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Abstract

Discrete prompts have been used for fine-
tuning Pre-trained Language Models for di-
verse NLP tasks. In particular, automatic meth-
ods that generate discrete prompts from a small
set of training instances have reported supe-
rior performance. However, a closer look at
the learnt prompts reveals that they contain
noisy and counter-intuitive lexical constructs
that would not be encountered in manually-
written prompts. This raises an important yet
understudied question regarding the robustness
of automatically learnt discrete prompts when
used in downstream tasks. To address this ques-
tion, we conduct a systematic study of the ro-
bustness of discrete prompts by applying care-
fully designed perturbations into an application
using AutoPrompt and then measure their per-
formance in two Natural Language Inference
(NLI) datasets. Our experimental results show
that although the discrete prompt-based method
remains relatively robust against perturbations
to NLI inputs, they are highly sensitive to other
types of perturbations such as shuffling and
deletion of prompt tokens. Moreover, they gen-
eralize poorly across different NLI datasets. We
hope our findings will inspire future work on
robust discrete prompt learning.1

1 Introduction

Pre-trained Language Models (PLMs) have been
successfully adapted to a wide range of Natural
Language Processing (NLP) tasks using prompt-
based learning (Radford et al., 2018, 2019; Brown
et al., 2020; Petroni et al., 2019) such as sentiment
classification (Gao et al., 2021), natural language
inference (NLI) (Schick and Schütze, 2021, 2022),
relation extraction (Shin et al., 2020), cross-lingual
inference (Qi et al., 2022). However, manually
writing prompts that generalize well is very chal-
lenging for several reasons such as (a) it might not

1Our codes and the adversarial NLI dataset are available
at https://github.com/LivNLP/prompt-robustness

always be possible to recruit domain-expert human
annotators, (b) human annotators might not be able
to cover all corner cases by writing prompts, and (c)
there can be disagreements between human annota-
tors regarding the coverage of a particular prompt.
To address these challenges, automatic learning of
discrete prompts has been proposed such as Ad-
vTrigger (Wallace et al., 2019), AutoPrompt (AP;
Shin et al., 2020), WARP (Hambardzumyan et al.,
2021), and RLPrompt (Deng et al., 2022).

Although discrete prompt learning methods have
achieved good performance in numerous down-
stream tasks by automatically learnt prompts, such
automatic prompts seem to be significantly differ-
ent from the manually-written ones. For exam-
ple, Table 1 shows manually-written and AP-learnt
prompts for fact retrieval (Petroni et al., 2019). We
see that the AP-learnt prompts for BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) out-
perform the manual prompts in precision1 (P@1)
scores. However, the AP-learnt prompts contain
various counter-intuitive language constructs such
as punctuation (e.g. ‘(’, ‘?’, ‘!’, ‘)’), spelling errors
(e.g. commuenrug) etc., which seem unrelated to
the target relation. Similar cases can be observed
for AP-learnt prompts for other tasks as well (see
Appendix in Shin et al. (2020)). It is unrealistic
that a human annotator would be able to write such
prompts even if they were able to see the same
training instances as used by automatic methods.

Considering the fact that discrete prompt learn-
ing methods are trained in a few-shot setting where
they use only a small number of training instances,
the seemingly counter-intuitive nature of the dis-
crete prompts learnt by automatic methods raises
concerns about their robustness. For example, How
will the performance of a target task change if we
add small random perturbations to the prompts
learnt by AP? and Whether the prompts learnt by
AP generalize to out-of-domain data?. To study
these issues, in this paper we evaluate the robust-

https://github.com/LivNLP/prompt-robustness


Relation Method Prompt P@1

native-language-of (P103) Manual The native language of [X] is [Y] 74.54
AP BERT [X]PA communerug speaks proper [Y] 84.87
AP RoBERTa [X]neau optionally fluent!?¨traditional [Y] 81.61

profession-of (P106) Manual [X] is a [Y] by profession 0.73
AP BERT [X] supporters studied politicians musician turned [Y] 15.83
AP RoBERTa [X] (), astronomers businessman·former [Y] 19.24

music-played-by (P136) Manual [X] plays [Y] music 0.7
AP BERT [X] freaking genre orchestra fiction acid [Y] 59.95
AP RoBERTa [X] blends postwar hostage drama sax [Y] 52.97

Table 1: Examples of prompts learnt by AP for the fact retrieval task for BERT and RoBERTa PLMs and the
human-written manual prompts. T-REx relation ids are shown with brackets for each relation type. Precision@1
(P@1) scores are shown when each prompt is used in fact retrieval.

ness of discrete prompts learnt by automatic prompt
learning methods and compare that with manually-
written prompts and direct fine-tuning of PLMs.

An evaluation of the robustness of discrete
prompts is important for two main reasons. First,
given that discrete prompt learning methods are
learning those prompts from a small set of training
instances, it is important that they cover the core
patterns that generalize to the target task and not
simply capture some random artefacts in the train-
ing samples. Second, unlike embedding-based con-
tinuous prompts (Li and Liang, 2021; Lester et al.,
2021), discrete prompts (Wallace et al., 2019; Shin
et al., 2020; Deng et al., 2022) are represented in
natural language and supposed to be interpretable.
However, if a discrete prompt learning method is
less robust, a seemingly harmless perturbation such
as removing a punctuation character can signifi-
cantly alter the performance of a downstream task.

In contrast to the numerous work that has used
prompts for fine-tuning PLMs, to the best of our
knowledge, the robustness of discrete prompts to
random or adversarial perturbations has not been
systematically studied. To address this gap, we
use AP as a concrete example of a widely-used
method and evaluate its robustness under different
types of carefully designed perturbations. How-
ever, we note that our perturbation techniques are
not limited to AP and can be used for any discrete
prompt learning method. We compare the perfor-
mance of AP-learnt prompts against fine-tuning
using Manually-written Prompts (MP), and Head-
based Fine-Tuning (HFT), where we fine-tune both
the classifier head and the PLM parameters.

From our evaluation, we find several interesting
facts about the robustness of discrete prompts as
summarized below.

• Overall, when the number of training in-
stances is increased, MP outperforms both
AP and HFT on CB (De Marneffe et al., 2019)
and MNLI (Williams et al., 2018), two inde-
pendent benchmark datasets for NLI (§3.1).
In particular, the performance of AP on MNLI
is much worse than that on CB. This is in con-
trast to the superior performance of AP on
SICK-E (Marelli et al., 2014), another NLI
dataset, as reported by Shin et al. (2020).

• Moreover, we see a performance drop when
we use discrete prompts learnt from CB for
MNLI and vice-versa (§ 3.4). These re-
sults indicate that the performance of dis-
crete prompts learnt by AP is highly dataset-
dependent and such discrete prompts do not
generalize well across datasets.

• Compared to MP, AP-learnt discrete prompts
turn out to be highly sensitive to the ordering
of prompt tokens (§3.2).

• Random deletion of prompt tokens decreases
performance in both AP and MP (§3.3).

• We create an adversarial NLI dataset from
randomly-sampled test instances from MNLI
and CB, and manually modify the hypothe-
sis sentences with keeping the corresponding
premise sentences unchanged, such that (a)
the target label would not change, and (b)
would reverse an entailment label to a con-
tradiction (or vice-versa). Both AP and MP
remain relatively robust against the perturba-
tions that do not change the target label, but
the performance of MP drops significantly in
the label-changing setting (§3.5). This shows
that AP is relatively more robust against adver-



sarial perturbations than MP, which explains
AP’s superior performance in various tasks.

2 Related Work

Prompting Methods: Prompting or in-context-
learning has received wide attention as an efficient
method to extract knowledge from PLMs (Brown
et al., 2020; Petroni et al., 2019; Cui et al., 2021).
However, to manually write prompts one must
possess task-specific domain knowledge. As an
alternative, methods that can automatically learn
prompts from training data have been proposed.
Two distinct types of prompts have been learnt
in prior work: discrete prompts (learns lexical
sequences), and continuous prompts (learns em-
beddings). Continuous prompts (Li and Liang,
2021; Lester et al., 2021) are parameter efficient
because they learn generalizable task-specific em-
beddings, with performance comparable to PLM
fine-tuning. However, continuous prompts cannot
be learnt when a PLM is publicly unavailable and
the only access to it is via an API (Brown et al.,
2020). Moreover, compared to discrete prompts,
continuous prompts are difficult to interpret. Learn-
ing discrete prompts (Wallace et al., 2019; Shin
et al., 2020; Deng et al., 2022) does not suffer from
these limitations of continuous prompts and can
be used with diverse NLP tasks. Especially, fine-
tuning massive PLMs has become computationally
costly, which has made discrete prompt learning an
attractive alternative.

Analysis of Prompting Methods: Prior work
has analyzed prompts from various viewpoints.
Scao and Rush (2021) studied the effect of train-
ing dataset size on fixed-prompt PLM fine-tuning
and head-based fine-tuning and found that prompt-
ing is often worth 100s of instances on average
across classification tasks. Kavumba et al. (2022)
showed that the performance of prompt-based mod-
els varies significantly depending on the surface
cues in the sentence. Lu et al. (2022) found that or-
dering of task input significantly affects the perfor-
mance. Utama et al. (2021) focused on the reliance
on lexical overlap in sentence pair classification
and showed that prompt-based models fail to make
predictions dependent on the lexical overlap. To
the best of our knowledge, the robustness of dis-
crete prompts under different types of perturbations
has not been studied in prior work, which is the
main focus of this paper.

3 Experiments

Let us first describe experimental settings common
to all experiments.

Prompting and Fine-Tuning Methods: We
compared the following methods.

• AutoPrompt (AP; Shin et al., 2020) is a rep-
resentative method of discrete prompt learn-
ing. The learning strategy is based on fill-in-
the-blank task (Devlin et al., 2019). First, a
manually created prompt template (e.g., [X]
<MASK> <T> ... <T> [Y]) is given, and a
prompt token (called a trigger token) is learnt
by replacing <T>, which is a special token rep-
resenting a trigger token. In the search for
trigger tokens, the probability of <MASK> is
converted into class probability by using label
tokens (e.g., {‘nobody’, ‘nor’} for contradic-
tion (Shin et al., 2020)), and trigger tokens are
searched by gradient-guided search (Wallace
et al., 2019) to find a candidate set consist-
ing of trigger tokens from a vocabulary of the
language model. As a template for NLI, we
used the one given by Shin et al. (2020), and
the prompt tokens were learnt from the train-
ing dataset. In our experiments, we used the
official implementation.2

• Manually-written Prompts (MP; Schick and
Schütze, 2021) is a method for fine-tuning the
entire masked language model with training
data using manually-written prompts as the in-
put and predicting the <MASK> tokens for the
labels (e.g., ‘yes’ for entailment). We used
the template {hypothesis}? | <MASK>,
{premise} and verbalizer (‘yes’ for entail-
ment, ‘no’ for contradiction, ‘maybe’ for
neutral) following prior work (Schick and
Schütze, 2021; Scao and Rush, 2021). Schick
and Schütze (2021) proposed an ensemble-
based method with multiple rounds of fine-
tuning using different templates. However,
because a single template is used in AP, for a
fair comparison in our experiments, we fine-
tuned a PLM using one MP template.

• Head-based Fine-Tuning (HFT; Devlin
et al., 2019) fine-tunes the PLM with a clas-
sifier head. We report the head-based re-
sults trained by Scao and Rush (2021). They

2https://github.com/ucinlp/autoprompt

https://github.com/ucinlp/autoprompt


trained HFT with a low learning rate (10−5)
and always with a large number of steps (at
least 250), following the recommendations in
prior work (Mosbach et al., 2021; Zhang et al.,
2021). Note that HFT is not a prompt-based
method, so it was excluded from some experi-
ments on the robustness of discrete prompts.

Datasets: We used NLI as an evaluation task to
compare the robustness of discrete prompting meth-
ods. The NLI task has been used in multiple previ-
ous studies to evaluate and/or propose novel prompt
learning methods because it is a fundamental task
related to many NLP applications (Shin et al., 2020;
Scao and Rush, 2021; Webson and Pavlick, 2022).
It is important to use the same NLI task and datasets
in our experiments to facilitate fair comparisons
and reach reproducible conclusions. We used the
two datasets: CommitmentBank (CB; De Marneffe
et al., 2019)3 (a corpus of short texts), and Multi-
Genre Natural Language Inference Corpus (MNLI;
Williams et al., 2018)4 (a crowdsourced collection
of sentence pairs for NLI). Each sentence pair is
labelled with entailment, neutral, or contradiction.

PLM: In our experiments, we used the same pre-
trained language model to evaluate AP, MP, and
HFT equally. Specifically, we used RoBERTa-large
(355M parameters) 5 (Liu et al., 2019), which has
been used in much prior work in prompt learn-
ing (Shin et al., 2020; Scao and Rush, 2021). The
PLM was trained on five datasets, including Book-
Corpus6, English Wikipedia7, CC-News8, Open-
WebText9, and Stories10. The texts were tokenised
using a byte-level Byte-Pair Encoding (BPE; Sen-
nrich et al., 2016) vocabulary of size 50,000.

Evaluating the Robustness of Prompts: We
used rate of degradation (RoD) (Meyers et al.,
2020) to evaluate robustness, which is defined as
the decrease in accuracy of the target task due
to the perturbations added to the prompt. If the
RoD of a model is small after the inclusion of
a perturbation, the model is considered to be ro-
bust against that perturbation. Specifically, we first

3https://super.gluebenchmark.com/tasks
4https://cims.nyu.edu/~sbowman/multinli/
5https://huggingface.co/roberta-large
6https://yknzhu.wixsite.com/mbweb
7https://en.wikipedia.org/wiki/English_

Wikipedia
8https://commoncrawl.org/2016/10/

news-dataset-available/
9https://github.com/jcpeterson/openwebtext

10https://arxiv.org/abs/1806.02847

calculate the respective accuracies accx and accx∗

on the same evaluation set for both prompt x and
its perturbated version x∗. Using the average ac-
curacies avg-accx and avg-accx∗ over M prompts
x1, ..., xM , we calculate the RoD as (avg-accx −
avg-accx∗)/avg-accx = 1− avg-accx∗/avg-accx.

3.1 Effect of the Training Dataset Size
Before moving on to robustness experiments, we
first investigate the number of training instances on
which AP and MP perform best, and used the best-
performing AP and MP to evaluate their robustness
in the subsequent experiments.

Experimental Settings: We gradually increased
the size of the training dataset following the experi-
mental setup of Scao and Rush (2021). Specifically,
we experimented with randomly sampled subsets
of the training dataset having varying numbers of
instances in {10, 15, 20, 30, 50, 70, 100, 150, 200}.
Because the performance of few-shot learning
methods often varies due to the high feature vari-
ance in the training data, we randomly sampled
four subsets per each dataset size and used them
independently for training the models11 (i.e. trigger
tokens and label tokens for AP, or fine-tuned lan-
guage model for MP and HFT) for each subset and
report the average accuracy on the validation data
for the four models (M = 4). We used the matched
(example from the same source as the training set)
validation set for MNLI. For CB, we held out 50
training instances for development as in Scao and
Rush (2021) and evaluated the original validation
set as test data.

We searched for the optimal values for the fol-
lowing hyperparameters: the number of trigger
tokens in {3, 5, 10}, the number of label tokens
in {3, 5, 10}, and the number of tokens in a can-
didate set in {10, 50}. We evaluated the test accu-
racy using the hyperparameters that had the highest
accuracy on the validation data for each dataset
size. In the training of MP, we used AdamW opti-
mizer (Loshchilov and Hutter, 2019) with an initial
learning rate of 10−5 and a learning step of 1,000
following Mosbach et al. (2021).

Main Results: Figure 1 shows the performance12

against the training dataset size. We see that in both
CB and MNLI MP is always superior to AP. For
example, with a dataset of size 200, AP and MP

11NVIDIA RTX A5000 was mainly used.
12HFT results were obtained from Scao and Rush (2021),

F1-macro for CB and accuracy for MNLI.

https://super.gluebenchmark.com/tasks
https://cims.nyu.edu/~sbowman/multinli/
https://huggingface.co/roberta-large
https://yknzhu.wixsite.com/mbweb
https://en.wikipedia.org/wiki/English_Wikipedia
https://en.wikipedia.org/wiki/English_Wikipedia
https://commoncrawl.org/2016/10/news-dataset-available/
https://commoncrawl.org/2016/10/news-dataset-available/
https://github.com/jcpeterson/openwebtext
https://arxiv.org/abs/1806.02847


Method #Train Template #Prompt tokens #Label tokens per class Avg. accuracy
CB MNLI

AP 200 p <MASK> <T> ... <T> h 10 3 68.3 37.7
MP 200 h ? | <MASK> , p 3 1 95.1 65.5
HFT - <CLS> p <SEP> h 0 - - -

Table 2: The average accuracy of the experiment with four training subsets of 200 instances. Red represents the
task inputs, h represents the hypothesis, p represents the premise, blue represents the prompt tokens, and <T>
represents a trigger token. Unreported values were marked with ‘-’.

Figure 1: Performance of AutoPrompt (AP), Manually-
written Prompt (MP), and Head-based Fine-Tuning
(HFT) on the scale of dataset size for CB and MNLI.
Means and their 95% confidence intervals are plotted.
The accuracy of HFT for dataset size for CB was not
plotted because the accuracy was not reported.

achieved the best accuracy in CB, MP’s accuracy
was 92.7%, while that of AP was lower at 54.2%.

Our results also suggest that the performance of
discrete prompts learnt by AP is highly dataset
dependent. Shin et al. (2020) reported results for
AP and HFT on SICK-E (Marelli et al., 2014),
which is another NLI dataset. They concluded
that AP was always superior to HFT up to training
dataset sizes of 1,000 for the same RoBERTa-large
PLM that we use. However, our experiments show
the opposite trend (i.e. HFT is superior to AP).
This suggests that even if AP is superior to HFT on
a given dataset, it is not guaranteed to be superior
in a different dataset for the same task. This may
be due to the differences in the domain and annota-
tion guidelines for each dataset. For example, the
accuracy of MNLI was quite low on AP, which con-

trasts with that of CB. This result suggests that the
discrepancies in domains and annotation guidelines
make it difficult for AP to perform consistently.

Best Prompts: Table 2 shows the average accu-
racy of models trained on 200 instances that per-
formed well in both CB and MNLI. Note that there
are four training subsets for each dataset size, re-
sulting in corresponding four trained AP prompts
and four PLMs fine-tuned by MP. 13 In the robust-
ness evaluations in § 3.2 through § 3.5, we used
these learnt APs and MPs. In this paper, (a) trig-
ger tokens learnt by AP, and (b) manually-written
prompts excluding the task inputs and mask tokens
are collectively referred to as the prompt tokens.

3.2 Token Reordering

As seen from Table 1, compared to MPs where
the ordering of tokens in a prompt is manually
determined, discrete prompts learnt by AP appear
to have no obvious ordering among their tokens.
To empirically investigate the importance of the
token order in a discrete prompt, we conduct an
experiment where we randomly shuffle the prompt
tokens and measure the effect on the downstream
task performance.

Experimental Procedure: Given a discrete
prompt, we first randomly reordered its prompt
tokens (e.g. shaded in blue in Table 2). Next,
we used the reordered prompt with the PLM to
make entailment predictions for the test instances
in the CB and MNLI datasets. Finally, the entail-
ment prediction accuracy (Acc) obtained with the
reordered prompts was computed. We repeated this
evaluation 10 times for each prompt and report the
averaged values and the corresponding RoD values.

Main Results: From Table 3 we see that the ac-
curacy drops for both AP and MP when the prompt

13We show the four best prompts learnt by AP in Ap-
pendix A.



Method Metrics CB MNLI

AP Acc 54.2 34.3
RoD 0.21 0.10

MP Acc 92.7 59.3
RoD 0.03 0.09

Table 3: Performance of reordered prompts. Acc de-
notes accuracy; RoD denotes the RoD from before the
reordering (Table 2). The largest drops in accuracy are
bolded and the smallest drops are underlined for each
method and dataset. AP relies more strongly on word
order than MP.

tokens are randomly reordered. In particular, the
accuracy of AP drops significantly compared to
that of MP. For example, the accuracy of AP on CB
drops by ca. 14% due to token reordering, while
that for MP drops only by ca. 2%. Intuitively, one
would expect that changing the order of prompt
tokens in MP would result in a significant drop
in accuracy because the meaning of the prompts
would change. However, we see that this is not the
case. This result shows that the discrete prompts
learnt by AP strongly rely on the token order.

Additional Analysis: To further analyze the re-
lationship between the level of perturbation intro-
duced by reordering prompt tokens in AP and its
effect on the performance, we computed the token-
level edit distance (Levenshtein distance; Leven-
shtein et al., 1966) between each prompt and its
token-shuffled version as shown in Figure 2. For
all four AP prompts, we see that the accuracy drops
when the perturbation noise (i.e. measured by edit
distance) increases. This reconfirms the lack of
robustness in discrete prompts learnt by AP to the
random shuffling of prompt tokens.

3.3 Token Deletion

As seen from Table 1, the discrete prompts learnt
by AP perform better than MP. However, it is of-
ten difficult to determine the importance of prompt
tokens to the target task due to their lack of inter-
pretability (e.g. prompt token ‘neau’ in Table 1).
To understand the significance of individual prompt
tokens to the overall discrete prompt, we conducted
an experiment where we systematically deleted one
or more prompt tokens at various positions from
a given discrete prompt and measure the drop (if
any) in the performance of the NLI task.

Experimental Procedure: We evaluated two set-
tings of prompt deletion: single and multiple token

Figure 2: Edit distance and accuracy of the reordered
trigger tokens. We evaluated them on the validation data
of CB. The prompts numbered 0 through 3 each repre-
sent the four prompts learnt by AP (shown in Table 9).
Note that a point with an edit distance of zero indicates
accuracy with the original trigger token.

deletion. In the single token deletion setting, we
deleted one token at different positions in a given
prompt. For AP, we repeated this with each of the
four discrete prompts (shown in Table 2) and re-
port the average accuracy. In the multiple token
deletion setting, we delete n ∈ {1, 3, 5, 7} prompt
tokens following three strategies: Random-deletion
deletes n prompt tokens randomly, Front-deletion
deletes n consecutive prompt tokens from the be-
ginning of the prompt, and Back-deletion deletes
n tokens counted backwards from the end of the
prompt. In random-deletion, we ran 100 trials and
report the average accuracy. As in the previous ex-
periments, we used four prompts for AP and report
the averaged results.

Results: From Table 4 we see that the accuracy
of both AP and MP drops even when a single
token is deleted at specific positions. However,
the observed trends differ in CB and MNLI. For
example, AP resulted in higher RoD values in CB
compared to MNLI. This shows that the robustness
of AP under single token deletion heavily depends
on the dataset. Table 5 shows the results for the
multiple token deletion setting. We see that the per-
formance of both AP and MP degrades when
more tokens are deleted. Interestingly, the accu-
racy drop in CB is very small for MP even when all
prompt tokens are deleted (i.e., only the task inputs
and <MASK> were used as the input). This suggests
that the performance on CB is less reliant on the



Task Method Metrics Position of the deleted prompt token Orig.1 2 3 4 5 6 7 8 9 10

CB
AP Acc 62.1 61.6 63.4 59.4 65.6 65.6 62.1 63.8 62.1 62.9 68.3

RoD 0.09 0.10 0.07 0.13 0.04 0.04 0.09 0.07 0.09 0.08 -

MP Acc 93.8 93.3 96.0 - - - - - - - 95.1
RoD 0.01 0.02 -0.01 - - - - - - - -

MNLI
AP Acc 37.9 37.8 36.6 37.5 37.5 37.2 37.5 37.4 37.5 37.1 37.7

RoD -0.01 0.00 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.02 -

MP Acc 64.5 65.4 55.4 - - - - - - - 65.5
RoD 0.02 0.00 0.15 - - - - - - - -

Table 4: Average accuracy was obtained after deleting a single token at different positions of a given prompt. The
largest drops in accuracy over the deletion positions are bolded and the smallest drops are underlined for each
method and dataset. Column ‘Orig.’ shows the performance of the original prompt.

prompt tokens in MP.

3.4 Cross-Dataset Evaluation

Given that discrete prompt learning methods such
as AP learn prompts from a small set of training
instances, it is important that the learnt prompts
encode generalizable task-specific features and
not random artefacts in the training sample used.
To study the transferability of the learnt discrete
prompts from one dataset to another, we conduct a
cross-dataset evaluation as described next.

Experimental Procedure: We used one NLI
dataset (e.g. CB) to learn the prompts and then
use them to make entailment predictions in another
NLI dataset (e.g. MNLI). We then measured the
drop in accuracy using RoD for this cross-dataset
transferability task with respect to the accuracy of
test data from the same dataset.

Results: As seen from Table 6, AP-based
prompts do not generalize well across datasets.
For both AP and MP, RoD is larger in the transfer
from CB to MNLI than in the opposite direction.
This implies that MNLI is a better dataset for fine-
tuning a PLM for NLI using discrete prompts.

3.5 Adversarial Perturbations

Introducing carefully designed adversarial pertur-
bations to the test instances such as modifications
to sentences that might or might not alter the orig-
inal target labels have been used as a technique
for probing the robustness of models (Goodfellow
et al., 2015). Previous studies (Samanta and Mehta,
2017; Jin et al., 2020) have shown that pre-trained
models can be easily fooled to make incorrect pre-
dictions with seemingly innocuous perturbations
to the test instances. Therefore, we evaluate dis-

Strategy Method Metrics #Deleted Tokens Orig.1 3 5 7

CB

Random
AP Acc 56.7 56.0 55.4 54.8 68.3

RoD 0.17 0.18 0.19 0.20 -

MP Acc 93.3 94.6 - - 95.1
RoD 0.02 0.01 - - -

Front
AP Acc 62.1 49.1 57.6 57.6 68.3

RoD 0.09 0.28 0.16 0.16 -

MP Acc 93.8 94.6 - - 95.1
RoD 0.01 0.01 - - -

Back
AP Acc 62.9 57.6 55.8 51.3 68.3

RoD 0.08 0.16 0.18 0.25 -

MP Acc 96.0 94.6 - - 95.1
RoD -0.01 0.01 - - -

MNLI

Random
AP Acc 35.8 35.8 36.0 36.2 37.7

RoD 0.05 0.05 0.05 0.04 -

MP Acc 65.4 52.6 - - 65.5
RoD 0.0 0.20 - - -

Front
AP Acc 37.9 36.5 36.2 36.0 37.7

RoD -0.01 0.03 0.04 0.05 -

MP Acc 64.5 52.6 - - 65.5
RoD 0.02 0.20 - - -

Back
AP Acc 37.1 36.7 35.7 36.5 37.7

RoD 0.02 0.03 0.05 0.03 -

MP Acc 55.4 52.6 - - 65.5
RoD 0.15 0.20 - - -

Table 5: Average accuracy was obtained after delet-
ing multiple tokens from a given prompt. The largest
drops in accuracy over the deleted tokens are bolded
and the smallest drops are underlined for each strategy
and method.

crete prompt-based NLI models for their robustness
against adversarially perturbated test instances.



Method Test Dataset RoDCB MNLI

AP trained on CB 68.3 36.1 0.47
AP trained on MNLI 42.9 37.7 0.12

MP trained on CB 95.1 43.4 0.54
MP trained on MNLI 43.8 65.5 0.33

Table 6: Accuracy and RoD for the cross-dataset evalu-
ation where a method (AP/MP) is trained on one NLI
dataset (CB/MNLI) and the learnt prompts are used to
make entailment predictions in a different NLI dataset.

Hypothesis Label

Original The Wither’s only
had daughters.

contradiction

Perturbation
w/o label changes The Wither’s did

not have sons.
contradiction

w/ label changes The Wither’s had
a boy.

entailment

Table 7: Examples of our evaluation set consisting of
task inputs with perturbations. The premise sentence
is ‘The Wither’s eldest boy, one of the four of the town
militia, saluted in the old style with his stick sword.’

Evaluation Dataset: For this purpose, we asked
two annotators to manually edit hypothesis sen-
tences in NLI test data considering two types of
perturbations: (1) perturbations that do not change
reference labels, and (2) perturbations that change
reference labels. An example is shown in Table 7.

For the first type of perturbation, we edited a
hypothesis sentence such that its relationship with
the corresponding premise remains unchanged. For
the second type, we edited a hypothesis sentence
such that its relationship (e.g., from entailment to
contradiction) will be reversed. The premise and
hypothesis pairs were sampled from CB (validation
set) and MNLI (test set). Because there are ca.
10,000 test instances in MNLI and it is costly to
manually edit sentences, we used 100 randomly-
chosen sentence pairs covering MNLI and CB.

Experimental Procedure: We computed the
RoD of average accuracies obtained with original
and adversarial test instances. Specifically, we used
the AP prompts in Table 2 under three settings: (a)
original (without perturbations), (b) perturbations
without label changes, and (c) perturbations with
label changes. Then, we calculate RoD from (a) to
(b) and (a) to (c) as shown in Table 8.

Results: Overall, we see that the RoD of AP is
consistently smaller than that of MP in both CB

Perturbation Method Metrics CB MNLI

Original
AP Acc 54.5 40.5

RoD - -

MP Acc 95.5 71.0
RoD - -

Perturbation
w/o label changes

AP Acc 55.5 43.2
RoD -0.02 -0.07

MP Acc 93.0 66.7
RoD 0.03 0.06

Perturbation
w/ label changes

AP Acc 42.3 39.4
RoD 0.22 0.03

MP Acc 41.8 61.2
RoD 0.56 0.14

Table 8: Accuracy and RoD in prompts for task inputs
that include perturbations. The RoD here is the rate
of degradation in the average accuracy from the origi-
nal without perturbations to perturbations without label
changes or perturbations with label changes. The largest
drops in accuracy are bolded and the smallest drops are
underlined for each perturbation and method.

and MNLI under both types of perturbations. How-
ever, it is also clear that the accuracy obtained with
AP is much smaller than that with MP. For the per-
turbations without label changes, both AP and MP
show small RoD values, compared to those with
label changes.14 This shows that both AP and MP
are relatively robust against modifications to the
hypotheses that do not significantly alter the mean-
ing. However, when stronger perturbations are
introduced that would result in label changes, the
accuracy of both AP and MP drops significantly. 15

This is a concern because it shows that neither AP
nor MP is sufficiently robust to correctly predict
the target labels when the hypothesis sentences
in test data are adversarially modified.

4 Conclusion

We investigated the robustness of discrete prompts
under different perturbations. We found that al-
though discrete prompts remain relatively robust
against token deletion, it is highly sensitive to
other types of perturbations such as token shuffling.
For adversarial perturbations to the input, discrete
prompts were robust to weak perturbations without

14w/o label change modifications slightly increase the aver-
age length of a hypothesis and AP seems to better exploit this
extra information for inference resulting in a slight improve-
ment in accuracy (negative RoD).

15MP is less robust compared to AP, likely as a result of
overfitting to strongly perturbed training data during fine-
tuning the PLM.



label changes, but AP was more robust than MP
for perturbations with label changes. Moreover,
they generalize poorly across different datasets an-
notated for NLI. We hope our analysis will inspire
future work to develop methods that learn both
accurate as well as robust discrete prompts.

5 Limitations

Possible limitations of this work are:

• We chose popular discrete prompt methods
of AP and MP and did not investigate other
methods in this work. Our analysis procedure
can still be applied to other discrete prompts
such as AvgTrigger (Wallace et al., 2019).

• We chose RoBERTa-large following previous
studies of HFT (Scao and Rush, 2021) and
AP (Shin et al., 2020) for reproducible and
identical comparisons with them. Other PLMs
would lead to different results, but they can
also be investigated in the same way as in this
work.

• This work focuses on NLI because it is a fun-
damental natural language understanding task
and still difficult even with PLMs (Brown
et al., 2020). Other complex downstream
tasks are worth investigating for a deeper un-
derstanding of prompt-based approaches in
future work.

• The results and conclusions are from the En-
glish datasets and would differ in other lan-
guages. However, our methodologies do not
depend on English and can be applied to other
languages as important future studies.

• Since there was a performance gap between
MP/HFT and AP, the accuracies by the pertur-
bations could be affected. However, this work
does not aim to find the best prompt learning
method but to analyze the robustness of dis-
crete prompts for a deeper understanding of
them.

6 Ethical Considerations

Our adversarial dataset came from existing datasets
of CB and MNLI. We visually checked the in-
stances in the data development and found no in-
stances with ethical concerns.

One should also be aware of social biases (e.g.
gender stereotypes) in PLM. RoBERTa, the PLM

we used in our experiments, is known to have gen-
der biases (Sharma et al., 2021). Since we used
it as-is in order to follow the experimental con-
ditions of previous studies using RoBERTa, our
current results are possibly influenced by such bi-
ases. However, the consideration of the prompt
robustness of this work would not pose or magnify
such ethical concerns.
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Prompt ID Prompt learnt by AP Label tokens Accuracy

0 p <MASK> strikers <MASK>

<MASK> Ever Want å£« Console

Encyclopedia Sie ANC h

entailment: 1927, 1897, 1904
contradiction: personally, skeptics, squarely
neutral: æµ, ä¸Ĭ, ä¹

69.64

1 p <MASK> diagnoses undert

fueling Hist setups prev bound

advertisers paper records h

entailment: 1930, 1830, 1890
contradiction: contradict, straight, favors
neutral: à¨, annabin, kb

75.00

2 p <MASK> maximize useful

courts <MASK> malink rooms

Scrib home interested Service

h

entailment: 4000, 1830, THEN
contradiction: yet, preferring, Ps
neutral: ı̆, Username, ãĥ«

57.14

3 p <MASK> fever <MASK> <MASK>

EL <MASK> <MASK> <MASK> ARE ENE

cue h

entailment: 1890, 1886, 1889
contradiction: yet, endorsing, contradict
neutral: ctory, boolean, Boolean

71.43

Table 9: Four prompts learnt by AP in CB. Red represents the task inputs, h represents the hypothesis, p

represents the premise, blue represents the prompt tokens (trigger tokens). <MASK> tokens in the trigger tokens of
some prompts are those used to initialize trigger tokens.


