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Abstract

Rationale: Pneumonia is the leading cause of death in children
worldwide. Identifying and appropriately managing severe
pneumonia in a timely manner improves outcomes. Little is
known about the readiness of healthcare facilities to manage
severe pediatric pneumonia in low-resource settings.

Objectives: As part of the HAPIN (Household Air Pollution
Intervention Network) trial, we sought to identify healthcare
facilities that were adequately resourced to manage severe pediatric
pneumonia in Jalapa, Guatemala (J-GUA); Puno, Peru (P-PER);
Kayonza, Rwanda (K-RWA); and Tamil Nadu, India (T-IND). We
conducted a facility-based survey of available infrastructure, staff,
equipment, and medical consumables. Facilities were georeferenced,
and a road network analysis was performed.

Measurements and Main Results: Of the 350 healthcare
facilities surveyed, 13% had adequate resources to manage severe

pneumonia, 37% had pulse oximeters, and 44% had supplemental
oxygen. Mean (6SD) travel time to an adequately resourced
facility was 416 19 minutes in J-GUA, 996 64 minutes in
P-PER, 406 19 minutes in K-RWA, and 316 19 minutes in
T-IND. Expanding pulse oximetry coverage to all facilities
reduced travel time by 44% in J-GUA, 29% in P-PER, 29% in
K-RWA, and 11% in T-IND (all P, 0.001).

Conclusions: Most healthcare facilities in low-resource settings
of the HAPIN study area were inadequately resourced to care for
severe pediatric pneumonia. Early identification of cases and
timely referral is paramount. The provision of pulse oximeters to
all health facilities may be an effective approach to identify cases
earlier and refer them for care and in a timely manner.
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Pneumonia is the leading cause of death in
children less than 5 years of age worldwide
(1). Once hospitalized, mortality from
pediatric pneumonia in high-income
settings is 7–14% and 30–62% if
complicated by hypoxemia or sepsis (2–4).
Severe cases of pneumonia, such as those
marked with clinical features of hypoxemia,
carry the highest risk of morbidity and
mortality (5). Timely diagnosis of severe
pneumonia and early treatment is
associated with reduced mortality. This
includes recognizing clinical features of
severity, such as hypoxemia and sepsis, and
treating with supplemental oxygen (reduces
mortality by 35%) and antibiotics (reduces
mortality by 23%) (6, 7). However, for
children to receive an appropriate diagnosis
and be appropriately treated, a healthcare
facility must have adequate resources:
namely, a physician who is available for
either management or consultation and can
recognize severe presentations and
progression to acute respiratory failure,
pulse oximeters and supplemental oxygen
to identify and treat hypoxemia, chest
imaging to identify complications, and
antibiotics (8–17).

Geographic inaccessibility is another
barrier to appropriate care. Previous studies
have shown that longer travel times to
healthcare services are associated with a
lower likelihood of seeking care and higher
mortality (18). This disparity is greater in
rural areas, where roads cannot always be
traversed by car and many people rely on
walking, bicycles, or public transportation
(18). Expert groups have recommended
that emergency services should be available

within a 2-hour travel time, but there is
limited assessment of this standard (19).
Facilities that are adequately resourced to
diagnose and treat severe pneumonia need
to be identified so that patients can be
directed to the appropriate facility.
Healthcare facilities that implement
effective triage to identify the most severely
ill children were able to lower inpatient
mortality (20, 21). To that end,
infrastructure to facilitate transfers must
exist. For example, equipment such as
pulse oximeters can assist in early diagnosis
and expedite appropriate triage. In the
United States and other high-income
countries, triage is done by centralized
emergency dispatch systems. Triage teams
use pulse oximetry as one tool to assess the
severity of illness (22, 23). These systems
remain underdeveloped in low-resource
settings (24, 25).

There are limited data on the
geographic accessibility of facilities that are
adequately resourced to care for severe
pediatric pneumonia in low- and middle-
income countries (LMICs). We sought to
understand the resource availability and
geographic accessibility of facilities in four
resource-poor settings in Guatemala, Peru,
Rwanda, and India. We conducted a survey
to identify the location, assets, and supplies
that make a facility adequately resourced to
care for severe pneumonia within the
boundaries of the four LMIC sites. These
resources were identified as necessary by a
review of the literature and consensus
among experts in pneumonia. Such
resources include infrastructure, human
resources, equipment, and medications in
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Scientific Knowledge on the
Subject: Severe cases of pneumonia,
such as those marked with clinical
features of hypoxemia, carry the
highest risk of morbidity and mortality.
Early diagnosis and treatment of severe
pneumonia are associated with reduced
mortality. There are limited data on
the geographic accessibility of facilities
that are adequately resourced to care
for severe pediatric pneumonia in low-
and middle-income countries.

What This Study Adds to the
Field: To our knowledge, this is the
first study to characterize the
geographic accessibility of adequately
resourced healthcare facilities to
manage severe pediatric pneumonia in
low- and middle-income country
settings. We found inconsistent levels
of resources across facilities and
significant heterogeneity in the
availability of healthcare personnel,
equipment, and medications in
nonhospital facilities. Although most of
the population at each site had access
to a facility within 30 minutes of travel
time, few healthcare facilities were
adequately resourced to manage severe
pneumonia. Expanding the availability
of pulse oximetry devices to all facilities
may be an effective approach to
identify cases earlier and refer them for
care in a timely manner.
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healthcare facilities. This evaluation allowed
us to conduct a road network analysis and
study the relationship between geography
and facility-level resources.

Methods

Study Setting
This study was conducted as formative
research for the HAPIN (Household Air
Pollution Intervention Network)
randomized controlled trial (see the online
supplement). The HAPIN trial (https://
clinicaltrials.gov/ct2/show/NCT02944682) is
testing a complex clean energy intervention
that consists of a liquefied petroleum gas
stove, continuous fuel distribution, and
behavioral messaging in 3,200 households
at four international sites: Jalapa,
Guatemala (J-GUA); Puno, Peru (P-PER);
Kayonza, Rwanda (K-RWA); and
Nagapattinam and Villupuram in Tamil
Nadu, India (T-IND). Although all settings
are rural, each site varies in size, population
density, altitude, and indicators of wealth
status (Table 1) (26–29). One of four
primary outcomes for the HAPIN trial is
the incidence of severe pneumonia.
Therefore, understanding the healthcare
system resources at each site was a
necessary step in the design of a
pneumonia surveillance strategy (26, 27).

Study Design
Investigators at each site were asked to
identify public and private health facilities in
the study area that treat children. Each site
identified facilities to approach on the basis
of recommendations of the regional
ministries of health offices and previous
experience. Facilities that care for specialized
populations (e.g., veterans, military, or
police) were excluded. A survey was
developed by HAPIN investigators with local
input to evaluate the type of facility, hours of
operation, inpatient bed availability,
healthcare personnel, equipment, and
medications, together with availability of
vaccines and implementation of cold-chain
protocols (see the online supplement). The
section on vaccines and cold-chain
availability was only completed by J-GUA
and P-PER. The survey was translated
into each site’s local language and back-
translated for quality control. Once
developed, this survey was piloted in a
selection of facilities and iteratively revised
on the basis of feedback. HAPIN personnel

approached each facility to administer the
survey in person and collect geographic
coordinates. Usually, the administrative
leader of the facility was interviewed. All
responses were entered into Research
Electronic Data Capture software
(Vanderbilt University) (30, 31). The study
took place between February 17, 2018, and
November 29, 2019.

Definitions
We trained research staff on how to
complete the survey (online supplement).
Facilities were categorized as hospitals, health
centers, health posts, or other facilities (e.g.,
community centers or private clinics) on the
basis of the self-report of facility type. We
defined a facility as being open every day if it
accepted patients for evaluation and
treatment 7 d/wk, having overnight beds if it
had beds that could be occupied overnight by
a child, and having access to physicians who
can recognize severe presentations of
pneumonia or progression to acute
respiratory failure that requires immediate
intervention.

For the purposes of this paper, we
defined equipment as long-term assets
such as pulse oximeters and imaging
equipment, and we defined medical
consumables as short-term supplies that
require consistent restocking such as
antibiotics and oxygen. Supplemental
oxygen was defined as oxygen therapy
administered via a cylinder, compressor,
or concentrator via nasal cannula, and a
respiratory support device was defined as
continuous positive airway pressure
(CPAP), noninvasive positive pressure
ventilation, or a mechanical ventilator.
Finally, chest imaging was defined as
having X-ray or ultrasound capacity, and
antibiotics were antibacterial medications
that could be administered orally,
intravenously, or intramuscularly. We
classified facilities as adequately resourced
to manage severe pneumonia if they were
open every day, had overnight beds, and
had an available physician, a pulse
oximeter, supplemental oxygen,
respiratory support devices, X-ray or
ultrasound capacity, and antibiotics. Our
definition to classify a facility as
adequately resourced is derived from a
review of the literature and consensus
among the experts engaged in the
formative work for the pneumonia
outcome of the HAPIN trial (27, 32).

Geospatial Database
For each study site, we built a geospatial
database of health facilities, population
density, road networks, and other
topographic features such as mountains,
rivers, and lakes relevant to travel by
using ArcGIS Pro version 2.6.2 (ESRI).
First, we mapped health facility locations
by using longitude and latitude
measurements obtained by study staff
with a Global Positioning System
receiver. We then mapped study
boundaries by drawing a buffer around
each surveyed health facility. The buffer
distance was equal to the average
distance between each health facility and
the nearest health facility at that site.
We constructed road networks by using
OpenStreetMap (33) shapefiles and
assigned half the maximum travel speeds
on the basis of OpenStreetMap road
classifications and publicly available
speed limits for each country (34–37).
We created population density layers by
using raster surfaces from the 2018
WorldPop database (University of
Southampton) (38). The WorldPop
raster surfaces were based on census
population counts that were
disaggregated across 10,000-m2 grids
weighted by land use, the degree of
urbanization, and other demographic
factors, as previously described
elsewhere (39).

Geospatial Analysis
To assess the geographic accessibility of
health facilities in each study area, we
conducted a series of road network analyses
by using the origin–destination cost matrix
solver in the ArcGIS Pro Network Analyst
extension (40). We divided every study area
into a gridded matrix of 0.13 0.1-km cells
and used the origin–destination cost matrix
tool to estimate travel times on the basis of
the least-cost pathway from every cell to
different types of facilities. Travel time
estimates incorporated multiple modes of
travel, including walking to the road at
5 km/h and driving thereafter. Travel times
also accounted for important network
attributes such as speed limits or one-way
roads; however, we did not account for traffic
patterns or seasonal flooding.We then
identified geographic regions that were
within 30-, 60-, 90-, or 120-minute travel
times to facilities with the following
characteristics: any health facility, health
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Table 1. Summary of Key Characteristics of Sites by Country Based on Sampling, Government Information, or Published Studies

Jalapa, Guatemala Puno, Peru Kayonza, Rwanda Tamil Nadu, India

Regions Santa Maria Xalapam,
Ladinos Pardos

Puno, San Roman,
Azangaro, Huancane, El

Collao, Chicuito

Kabere, Kabarondo,
Murama

Villupuram, Nagapattinam

Department or state Jalapa Puno Kayonza Tamil Nadu
Setting Rural Rural Rural Rural
Altitude range, mean,

m (28)
1,036–2,107 (1,362) 3,827–4,348 (4,088) 1,449–1,644 (1,547) 1–919 (464)

Population density,
people/km2 (38)

482.1 32.5 93.2 737.5

Study area, km2 (33) 790 32,834 1,076 4,112
2019 GDP, USD,

millions (29)
1,340 226,848 10,122 2,875,142

2019 GDP per capita,
USD (29)

2,104 6,978 802 4,620

Definition of abbreviations: GDP=gross domestic product; USD=U.S. dollars.

P-PER J-GUA

T-IND

K-RWA

0 10 Miles 0 10 Miles

0 10 Miles

0 10 Miles

Hospital

Health Center

Study area N

Road network

Other

Figure 1. Healthcare facility locations and road networks in the study boundaries in J-GUA, P-PER, K-RWA, and T-IND. Each map displays the
healthcare facilities by type and road network within the boundaries of each study site. Maps are not drawn to scale; they are sized to optimize the
display of facility distribution at each site. Facility locations in India were offset with a minimum separation of 2.5 km so that facilities in very close
proximity could be distinguished. Facility type (i.e., hospital, health center, and other) is based on country-specific designations. The “other” category
includes health posts, community health centers, and private clinics. The T-IND study site comprises two separate sites in Villupuram (left) and
Nagapattinam (right). J-GUA=Jalapa, Guatemala; K-RWA=Kayonza, Rwanda; P-PER=Puno, Peru; T-IND=Tamil Nadu, India.
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facilities with all the necessary resources to
manage severe pneumonia, health facilities
with pulse oximeters, and health facilities
with supplemental oxygen. To assess
population accessibility, we overlayed the
origin–destination cost matrix results on
population density layers to determine the
percentage of the study area population that
was within each category of travel time.

Timely access to care in a healthcare
network requires adequately resourced
facilities that can manage severe pneumonia
and lower-level facilities that can help
diagnose severe pneumonia and refer cases
promptly for treatment. We estimated the
distribution of travel times for the population
between two care-access scenarios: one with
facilities that currently have pulse oximeters
for the diagnosis of severe pneumonia and
another hypothetical scenario in which all
facilities had pulse oximeters.

Statistical Analyses
To compare the proportions of human
resources, equipment, or medical consumables
among sites, we used chi-square tests or Fisher
exact tests (for variables with cell counts under
five). To compare the distributions of travel
times between the two care scenarios
mentioned above, we used t tests. Statistical
analyses and visualizations were conducted in
R version 4.0.3 (“Bunny-Wunnies Freak Out,”
R Foundation for Statistical Computing) by
using the packages tidyverse, dplyr,
formattable, reshape, and tibble (41).

Ethics Approval and Dissemination
The study protocol was reviewed and
approved by institutional review boards or
ethics committees at Emory University
(00089799), Johns Hopkins University
(00007403), the Sri Ramachandra Institute of
Higher Education and Research (IEC-N1/16/
JUL/54/49), the HealthMinistry Screening
Committee of the Indian Council of Medical
Research [5/8/4-30/(Env)/Indo-US/2016-
NCD-I], the Universidad del Valle de
Guatemala (146-08-2016/11-2016), the
GuatemalanMinistry of Health National
Ethics Committee (11-2016), the Asociaci�on
Ben�efica PRISMA, the London School of
Hygiene and Tropical Medicine (11664-5),
the Rwandan National Ethics Committee (No.
357/RNEC/2018), andWashington University
in St. Louis (201611159). The study results
will be disseminated to the appropriate
stakeholders through presentations,
conferences, and peer-reviewed journals.T
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Role of the Study Sponsors
The study sponsors participated in regular
conference calls, made recommendations
about study design, and participated in
final decision-making on the study
protocol; however, they did not have a
role in the writing of this report or
influence the decision to submit it for
publication. The corresponding author
had final responsibility for the decision to
submit for publication.

Results

Description of Surveyed Facilities
We surveyed 350 facilities across all four
settings, and completion rates at each site
were as follows: J-GUA, 86%; P-PER, 99.5%;
K-RWA, 100%; and T-IND, 96.2%. K-RWA
had the highest number of facilities by
population density, whereas T-IND had the
highest number of facilities by area. Most
facilities surveyed in T-IND and less than

half of facilities surveyed in K-RWAwere
privately run, whereas all of those in J-GUA
and P-PER were public. The geographic
distribution of health facilities varied by
country (Figure 1). For example, P-PER and
J-GUA had one hospital per province with a
spoke-and-wheel distribution of health
centers and other facilities. Meanwhile,
facilities were most evenly distributed in
K-RWA and were most strongly clustered in
a small geographic area in T-IND.

Facility Characteristics
We summarized facility characteristics in
Table 2. There was at least one hospital in
each study catchment area by setting. Almost
all hospitals were open every day and had
overnight beds. K-RWA had the highest
density of hospitals by population, whereas
T-IND had the highest density of hospitals
by area. In contrast, J-GUA had the lowest
density of hospitals by population, and
P-PER had the lowest density by area.
K-RWA had the highest density of facilities
with overnight beds by population and area,
whereas J-GUA had the lowest. K-RWA also
had the highest density of facilities that were
open every day, whereas J-GUA had the
lowest. P-PER had a large proportion of
health posts that were open every day and
had the highest density of health posts open
every day by population and area.

Geographic and Population
Accessibility to Health Facilities
Mean travel time from any location within
the study area to the nearest facility
ranged from 15 minutes in K-RWA up to
48 minutes in P-PER (Table 3). After
accounting for population density, we
found that at least 69% of people across all
study areas live within 30 minutes of
travel time to the nearest health facility
(Figure 2). We observed greater variability
in population accessibility with shorter
travel times. Only a portion of health
facilities were adequately resourced to
manage severe pneumonia: 3% in J-GUA
(1 hospital), 7% in P-PER (6 hospitals and
10 health centers), 15% in K-RWA (6
hospitals), and 42% in T-IND (15
hospitals and 6 health centers).
Accordingly, the mean travel time to a
facility ready to care for severe pneumonia
ranged from 31 minutes in T-IND to 99
minutes in P-PER (Table 3). This
represents an increase in travel time of
80% in J-GUA, 108% in P-PER, 161% in
K-RWA, and 15% in T-IND when

Table 3. Mean Travel Times6SD in Minutes for the Population at Each Site to
Reach a Healthcare Facility by Resource Availability

Any Facility
in the

Boundaries

Facilities
with Pulse
Oximetry

Facilities
with

Supplemental
Oxygen

Facilities Ready to
Diagnose and Treat
Cases of Severe

Pneumonia

J-GUA 23615 416 19 32617 41619
P-PER 48636 676 43 5669 99664
K-RWA 1568 226 11 36619 40619
T-IND 27617 306 19 30619 31619

For definition of abbreviations, see Table 2.

45% 26% 21% 21%

57% 52% 47% 44%

37% 11% 22% 10%

27% 25% 25% 23%

86% 72% 50% 50%

82% 77% 71% 61%

95% 55% 84% 43%

95% 93% 90% 80%

100% 91% 100% 90%

100% 100% 100% 100%

100% 100% 100% 100%

100% 100% 100% 100%

98% 94% 94% 94%

69% 63% 63% 63%

99% 97% 90% 90%

99% 99% 98% 95%

Any Facility
100%

0%

Supplemental
Oxygen

Pulse
Oximetry

Pneumonia
Resources

J-GUA

P-PER

K-RWA

T-IND

J-GUA

P-PER

K-RWA

T-IND

J-GUA

P-PER

K-RWA

T-IND

J-GUA

P-PER

120
Minutes

60
Minutes

30
Minutes

10
Minutes

K-RWA

T-IND

Figure 2. Percentage of the modeled population living within a 10-, 30-, 60-, or 120-minute travel
time to any health facility and to any health facility with available resources to administer supplemental
oxygen, conduct pulse oximetry assessments, and diagnose and treat severe pneumonia. Study
locations are J-GUA, P-PER, K-RWA, and T-IND. For definition of abbreviations, see Figure 1.
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compared with travel times to the closest
facility. Similarly, geographic accessibility
to facilities with the necessary resources to
manage severe pneumonia was lower than
that of any facility across all settings
(Figure 3). We found that only 43–63% of
our populations lived within 30 minutes of
travel time to a facility that was adequately
resourced to care for severe pneumonia,
with 5% of the population in P-PER being
outside of a 2-hour travel time.

Human Resources
We summarized available human
resources in Table 4. K-RWA had the
highest proportion of physicians available
in all facilities, and it also had the highest
density of physicians by population and
area. In contrast, J-GUA had the lowest
density of physicians in facilities by
population, and P-PER had the lowest
density by area. Nurses were more readily
available than physicians across all

facilities. Over 90% of facilities in T-IND
and K-RWA had a nurse available during
the day, whereas less than 35% of facilities
in J-GUA and P-PER did. K-RWA had the
highest density of nurses across all
facilities, but T-IND had the highest
density of nurses in hospitals.

Equipment and Medical Consumables
We summarized the availability of
equipment and medical consumables across

P-PER J-GUA K-RWA

T-IND

0 10 Miles

0 10 Miles

N Healthy facility that meets (  )
or does not meet (  )
diagnostic and treatment
criteria for severe pneumonia

Travel time (minutes) to nearest facility
that meets diagnostic and treatment
criteria for severe pneumonia

0–30
> 30–60

> 60–90

> 90–120

> 120

Population < 1 person per km2

0 10 Miles0 10 Miles

Figure 3. Geographic accessibility to health facilities adequately resourced to diagnose and treat severe pneumonia in J-GUA, P-PER, K-RWA,
and T-IND. Solid and open circles represent health facilities that do or do not meet criteria to manage severe pneumonia (i.e., open every day
with overnight beds, a physician onsite, pulse oximeters, supplemental oxygen, chest radiography or ultrasound capacity, and antibiotics
available), respectively. Shading identifies regions that are within 30, 60, 90, and 120 minutes of facilities meeting these criteria. All maps were
constructed in ArcGIS Pro version 2.6.2. Health facility locations were based on Global Positioning System (GPS) coordinates measured by
study staff, and the availability of resources was derived from a comprehensive survey administered to facility leaders. Mapping and analysis
were limited to facilities that provided information about pneumonia treatment criteria in the survey. Study area boundaries were estimated by
using buffers equaling the average distance between each health facility and its closest neighboring health facility. Road networks were
constructed by using OpenStreetMap roads where motorized travel was possible. Each study area was divided into a gridded matrix of
0.130.1-km cells, and the origin–destination cost matrix solver from ArcGIS Pro Network Analyst was used to estimate the least-cost pathway in
minutes from every cell to the nearest facility meeting pneumonia management criteria. Travel time accounted for road attributes, such as speed
limits and directional limitations, and incorporated multiple modes of travel (i.e., walking to the road at 5 km/h and driving at half of the speed
limit thereafter). Maps were not drawn to scale. The T-IND study site comprises two separate sites in Villupuram (left) and Nagapattinam (right).
For definition of abbreviations, see Figure 1.
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health facilities in each study area in Table 5.
Equipment and consumables were widely
available in T-IND. In contrast, J-GUA had
the lowest proportion of facilities with
available equipment and consumables.
Specifically, a higher percentage of facilities
in T-IND had available pulse oximeters
(P, 0.001), respiratory rate counters
(P, 0.001), oxygen supplementation
(P, 0.001), and X-ray (P, 0.001) or
ultrasound capacity (P, 0.001) available
when compared with facilities in the other
three settings. Wemapped the geographic
accessibility to supplemental oxygen across
our settings in Figure 4. Supplemental
oxygen was widely available in T-IND but
was only available anywhere at 1 in 10
facilities in J-GUA, less than 2 in 10 facilities
in K-RWA, and less than half of facilities in
P-PER. Despite the limited availability of
oxygen in J-GUA and K-RWA, 93% and
87% of the population were within 1 hour of
a facility with oxygen, respectively. Only a
small proportion of the population (6%) and
the study area (8%) in T-INDwere 1 hour
away or more from a facility with oxygen. In
contrast, 7% of the population and 38% of
the study area in P-PER were 1 hour away or
more from a facility with oxygen.

Expanding Coverage with Universal
Pulse Oximetry
Wemapped travel times for the two care-
access scenarios in Figure 5: one with facilities
that currently have pulse oximeters for the
diagnosis of severe pneumonia and another
hypothetical scenario in which all facilities had
pulse oximeters. In the first scenario, mean
travel time to the nearest facility with pulse
oximeters ranged from 22minutes in K-RWA
to 67minutes in P-PER. Expanding pulse
oximetry coverage to all facilities reduced
mean travel times by 18minutes in J-GUA
(44% reduction inmean travel time when
compared with the first care-access scenario;
P, 0.001), 19 minutes in P-PER (29%
reduction; P, 0.001), 6 minutes in K-RWA
(29% reduction; P, 0.001), and 3minutes in
T-IND (11% reduction; P, 0.001).

Vaccine and Cold-Chain Availability
Streptococcus pneumoniae, rotavirus, and
influenza vaccines were widely available in
J-GUA and P-PER (Table 6). Although
Haemophilus influenzae b vaccine was
available widely in P-PER, it was less
available in J-GUA. Not all parts of a cold-
chain protocol were available in facilities
that administered vaccines, but 73% ofT
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facilities in J-GUA and 99% of facilities in
P-PER had parts of a comprehensive
protocol in place.

Discussion

To our knowledge, this is the first study to
characterize the geographic accessibility of
healthcare facilities and their adequacy of
resources to manage severe pediatric
pneumonia in four LMIC settings. We found
inconsistent levels of resources across
facilities and significant heterogeneity in the
availability of healthcare personnel,
equipment, and medications in nonhospital
facilities. Healthcare facilities in T-INDwere
better resourced than those at other study
sites. K-RWA had the highest density of
facilities, overnight beds, healthcare staff,
equipment, and medications by population.
Althoughmost of the population at each site
had access to a facility within 30 minutes of
travel time, few healthcare facilities were
adequately resourced to manage severe
pneumonia. Consequently, the average
population travel time to access severe
pneumonia care was much greater than that
for general services at all sites. As time is
critical in the management of severe
pediatric pneumonia, we found that the
implementation of universal pulse oximetry
across facilities reduced travel time and is a
potentially cost-effective intervention.With
reduced travel time, patients are more likely
to seek care, receive an earlier diagnosis, and
be triaged to a facility with adequate
resources.

Resource availability in health facilities
is largely driven by a country’s gross
domestic product (42). T-IND, for example,
had a higher percentage of adequately
resourced facilities for the management of
severe pneumonia; however, facilities were
clustered, leading to longer travel times for
remote-area populations. Despite having the
lowest gross domestic product per capita,
facilities in K-RWA had the highest
availability of resources by population. This
may be due in part to the national
prioritization of universal health care after
the genocide in 1994, in which over 1 million
Rwandans were killed andmany more were
more displaced, which was followed by a
collapse of the healthcare system (43, 44).
Few facilities in P-PER had pulse oximeters
and supplemental oxygen resources available,
but remotely located facilities provide an
opportunity to improve triage for severeT
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pneumonia by adding universal pulse
oximetry coverage. Overall, J-GUA had the
fewest resources. Our evaluation also found
that facilities in J-GUA and P-PER were
adequately resourced with vaccines for
pneumonia and cold-chain technology.
As vaccines against severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) are
becoming more available worldwide,
knowledge of cold-chain availability is critical
for vaccine distribution (45–47).

Our results align with those of previous
studies demonstrating inconsistent
availability of resources and geographic

accessibility across healthcare facilities in
LMICs (8, 12, 48, 49). For example, Ouma
and colleagues (8) assembled the first Pan-
African geocoded database of emergency
care facilities and found that only a third of
the countries surveyed met recommended
population accessibility goals. A previous
study conducted a detailed analysis of
healthcare facility resources to manage severe
acute respiratory disease in Vietnam and
cited significant variation between district-
and provincial-level hospitals but did not
assess geographic accessibility (50).
Expanding on these approaches, we

combined geographic and population
accessibility analyses with a refined
assessment of resources to manage severe
pneumonia. We propose a definition to
recognize a facility as adequately resourced to
manage severe pneumonia if certain
components are met. Currently, the literature
does not have a comprehensive definition to
define a facility as adequately resourced to
appropriately manage severe pneumonia.
These findings support the need to develop
publicly available facility lists that identify the
available resources. Indeed, theWorld
Health Organization has called on countries

P-PER J-GUA K-RWA

T-IND

0 10 Miles

0 10 Miles

N

0–30
> 30–60

> 60–90
> 90–120

> 120

0 10 Miles0 10 Miles

Healthy facility with (  ) and
without (  ) supplemental
oxygen

Population < 1 person per km2

Travel time (minutes) to nearest facility
with supplemental oxygen

Figure 4. Geographic accessibility to health facilities with supplemental oxygen in J-GUA, P-PER, K-RWA, and T-IND. Solid and open circles
represent health facilities with and without supplemental oxygen, respectively. Shading identifies regions that are within 30-, 60-, 90-, or 120-
minute travel times to facilities with supplemental oxygen within study area boundaries. All maps were constructed in ArcGIS Pro version 2.6.2.
Health facility locations were based on Global Positioning System (GPS) coordinates measured by study staff, and the availability of oxygen was
derived from a comprehensive survey administered to facility leaders. Mapping and analysis were limited to facilities that provided survey
responses for oxygen supplementation. Study area boundaries were estimated by using buffers equaling the average distance between each
health facility and its closest neighboring health facility. Road networks were constructed by using OpenStreetMap roads where motorized travel
was possible. Each study area was divided into a gridded matrix of 0.130.1-km cells, and the origin–destination cost matrix solver from ArcGIS
Pro Network Analyst was used to estimate the least-cost pathway in minutes from every cell to the nearest facility with supplemental oxygen.
Travel time accounted for road attributes, such as speed limits and directional limitations, and incorporated multiple modes of travel (i.e.,
walking to the road at 5 km/h and driving at half of the speed limit thereafter). Maps are not drawn to scale. The T-IND study site comprises two
separate sites in Villupuram (left) and Nagapattinam (right). For definition of abbreviations, see Figure 1.
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to develop such lists, which can be used to
identify gaps in coverage and resource
planning (48, 51–53). For example,
supplemental oxygen should be universally
available; however, this is not realistic in
most low-resource settings. For supplemental
oxygen to be available, facilities need to have
consistent electricity for compressors and
concentrators (54). Furthermore, facilities

need to maintain a stock of nasal cannulas
and train medical staff on how to provide
appropriate oxygen therapy (54).
Nonetheless, more cost-effective solutions
may be available to overcome limitations in
oxygen availability. Here, we demonstrated
that expanding coverage of pulse oximeters
in local facilities can assist in the triage of
severe pneumonia to adequately resourced

facilities. A recent study in Nigeria found
that implementing an improved oxygen
system had no effect on outcomes in children
when compared against the introduction of
pulse oximetry, which may have reduced
death from pneumonia by 50% (55).

Despite the strengths of this study, we
acknowledge some potential shortcomings.
First, we assumed that all roads were
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Travel time (minutes) to nearest facility that
meets diagnostic criteria for severe pneumonia
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> 30–60

> 60–90
> 90–120

> 120 N
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Figure 5. Geographic access to health facilities adequately resourced to diagnose and refer cases of severe pneumonia before and after the
implementation of universal pulse oximetry coverage. (A1, B1, C1, and D1) Shading indicates the study areas in Puno, Peru; Kayonza, Rwanda;
Jalapa, Guatemala; and Tamil Nadu, India (T-IND), respectively, that were within 10, 30, 60, 90, or 120 minutes of a facility with pulse oximetry
(at the time of survey administration) for the diagnosis and referral of severe pneumonia; by default, this included facilities that were adequately
resourced to treat severe pneumonia. (A2, B2, C2, and D2) Shading indicates regions in Puno, Peru; Kayonza, Rwanda; Jalapa, Guatemala;
and T-IND, respectively, that would be within 30, 60, 90, or 120 minutes of a facility meeting the same diagnostic criteria if pulse oximetry were
universally available in all facilities. Study area boundaries were estimated by using buffers equaling the average distance between each health
facility and its closest neighboring health facility. Road networks were constructed by using OpenStreetMap roads where motorized travel was
possible. Each study area was divided into a gridded matrix of 0.13 0.1-km cells, and the origin–destination cost matrix solver from ArcGIS Pro
Network Analyst was used to estimate the least-cost pathway in minutes from every cell to the nearest facility with pulse oximetry before and
after the hypothetical pulse oximetry intervention. Travel time accounted for road attributes, such as speed limits and directional limitations, and
incorporated multiple modes of travel (i.e., walking to the road at 5 km/h and driving at half of the speed limit thereafter). Maps were not drawn
to scale. The T-IND study site comprises two separate sites in Villupuram (left) and Nagapattinam (right).
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traversable; however, roads in low-resource
LMIC settings may be unreliable and in poor
condition for travel (18, 56). Moreover, many
patients in LMIC populations must walk,
bike, or use public transportation to reach
facilities because of lack of access to a private
vehicle or limited access to taxis (56). Second,
our analysis is based on most but not all
healthcare facilities in each study area,
potentially introducing selection bias (12).
Specifically, excluded health facilities may
have shorter travel times, whereas not all
health facilities in the survey may be
financially accessible. Third, we relied on the
self-report of resources by a facility
representative. We did not visually confirm
the availability of infrastructure, staff,
equipment, and medical consumables or
assess equipment functionality. For example,
supplemental oxygen tanks may be present
but not filled with oxygen (14). Furthermore,
there may be a limited supply of oxygen
because of production or transportation.We
also did not evaluate clinical knowledge of
staff or their ability to use the equipment. For
example, oxyhemoglobin saturation should
be measured in each patient with suspected
pneumonia to evaluate for hypoxemia as a

decision tool to provide supplemental
oxygen (10). A recent study in Nigeria
evaluated 12 secondary hospitals and found
that only 19.4% of children who were
hypoxemic during admission received
supplemental oxygen. Furthermore, this
study found that the determination that
children were hypoxemic was often based on
clinical judgment rather than pulse oximeter
data, even if a pulse oximeter was available
(57). Hospital staff are often not properly
trained to operate other lifesaving equipment
such as invasive and noninvasive ventilators,
which could be lifesaving in a critically ill
patient (14, 58). Along the same lines, we had
a low response rate to survey questions
evaluating whether staff were trained to
conduct and interpret an X-ray or perform
and interpret a lung ultrasound, thus limiting
our ability to assess whether staff were
adequately trained to use these modalities.
Fourth, we did not account for resources at
nontraditional facilities (e.g., holistic care) or
within local community health worker
networks. Fifth, we required facilities to have
a physician available as a criterion to assess
readiness to manage severe pneumonia cases,
given that licensed physicians usually receive

more advanced training in the management
of severe respiratory illnesses and
complications. This survey was designed by a
multidisciplinary team of experts in
pneumonia, and we agreed by consensus that
a physician is the ideal healthcare provider to
be present in a facility to guide the
management of severe pneumonia. Although
we agree that other healthcare personnel may
be equally as capable as physicians of
managing most cases and presentations of
pneumonia, severe pediatric pneumonia is a
serious, life-threatening, and complicated
condition that requires higher-level
management, and physicians should be
available as a resource for management or
consultation. Because the front-line provider
may not be a physician in many LMIC
settings, further assessment of the scope and
quality of other healthcare professional
training for severe cases of pneumonia may
be warranted; however, this was outside the
scope of this study. Sixth, we had a low
response rate regarding the availability of
respiratory support devices. Although high-
flow systems that include nasal cannulas,
CPAP, and mechanical ventilators are critical
tools for the management of severe

Table 6. Vaccine and Supporting Supply Availability in the Healthcare Facilities of J-GUA and P-PER

Number (%) of Facilities (n=251)

J-GUA (n=30) P-PER (n= 221)

S. pneumoniae
Pneumococcal 13-valent conjugate vaccine 28 (80) 180 (81)
Pneumococcal polysaccharide vaccine (23-valent) 0 (0) 24 (11)
10 or fewer serotypes/none 1 (3) 16 (7)

H. influenzae
ActHIB 0 (0) 1 (0.5)
Hiberix 1 (3) 22 (10)
Pentacel 0 (0) 6 (3)
Hib only available as part of pentavalent vaccine 0 (0) 176 (80)
None 9 (26) 13 (6)
Other 7 (20) 2 (1)

Rotavirus 29 (97) 200 (91)
Influenza 28 (93) 189 (86)
Pentavalent (DPT, HBV, Hib) 7 (20) 2 (1)
Supplies for storage and administration
Syringes and needles 29 (97) 209 (97)
Refrigerator 17 (49) 196 (89)
Freezer 8 (23) 217 (98)
Cold boxes 3 (9) 215 (97)
Vaccine carrier 28 (80) 218 (99)
Gel packs 0 (0) 31 (14)
Ice packs 25 (71) 218 (99)
Foam packs 1 (3) 213 (96)
Temperature monitoring device/data logger 2 (6) 211 (95)
Thermometer 24 (69) 213 (96)

Cold-chain protocol 22 (73) 214 (99)

Definition of abbreviations: DPT=diphtheria, pertussis, and tetanus; H. influenzae=Haemophilus influenzae; HBV=hepatitis B virus; Hib=H.
influenzae type b; J-GUA=Jalapa, Guatemala; P-PER=Puno, Peru; S. pneumoniae=Streptococcus pneumoniae.
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pneumonia, they are uncommon in most
resource-poor facilities of LMICs. Moreover,
use of devices like the bubble CPAP for
severe pneumonia management in LMICs is
controversial (59). If a child is failing
supplemental oxygen, then we would
recommend referral to a facility with a higher
level of clinical expertise and knowledge of
these advanced respiratory support devices.
Finally, we assumed that patients would
travel to the closest facility and did not
account for other factors, such as trust and
familiarity, which often influence or drive
healthcare facility choices (24).

In summary, we found that most
healthcare facilities in our low-resource study
settings in Guatemala, Peru, Rwanda, and
India were inadequately equipped to provide
care for severe pneumonia. Early
identification of cases and timely referral is
therefore paramount. However, given the
lack of centralized emergency dispatch
systems for patient triage, universal coverage
of health facilities with pulse oximeters may
be an effective approach to identify cases of
severe pneumonia closer to a patient’s home
and appropriately refer them for care.�
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