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Abstract 

Images and spectra obtained from aberration corrected scanning transmission electron 

microscopes (STEM) are now used routinely to quantify the morphology, structure, 

composition, chemistry, bonding, and optical/electronic properties of nanostructures, 

interfaces and defects in many materials/biological systems. However, obtaining quantitative 

and reproducible atomic resolution observations from some experiments is actually harder 

with these ground-breaking instrumental capabilities, as the increase in beam current from 

using the correctors brings with it the potential for electron beam modification of the 

specimen during image acquisition. This beam effect is even more acute for in-situ STEM 

observations, where the desired outcome being investigated is a result of a series of 

complicated transients, all of which can be modified in unknown ways by the electron beam. 

The aim in developing and applying new methods in STEM is therefore to focus on more 

efficient use of the dose that is supplied to the sample and to extract the most information 

from each image (or set of images). For STEM (and for that matter all electron/ion/photon - 

scanning systems), one way to achieve this is by sub-sampling the image and using Inpainting 

algorithms to reconstruct it.  By separating final image quality from overall dose in this way, 

and manipulating the dose distribution to be best for the stability of the sample, images can 

be acquired both faster and with less beam effects.  In this paper the methodology behind 

sub-sampling and Inpainting is described, and the potential for Inpainting to be applied to 

novel real time dynamic experiments will be discussed. 
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1. Introduction to Scanned Imaging 

In a standard scanning pattern used for Scanning Transmission Electron Microscopes 

(STEM) and many other instruments, the scan system works by moving the beam from left to 

right across a single row with a dwell time for each pixel in that row (Figure 1).  At the end of 

the row, the beam flies back to the left-hand-side, moves down one pixel and then completes 

a row again (this is like the way a traditional typewriter works or an older cathode ray tube 

(CRT) television).  After the flyback, the beam typically has a longer dwell time at the left-edge 

to allow for any hysteresis in the scan to damp out and the left-edge of the scan to be aligned 

at the same location for each row.  This form of scanning is known to present difficulties with 

beam damage, particularly on the left-hand edge of the raster, and this has led to alternative 

spiral scanning approaches1,2 to extract higher resolution images with less beam damage. 

The beam size in the STEM is the same regardless of the magnification of the image, 

which can be as small as ~0.1nm for a Cs-corrected STEM3,4.  In a low magnification image 

therefore, the area of the scan is large and the pixel size is correspondingly much larger than 

the size of the beam.  For example, for the Cs-corrected STEM above, in a 1000 x 1000-pixel 

scan covering 1mm x 1mm, the pixel size is 1m, i.e. 1000 x the size of the beam. To achieve 

atomic resolution in STEM, the magnification of the microscope is increased to the point 

where the pixel size approaches atomic separation, i.e. ~0.1-0.5nm.  In the highest resolution 

images, the magnification is turned up to a level where the pixel size is actually much smaller 

than the probe size, leading to an oversampled image where beam damage is prevalent5.  

When a STEM is at low-magnification, beam damage is not a critical issue, as the 

distance between beam locations is very large, and the likelihood that the scan hits exactly 

the same location in successive sweeps is very small – damage can still occur, but it is below 

the scale of the image resolution.  It is only when the beam and pixel size starts to converge 

that the damage becomes serious, and this is of course the condition for the highest spatial 

resolution images.  If we think about the problem from the perspective of overlapping beam 

positions and their effect on the measurable damage, then it is clear that if we can increase 

the spacing of the beam positions at high magnification then we will be able to avoid/reduce 

the beam damage problem that plagues high resolution SEM/STEM (Figure 1).  This reduction 

in beam damage effects is actually what has been seen in cases where expanding the time 

and space between measurements reduces damage6-12.  Of course, the issue with this “sparse 
sampling” approach is that we would then need a means to reconstruct the full image from 

the sub-sampled acquisition.  As the quality of the image then would depend on how many 

pixels were included, the optimal sampling would be defined as where beam damage is 

minimized while the reconstruction quality is maximized.  We note here that the recent 

development of the Moiré STEM achieves atomic resolution images from a lower 

magnification image (i.e. sub-sampled scan) with reduced dose by utilising a geometrical 

interference effect between the STEM beam and the sample lattice13-15.  This methodology 

represents a special case, i.e. where the sample geometry is known and an atomic resolution 

image is desired, of the general sub-sampling approaches and reconstructions described in 

the remainder of this manuscript. 

2. Sparse Sampling and Reconstruction from a Single Image 

As we can see from Figure 1, it is possible to obtain a sub-sampled scanned image by 

using both a set of “random” beam positions, and a “random walk” or “line-hop” scan.  
Practically, the line-hop approach is easier to implement on standard electron microscopes 
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as it avoids much of the hysteresis issue present in conventional scanning systems, permitting 

the system to run at the fastest possible speed11 (more advanced electrostatic deflection 

systems can avoid this hysteresis5 and use the full benefit of a truly random scan).  The key 

challenge for all sub-sampling methods is to reconstruct the sub-sampled image.   

Compressive sensing16,17 is a method of efficient signal acquisition and reconstruction via the 

solving of a set of undetermined linear equations. Like traditional image compression 

techniques, it relies upon the fact that given an appropriate coordinate system (or 

‘Dictionary’), complex high dimensional signals such as an image can be expressed within a 
margin of error by a potentially much smaller set of parameters, describing a linear 

combination of signal patterns with their respective scalar coefficients18,19. The goal for any 

image reconstruction is to form a complete signal (with the smallest error) from as few 

measurements as possible20,21.  

Figure 1: Examples of various scanning patterns in a 9x9 grid. Number and colour indicate 

scanning order. (a) Raster scanning is the traditional method of scanning in STEM. (b) Down 

sampling akin to low magnification image acquisition. (c) Space filling random scanning has 

been shown to reduce beam damage in beam sensitive samples10. (d,e) Two scanning patterns 

possible using probe subsampling; subsampled random scanning and sub-sampled line hop 

(i.e. random walk) scanning at 33.3% sampling ratio. 

Traditional image Inpainting methods rely on a dictionary learning algorithm such as the 

Method of Optimal Directions (MOD)22 or K-SVD23 to form a dictionary of representative 

signal patterns from a fully sampled image, which via a sparse linear combination with 

corresponding scalar coefficients can closely represent any given patch (smaller segment) of 

the image.  This dictionary, along with a now sub-sampled version of the same image may 

1 2 3 4 5 6 7 8 9 1 2 3 4 5 64 54 33 48 78 19 55 15 4

10 11 12 13 14 15 16 17 18 65 32 34 38 68 36 73 57 63

19 20 21 22 23 24 25 26 27 6 7 8 9 10 79 25 42 45 17 39 9 27 60

28 29 30 31 32 33 34 35 36 21 22 66 53 43 59 24 74 40

37 38 39 40 41 42 43 44 45 11 12 13 14 15 77 62 7 10 12 80 28 49 3

46 47 48 49 50 51 52 53 54 20 14 1 44 72 16 5 37 31

55 56 57 58 59 60 61 62 63 16 17 18 19 20 76 26 51 18 35 56 29 75 23

64 65 66 67 68 69 70 71 72 2 47 70 71 6 81 61 52 30

73 74 75 76 77 78 79 80 81 21 22 23 24 25 41 13 8 67 46 69 50 58 11

19 15 4 4

1 3 5 7 9

25 17 9 27 2 6 8

21 22 24 10 16 18

7 10 12 3 11 13 15 17

20 14 1 16 5 12 14

26 18 23 19 27

2 6 20 22 24 26

13 8 11 21 23 25

(d) Subsampled Random Scan (e) Line Hop Scan

(a) Raster Scan (b) Lower Magnification Scan (c) Space Filling Random Scan
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then be passed to a sparse pursuit algorithm to solve the following system of equations (for 

each 𝒊-th overlapping patch of the image): 

 𝒗𝒊 = 𝚽𝒊 ⋅ (𝑫𝜶𝒊 + 𝝐𝒊),  (Eq. 1) 𝒙̂𝒊 = 𝑫𝜶𝒊,        (Eq. 2) 

where 𝒗𝒊 ∈ ℝ𝑛 is the measured (sub-sampled) signal subject to noise 𝝐𝒊 ∈ ℝ𝑛, 𝚽𝒊 ∈ {0,1}𝒏×𝒏 

is the binary sensing matrix (or ‘mask’, determining the locations of missing pixels), 𝒙̂𝒊 ∈ ℝ𝑛 

is the reconstructed (fully-sampled) signal represented using the given dictionary 𝑫 ∈ ℝ𝑛×𝑘 

and corresponding ‘weight’ vector 𝜶𝒊 ∈ ℝ𝑘.  

Figure 2: (a) A series of 1D dictionary elements (Fourier components in this case) can be 

combined with defined scalar weightings to reproduce the true 1D signal (b).  By reducing the 

sampling of our experiment, but still generate a good fit to the data (c). (d) A Dictionary of 2D 

elements (again Fourier components) can be combined with defined scalar weightings (e) to 

produce a reconstruction (f) which is indistinguishable from the true 2D signal.  By reducing 

the number of points in the true signal (g) we can increase the speed and decrease the dose in 

the sampling of our experiment (h), but still generate a good fit to the data (i). For comparison 

(j) shows the dictionary learned directly from the sub-sampled image in (h). 

Examples of algorithms capable of solving this includes Orthogonal Matching Pursuit 

(OMP) and its many similar variants24,25 or Basis Pursuit which involves the minimisation of 
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the l1 norm26. More recently, a reformulation of the dictionary learning problem into the 

Bayesian regime has produced algorithms, such as Beta-Process Factor Analysis (BPFA)27 

which are capable of so-called “blind inpainting”28, i.e. the formation of a dictionary and 

subsequent reconstruction of an image using only the subsampled image as its input 

(therefore, there is no need for a mask to be provided a priori or a fully-sampled version of 

the image to be acquired at any stage in the process). For this reason, BPFA represents an 

ideal starting algorithm for sub-sampled scanned images, which can be refined using 

dictionary seeding/transfer approaches (see later sections of this paper). 

As an example of how this process can work, consider the case of a simple 1-

dimensional (1D) signal, such as a wave shown in Figure 2. Here, a series of dictionary 

elements (in this case 1D Fourier components) can be used to re-construct a true signal 

(Figure 2b).  But now what happens if we do not measure the complete signal?  Figure 2c 

shows 25% subsampling of the true signal from Figure 2b.  It is clear from Figure 2c that we 

can fit the dictionary elements to the sub-sampled observation, effectively “inpainting” the 
missing level of sampling in our experiment.  As we reduce the level of sampling, the ability 

to “fit” to the data with a minimal error is reduced, until typically at ~2% sampling the error 
is unacceptably large29.  However, given that the damage induced in the sample is a function 

of the speed of the scan, and the overlap of the beam positions, reducing the overall number 

of beam positions in the image by this factor of 50, can have a tremendous effect on the 

overall sample stability during the experiment. This approach is also easily extendable to 

higher dimension images, with the same approach as above shown for the reconstruction of 

the 2D image of “Barbara” (Figure 2d-i). In this case the reconstruction was obtained using 

BPFA to Inpaint the sub-sampled image30. In the use of the BPFA methodology there are a 

number of tuneable parameters that are used to increase the efficiency of the algorithms to 

reconstruct the images11.  Here again, it is possible to reconstruct 2D images with high 

precision from a sampling of ~2%31,32 (this also extends to non-rectangular scans33, 3D 

tomography34,35, 4D methods such as ptychography36,37, and higher dimensional datasets). 

3. Dictionary Transfer and Seeding with Fast Simulations 
 

From the results in the previous section, it is clear that we can use a dictionary for our 

single sub-sampled image with standard Fourier components or learn the dictionary for the 

reconstruction directly from the sub-sampled image using BPFA11.  However, could we use a 

dictionary that we have learned from one image to reconstruct another?  The reason we may 

want to consider this is that if one type of image had a better signal-to-noise ratio (SNR) then 

we may get a more accurate dictionary, improving the speed and fidelity of the reconstruction 

of subsequent images if we use the dictionary from that “best image”30.  We may also be able 

to create a master dictionary that would allow us to sub-select the best dictionary to 

reconstruct any particular set of images.  When using BPFA, which has the benefit of working 

directly on sub-sampled images, the most time-consuming part of the reconstruction process 

is the dictionary determination – we can speed up significantly by using an existing optimal 

dictionary.  In order to test this dictionary transfer concept, we can simply try it for two images 

that show strikingly different contrast and see what happens.  Figure 3 shows two images, 

their dictionaries learnt by K-SVD and the reconstructions of 25% sub-sampled images using 

the dictionary from the other image.  The quality of the reconstructions in each case are 

shown in table 1.  As can be clearly seen, it is possible to swap dictionaries and still achieve a 
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high-quality reconstruction.  The limitation in this example is that it takes longer to achieve 

the required reconstruction quality.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: (a) Image of Barbara and dictionary (b) atomic resolution STEM image of SrTiO3 and 

dictionary (c) 25% Barbara reconstructed with STEM dictionary and (d) 25% STEM 

reconstructed with Barbara dictionary. 

 

  Input Image 

  Barbara STEM 

  PSNR (dB) SSIM PSNR (dB) SSIM 

Dictionary 
Barbara 24.72 0.77 25.66 0.9 

STEM 23.81 0.63 31.46 0.98 

Simulation* - - 26.13 0.92 

 

Table 1: Comparison of reconstruction quality for the images shown in Figures 3 and 4 using 

standard Peak Signal to Noise Ratio (PNSR)38 measured in decibels (dB) (the higher the number 

the better the reconstruction) and Structural Similarity Index Measure (SSIM)39 metrics (a 

number closer to 1 is better).   As a general rule of thumb, a PSNR value greater than 20 dB is 

an acceptable reconstruction, over 25 dB is a very good reconstruction, and over 30 dB is 

indistinguishable from the ground truth (also the same for an SSIM of 0.95 or above) *Note 

that dictionary generated from image simulation was applied to a cropped area of the full 

STEM image. 
 

A particularly useful application of the dictionary transfer process is in the use of 

simulations for image analysis. For many types of images in STEM, SEM and other 

microscopies, simulations are used to match expected contrast to actual contrast and 

quantify the structure giving rise to the image.  Usually this is a computationally intensive 
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methodology as the potential unknowns in the image (composition, thickness, detection 

efficiency, defocus, etc) require multiple simulations to be performed to match to the 

experimental image4.  In the case of the sub-sampling approach, however, we can use the 

dictionary from a simulated image to seed the experimental reconstruction, or we can use a 

dictionary learned from experimental image to match to the theory, or we can combine the 

two images together to make a combined dictionary that is optimal for both34.  As we do not 

need the full dataset for the simulations (BPFA can reconstruct a partial simulation), we can 

also sub-sample the number of frozen phonon configurations, locations in real space and 

experimental conditions to increase the speed for the simulations, potentially allowing for 

each of them to be performed in real time during experiments40.  As with the reconstructions 

described previously, by having a dictionary and reconstruction it means that there are 

quantifiable fits to the experiment, theory, and combination of the two. Rather than matching 

to experimental conditions, the theory and experiment are solved together and the 

differences can be quantified and identified from a single simulation.  As a simple example of 

this approach, 10% subsampled simulations of SrTiO3 obtained using MULTEM41 are shown in 

Figure 4a, along with their dictionary and full reconstruction.  Also shown in Figure 4 is the 

reconstruction of the 25% SrTiO3 image shown in Figure 3, using the simulated dictionary in 

Figure 4c.  A quantified comparison of the reconstruction of this image is shown in Table 1.  A 

key factor here is that unlike the example of Figure 3, where the dictionary was poorly suited 

in the transfer, making the reconstruction become more complex, here we are simplifying the 

reconstruction by making the dictionary specifically for the experimental image we want to 

reconstruct 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: (a) Three 10% sub-sampled simulations corresponding to different frozen phonon 

configurations of SrTiO3, and the reconstructed simulation using BPFA (b) as well as the 

dictionary determined by BPFA (c). This dictionary is then used to reconstruct a 25% 

subsampled crop of the SrTiO3 from Figure 3 (d), with the reconstruction (e) having a 92% 

similarity to the reference image. 
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4. Learning for Compressed Hyperspectral Imaging 
 

In the discussion so far, we have focused on an approach that uses the dictionary 

obtained from a single image (and our demonstration example has used atomic resolution 

images).  However, if there are multiple images that are being acquired in an experiment (for 

example, with a movie and/or multiple different detector types), or we have multiple 

experiments performed on the same or similar samples, then there are opportunities to refine 

the reconstruction of sub-sampled images even further.  This type of approach falls within the 

general topic of hyperspectral imaging (HSI)42, and there are many powerful deep learning 

approaches that have been developed for this type of data structure43,44.  In the case of their 

use in scanning (transmission) electron microscopy, the goal in the experiment is always to 

be ahead of the beam damage that is induced in the experiment and that means we will 

always be signal limited and looking for methods that will work under low SNR conditions.  In 

the example we show in this section, we aim to reconstruct a general hyperspectral image 

datacube with 10 spectral channels and 1 BSE channel, and avoid the advantages of symmetry 

that can assist with the reconstruction of atomic resolution images. 
 

Supervised methods44 make use of a “ground truth” to train a deep neural network 

(DNN), capable of denoising images, by mapping the noisy image to a clean reference46. This 

can achieve state-of-the-art image performance with a large enough data set for training, but 

can struggle to adapt to unseen data with new models of noise. For the STEM case, a ground 

truth image may not be possible to acquire without damage. However, with unsupervised 

learning approaches it is possible for a DNN to instead learn the mapping between 

independently measured noisy images to predict a clean signal with no reference ground 

truth47, achieving similar performance to the supervised method. Noise2Self 48 is one method 

that extended this idea to exploit the noise independence between pixels, relaxing the 

requirement for collecting two independent noisy images and providing theoretical 

performance guarantees of such an approach. A semi-supervised approach may also play an 

important role when there are a “ground truth” for part of the data. 
 

Figure 5 shows a small section of a much larger area Energy Dispersive X-ray (EDS) 

spectrum map acquired with two different dwell times using a scanning electron microscope 

(SEM). Also shown are reconstructions of these two datasets using a 3D BPFA 

implementation, in which a high SNR fully sampled backscattered electron (BSE) image is 

included as one of the layers alongside the EDS data cube. Extended into 3D, rather than 

learning dictionary elements of size [b × b] as typical with 2D dictionary learning, dictionary 

elements of size [b × b × N] are used, where N is the number of layers to the data cube (N=11 

for this example). In the case presented, each layer is a different elemental map produced, 

with the first layer being the BSE image. This dictionary, which considers features along the 

spectral axis, is designed to take advantage of the relationship that exists between both 

spatial and spectral information available in the data cube. In using the high signal BSE image, 

this method aims to take advantage of its high spatial resolution to aid in reconstruction.  Two 

use cases are presented in Figure 5; a low dwell time acquisition (1µs) wherein the full spatial 

domain is sampled, and a high dwell time acquisition (100µs) in which only 1% of the spatial 

domain is sampled randomly. These two scenarios exhibit incompleteness in two domains; 

spectral and spatial, respectively. While the low dwell time dataset may sample every 

location, the spectral information collected at those locations is weak (low SNR). For the high 

dwell time dataset, the inverse is true; at each sampled location the full (high SNR) spectra is 

acquired but only a few datapoints are acquired. 3D BPFA can take both of these inputs and 
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produce detailed spectrum maps with significant quality increases over the original data. Both 

of these use cases, from an experimental point of view, would theoretically have the same 

incident electron dose rate and acquisition time. One of the main benefits of using a method 

such as this is that no training data or prior-learned model is required. All that is necessary is 

the input data, and a set of input parameters tailored to that input data. 

 

 

Figure 5: (a) Untreated EDS spectrum image with 1 s dwell time at 100% sampling from a 

sample of granite, containing the following minerals; muscovite (purple), illite (orange), quartz 

(dark purple), apatite (green) and rutile (lilac). (b) Untreated EDS spectrum image with 100 s 

dwell time at 100% sampling. (c) 3D BPFA treated version of (a), 1 s dwell time at 100% 

sampling. (d) 3D BPFA treated version of (b), with 100 s dwell time but sampled randomly at 

1%. Both (c) and (d) have the same theoretical electron dose exposure and acquisition time. 

Changes in image contrast between (a) and (b) are due to increased signal-to-noise ratio when 

scanning with higher dwell times. Changes in image contrast between (c) and (d), which are 

formed from the same electron dose rate, are due to the efficiency of the algorithm to 

construct the complete data set. All images contain the BSE image as a layer in the data cube. 

Image colour denotes chemical composition, as indicated by the legend. Image dimensions 

are 1.11 x 0.835 mm. We would like to thank Dr Louise Hughes and Dr Matthew Hiscock for 

supplying this data and help with analysis. 

 

5. Conclusions and Outlook 

The methodology described here can allow scanned images to be acquired at least 10-

100x faster and coupled with a dose fractionation that maximises the beam spacing in space 

and time, thereby minimising electron beam damage.  Although the full potential of these 
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techniques, such as BPFA and DNN are yet to be fully exploited and evaluated, such an 

approach increases the range of beam sensitive samples that can be studied by advanced 

STEM (and other scanned) methods.  In addition, this methodology is particularly important 

for the rapid throughput of scanned experiments, as technique developments over the last 

few have moved to more and more pixels over an ever-increasing analysis area.  For example, 

ptychography in STEM36, serial block face SEM49 and FIB-SEM slice and view50 are all pushing 

large scan dimensions even up to the 100 million pixel range, making the time of image 

acquisition the main limitation that is key to all future applications of these methods.  In some 

cases, such as Z-contrast STEM4, by reducing the number of pixels in an image, dynamic in-

situ phenomena can be directly observed where the beam does not significantly change the 

observation51.  Techniques that were once only thought of as only applicable to high 

resolution imaging can therefore now become in-situ methods.  The use of DNNs to learn an 

inpainting model from a set of samples means that we can also in principle teach a microscope 

how to image a particular type of sample more efficiently.   

Another aspect of scanned imaging that this form of sub-sampling and Inpainting 

reconstruction facilitates is the potential for dynamic control of the microscope.  If we take a 

1 mega pixel example with a 1 s dwell time, then on a standard scan we would acquire ~1 

frame per second (not accounting for the flyback time).  At 10% sampling this becomes 10 

frames/second, which means that we effectively can perform sub-original-frame analysis for 

key things like defocus, stigmation, drift, tilt etc or measure damage and damage rate 

independently to determine the best acquisition time for high resolution images.  While the 

ability to reconstruct the image and perform the analytics to change the microscope 

alignment parameters would have to be performed in real time, there is increasing evidence 

that this should be routinely possible soon.  The codes that perform the Inpainting work on a 

patch-by-patch basis across the whole image and each refinement can be performed in 

parallel, meaning that the speed can be increased by scaling efficient codes on a GPU 

platform.  The difference in time between the Inpainting of a 5% sampled image and a 10% 

sampled image is negligible, meaning that the final speed of the imaging process is limited 

only by the acquisition time at these sampling levels.  For things like defocus and drift it is also 

important to understand that we also do not need to reconstruct across the whole image to 

accomplish control, a few patches at specific locations would be all that would be needed.  

Another key part of the speed discussion is that there is a difference between the image that 

is needed to control the microscope and the image that is used for the final analysis.  A poorer 

quality, i.e. faster reconstruction, could be enough to control the microscope and ensure the 

best experimental imaging parameters were used during the experiment.  After the 

experiment is completed all the images could be transferred and analysed with a range of 

dictionaries, algorithms and approaches to determine the best result after the optimal 

reconstruction methods were used.  Of course, at this point, the best overall result would 

then be used to modify the dictionary/algorithm in a positive way, allowing all previous 

images to be re-analysed to improve existing/prior results.   
 

It is worth noting that all of the above discussions for use of the data are with images 

that are ~1-10% of the size of the original fully sampled image.  At the time of acquisition, 

whatever the best approach to reconstruction exists would set the limit of sub-sampling and 

ensure that there is no data loss ever.  Improvements in reconstruction and analysis that may 

come from a better algorithm in the future are not inherent in the storage architecture, 

meaning that the smallest amount of data is always kept for the best algorithm available – a 
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better algorithm may lead to all existing images being reduced even further.  Another key part 

in the discussion of scanned images, is that often it is not the image that is important but the 

analysis of what the image shows; for example, the number and size distribution of 

nanoparticles in a particular area or part of the structure.  As there is enough information in 

the sub-sampled image to reconstruct a full image, it means there is enough information to 

work with advanced image analytics. So in the example above, the image analytics for edge 

detection and size determination would be able to run directly on the sub-sampled data, but 

as it is sub-sampled then there is less data to analyse and a faster result52,53.  It may be possible 

that complete data analysis could be performed during a microscope experiment and users 

of the instruments leave with their data rather than their results to be analysed at a later 

time.  As with the final resolution of the images, even if there are sacrifices in having large 

error bars in data to get it quickly, the quality of data will be enough to determine the course 

of the experiment and the errors can always be improved off-line using the best supporting 

data/algorithms. 
 

In summary, whether sub-sampling and Inpainting is used to improve image speed, 

control dose fractionation and reduce damage, provide real time adaptive scanning and 

autonomous instrument controls, learn the optimal reconstruction and de-noising approach 

to all (sub- and fully- sampled) images, or simply to reduce size of images for storage and/or 

transmission, these applications can all fundamentally change the way that we acquire and 

use images from STEM and other scanned microscopes in the future. 
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