ). Note that in the perceptu-

lly uniform CIELAB space the three groups, by design, had equivalent

elative distributions (- and + were simply mean-shifted copies of = ). 

. Discussion 

Our first finding is that - under isoluminant conditions - EEG re-

ponses to the three tested unique hues show more distinct patterns com-

ared to non-unique hues, and these patterns are stable during both pas-

ive viewing ( Fig. 2 ) and active task-engagement ( Fig. 3 ). We can also

each certain conclusions about the underlying neural processes from

he time-course of decoding performance. While additional analysis (see

upplementary Figure S 8) shows that the classification performance is

nlikely to be driven by stimulus cone-contrast, a 100–300 ms decoding

indow is consistent with the idea that the performance of the model

ould be driven by both perceptual and post-perceptual contributions

 Forder et al., 2017b ). This is supported by the fact that the decoding

erformance steadily rises before peaking between 150 and 200 ms after

timulus onset, a time-window where EEG signals begin reflecting post-

isual evaluative processing ( VanRullen and Thorpe, 2001 ), including

olour categorisation ( Fonteneau and Davidoff, 2007 ). The chromatic
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Fig. 7. Local distortions in representational space and Visually Evoked Potentials. A. Decoding within colour clusters. tECOC models were trained on clusters around 

the individual settings for unique (yellow: Y, green: G) and non-unique (Orange: O, Turquoise: T) hues. Each cluster consisted of three groups: individual observer 

settings ( = ), and two groups derived from 10 ◦ clockwise ( + ) and counter-clockwise (-) rotations of the individual settings in CIELAB space. Each row shows a model 

trained on a different hue (top row: orange, second row: yellow, etc.), with subpanels showing rows of the corresponding confusion matrices. E.g., the first row shows 

the classifier trained on the yellow cluster, and the first panel of this row shows the row of the confusion matrix that corresponds to the Y- input. The input stimulus 

for each row of the confusion matrix is labelled on top. B. Global Field Power. Each panel shows the mean Global Field Power (GFP) within a colour cluster (the name 

of the cluster is above each panel). The GFP for the central colour ( = ) in each cluster is shown in medium grey, while a darker and lighter grey are used to denote 

GFP for colours −10 ◦ (-) and +10 ◦ ( + ) to the central colour respectively. C. Event Related Potential. Mean Event Related Potentials calculated across observers. Only 

the occipital electrodes used for the decoding analysis are considered. The same colour scheme as B is used. 

11 
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Fig. 8. Effect of representational anisotropies on decoding. The left panel shows a configuration of the distributions for the three groups (-, = and + ) which can 

lead to poor decoding scores such as those observed within clusters of non-unique hues. The distributions overlap, and the distances between the distribution means 

( 𝐫 − , 𝐫 = , 𝐫 + ) are too narrow to allow for proper discrimination using a linear boundary. The two other panels show possible representational anisotropies around 

the central hue which can lead to better discrimination in the neighbourhood. A. Scenario 1: Reduced variability. This panel shows how a relative decrease in the 

variability of unique hue representations ( = ) can lead to better decoding for the neighbouring hues (- and + ). B. Scenario 2: Expansive anisotropy. This panel shows 

how a dilation of representational distances in the neighbourhood of unique hues ( = ) can also lead to increased decoding scores for the surrounding hues. 
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isual evoked potential (cVEP), which reflects the activation of colour

ensitive neurons in visual cortices, also remains maximal in the same

ime window ( Nunez et al., 2018 ). Due to the manner in which decoding

rom EEG signals is commonly implemented, the decoding performance

s also reflective of the visual evoked potential patterns ( Fig. 3 A, and

ig. 7 B and C ). Since single trials are binned and averaged prior to de-

oding to increase signal-to-noise ratio (e.g., see Al-shargie et al., 2018 ;

ae and Luck, 2018 for similar ECOC-based approaches), the decod-

ng necessarily reflects differences between dominant VEP components

uring the window of above-chance classification. In this study, these

argely correspond to the P1/N1 window. The P1 component (peak-

ng ∼80–120 ms) is driven by luminance contrast and saturates once

his contrast exceeds ∼16% Weber contrast ( Ellemberg et al., 2001 ; see

lso, Zemon and Gordon, 2006 ). Meanwhile, the N1 component (peak-

ng ∼150–200 ms) reflects both luminance and chromatic contrast and

oes not saturate (for normative data, see Porciatti and Sartucci, 1999 ).

hen luminance contrast is absent or low (i.e., at isoluminance as

ell as near it; see Rabin et al., 1994 ) it is the chromatic signals that

rive the VEPs, influencing both their peak latency and amplitude in

ays that would create more distinctive response representations across

ues. Pitzalis et al. (2018) performed fMRI-guided source analysis of

he cVEP and found that between 100 and 300 ms it was mainly driven

y V1 and V8/VO activity, including feedforward and recurrent con-

ections between them and other colour-sensitive areas. However, a

igh-level interpretation of the decoding on the basis of the categori-

al status of the stimulus colours is unlikely. Categorical representative-

ess ratings do not follow the pattern observed in the classifier perfor-

ance (see Supplementary Figure S3C). The most parsimonious expla-

ation for the pivots in colour space that drive asymmetries in decoding

round unique hue locations would be that they correspond to hue lo-

ations that are associated with a more robust neural representation,

hus making it more easily decodable from less robustly represented

ues. 

Secondly, classification performance for the decoding of hues dimin-

shed when luminance contrast was added ( Fig. 4 and Supplementary

igure S 5). This was not entirely unexpected since luminance contrast

s known to have a strong effect on EEG responses, once luminance

ontrast is sufficiently strong ( Rabin et al., 1994 ). At the same time,

e found that hues could be decoded at all luminance levels at above-

hance levels within the same 100–300 ms window ( Fig. 5 and Sup-

lementary Figure S2 ). Thus, under non-isoluminant conditions, not

nly are the hue-driven patterns more difficult to detect, but they may

lso be at least partly overridden or replaced by luminance-contrast

r joint-colour-and-luminance-contrast-driven activity. Our findings are

onsistent with the idea that in the visual cortex, hue is most likely to

e encoded by neural populations which also encode luminance (see

lso Conway et al., 2007 for work in the extrastriate cortex). The fact

hat purely chromatic-tuned cells in the visual cortex are known to be
12 
n a minority compared to luminance-tuned or luminance-chromaticity

uned cells ( Johnson et al., 2001 ; Lennie et al., 1990 ) may partly explain

hy luminance signals tend to override chromatic information in EEG

ecordings from the occipital cluster. In V1-V3, the neurons are tuned to

any intermediate directions, both in terms of hue and luminance con-

rast (for a review, see Gegenfurtner and Kiper, 2003 ). In higher-level

reas of the extrastriate cortex, colour representations become organ-

sed in ways that resemble perceptual colour spaces (for macaque neu-

ophysiology, see Bohon et al., 2016 ; Conway et al., 2007 ; and for fMRI

n humans, see Brouwer and Heeger, 2013 , 2009). Thus, the decoding in

ur study is likely to reflect cumulative effects that build up across these

reas. Even though we find more robust responses for the two unique

ues (red and green) compared to the two non-unique hues (orange and

urquoise), decoding is still possible for non-unique hues, implying that

here are indeed multiple hue representations that are being encoded

y the brain (see, e.g., Brouwer and Heeger, 2009 ; Parkes et al., 2009 ;

aidi and Conway, 2019 ). 

Thirdly, we show in Experiment 2, that the geometric structure of

his representational space can be explored by carefully designed exper-

ments. Our results demonstrate that while large distances in the neural

epresentational space are indeed correlated with perceptual hue differ-

nces ( Fig. 6 ), there are local anisotropies associated with unique hues

 Fig. 7 ) which are likely to represent local changes in representational

eometry and variability. Fig. 8 illustrates two such scenarios which may

e particularly relevant to unique hues. One possibility is the narrow-

ng of representational probabilities around unique hues (middle panel,

ig. 8 ). This would correlate with the reduced variabilities reported in

arge datasets of unique hue measurements ( Xiao et al., 2013 ), and sug-

est that the reduced perceptual variability is also reflected in reduced

ariability in cortical representations. A second possibility is the dilation

f the representational space in the neighbourhood of unique hues (right

ane, Fig. 8 ). This scenario would imply that there is an increase in the

umber of possible hue representations in the neighbourhood of unique

ues compared to non-unique hues – reflecting an increase in cortical

esources used for encoding. Note that these two scenarios are not ex-

lusive, and by no means unique. Such tunings could reflect properties

f our environment such as the statistical regularities in the reflectance

pectra of naturally occurring surfaces ( Philipona and O’Regan, 2006 ) or

he degree of alignment with the daylight locus ( Hermann et al., 2022 ).

lternatively, they may also be, at least in part, driven by a broader cat-

gorical distinction between warm and cool colours ( Rosenthal et al.,

021 ). Perhaps this is the reason why the neural reality of perceptual

ed-green and blue-yellow hue-opponent mechanisms has proven to be

o elusive – it is not a fundamental mechanism hard-wired into the neu-

al circuitry, but a statistical peak in the tuning of neural populations,

any of which multiplex both colour and luminance information. Such

omplex influences on the neural encoding would make hue-specific sig-

als much harder to detect. 
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A growing number of studies investigating population activity anal-

se EEG and MEG topographical data by interrogating timepoint-by-

imepoint trajectories in activation manifolds. Our results suggest that

he structure of such manifolds can be highly anisotropic, and that these

nisotropies can reflect perceptual measurables. In the case of hue per-

eption, it is possible that the local structure of this space is reflected

n quasi-invariants such as the so-called unique hue percepts. Several

eports have already established that a neurometric mapping of hue

paces using EEG information decoding is viable ( Hajonides et al., 2021 ;

ermann et al., 2022 ; Rosenthal et al., 2021 ). This study marks a first

ypothesis-based exploration of these maps and shows that unique hues

ay represent local anisotropies in cortical hue-representations. 
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