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Abstract

Tokai to Kamioka (T2K) is a long-baseline neutrino oscillation experiment situated in

Japan, studying electron-neutrino appearance in a muon-neutrino beam and thus probing

multiple parameters of the Pontecorvo-Maki-Nakagawa-Sakata matrix. A beam of muon-

(anti)neutrinos is produced at the J-PARC accelerator complex and sampled by near and

far detectors to compare the beam content before and after oscillation. The off-axis near

detector, ND280, serves both to characterise signals and backgrounds observed at the far

detector, and to measure a variety of neutrino interaction cross-sections on carbon and

oxygen nuclear targets. These measurements contribute to our understanding of both

neutrino oscillations and the interactions between neutrinos and atomic nuclei.

Selecting specific interaction types from the ND280 data requires accurate identification

of charged particle tracks, but the conventional cut-based methods perform poorly in many

areas. To make full use of the wide array of information available from all of the ND280

subdetectors and thus develop a high-performing particle identification (PID) algorithm, a

multivariate analysis approach is necessary, but such a tool has yet to be developed and

deployed at T2K. This thesis presents the development of a general-purpose PID tool for

charged particle tracks in ND280 using boosted decision trees, and demonstrates its superior

classification power compared to the existing PID algorithms currently in use. The tool

has been designed to be broadly applicable and outperforms purpose-built conventional

PID at identifying each particle type in almost all kinematic regions tested. Furthermore,

it has been integrated into a selection algorithm for muon-antineutrino charged-current

single-pion events, and found to substantially improve the selection performance. These

results demonstrate the power of multivariate PID methods for charged particle tracks in

ND280, and strongly motivate their use in future T2K analyses.
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“The first principle is that you must not fool yourself — and you are

the easiest person to fool.”

— Richard Feynman
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Introduction

Neutrino physics is one of the main frontiers of modern particle physics research. The

discovery of neutrino oscillations required a modification of the Standard Model of Particle

Physics, and this remains a highly active area of study comprising several large international

experiments. One such experiment is Tokai to Kamioka (T2K), which studies electron-

neutrino appearance in a muon-neutrino beam. The off-axis near detector ND280 analyses

the T2K beam before oscillation and thus helps characterise signals at the far detector,

and also measures rates of various interaction types, improving our understanding of

neutrino-nucleus interactions.

Muon-antineutrino (ν̄µ) charged-current single-pion (CC1pi) interactions are a neutrino-

nucleus event type of interest to T2K, as they are both a major background for charged-

current quasi-elastic measurements and a potentially valuable channel for the oscillation

analysis. However, the signature for ν̄µ CC1π− is a single antimuon and a single negative

pion, which the existing selection algorithm used in ND280 fails to distinguish from

the common ‘wrong-sign’ signature of a single muon and a single positive pion. This

happens due to the similar behaviour of muons and pions, particularly in the ND280 time

projection chambers which are used as the standard source of PID information. Thus

the existing ν̄µ CC1π− event selection suffers from poor background rejection and cannot

support precise cross-section measurements. This thesis presents efforts to improve the ν̄µ

CC1π− event selection algorithm, initially by adding conventional rectangular cuts using

information from the ND280 electromagnetic calorimeter (ECal), and then by developing

a multivariate and ‘global’ PID tool using boosted decision trees (BDTs). Although the

original motivation was to improve the ν̄µ CC1π− selection specifically, the BDT has been

trained in a ‘selection-agnostic’ manner, favouring no particular event or particle type and

with flat prior distributions of momentum and direction, with the intention of developing a

general-purpose tool that can be used a wide variety of event selection contexts.
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Chapter 1 covers the history and theory of neutrino physics, with a particular focus on

the phenomenon of neutrino oscillation and the interactions between neutrinos and atomic

nuclei. Chapter 2 outlines the T2K experiment and in particular the ND280 near detector,

and Chapter 3 covers the ND280 ECal which has been an important part of the analysis

presented in this thesis. Chapter 4 describes the initial ν̄µ CC1π− selection development

work using conventional PID methods, which motivated a move towards multivariate

analysis (MVA) methods. Chapter 5 provides an overview of the principles of multivariate

analysis and machine learning and outlines some of the methods available, as well as the

software tools that enable MVA implementation in ND280 data analysis. Chapter 6 details

the development of the BDT PID tool and demonstrates its effectiveness at identifying

particle tracks compared to conventional PID methods. Chapter 7 presents the results of

applying the BDT PID tool within a ν̄µ CC1π− selection with full neutrino event MC, and

discusses the potential for further development of this tool and the contribution it can make

to T2K physics analyses.



Chapter 1

Neutrino Physics

Neutrinos are the most abundant massive particles in the universe, yet many of their

properties remain unknown or poorly understood. These properties could offer insights into

many of the problems currently facing high-energy physics (HEP) and cosmology, including

baryon asymmetry and dark matter. Probing these properties is difficult, as neutrinos are

highly elusive particles: they interact only via the weak nuclear force, leading to very small

interaction cross-sections that make them challenging to detect.

In the decades since the discovery of the neutrino, theoretical understanding and

detector technology have both progressed rapidly. In particular, the theory of neutrino

flavour oscillation was a major extension of the Standard Model of particle physics. Today

many experiments around the world are probing the parameters of neutrino oscillation

theory, using a wide variety of sources and detection techniques. However, almost all such

experiments rely on interactions between neutrinos and atomic nuclei. The cross-sections

of these interactions are difficult to model, since they typically occur deep within the

nucleus and are therefore subject to a variety of nuclear effects. As the precision of neutrino

experiments increases, interaction models are becoming a major source of systematic

uncertainties, making neutrino-nucleus interactions a crucial area of research in neutrino

physics.

This chapter gives an overview of the neutrino’s place within the Standard Model of

particle physics, the history of its discovery and study, the phenomenon of flavour oscillation,

and the interactions between neutrinos and atomic nuclei.

3
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1.1 The Standard Model

The Standard Model (SM) of particle physics is a unified theory of matter at the fundamental

level. It attempts to fully describe the elementary particles of nature and the forces that

govern their interactions. Particles in the SM are classified into two groups according

to their spin1: fermions with half-integer spin, and bosons with integer spin. The SM

describes three fundamental forces which are mediated or ‘carried’ by spin-1 bosons: the

electromagnetic force, mediated by the photon; the strong force, mediated by the gluon;

and the weak force, mediated by the massive W± and Z0 bosons. The final SM particle is

the Higgs boson; the excitation of the Higgs field gives rise to the non-zero masses of other

particles. The SM particles and their properties are summarised in Figure 1.1.

Fermions are divided into quarks and leptons, each of which comprise three distinct

generations of paired particles. All stable matter in the universe is made up of first-

generation particles, which are the lightest; heavier particles of higher generation decay to

lighter, more stable ones. Additionally, for each fermion there is a corresponding antiparticle

related to it by charge conjugation: particles and their antiparticles have identical mass

and spin, but opposite charge and other internal quantum numbers.

The quarks interact with all three forces, and exist in six varieties or ‘flavours’: up,

down, charm, strange, top, and bottom. These can be grouped by their charge into up-type

quarks of charge +2
3e (where e is the absolute value of the electron charge) and down-type

quarks of charge −1
3e. In addition to electric charge, quarks possess one of three ‘colour’

charges associated with the strong force; all three colours together (or one colour and

anti-colour) cancel. Quarks are not observed in free space: instead they bond via the strong

force to form hadrons, which in nature consist of baryons (three quarks) and mesons (quark-

antiquark pairs), though the possibility of structures of four or more quarks has recently

been confirmed by high-energy experiments [2]. Free particles always have non-zero overall

colour and individual quarks cannot be isolated; this is known as ‘colour confinement’.

The particles of the lepton sector do not interact by the strong force. Three generations

of charged lepton exist: the electron (e), the muon (µ) and the tau particle (τ), all with

charge −1e. Each of these possesses a corresponding lepton flavour. Similarly, there exist

three generations of neutral leptons: the neutrinos. These have no electric charge and so do

not interact with the electromagnetic force (leaving only the weak interaction), but share

1Spin takes values of integer or half-integer multiples of h̄, which will here be expressed in natural units
such that h̄ = 1 for convenience.
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Figure 1.1: Elementary particles described by the Standard Model [1].

the same three flavours, and so are known as the electron-neutrino (νe), muon-neutrino (νµ)

and tau-neutrino (ντ ). The SM originally predicted that neutrinos should be massless, but

this has been disproved by the phenomenon of neutrino oscillation (see Section 1.3 below),

which also violates the conservation of lepton flavour that is otherwise observed.

The Standard Model has been extremely successful in predicting most particle interac-

tions, but is not a complete theory of fundamental physics: it still has theoretical issues,

and fails to account for several observed phenomena. Although the SM has now been

modified to account for neutrino oscillations, it cannot address a number of important

cosmological observations: the gravitational force and general relativity (which cannot yet
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be unified with quantum field theories), the existence of dark matter and dark energy, or

the baryon asymmetry of the Universe. As a result, one of the primary goals of modern

particle physics research is to search for physics beyond the Standard Model (BSM) and

so work towards a full ‘theory of everything’. Neutrino physics relates to several of these

issues: for example, charge-parity violation in neutrino oscillation may lead to leptogenesis

[3] and thus an explanation of baryon asymmetry; and several parameters of neutrinos, such

as their masses, remain unknown or poorly understood. Neutrino physics is consequently

one of the broadest and most active areas of study within particle physics.

1.2 A history of the neutrino

Neutrinos were first discovered as a result of the study of radioactive decays in the late 19th

and early 20th centuries. Following the discovery of nuclear decay by Henri Becquerel in the

late 1890s [4], the existence of three distinct types of nuclear radiation was established by

Ernest Rutherford and Paul Villard; Rutherford named these alpha, beta and gamma rays

[5], each arising from a corresponding mode of nuclear decay. In 1914, James Chadwick

demonstrated that the energy spectrum of electrons emitted in beta decay is continuous

[6], in contrast to the narrow energy distributions of alpha and gamma particles. The beta

particle was the only observed emission of beta decay at the time, so this appeared to

violate conservation of energy. Additionally, it was found that beta decay always resulted

in an integer change in nuclear spin, but with the electron spin being 1
2 , conservation of

angular momentum was also seemingly being violated.

An explanation for these discrepancies was posited by Wolfgang Pauli in 1930, in his

famous ‘letter to the radioactive ladies and gentlemen’ [7]. Pauli proposed that another,

unseen particle was being emitted alongside the electron, carrying away the apparently

missing energy. For consistency with known conservation laws and the observed beta decay

spectrum, this particle would have to be electrically neutral, spin 1
2 , and have very small

(or zero) mass. Pauli named this new particle the ‘neutron’. The particle we now know

as the neutron would be discovered by Chadwick two years later [8], but its mass was too

large to be Pauli’s particle, which was subsequently renamed the ‘neutrino’ (‘little neutral

one’) by Enrico Fermi. Fermi would go on to formulate a theory of beta decay [9] using

Pauli’s neutrino, describing it as the decay of a neutron to produce a proton, an electron

and a neutrino:

n → p+ e− + ν̄. (1.1)
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Figure 1.2: Feynman diagram (time left to right) of Fermi’s model of beta decay,
with a neutron decaying directly into a proton, an electron and an (anti)neutrino.

Fermi’s model was incomplete as it had the four particles coupling directly as shown in

Figure 1.2, rather than via a W boson as would later be understood, but it was nevertheless

the first model to correctly describe beta decay as n → p + e− + ν̄. Crucially, it also

predicted other interactions such as inverse beta decay:

ν̄ + p → e+ + n (1.2)

which would lead to the first detection of the neutrino itself two decades later.

In 1956, the Cowan-Reines experiment reported the first direct detection of neutrinos [10]

— specifically electron-antineutrinos from beta decay, exploiting the huge neutrino flux in

the vicinity of a nuclear reactor. Water tanks providing the target protons were sandwiched

between tanks of liquid scintillator for gamma detection. Light produced by gamma rays

passing through the scintillator was detected by photomultiplier tubes. The water target

was doped with cadmium chloride (CdCl2), which emits a gamma ray when it absorbs a

neutron. This resulted in a characteristic signal of two gamma rays from annihilation of the

positron, followed by a third gamma from neutron capture several microseconds later. This

setup yielded a neutrino detection rate of approximately three events per hour, which was
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confirmed by shutting down the reactor and observing a reduction in the rate of detected

events. This result confirmed the existence of the neutrino, and established the usefulness

of large detectors to compensate for the very low cross-sections of neutrino interactions.

The existence of the muon-neutrino was later discovered by the first accelerator neutrino

experiment [11], using the Alternating Gradient Synchroton (AGS) at Brookhaven National

Laboratory. This established the existence of neutrino flavours corresponding to those of

the charged leptons. The discovery of the tau particle in 1975 [12] led to the expectation

that a corresponding tau-neutrino should exist, and this was confirmed in 2000 by the

DONUT experiment [13].

The first hints of the phenomenon of neutrino oscillation were seen in the 1960s in

the form of the solar neutrino problem. Models of nuclear fusion processes in the Sun

using SM physics predicted large fluxes of neutrinos [14], but measurements made by the

Homestake experiment [15] using capture of electron-neutrinos on chlorine atoms showed

only about a third of the expected detection rate. This discrepancy persisted despite further

improvement of both the solar models and the Homestake detector. The solution, proposed

by Bruno Pontecorvo [16], was that neutrinos had non-zero mass and could oscillate between

flavours, particularly over astronomical scales such as the distance between the Sun and

the Earth. Pontecorvo showed that neutrino oscillation between νe and νµ states could

result in a deficit like that observed by Homestake: solar fusion processes produce only νe,

but a large proportion of these had oscillated to νµ, to which the Homestake detector was

not sensitive. This would eventually be confirmed in 2002 [17] by the Sudbury Neutrino

Observatory (SNO), which could detect neutral-current (NC) neutrino interactions and

was thus sensitive to all three neutrino flavours, as well as being able to measure the νe

rate in isolation via charged-current (CC) interactions. The SNO results showed that while

there was a deficit in νe consistent with that of Homestake and other experiments such as

Super-Kamiokande (SK) [18], the overall neutrino flux was consistent with the Standard

Solar Model (SSM) predictions.

Meanwhile, other evidence for neutrino oscillations had been growing. A similar anomaly

was observed in atmospheric neutrinos: in 1988, the Kamiokande experiment reported a

deficit in νµ flux compared to predictions, but no such deficit in the νe flux [19]. This was

reinforced by results from other experiments, including Kamiokande’s successor experiment

Super-Kamiokande [20], which showed that the νµ deficit was dependent on the direction

of (and therefore the distance travelled by) the neutrino. Furthermore, disappearance of

reactor antineutrinos was observed by the KamLAND experiment in 2003 [21]. Together,
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these observations of flavour change in solar, atmospheric and reactor neutrinos confirmed

the theory of neutrino oscillations.

Since then, many experiments have been undertaken to measure the parameters of the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix that describes neutrino flavour mixing.

These and the PMNS matrix itself are summarised in the following section. The mixing

angles θ12, θ23 and θ13 have all been measured, along with the mass square differences

∆m2
12 and |∆m2

23|, but other parameters remain unknown or poorly understood. The phase

δCP which describes charge-parity (CP) violation in the neutrino sector is an important

parameter with possible implications for baryon asymmetry. The T2K experiment in 2020

[22] published results which exclude δCP = 0 at the 90% confidence level, strongly suggesting

that such CP violation does exist in the neutrino sector, but its precise value remains

unknown. The absolute values and ordering of the masses also remain unknown, as does

the possibility that neutrinos may be Majorana particles — that is, particles which are

their own antiparticles. Additionally, evidence such as the reactor anomaly [23] suggests

the possibility of other neutrino flavours, which may be ‘sterile’ i.e. non-interacting with

the weak force, and could have very large masses and thus provide a candidate for dark

matter (although recent results from the MicroBooNE experiment do not support this [24]).

Numerous experiments are currently working to probe these and other open questions in

neutrino oscillation theory.

1.3 Neutrino oscillations

Neutrino oscillations are a quantum mechanical phenomenon in which neutrinos of one

flavour appear to change to another after propagating through space. This happens because

the three neutrino flavour eigenstates are not eigenstates of the Hamiltonian. Instead they

are superpositions of three mass eigenstates:

|να⟩ =
3∑

i=1

Uαi |νi⟩ (1.3)

where α are the neutrino flavours e, µ, τ ; i are the neutrino masses 1, 2, 3; and U is the

PMNS matrix. The PMNS matrix is typically parameterised by the three mixing angles

θ12, θ23, θ13 and the CP-violating phase δCP, with which it can be written as the product

of three rotation matrices:
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U =

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδCP

0 1 0

−s13e
iδCP 0 c13


 c12 s12 0

−s12 c12 0

0 0 1

 (1.4)

U =

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

 (1.5)

where sij and cij are sin θij and cos θij respectively.

The PMNS matrix can be used to predict neutrino oscillations as follows. Assuming

propagation in vacuum, we start with some initial neutrino flavour eigenstate at t = 0:

|ν(t = 0)⟩ = |να⟩ =
3∑

k=1

U∗
αk |νk⟩ . (1.6)

Temporal evolution of the mass eigenstates is governed by the Schrödinger equation:

i
d

dt
|νk(t)⟩ = H |νk(t)⟩ (1.7)

where H is the Hamiltonian. Using a plane wave approximation |νk(t)⟩ = e−iEkt |νk⟩, for
the time evolution of the state in Equation 1.6 we arrive at:

|ν(x, t)⟩ =
3∑
k

U∗
αie

−i(Ekt−pkx) |νi⟩ (1.8)

where Ek and pk are the energy and momentum of the kth mass eigenstate. This leads to a

probability that a neutrino with flavour α will be later observed as flavour β after time t of

P (να → νβ, t) = |A(να → νβ, t)|2 (1.9)

where A is the probability amplitude given by

A(νa → νβ, t) = ⟨νβ|ν(t)⟩ =
3∑
k

U∗
αke

−iEkt ⟨νβ|νk⟩ =
3∑
i

3∑
k

UβiU
∗
αke

−iEkt ⟨νi|νk⟩ =
3∑
k

Uβke
−iEktU∗

αk.

(1.10)

Given that the neutrino masses are very small, we can assume they must be highly
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relativistic, so we can approximate the distance travelled (in natural units such that c = 1)

as L ≈ t and the momentum of mass state i as

pi =
√

E2
i −m2

i ≈ Ei −
m2

i

2Ei
(1.11)

using which we can express the mass eigenstate after travelling a distance L as

|νi(L)⟩ = e−i
m2

i L

2E |νi(0)⟩ . (1.12)

Hence we can find the probability for flavour change as a function of distance:

P (να → νβ, L) = |⟨νβ(L)|να⟩|2 =

∣∣∣∣∣∑
i

U∗
αiUβie

−i
m2

i L

2E

∣∣∣∣∣
2

(1.13)

which can be written as

P (να → νβ, L) = δαβ − 4
∑
i>j

Re
(
U∗
αiUβiUαjU

∗
βj

)
sin2

(
∆m2

ijL

4E

)

+ 2
∑
i>j

Im
(
U∗
αiUβiUαjU

∗
βj

)
sin

(
∆m2

ijL

2E

)
(1.14)

where ∆m2
ij ≡ m2

i −m2
j are known as the mass-squared differences. Thus it can be seen

that neutrino oscillation probabilities depend on the energy, the distance propagated (the

‘baseline’ of an experiment), the parameters of the PMNS matrix, and two independent

parameters arising from the mass squared differences, ∆m2
23 and ∆m2

21. Consequently

neutrino oscillation experiments cannot measure the absolute values of the neutrino masses,

only the differences of their squares, and their ordering currently remains unknown. That

is, the measured ∆m2
23 and ∆m2

21 permit two different interpretations, illustrated in Figure

1.3.

It is extremely cumbersome to write Equation 1.14 in terms of the mixing angles of

the PMNS matrix. However, since θ13 is small and |∆m2
23| ≫ |∆m2

21|, there are many

situations where only two neutrinos participate significantly in mixing. In these cases, only

one mixing angle θ is required and so we can use a two-neutrino model with mixing matrix
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Figure 1.3: Possible neutrino mass orderings consistent with current measurements
of ∆m2

23 and ∆m2
21. The left-hand pattern is known as the ‘normal hierarchy’, in

which the highest mass is much larger than the smaller two, as seen in the generations
of other SM particles. The right-hand pattern is known as the ‘inverted hierarchy’.
The sizes of the coloured bands in each mass state represent the probabilities of
finding a neutrino of each flavour from that mass eigenstate [25].

U =

(
cos θ sin θ

− sin θ cos θ

)
(1.15)

for which Equation 1.14 simplifies to

P (να → νβ, L) = sin2(2θ) sin2
(
∆m2L

4E

)
. (1.16)

The maxima of P are known as ‘oscillation maxima’. By controlling the energy E and

the baseline L in an experiment, the detector can be placed at an oscillation maximum. This

maximises the oscillation probability and therefore the sensitivity to oscillation parameters.



Chapter 1. Neutrino Physics 13

Neutrino oscillations can be measured using neutrinos from a variety of sources. Some

of these are naturally-occurring, such as the fusion processes in the Sun or cosmic ray

interactions in Earth’s atmosphere. Others are man-made, such as nuclear fission reactors

and particle accelerators. Different sources can produce neutrinos of different energy

distributions, as well as different feasible baselines for experiment. Thus the oscillation

parameters an experiment can probe depend in large part on what neutrino source it uses,

and as a result, our understanding of the various neutrino oscillation parameters comes

from the combination of various different experiments and sources.

1.3.1 Solar neutrinos

The Sun is a major source of neutrinos in our immediate environment. Nuclear fusion

processes in its core produce νe in enormous quantities, which escape into space resulting

in a flux at Earth’s surface of order 1010 s−1cm−2. A number of different fusion reactions

occur in the Sun, producing neutrinos of different energy spectra, some continuous and

some discrete, as shown in Figure 1.4.

As described in Section 1.2 above, solar neutrinos provided the first evidence for neutrino

oscillations. Solar neutrino experiments are predominantly sensitive to the mixing angle

θ12 (which for this reason is sometimes known as the ‘solar mixing angle’) and ∆m2
12, and

have very slight sensitivity to θ13. The currently allowed regions for these parameters are

the combination of results from multiple experiments, summarised in Figure 1.9.

Following their initial detection by the Homestake experiment, various solar neutrino

experiments have been conducted. The deficit in νe observed by Homestake was confirmed

by the Kamioka Nucleon Decay Experiment (Kamiokande) [28]. Kamiokande was originally

intended to search for proton decay, but was also suitable for detecting solar neutrinos from

the 8B reaction via elastic scattering:

νe + e− → νe + e−. (1.17)

Kamiokande used a large cylindrical tank containing 3000 tons of water and instrumented

with 1000 photomultiplier tubes (PMTs) to detect Cherenkov radiation, placed 1km

underground in the disused Kamioka zinc mine to provide shielding from cosmic rays.

Electrons scattered by neutrino interactions produced Cherenkov light detected only by

the PMTs in their direction of travel, enabling reconstruction of the neutrino direction.

Thus, in addition to measuring a > 2σ discrepancy in the neutrino flux compared to SSM
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Figure 1.4: Energy spectrum of solar neutrinos separated by fusion reaction type,
as predicted by the BP04 solar model by J. Bahcall and M. Pinsonneault [26]. The
flux is given in number of neutrinos cm−2s−1MeV−1 for continuous sources, and in
number of neutrinos cm−2s−1 for line sources. The total theoretical uncertainty is
shown for each source, and the regions of sensitivity for different experiments along
the top of the plot [27].

predictions, Kamiokande was able to use the directional information to isolate the neutrino

signal from the Sun.

As the solar neutrino problem persisted, further experiments attempted to verify the

predictions of the SSM. An important step in this was to probe the flux of neutrinos

produced by the pp reaction, which make up the bulk of solar neutrinos but have low

energies (0–0.42 MeV) to which Homestake and Kamiokande were not sensitive. This was

addressed by use of inverse beta decay on gallium:

νe +
71Ga → 71Ge+ e− (1.18)
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with the resulting germanium being extracted by chemical methods. A number of gallium

experiments made use of this method: the GALLium EXperiment (GALLEX) [29], the

Gallium Neutrino Observatory (GNO) [30], and the Soviet-American Gallium Experiment

(SAGE) [31]. Together, they measured a neutrino flux deficit similar to that observed by

Homestake and Kamiokande.

Figure 1.5: Plot of the νµ+ ντ flux vs the νe flux measured by the SNO experiment.
The coloured bands indicate the 1σ confidence level for the different interaction
types, with the black band representing the equivalent elastic scattering results from
Super-Kamiokande. The dashed lines indicate the SSM flux prediction. The black
point represents the flux of νe from CC, and νµ + ντ from NC-CC difference, and is
encircled by the 68%, 95% and 99% confidence level contours [32].

The Cherenkov detector experiments Super-Kamiokande [18] and SNO [17] were able

to make high-precision measurements of 8B solar neutrinos. Super-Kamiokande was the

successor to Kamiokande, using a much larger tank containing 50 kton of water and about

11,200 PMTs (please see Section 2.3 for a full description of the SK detector). SNO used a

1000-tonne heavy-water (D2O) sensitive volume and 9,522 PMTs mounted on a geodesic

sphere. The use of deuterium enabled SNO to detect not only charged-current νe reactions:
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νe +D → p+ p+ e− (1.19)

but also neutral-current (NC) and elastic scattering (ES) reactions:

να +D → p+ n+ να (1.20)

να + e− → να + e− (1.21)

and thus measure the overall neutrino flux across all flavours α = e, µ, τ directly. The SNO

results, summarised in Figure 1.5, confirmed that the deficit of solar νe seen by previous

experiments was due to neutrino flavour change to νµ and ντ , and that the overall flux was

in line with SSM predictions. Results from SK and SNO continue to dominate the solar

neutrino constraints on the oscillation parameters as shown in Figure 1.9 below.

1.3.2 Atmospheric neutrinos

The interactions of cosmic rays with Earth’s atmosphere provide another major natural

source of neutrinos. Cosmic ray protons and heavier nuclei interact with atoms in the

atmosphere to produce air showers. These showers contain large numbers of energetic

mesons (mainly charged pions and kaons) which decay, producing neutrinos. These neutrinos

typically have much higher energy than solar neutrinos, with an energy spectrum that

peaks around 1 GeV; atmospheric neutrino energies have been observed from the 100s of

MeVs to the 100s of TeVs. Additionally, since neutrinos can pass through the entirety of

the Earth, atmospheric neutrinos can be detected over a wide range of baselines. These

properties give atmospheric neutrinos a wide range of L/E, making them a very useful

probe of neutrino oscillations.

Similarly to solar neutrinos with θ12, atmospheric neutrinos are mainly sensitive to θ23

(known as the ‘atmospheric mixing angle’) as well as ∆m2
23. This results in a signal of νµ

disappearance in upward-going muon-like interactions (and appearance of ντ , which are not

directly produced in the atmosphere in significant amounts, although these are difficult to

reconstruct). ‘Upward-going’ refers to neutrinos that pass through the Earth before being

detected and thus have sufficient L/E for significant oscillation, whereas ‘downward-going’

neutrinos have travelled a much shorter distance so do not. The difference between the

two is known as the ‘up-down asymmetry’, and is also affected by the Mikheyev-Smirnov-
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Figure 1.6: Comparison of SK atmospheric neutrino data to SM predictions in
the absence of oscillations. The expected shape for ∆m2

23 = 2.2 × 10−3eV2 and
sin2 2θ = 1 is shown as dashed lines [20].

Wolfenstein (MSW) effect, whereby neutrino oscillations in matter are modified by the

presence of electrons [33].

Atmospheric neutrinos were first detected in 1965 by experiments at the Kolar Gold Field

mines in India [34] and the East Rand Proprietary mine in South Africa [35], which used

extremely deep underground laboratories for shielding purposes. Later, Kamiokande was

used to examine atmospheric neutrinos and found a deficit in νµ flux compared to predictions,

whereas the νe flux was as expected [19]. This became known as the ‘atmospheric neutrino

anomaly’.

Super-Kamiokande published a measurement of the atmospheric neutrino flux as a
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Figure 1.7: Allowed regions for ∆m2
32 and θ23 measured by the atmospheric neutrino

experiments Super-Kamiokande and IceCube, as well as the accelerator neutrino
experiments T2K, NOνA and MINOS [38].

function of direction in 1998 [20], demonstrating the up-down asymmetry for the first time

and providing strong evidence for atmospheric neutrino oscillations as shown in Figure 1.6.

SK continues to record atmospheric neutrino data, and contributes to current constraints

of atmospheric neutrino mixing parameters alongside the neutrino telescopes ANTARES

[36] and IceCube [37]. The current measurements of SK and IceCube (as well as accelerator

experiments sensitive to the same parameters) are summarised in Figure 1.7. Atmospheric

neutrinos also offer methods of probing the neutrino mass ordering through the MSW effect,

since neutrinos and antineutrinos will be affected differently depending on the ordering,

though current experiments have yet to resolve this due to the difficulty of distinguishing

νe from ν̄e with water Cherenkov detectors [38].
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1.3.3 Reactor neutrinos

Nuclear reactors produce large quantities of electron-antineutrinos from beta decay processes.

These neutrinos have relatively low energies, potentially allowing for long baselines, but

the neutrino flux decreases with distance according to the inverse square law. The choice

of baseline for a reactor neutrino experiment is therefore a tradeoff between oscillation

amplitude and detection rate. Such experiments can be divided into short-baseline (SBL)

with L of order 1 km or less, and long-baseline (LBL). Reactor antineutrinos are typically

detected by inverse beta decay on atomic nuclei, but they have low energy so this only

occurs for ν̄e; ν̄µ and ν̄τ cannot be detected. Consequently reactor neutrino oscillations

can only be measured by ν̄e disappearance, so they cannot probe δCP as this requires the

appearance channel. This can be seen as beneficial however, as the absence of this unknown

parameter improves the precision with which other parameters can be measured [38].

Figure 1.8: Ratio of the ν̄e spectrum observed by KamLAND to the expectation
for no oscillation. The prediction of the oscillation model is shown in blue, in good
agreement with the data. All data points and models were plotted with baseline
L0 = 180 km, as if all antineutrinos detected were due to a single reactor at the
average distance [39].
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Figure 1.9: Allowed regions for ∆m2
21 vs θ12 (left) and θ13 vs θ12 (right) from all solar

neutrino data plus the KamLAND reactor antineutrino experiment. Filled regions
represent the 3σ confidence level from solar neutrino data (green), KamLAND (blue),
and the combined result (red). The sin2 θ13 measurement from reactor neutrino data
is shown as a yellow band on the right-hand plot [40].

The Kamioka Liquid Scintillator AntiNeutrino Detector (KamLAND) was the first

experiment to observe neutrino oscillations in reactor antineutrinos [21]. Situated in the

same mine cavern that previously housed Kamiokande, KamLAND uses 1000 tons of liquid

scintillator surrounded by 1,879 PMTs to detect ν̄e from 53 nuclear reactors, with an

average baseline of approximately 180 km. This enabled the first significant observation of

ν̄e disappearance as shown in Figure 1.8, and a high-precision measurement of ∆m2
21 [39].

Reactor neutrino experiments have particularly good sensitivity to θ12 and ∆m2
21. This

makes them complementary to solar neutrino experiments, as shown with the inclusion

of KamLAND results in Figure 1.9. They also have good sensitivity to θ13, and in 2012

the discovery of non-zero θ13 was made by the Daya Bay [41] and Reactor Experiment for

Neutrino Oscillation (RENO) [42] reactor experiments. Future reactor neutrino experiments

such as the Jiangmen Underground Neutrino Observatory (JUNO) [43] will greatly improve

the precision of oscillation parameter measurements, and are also expected to be capable of

determining the neutrino mass ordering.
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1.3.4 Accelerator neutrinos

Intense beams of neutrinos can be produced using particle accelerators. The conventional

method used by most experiments is to generate a beam of protons which is fired at a

nuclear target, producing charged pions and kaons which produce (anti)neutrinos in their

decay. Pion decays mainly produce muon-(anti)neutrinos so these will dominate the beam,

while a small proportion will be electron-(anti)neutrinos from kaon and muon decay. The

accompanying µ± and any remaining mesons are then ‘ranged out’ in solid matter, leaving

a neutrino beam. Positive or negative pions can be selected to produce a neutrino or

antineutrino beam respectively. The beam can then be sampled by detector(s) after it has

travelled some distance to measure how the flavour composition has evolved. This is often

done using two (or more) detectors: a far detector placed at an oscillation maximum, and a

near detector at a location close to the beam target where oscillation remains minimal, to

better control systematic uncertainties.

Neutrino beams give experiments valuable control over E/L. They can be produced

with very high intensities, so long baselines are feasible. The neutrino energy can also

be controlled: although placing the detector directly on the beam axis provides the

greatest integrated flux, a much narrower energy spectrum can be obtained with an off-axis

configuration as a result of the Jacobian peak (see Figure 2.3 below).

Since conventional neutrino beams are primarily made up of muon-neutrinos, accelerator

neutrinos are sensitive to the ‘atmospheric’ parameters θ23 and ∆m2
32 through the νµ/ν̄µ

disappearance channel; current measurements of these parameters from accelerator neutrino

experiments are shown in Figure 1.7 alongside atmospheric experiments. Additionally, the

νe/ν̄e appearance channel provides sensitivity to θ13 and δCP .

Today, the experiments most sensitive to the atmospheric parameters are the accelerator

experiments Tokai to Kamioka (T2K) and NuMI Off-Axis νe Appearance (NOvA) [44],

both using proton accelerator neutrino beams with off-axis detectors. The T2K experiment,

described in Chapter 2, made the first observations of νe appearance in a νµ beam [45]

and the first significant constraint on δCP [22]. The NOvA detector samples the NuMI

beam at an angle of 0.84◦, resulting in an energy spectrum peaked at approximately 2

GeV, with a 810 km baseline. Both T2K and NOvA continue to increase the precision of

measurements of θ23, ∆m2
32, θ13 and δCP as they record more data and improvements are

made to their respective beams. The current constraints on δCP and the mixing angles

from these experiments are shown in Figure 1.10. Planned future accelerator experiments
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include the Deep Underground Neutrino Experiment (DUNE) [46] and Tokai to Hyper-

Kamiokande [47], which are expected to have excellent sensitivity to δCP and the mass

ordering respectively.

Figure 1.10: Constrained regions in δCP and the mixing angles by T2K (left [22])
and NOvA (right [48]). The top T2K plot shows the 68.27% confidence level assuming
normal hierarchy, comparing and combining T2K results with reactor experiments.
The middle T2K plot shows the 68.27% and 99.73% confidence intervals (dashed
and solid white lines respectively) for T2K data combined with the reactor θ13
constraint, again assuming normal hierarchy. The bottom T2K plot shows the
68.27% (shaded region) and 99.73% (error bar) confidence intervals for δCP for each
ordering/hierarchy, again combined with the reactor θ13 constraint. The NOvA plots
show the allowed regions for δCP and θ23 from NOvA data assuming the normal
(top) and inverted (bottom) hierarchies.
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1.4 Neutrino-nucleus interactions

Most neutrino oscillation experiments rely on interactions between neutrinos and atomic

nuclei for neutrino detection, but these interactions are far from trivial to model. While

there is some data from hydrogen bubble chambers [49], hydrogen targets are uncommon

due to the difficulty of safely containing liquid hydrogen; most experiments use heavier

target materials such as organic scintillator (CH), water (H2O), iron (Fe) or noble liquids

(Ar). As a result the neutrino interacts not with a free nucleon, but with one bound in a

nucleus (or indeed with the nucleus as a whole), so both the initial and final states of the

interaction are subject to a variety of nuclear effects. These effects are very difficult to probe

because we cannot observe the initial neutrino-nucleon interaction, only the particles that

leave the nucleus, so initial and final state nuclear effects cannot be measured separately.

Neutrino-nucleus interactions must be well understood in order to measure the neutrino

energy and interaction rate accurately, but current models require refinement with both

theoretical developments and more experimental data. Systematic uncertainties arising

from neutrino-nucleus interaction models are becoming a major limiting factor on precision

in modern oscillation experiments, so this is a crucial area of research for neutrino physics

[50].

Modelling neutrino-nucleus interactions begins with an understanding of the interactions

between a neutrino and an individual free nucleon (proton or neutron). These interactions

are modified by factors arising from the nuclear environment, collectively referred to as

‘nuclear effects’: these include short-range interactions, long-range screening effects, and

final state interactions. Nuclear effects also give rise to entirely new modes of interaction

such as coherent scattering, in which the neutrino interacts with the nucleus as a whole.

Nuclear models have been implemented in a number of Monte Carlo (MC) event

generators, which are able to simulate a wide variety of neutrino interactions and nuclear

effects. These have been greatly refined over recent decades as models improve, and

include NEUT [51], GENIE [52], NuWro [53], and GiBUU [54]. The development of these

generators and their underlying nuclear models has been supported by data from a number

of cross-section experiments, such as ArgoNeuT [55], MiniBooNE [56], MINERνA [57],

NOvA [44], and T2K. However, discrepancies remain between different generators, and

between generators and experimental data [58], so further work is needed in order to

continue building more accurate neutrino-nucleus interaction models.
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1.4.1 Neutrino-nucleon interactions

Neutrinos can interact with individual nucleons in a number of ways. These are categorised

broadly into charged-current (exchange of a W±) and neutral-current (exchange of a Z0),

and more specifically into scattering types:

• Elastic scattering (ES) is an exclusively NC process in which the particle content

remains the same, with only the four-vectors changing:

νl(k1) + a(k2) → νl(k
′
1) + a(k′2) (1.22)

where a = n, p is the nucleon, l is the lepton flavour, and k are the four-vectors.

• Quasi-elastic scattering (QE) is the CC analogue of ES, in which the particle content

changes but remains a two-particle final state:

νl(k1) + n(k2) → l−(k′1) + p(k′2) (1.23)

ν̄l(k1) + p(k2) → l+(k′1) + n(k′2). (1.24)

• In resonance scattering (RES), one or more mesons are produced via a resonant state.

The simplest example is single pion production, e.g.:

νl + p → l− +∆++ → l− + p+ π+ (1.25)

though RES processes also include the production of multiple pions or the heavier

meson species.

• In deep inelastic scattering (DIS), the neutrino has sufficient energy to resolve the

individual quarks of the nucleon, resulting in a jet of hadrons rather than a single

nucleon in the final state.

1.4.2 Nuclear effects

A variety of nuclear effects are known to influence interactions between neutrinos and

atomic nuclei, affecting both the initial and final states of the interaction. These can
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have a substantial effect on the energy and composition of the observed outgoing particles

compared to an interaction on a free nucleon.

Estimates of neutrino energy depend either on a sum of the total energy exiting the

nucleus, in which case one needs to detect as many of the outgoing particles as possible and

correct for any missed with a good physics model; or in the QE case, the neutrino energy

can be inferred from the final state lepton kinematics. This assumes a stationary target,

but a nucleon bound in a nucleus is not at rest: it is subject to Fermi motion. This is often

modelled with a Relativistic Fermi Gas (RFG) treatment, based on the Smith-Moniz model

[59], in which the nucleus is modelled as a simple potential well populated by neutrons and

protons. This results in a smearing of the neutrino energy measured in the QE method;

most other nuclear effects lead to an underestimate [38].

It is possible for a neutrino to interact with multiple correlated nucleons. These are

known as multinucleon processes, or npnh (‘n particles-n holes’), since they result in some

number n nucleons in the final state. There is growing evidence that the n = 2 case (2p2h)

makes up a significant proportion of neutrino-nucleus interactions [38], and can have a

substantial impact on measurements of neutrino oscillation parameters [50]. Alternatively, a

neutrino may scatter off the nucleus as a whole, leaving it intact with little energy transfer:

this is known as ‘coherent scattering’. Coherent scattering may be quasi-elastic, or may

result in the production of mesons.

Following a neutrino-nucleon interaction, the final state particles must traverse the

nuclear medium before exiting the nucleus. Consequently they may undergo interactions

with nucleons and/or each other before they can be observed in any detector. These are

known as final state interactions (FSIs), and include:

• Rescattering: the final state particles may undergo further elastic or inelastic scattering

interactions, which change their energy and/or content (e.g. charge exchange),

• Production: additional particles may be created,

• Reabsorption: final state particles may be absorbed by the nucleus, so they cannot

be observed among the outgoing particles.

Since we can only detect the particles that leave the nucleus, FSIs can change the

apparent reaction products. Figure 1.11 shows an example of this: although the initial

interaction is resonant pion production, the pion is reabsorbed so cannot be detected.
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Figure 1.11: Illustration of an example of a final state interaction. Resonant pion
production has occurred in the initial interaction, but the pion has been reabsorbed
[38].

Only the outgoing lepton can be observed, and thus the reaction signature appears to

be quasi-elastic. In NEUT, FSIs are simulated using a cascade model [51]: each hadron

produced in the initial interaction is propagated step-by-step until it leaves the nucleus,

with any interactions occurring at each step decided according to the mean free paths of the

modelled interaction channels. Models such as these enable MC simulation of the outgoing

particles that may be observed as a result of any initial interaction. Since we cannot observe

the initial interaction, neutrino-nucleus interaction events can only be categorised by the

topology: the set of particles that leave the nucleus after any FSIs.

1.4.3 Pion production

At the energies of accelerator neutrino experiments such as T2K, many of the above processes

can result in the presence of one or more pions in the outgoing particles. Pions can be

produced in the initial interaction by resonant processes or coherent scattering; or they can

be the product of FSIs [60]. As a result, topologies containing pions are common. Using

topologies as defined by T2K, the simplest of these is neutrino-induced charged-current

single-pion production (CC1pi): charged-current interactions in which the particles that

leave the nucleus contain a single charged pion (interactions producing a π0 are considered
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separately) and no other mesons. In the initial interaction, CC1pi can occur through two

RES channels (illustrated in Figure 1.12):

νl(ν̄l) + p → l−(l+) + π+(π−) + p (1.26)

νl(ν̄l) + n → l−(l+) + π+(π−) + n (1.27)

and coherent scattering as follows:

νl(ν̄l) +A → l−(l+) +A+ π+ (1.28)

where A is the target nucleus. If the number of outgoing mesons remains unchanged, these

will result in a CC1pi topology. Alternatively, single-pion topologies can arise as a result

of FSIs: a QE final state may undergo pion production as it traverses the nucleus, or a

multiple-pion final state may have all but one pion be reabsorbed in the nucleus. Pions

may also undergo charge exchange before leaving the nucleus, so the observed pion species

may not be the same as that produced in the initial interaction.

Figure 1.12: Feynman diagrams of resonant single pion production in scattering
between an antineutrino and a proton (left) and neutron (right) respectively. Each
interaction proceeds via a ∆ resonance.
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Figure 1.13: Fit of a neutrino-nucleon single-pion production model to cross-section
data from the ANL experiment, showing the cross-section in relation to the squared
4-momentum transfer Q2 = (pl − pν)

2, where pl and pν are the 4-momenta of the
lepton and neutrino respectively. The Q2-differential cross-section for the interaction
νl + p → p+ π+ is plotted as a function of Q2, with a cut on the invariant mass of
W < 1.4 GeV. The shaded area shows the variation in the model prediction due to
the uncertainty of a form factor parameter [60].

Topologies containing pions make up a significant fraction of charged-current events

at T2K, and of these, CC1pi events are the most common subtype. They are therefore

a major background for CCQE measurements and also a potentially valuable channel

for the T2K oscillation analysis, but require precise measurements to control systematic

uncertainties on measurements made at the T2K far detector. Moreover, measurements of

CC1pi cross-sections are needed in order to improve neutrino-nucleus interaction models

(an example of a CC1pi cross-section model fit to experimental data is shown in Figure

1.13). This thesis presents work undertaken as part of the wider efforts at T2K to better

select and understand CC1pi events in the ND280 detector.
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The T2K Experiment

Tokai to Kamioka (T2K) is a long-baseline neutrino oscillation experiment based in Japan,

designed to measure the mixing angle θ13 via νe appearance in a νµ beam. As illustrated in

Figure 2.1, a beam of muon-(anti)neutrinos is produced from a high-intensity proton beam

at the Japan Proton Accelerator Research Complex (J-PARC) in Tokai and sampled by

near and far detectors. Properties of the beam before oscillation are determined by a suite

of near detectors situated in Tokai. The far detector Super-Kamiokande (SK) is situated

295 km away and samples the beam following oscillation. The beam is oriented 2.5◦ off-axis

with respect to SK and the magnetised near detector, ND280, to provide a narrow band of

neutrino energies with a peak at ∼ 0.6 GeV which maximises oscillation at the far detector.

Figure 2.1: Schematic of the T2K experiment baseline showing the neutrino beam
axis and the locations and relative distances of the J-PARC accelerator where the
beam is produced, the near detector complex in Tokai, and the far detector Super-
Kamiokande in Kamioka. The beam travels 295 km through the Earth’s surface
beneath the main island of Japan before reaching SK. Sea level is shown in yellow
and ground level in black [61].

29



30 Gabriel Charles Penn

This chapter gives an overview of the T2K experiment, describing its physics goals,

detector design and software. A particular focus will be placed on the ND280 detector,

for which the event selections and particle identification tools presented in this thesis were

developed.

2.1 Motivations

The T2K experiment was designed primarily to measure νµ → νe oscillation, giving it

sensitivity to θ13, and also to measure sin2 θ23 and the mass difference ∆m2
23 through νµ

disappearance, as well as the CP-violating phase δCP by comparing oscillation of neutrinos

and antineutrinos. These design requirements motivated the use of both near and far

detectors, as well as the choice of an off-axis beam, which reduces the flux but offers a

much narrower neutrino energy distribution than an on-axis beam, and hence enables

maximisation of the νe appearance rate at the far detector. The beam can be run in either

neutrino (νµ) or antineutrino (ν̄µ) mode and thus oscillation rates can be compared between

the two.

The near detectors fulfil a variety of functions. Sampling the unoscillated beam, they

provide measurements of the neutrino energy spectrum, flavour content and interaction

rates which are essential to characterise the signals recorded at the far detector. In addition,

they are designed to support a wide programme of inclusive and exclusive neutrino-nucleus

interaction cross-section measurements.

2.2 Neutrino beam

The T2K muon-(anti)neutrino beam is produced at the J-PARC accelerator complex. A

proton beam is accelerated to 30 GeV kinetic energy and supplied to the T2K neutrino

beamline in spills of eight bunches at a time. The beamline, shown in Figure 2.2, consists

of primary and secondary sections which transport the proton beam and convert it into a

neutrino beam respectively. In the primary beamline, the proton beam extracted from the

accelerator main ring is bent by 80.7◦ to point towards the direction of Kamioka. It then

enters the secondary beamline and impinges on a graphite target to produce charged pions,

which are focused by magnetic horns before reaching the decay volume in which they decay

to produce the beam neutrinos. The magnetic horns can be run in two different modes

by switching the polarity of the current: in ‘forward horn current’ (FHC) mode, π+ are



Chapter 2. The T2K Experiment 31

Figure 2.2: Diagram of the T2K neutrino beamline as viewed from above. The
primary beamline, labelled in red, transports the proton beam to point towards
Kamioka. The secondary beamline, labelled in blue, converts the proton beam into a
muon-(anti)neutrino beam [61].

selected to yield a neutrino beam; in ‘reverse horn current’ (RHC) mode, π− are selected

to yield an antineutrino beam. The pions decay mainly into muons and muon-neutrinos:

π+ → µ+ + νµ (2.1)

π− → µ− + ν̄µ. (2.2)

A small contamination of electron-(anti)neutrinos is present as a result of decays of

muons and kaons. Particles leaving the decay volume then enter the beam dump, which

absorbs any remaining hadrons and muons below ∼ 5 GeV/c, leaving only the neutrino

beam and muons above ∼ 5 GeV/c. A muon monitor is located behind the beam dump

to detect these high-energy muons, which enables indirect monitoring of the intensity and

direction of the neutrino beam. Data statistics for T2K beam runs are quantified by protons

on target (POT), that is, the number of beam protons incident on the target constituting a

particular run.
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Figure 2.3: Neutrino fluxes (bottom) and predicted muon-neutrino survival prob-
ability at 295 km (top) for the T2K beam. The broad on-axis energy spectrum is
shown in black, and the sharply-peaked spectrum at 2.5◦ in red, chosen to position
the peak at the oscillation maximum. The minimum configurable off-axis angle of
2.0◦ is shown in blue. The assumed oscillation parameters are displayed alongside
the prediction [62].

The beam is oriented at an angle of 2.5◦ off-axis with respect to the SK and ND280

detectors, which can be reduced to a minimum of 2.0◦ to tune the energy spectrum at SK.

Figure 2.3 shows the neutrino energy spectra on-axis and at angles of 2.0◦ and 2.5◦, together

with the predicted νµ survival probability at SK. Although the on-axis beam has greater

integrated flux, its energy spectrum is very broad. The 2.5◦ angle is chosen for a well-defined

energy peak centred at the oscillation maximum for the 295 km baseline. This off-axis angle

is a key feature of T2K as it enables greater precision in oscillation measurements than an

on-axis beam: the energy of the beam is well-defined so any higher-energy neutrinos can be
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discarded as backgrounds.

2.3 Super-Kamiokande

The pre-existing Super-Kamiokande (SK) detector is used as the far detector for T2K,

sampling the neutrino beam at a distance of 295 km from the beam source to measure

rates of νe appearance and νµ disappearance. Super-Kamiokande is a water Cherenkov

detector situated in the disused Mozumi mine approximately 1 km underground beneath

Mt. Ikenoyama, and was a groundbreaking neutrino oscillation experiment in its own right

before its use as part of T2K (as touched on in Chapter 1). Its underground location

provides shielding from cosmic rays, and its directional sensitivity enables the separation

of T2K beam neutrinos from those from other sources. As well as acting as the T2K far

detector, Super-Kamiokande continues to contribute substantially to other areas of research,

such as nucleon decay searches [63] and supernova detection [64].

Figure 2.4: Diagram of the Super-Kamiokanda detector (left) and access tunnels
[65].

The Super-Kamiokande tank is a cylindrical volume containing 50 kton of pure water
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39 m in diameter and 42 m in height, instrumented with 13,014 photomultiplier tubes

(PMTs). It comprises two volumes, separated by a cylindrical stainless steel scaffold

structure and optically isolated from each other; a schematic is shown in Figure 2.4.

The inner detector (ID) is the inner of the two volumes, a cylindrical space 33.8 m in

diameter and 36.2 m in height, containing 11,129 PMTs mounted on the scaffold and facing

inwards. This is enclosed in the outer detector (OD), a hollowed cylindrical space which is

approximately 2 m thick radially and at either end, containing 1,885 PMTs mounted on

the scaffold and facing outwards. The ID is the part of the detector designed to reconstruct

neutrino interactions: it is well instrumented and thus has sufficient spatial resolution

to measure a number of physical quantities from the detected Cherenkov light. The OD

is sparsely instrumented by comparison, lacking the resolution and geometry needed for

detailed event reconstruction, and acts instead as an active veto of cosmic ray muons and

other backgrounds.

Figure 2.5: Examples of reconstructed T2K events in Super-Kamiokande, showing a
muon-like (a) and an electron-like (b) ring. Each pixel in the event display represents
a single photomultiplier tube, coloured according to the amount of charge recorded.
The reconstructed cone is shown as a white line, and the location of the reconstructed
vertex as a white cross [61].

Super-Kamiokande detects charged particles produced in neutrino interactions by their

Cherenkov light cones. A charged particle traversing the water medium with sufficient

energy produces a cone of photons, which form a ring-shaped hit pattern on the PMTs when

they reach the ID walls. This information can be used to extract information about neutrino

interactions such as the vertex position and the directions, energies and identities of the
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outgoing particles. In particular, muons and electrons can be distinguished by characteristic

differences in the ring shapes they produce on the detector wall. Muons have larger mass

and are therefore resilient to changes in their momentum, and consequently produce a

well-defined cone of Cherenkov radiation. This results in a clear, sharp ring. Electrons,

on the other hand, scatter more easily and tend to induce electromagnetic showers at

the energies relevant to SK. Thus their light cones are less well-defined, effectively the

sum of many overlapping cones with slight differences in orientation, resulting in a ‘fuzzy’

ring. Examples of muon- and electron-like rings are shown in Figure 2.5. This ability

to distinguish between electrons and muons is essential for identifying νe and νµ events

respectively, and thus measuring the corresponding appearance and disappearance rates in

the T2K beam.

2.4 INGRID

The Interactive Neutrino GRID (INGRID) detector [61] is one of the T2K near detectors.

It is located in the near detector pit 280 m from the target and is placed on-axis with

respect to the neutrino beam. INGRID is designed to monitor the direction and intensity

of the beam via neutrino interactions in iron, and is able to measure the beam centre with

better than 10 cm precision, corresponding to 0.4 mrad. It comprises 16 identical modules,

14 of which are arranged in two arrays (horizontal and vertical) forming a cross centred

on the neutrino beam axis (defined as 0◦ with respect to the proton beamline direction).

The other two are placed separately at off-axis locations (see Figure 2.6). Additionally,

a ‘proton module’ of similar but modified design is also placed at the centre of the cross

between the two arrays. The INGRID cross modules sample the beam with a transverse

section of 10 m × 10 m, measuring the location of the beam centre, while the separate

off-axis modules check the axial symmetry. The proton module is designed to detect muons

and protons produced by the neutrino beam and thus identify the QE neutrino interaction

channel for comparison with MC simulations.

The 14 cross and 2 off-axis modules share the same design: they consist of a sandwich

structure of alternating layers of iron and tracking scintillator. Each module contains 11

scintillator planes and 9 iron sheets. The iron sheets are 6.5 cm thick with dimensions 124

cm × 124 cm perpendicular to the beam axis, and provide a neutrino target mass of 7.1 tons

per module. The tracking scintillator planes each comprise 24 horizontal and 24 vertical

scintillator bars, each of dimensions 1.0 cm × 5.0 cm × 120.3 cm; the scintillation light
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Figure 2.6: Diagram of the INGRID on-axis near detector [61].

from each bar is collected and transported by a wavelength-shifting (WLS) fibre attached

to a multi-pixel photon counter (MPPC). Each module is surrounded by veto scintillator

planes to reject charged particles coming from outside the modules. The proton module

lacks the iron layers of the other modules, consisting instead of 34 tracking scintillator

planes each comprising 32 bars in alternating orientations, giving it higher resolution than

the other modules. It is similarly surrounded by veto planes.

The INGRID modules identify neutrino events by detecting tracks from muons. After a

muon-neutrino interacts in an iron layer, the resulting muon passes downstream through

the scintillator layers and deposits energy via scintillation. Scintillation light is collected by

the WLS fibres and recorded by the MPPCs, with the alternating bar orientations providing

position information. Hence the path of the muon can be reconstructed from MPPC hits.

2.5 ND280

The Near Detector at 280 m (ND280) [61] is a large magnetised off-axis detector that

measures the flux, energy spectrum and flavour content of the T2K neutrino beam, as

well as the rates of various neutrino interaction types. As the main off-axis near detector
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for T2K, it is placed at 280 m from the beam target at the same 2.5◦ off-axis angle as

Super-Kamiokande, and serves both to characterise signals and backgrounds observed at

the far detector and to measure neutrino-nucleus interaction cross-sections on carbon and

oxygen.

Figure 2.7: Exploded view of the ND280 detector [61].

ND280 consists of multiple subdetectors: the ‘tracker’, a sandwich of fine-grained

detectors (FGDs) and time projection chambers (TPCs), is placed downstream of a pi-zero

detector (PØD); these are together enclosed in an electromagnetic calorimeter (ECal) and

placed within the recycled UA1 magnet which provides a 0.2 T magnetic field. The magnet

yoke is also instrumented with scintillator to serve as a side muon range detector (SMRD).
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2.5.1 Fine-Grained Detectors

The purpose of the two fine-grained detectors (FGDs) [61] is to provide target mass for

neutrino interactions and to track charged particles coming from the interaction vertex.

They are constructed from layers of plastic scintillator bars oriented perpendicular to the

beam, as illustrated in Figure 2.8. These form an active target, both providing carbon

nuclei for neutrino interactions and tracking the outgoing charged particles via scintillation

light, which is collected by WLS fibres that transport it to MPPCs for detection. The

scintillator bars have dimensions 9.61 mm × 9.61 mm × 1864.3 mm and are arranged

in layers of 192 bars, with alternating orientation in the horizontal (x) and vertical (y)

directions. Pairs of adjacent layers are attached to form structural units referred to as ‘XY

modules’. Each FGD contains 1.1 tons of target material and has outer dimensions 2300

mm × 2400 mm × 365 mm (x× y × z, where z is the beam direction), and is enclosed in a

dark box for optical isolation from the rest of the detector.

The two FGDs have different designs. The more upstream of the two, FGD1, contains

only scintillator as target mass, and is constructed from 15 XY modules comprising

5,760 bars. The more downstream, FGD2, also incorporates water sections to facilitate

comparisons with interactions at SK, where water is the target mass. FGD2 consists of

seven XY modules comprising 2,688 bars, alternating with six water layers. The water

layers are 2.5 cm thick and are built from sheets of hollow corrugated polycarbonate, which

are filled with water and kept below atmospheric pressure to prevent water leakage into the

FGD interior.

Charged particles produced in and traversing the FGDs deposit energy in the form of

scintillation light, which is recorded as hits by the electronics. These hits are reconstructed

into tracks, which are used to locate the neutrino interaction vertex and may be matched

to adjacent tracks in the TPCs and/or ECals if the particle leaves the FGD. The FGDs are

generally not used for particle identification except for tracks that stop before leaving the

FGD, in which case the FGD hits are the only available information.

2.5.2 Time Projection Chambers

The three time projection chambers (TPCs) [67] sandwich the FGDs such that there is a

TPC immediately upstream and downstream of each FGD, and provide high-resolution 3D

imaging of charged particle paths via ionisation in a low-pressure gas medium. This enables

them to perform three key functions. Firstly, the number and orientations of charged
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Figure 2.8: Cross-sectional view of an FGD, seen from the beam direction. The
locations of the scintillator modules, photosensors, electronics minicrates and dark
box are shown, as well as the structural support straps [66].

particles can be determined. Secondly, the curvature of tracks due to the magnetic field can

be used to calculate their momenta, enabling reconstruction of the energy of interacting

neutrinos with high resolution (as shown by Figure 2.10). Thirdly, the amount of ionisation

energy deposited along the track can be used together with the momentum for particle

identification, which is particularly useful for distinguishing muons from electrons and thus

νµ events from νe events. Methods of particle identification with the TPCs will be discussed

in Section 4.2.1.

Each TPC consists of an inner box (1808 mm × 2230 mm × 854 mm) placed within
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Figure 2.9: Simplified cutaway schematic of the ND280 TPC design [61].

an outer box, containing the drift gas and the insulating gas respectively. The drift gas is

an argon-based mixture (Ar:CF4:iC4H10 in a 95:3:2 ratio) chosen for its high drift speed,

low diffusion, and good performance with micro mesh gas (‘micromegas’) detectors, and

is kept at 0.4 mbar pressure. The insulating gas is CO2, providing electrical insulation

between the inner box and ground and excluding atmospheric oxygen from entering the

inner box. A cathode is placed at the midpoint of the inner box, and readout planes at

either end containing micromegas detectors with 7.0 mm × 9.8 mm anode pad segmentation,

generating an electric field of approximately 275 V/cm. Charged particles traversing the

TPCs deposit energy in the drift gas by ionisation, producing ionisation electrons that drift

under the effect of the electric field towards the readout planes, where they are detected.

The 2D pattern recorded in the pad plane is combined with the timing information of the

hits using the known electron drift velocity to yield a 3D image of the path of the particle.
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Figure 2.10: The momentum resolution of an ND280 time projection chamber,
shown as a function of momentum perpendicular to the magnetic field. These values
are based on predictions from Monte Carlo simulation of muons, using only tracks
that cross at least 50 out of the 72 pad columns of the TPC volume. The design
goal for the momentum resolution is shown as a dashed line [67].

2.5.3 Pi-Zero Detector

The pi-zero detector (PØD) [68] is a water-target plastic-scintillator-based detector designed

to detect neutral pions. Its primary goal is to measure the neutral current process

νµ +N → νµ +N + π0 +X (2.3)

which is a major background for νe appearance at SK. The PØD is composed of plastic

scintillator layers, metal sheets (brass and lead), and water bags which can be filled or left
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empty, enabling a subtraction method to determine cross sections on water. The scintillator

layers have sufficient resolution to reconstruct both charged particle tracks (muons and

pions) and EM showers induced by the metal layers (electrons and photons from π0).

Figure 2.11: Schematic of the ND280 pi-zero detector viewed from the side, with
the beam going from left to right. Details of the different PØDule types are shown
in insets [61].

Whereas the scintillator bars used in other ND280 subdetectors have square or rectan-

gular cross-sections, those of the PØD are triangular (see Figure 2.11). They are arranged

in 40 modules, referred to as ‘PØDules’, each consisting of 134 vertical (2200 mm long)

and 126 horizontal (2340 mm) bars. As elsewhere, scintillation light is collected by WLS

fibers and detected by MPPCs. The 40 PØDules are grouped into four ‘super-PØDules’

which are stacked one after another in the beam direction. The inner two are water target
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super-PØDules; the upstream (central) water target is a sandwich of 13 PØDules alternating

with 13 (12) 28 mm-thick water layers and 13 (12) 1.5 mm-thick brass sheets. The most

upstream and downstream are ECal super-PØDules, which are a sandwich of seven PØDules

and 4 mm-thick lead sheets and contain no water, being designed instead to ensure any

escaping photons are detected. The water target fiducial region is designed to contain

approximately 1.9 tons of water, and the PØD as a whole comprises 10,400 scintillator bar

channels and has dimensions 2103 mm × 2239 mm × 2400 mm (x× y × z, where z is the

beam direction).

While the PØD has provided the target for several cross-section analyses, its upstream

location means it is generally not relevant to event selections using the FGDs as their target

volume, such as the ones presented in this thesis.

2.5.4 Electromagnetic Calorimeter

The ND280 ECal is a sampling electromagnetic calorimeter built from plastic scintillator

layers and lead absorber sheets. It surrounds the inner detectors (FGDs, TPCs and PØD)

and provides near-hermetic coverage for particles exiting them. The ECal is designed to

detect photons and measure their energy and direction, and also to detect and provide PID

information for charged particles. The ability to detect photons is critical to reconstructing

any π0 that may be produced in neutrino-nucleus interactions. The design and functionality

of the ECal will be described in detail in Chapter 3.

2.5.5 Magnet and Side Muon Range Detector

The tracker, PØD and ECal are placed inside a magnet reused from the UA1 experiment,

which provides a horizontally-oriented dipole magnetic field of 0.2 T. This enables the

detector to determine the sign of charged particles and measure their momentum with good

resolution, as showin in Figure 2.10. The magnet consists of water-cooled aluminium coils

and a steel flux return yoke. The return yoke also contains the Side Muon Range Detector

(SMRD), an array of plastic scintillator modules inserted into the 1.7 cm air gaps between

the 4.8 cm-thick steel plates.

The SMRD serves three main functions. Firstly, it is able to detect muons that escape

the inner detectors with high-angle trajectories and measure their momenta; most other

particles are absorbed in the inner detectors or the magnet so do not reach the SMRD.

Secondly, it provides a trigger for cosmic ray muons entering ND280. Thirdly, it helps
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Figure 2.12: View of a single SMRD scintillation counter with components labelled
[61].

identify beam neutrino interactions that do not originate from the inner detector (such as

those that occur in the surrounding cavity walls). It is constructed from 440 scintillator

modules arranged in layers of three to six (depending on the yoke section, since the air

gap geometry varies) placed in the innermost gaps of the return yoke. The modules are

composed of scintillation counters, which are 7 mm-thick polystyrene panels 875 mm long;

horizontal modules contain four counters of 187 mm width and vertical modules contain

five of 175 mm width, to maximise the active area in each air gap. The counters are coated

with a white diffuse layer to reflect light, and are machined with an S-shaped groove to

accommodate a WLS fiber (see Figure 2.12) to collect scintillation light more efficiently

than a straight channel would. The WLS fiber transports light to an MPPC. The SMRD

contains 192 horizontal modules and 248 vertical for a total of 4,016 scintillation counter
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channels. The SMRD’s large scintillator panel dimensions give it poor resolution compared

to the ECal or FGDs; it is intended for particle tagging and energy measurement rather

than detailed tracking.

2.5.6 Software and data processing

A large number of software packages make up the ND280 offline software suite. They have

a modular structure and use standard particle physics software libraries as their foundation,

specifically ROOT [69] as the underlying framework and data storage model, and Geant4

[70] as the basic simulation library; consequently they are mostly written in C++.

Figure 2.13: Schematic of the package structure of the ND280 offline software suite
[61].

Figure 2.13 shows the general structure of the software suite. Raw data files in the

MIDAS [71] format are converted to the ND280 format defined by the oaEvent library for

offline use, and then processed in three stages. In the calibration stage, controlled by the

oaCalib package, calibration constants are applied from a centralised MySQL database. In

the reconstruction stage, controlled by oaRecon, objects (such as tracks and showers) are

reconstructed from the data from each subdetector and then matched and combined to

form global reconstruction objects. In the reduction stage, controlled by oaAnalysis, the

large reconstruction files are reduced into smaller files built from ROOT trees which are
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lightweight enough to be used for analysis.

Figure 2.14: ND280 event display showing hits in each subdetector from a muon
track. The muon enters from the front face of the PØD and passes through the
tracker, producing secondary tracks in TPC3. The secondary particles stop in the
downstream and barrel ECals [61].

To produce Monte Carlo simulated data, a simulation of the neutrino beam interfaces

with a neutrino interaction event generator package (T2K primarily uses NEUT [51], with

GENIE [52] as a cross-check). The ND280 software includes a representation of the detector

geometry which is used first to determine the nuclear target used in the event generator, and

then for the propagation of final state particles with Geant4. The energy deposits simulated

by Geant4 are then inputted into the elecSim package which simulates the response of the

active detectors and electronics. This results in MC files that can then be processed in the

same way as real data.

Event selections and cross-section analyses can be performed using the highLevelAnalysis

(‘Highland’) framework. Taking oaAnalysis files as input, Highland provides numerous

classes that enable users to develop event selection algorithms, extract cross-sections, plot

results, and evaluate the impact of systematic errors. The event selections presented in this

thesis were built using version 2.68 of the Highland framework.
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ND280 Electromagnetic

Calorimeter

The ND280 ECal is a sampling electromagnetic calorimeter which surrounds the inner

detectors (FGDs, TPCs and PØD). It consists of layers of plastic scintillator bars interleaved

with lead absorber sheets, and is divided into 13 independent modules in three main sections:

the downstream ECal (DS-ECal), which is placed immediately downstream of TPC3; the

barrel ECal, which surrounds the tracker detectors; and the PØD-ECal, which surrounds

the pi-zero detector. The barrel and PØD ECal each comprise six modules which surround

their respective inner detectors on four sides parallel to the z (beam) axis, as can be seen

from Figure 3.1.

The main purpose of the ECal is to detect photons and thus reconstruct neutral pions

produced in neutrino interactions, and to measure the energy of electromagnetic showers.

The ECal can also provide valuable information for particle ID, since different particle

types exhibit different characteristic behaviours as they traverse or stop within it. These

capabilities make the ECal a key component of ND280, and ECal information makes a

crucial contribution to the event selections presented in this thesis.

47
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Figure 3.1: One side of the ECal installed within the ND280 magnet. Three of
the six barrel-ECal modules can be seen on the right, with three of the thinner
PØD-ECal modules on the left. The basket, which contains the DS-ECal, is not
present [72].

This chapter describes the design of the tracker (barrel and downstream) ECal, as well

as its charge calibration procedures and reconstruction methods. Its particle identification

capabilities will be discussed as part of Chapters 4 and 6. The PØD-ECal, which has a

different design and more limited capabilities, will not be discussed as it is not relevant to

the work presented in this thesis.

3.1 Design of the Electromagnetic Calorimeter

The ECal is designed to induce and measure electromagnetic showers. Each ECal module

contains layers of lead converter: dense material which causes photons and most other

particles to stop and produce showers (and can also provide a target for neutrino interactions).

These showers are detected by layers of plastic scintillator bars with alternating perpendicular

orientations. These two orientations per module provide two 2D views which can be

reconstructed into a full 3D view as illustrated by Figure 3.2. Scintillation light produced

in each bar is collected and transported by a WLS fibre, located at the centre of the bar, to

a MPPC photosensor. Some particles such as muons tend not to shower in the lead layers

and instead behave as minimum ionising particles (MIPs), but can still be detected by the
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Figure 3.2: Schematic view of the passage of a MIP-like particle through a side
barrel ECal module. Vertical bars together provide a view in the XZ plane, and
horizontal bars a view in the YZ plane, which are combined into a 3D track by the
reconstruction [73].

energy they deposit along their path in the scintillator.

3.1.1 Scintillator bars

Scintillator bars are the basic active element of the ECal. They are made from extruded

polystyrene doped with organic fluors: 1% polyphenylene oxide (PPO) and 0.03% 1,4-

bis(5-phenyloxazol-2-yl) benzene (POPOP). All bars have a cross-section of 40 mm × 10

mm: the 10 mm thickness was chosen to minimise the overall depth of the ECal while still

producing sufficient light yield, while the 40 mm width is a compromise between reconstruc-

tion efficiency (since widths greater than 50 mm were found to seriously compromise π0

reconstruction) and channel cost (since thinner bars would be more numerous and thus

require more channels to read out). The lengths of the bars vary according to module and
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Figure 3.3: End view of an ECal scintillator bar and WLS fibre [73].

orientation. Each bar has a 0.25 mm-thick reflective coating containing TiO2 to provide

optical isolation and increase light yield collected by the WLS fibre, which is inserted into a

2 mm-diameter hole running longitudinally through the centre of the bar (see Figure 3.3).

The WLS fibres collect scintillation light from the bars and transport it to the MPPC

photosensors for readout. All ECal modules use 1 mm-diameter Kuraray Y-11(200)M

CS-35J [74], which are polystyrene optical fibres with 200 ppm wavelength shifting dye and

double cladding for high trapping efficiency. Depending on the module and orientation of

the bar, the WLS fibre may be read out at both ends (double-ended readout), or only one

end (single-ended readout) in which case the other end is mirrored with a vacuum deposition

of aluminium. The DS-ECal contains only double-ended bars, while the longitudinal and

perpendicular bars of the barrel ECal are double- and single-ended respectively. At the

readout end(s) the fibre is optically coupled to the corresponding MPPC entrance window

via a transparent Teflon ferrule glued to the fibre end.

3.1.2 ECal modules

The ECal modules each comprise a number of layers, each of which consists of scintillator

bars bonded to a lead sheet, with the bars of each layer being perpendicularly oriented with

respect to its neighbours. The DS-ECal is the region of the ECal placed downstream of the

inner detectors, occupying the last 50 cm of the structural basket that contains the FGDs,

TPCs and PØD. It is a single module consisting of 34 lead-scintillator layers oriented in the

x and y directions (perpendicular to the beam axis), each of which comprises 50 scintillator

bars. Its other attributes are summarised in Table 3.1. Due to conservation of momentum,
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the kinematics of typical neutrino interaction events are such that a large proportion of

particle tracks will follow closely to the beam direction and thus pass through the DS-ECal

rather than the barrel modules. For this reason, the DS-ECal has more layers than the

barrel modules.

Downstream ECal

Dimensions (mm) 2300× 2300× 500
Weight (kg) 6500
No. of layers 34
No. of bars per layer 50
Total no. of bars 1700
Bar length (mm) 2000
Bar orientation x/y
Lead thickness (mm) 1.75

Table 3.1: Properties of the Ds-ECal design, summarising the dimensions and layer
makeup.

Barrel-ECal top/bottom Barrel-ECal sides

Dimensions (mm) 4140× 1676× 462 4140× 2500× 462
Weight (kg) 8000 10000
No. of layers 31 31
No. of bars per layer 38 long., 96 perp. 57 long., 96 perp.
Total no. of bars 2280 long., 6144 perp. 1710 long., 3072 perp.
Bar length (mm) 3840 long., 1520 perp. 3840 long., 2280 perp.
Lead thickness (mm) 1.75 1.75

Table 3.2: Properties of the barrel-ECal design, summarising the dimensions and
layer makeup (divided into longitudinally- and perpendicularly-oriented bars where
appropriate).

The barrel-ECal surrounds the tracker on its four outward-facing sides, and comprises

6 modules (2 top, 2 bottom, 1 left, 1 right) which are affixed to the inside surface of

the magnet return yoke. The top and bottom sections are divided into two along the

beam direction to permit opening of the magnet and access to the tracker for maintenance.

The barrel-ECal modules are made up of 31 lead-scintillator layers each with alternating

orientation similarly to those of the DS-ECal. The dimensions and other attributes of the

barrel ECal modules are summarised in Table 3.2 and a photograph of one module is shown

in Figure 3.4.
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Figure 3.4: One of the top barrel-ECal modules lying horizontally during construc-
tion at the University of Liverpool. The ends of the WLS fibres, which are encased
in Teflon ferrules, can be seen protruding from the aluminium bulkheads [72].

3.1.3 MPPC photosensors

Like the other ND280 scintillator detectors, the ECal uses multi-pixel photon counters

(MPPCs) to read out light from the WLS fibres. Traditionally PMTs would be used for this

purpose, but they are relatively bulky and would not function within the 0.2 T magnetic

field, so they would have to be placed outside the detector and the light signal transported

several metres to reach them. MPPCs on the other hand are both compact enough to fit

inside the ECal modules and able to function inside the magnetic field, and also have a

higher detection efficiency for photons of the wavelength produced by the WLS fibres. They

are solid-state photosensors consisting of many independent sensitive pixels, each of which

is a Geiger-mode avalanche photodiode [75]. The output of the MPPC is the analogue sum

of the fired pixels; this is usually expressed in ‘pixel energy units’ (PEU), 1 PEU being

the charge seen when a single pixel fires. A specialised MPPC with a sensitive area of

1.3× 1.3 mm2 containing 667 pixels was developed for ND280 by Hamamatsu Photonics

K.K. [76]. Its parameters are listed in Table 3.3. Each scintillator bar is connected to either

one (single-ended) or two (double-ended) MPPCs, with a total of 22336 across all modules.

3.1.4 Readout electronics

The ND280 back-end electronics consists of several different boards: Trip-T front-end boards

(TFBs) which receive the MPPC output directly; readout merger modules (RMMs) which
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Parameter

Number of pixels 667
Active area 1.3 × 1.3 mm2

Pixel size 50 × 50 µm2

Operational voltage 68–71 V
Gain ≈ 106

Photon detection efficiency at 525 nm 26–30%
Dark rate above 0.5 PEU at 25◦C ≤ 1.35 MHz

Table 3.3: Parameters of the T2K MPPCs. The dark noise rate is given for a
threshold equivalent to half the charge of a single pixel firing.

control and read out the TFBs; a master clock module (MCM) providing central control via

slave clock modules (SCMs) for each subdetector; and two cosmic trigger modules (CTMs)

which support calibration and monitoring by providing a selection of cosmic-ray muon

triggered events.

The ECal MPPCs are connected to Trip-T front-end boards (TFBs) which form the

front-end of the readout electronics. A TFB has 64 channels, each of which can read out a

single MPPC and also records MPPC monitoring data such as voltage and temperature,

the latter of which is recorded via a built-in temperature sensor and a port to connect to an

external one. Each TFB contains 4 Trip-T integrated circuits, which were originally designed

for the D0 experiment at FNAL. A Trip-T integrates the charge detected by connected

MPPCs in a preset time interval (for T2K usage, this is programmed to synchronise with

the timing of the neutrino beam) followed by a similarly programmable reset time of at

least 50 ns. Once 23 readout cycles 1 have been completed, the stored data are digitized

by analogue-digital converters, and sent by the TFB (along with timestamp information)

to a RMM back-end board. 12 RMMs are used in the ECal (2 for the Ds-ECal, 8 for the

barrel-ECal, 2 for the PØD ECal), each of which controls and receives signals from up to

48 TFBs. Data from the RMMs is sent to commercial PCs for collection and processing.

The ND280 MCM receives signals directly from the accelerator indicating when the

neutrino beam will be active, and uses this information to distribute trigger and clock

signals across the whole detector. Control is fanned out to the subdetectors via SCMs; the

ECal SCM passes trigger and clock signals to the ECal RMMs, and can also be set as the

master controller in order to run the ECal autonomously from the rest of ND280 for the

1This is the maximum number of cycles that can be read out from the Trip-T chip pipeline, capturing
each bunch of the spill and also after-spill data [77].
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Figure 3.5: Flowchart illustrating the series of steps used to calculate the charge
deposited in the ECal scintillator from the recorded ADC values.

purposes of routine calibration, debugging etc.

3.2 ECal charge calibration

ECal hits must be calibrated precisely in order to account for instrumental effects: differences

in scintillation yield, attenuation along WLS fibres, time lags in the electronics, and so

on. The calibration procedures developed for this purpose can be divided into two main

categories: charge calibrations, which together convert the ADC value registered by the

electronics to the charge deposited in the scintillator; and timing calibrations, which correct

for delays in the hit time recorded by the electronics. Only the charge calibrations will be

discussed here; see [78] for an overview of the timing calibrations.

The ECal charge calibrations consist of a series of steps as illustrated in Figure 3.5. These

calibrations convert each ECal channel’s response from an ADC value to a charge deposit

in a multi-step calculation, working back along the readout chain from the electronics, to

the MPPC, to the WLS fibre, and finally to the scintillator bar. Corrections are applied

to account for factors such as differences in sensitivity between channels and diurnal

temperature changes. The charge distribution is later used to compute an energy deposit
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in the reconstruction stage, and also forms the basis of ECal particle identification.

3.2.1 Pedestal and gain calibrations

The first step of converting ADC counts to anode charge is to calculate and subtract the

electronics pedestal: the ADC value registered in the absence of any physics signal. Each

channel has its own pedestal, which varies with each readout cycle. Diurnal temperature

variations at the electronics can result in pedestal changes of a few ADC counts, so pedestals

are calculated every three hours using noise spectra recorded by the DAQ in normal running.

Dedicated pedestal calibration runs are also taken during weekly beam down-time. The

calculated values are subtracted from any ADC counts recorded by the DAQ.

Converting the pedestal-subtracted ADC into an anode charge is achieved by mapping

the electronics response, which is not perfectly linear and includes a transition from

low- to high-gain ADC channels. The TFB is used to inject a known charge onto each

channel, enabling the channel’s low- and high-gain responses to be mapped. The resulting

charge injection curves are parametrised for low- and high-gain channels using two cubic

polynomials, with the transition being modelled with a sigmoid function for a smooth

transition from low to high gain. The parameters for this calibration are updated around

once per running period since they are typically stable over time. An example of the high

and low gain responses of a typical channel is shown in Figure 3.6.

Next, the calculated anode charge is converted to an estimated number of photons

incident on the MPPC. This is done by first converting the charge into a number of PEU,

i.e. dividing by the MPPC gain. Similarly to pedestals, the gains are different for each

channel and are affected by diurnal temperature variations, so they are calculated every

three hours using the same noise spectra. They are measured by fitting the position of

the first non-pedestal peak, which corresponds to a single MPPC pixel firing. For each

channel, the gain is taken to be the difference between the fitted positions of the pedestal

and single-pixel peaks.

Having divided by the gain, the number of pixels is converted to a number of photons

by dividing by the MPPC response function. The response function is stable with time,

but is complicated and cannot easily be calculated analytically, so is modelled on testbench

measurements instead. A single response function is used for all channels, the parameters of

which are functions of the MPPC gain. This enables the conversion to account for changes

in PDE and other parameters with the overvoltage supplied to the MPPC.
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Figure 3.6: High and low gain ADC response of a typical TripT channel as a
function of input charge. The input charge is calculated from the digital-to-analogue
converter controlling the capacitor used to perform the charge injection [72].

3.2.2 Bar equalisation calibrations

The next steps of the charge calibrations are designed to equalise the response of all

bars. This accounts for differences in sensitivity between different bars of the same type

(the ‘bar-to-bar’ correction) and differences between bar types (the ‘module equalisation’

correction) [79].

The bar-to-bar calibration constants scale the response of each bar to the average for its

type (module, orientation, and endedness) and are somewhat stable with time, so they are

calculated once per T2K run. This is done using an empirical data sample of cosmic ray

muons, which are a plentiful and well-understood control sample. They behave as MIPs so

their energy loss in the scintillator is simple and well understood. Only cosmic muon tracks

that pass through (i.e. do not stop in) the ECal are selected for the calibration sample.

The sample is first processed with all calibrations except the bar-to-bar and module

equalisation corrections applied, including a correction for differences in track path length

through the bar. The charge spectrum of all hits in each bar is fitted with a Landau-

Gaussian function: a Landau distribution (modelling the energy deposit of the particle)
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Figure 3.7: Example of a cosmic muon hit charge spectrum for one ECal channel.
The Landau-Gaussian function fitted to the data is shown in red.

convolved with a Gaussian (modelling the smearing due to detector resolution), as shown

in Figure 3.7. The fit is attempted across multiple truncations of each channel spectrum to

find a range that will yield a successful fit; however if the histogram contains insufficent

hits as in Figure 3.8, the fit may fail on all attempts. The most probable value (MPV) of

the Landau-Gaussian fit is taken to represent the response of that bar. These MPVs are

then used to generate a set of constants such that the MPV of each bar is scaled to the 6σ

truncated mean for its type. These are the bar-to-bar constants, which when applied are

used as divisors to correct each hit.

Channels are only included in the calculation of the mean for their bar type if they

meet two criteria: first, the fit must have been successful, and second, the MPV must

meet the truncation requirement i.e. it must fall within 6σ of the raw mean, as calculated

by a Gaussian fit. Channels that do not meet these criteria will not receive a bar-to-bar

correction (their constants will be set to 1). In the T2K Run 9 calibrations from which

the plots in this chapter are taken, 20313 channels were successfully calibrated, and the

remaining 95 were excluded due to failed fitting or truncation.

These calibration constants are subject to two stages of validation. The first stage takes
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Figure 3.8: Example of a cosmic muon hit charge spectrum for which the Landau-
Gaussian fit fails. This happens because not enough hits have been recorded for a
successful fit in this channel.

place before the constants are uploaded to the T2K database, and serves to check that the

constants have been calculated correctly and that the table file is valid. The constants are

applied to cosmic muon data, and the Landau-Gaussian fit is performed once again for each

channel. The distributions of the MPVs with and without the correction are compared, as

shown in Figure 3.9 for the same data and Figure 3.10 for an independent sample.

The second stage takes place after the constants are uploaded to the database, with the

purpose of checking that the constants have been uploaded successfully and can be applied

correctly. The processing of the raw cosmic muon data is repeated, with the only change

being that the bar-to-bar corrections are now applied. The Landau-Gaussian fitting is

then performed for the two versions (with and without bar-to-bar and module equalisation

calibrations) of the cosmic muon data set, and the distributions of the resulting MPVs

are compared; if the constants have been uploaded and applied correctly, the corrected

distribution will have a narrower spread.

Bar-to-bar (and other) calibration constants are stored in the T2K database. The

database contains all sets of bar-to-bar constants for each T2K run, along with validity
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Figure 3.9: A pre-upload validation plot for ECal bar-to-bar constants for T2K Run
9, comparing cosmic muon hit MPVs before (green) and after (blue) application of the
constants, generated from the same data sample used to calculate the constants. For
each channel, the charge spectrum MPV is shown by the y-axis and the channel ID
number by the x-axis, which groups them according to their module. Consequently,
two bands can be seen for modules which contain two different bar types. The
uncorrected points show a spread of MPV values for each bar type, whereas the
calibrated points have been corrected to a single average value for each bar type,
indicating that the calibration is working as intended. Outliers in the corrected
points correspond to channels where the fit has failed or been truncated; a small
number of these is acceptable.

information that determines which constants will be used for data taken during any given

period. This ensures that constants will only be applied to the data for which they are

valid (i.e. data from the same run as the cosmic muon data from which the constants were

generated) and that any sets of constants found to have been incorrectly calculated or

uploaded can be overridden by newly-calculated ones.

Following the application of the bar-to-bar constants, the module equalisation correction

is applied to equalise the response across all modules and bar types. This is done by scaling

the average response for each bar type (module, orientation and endedness) to that of the

DS-ECal bars. The relative responses of different bar types are expected to be stable with

time, so these constants are not recalculated alongside the bar-to-bar constants.
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Figure 3.10: A pre-upload validation plot for ECal bar-to-bar constants as in
Figure 3.9, but generated from a statistically independent cosmic muon data sample
from the same T2K run. Some spread can be seen in the corrected points about the
mean values as a result of statistical noise, but this is greatly reduced compared to
the uncorrected points.

3.2.3 Fibre scaling correction

There is some attenuation of photons as they traverse the WLS fibres, so the light yield

recorded in an ECal hit will depend on how far along the bar’s length the hit originated.

To account for this, the ‘fibre scaling’ correction is applied. Since this requires longitudinal

positional information that a single hit does not provide, it cannot be applied until the

reconstruction stage, when hits are matched between the two views (i.e. layer orientations)

of the ECal module. Then the component of the hit position along the length of the bar

can be estimated using the adjacent hit(s) or, where two hits are detected in the same bar,

the timing information.

The attenuation profile of the fibre is modelled as a sum of two exponential functions, as

shown in Figure 3.11. In the case of single-ended bars, an additional correction is applied to

account for light reflected from the mirrored end. The constants governing these functions

were calculated separately for each bar type using cosmic muon tracks similarly to the

bar-to-bar correction, but are stable with time so are not recalculated each run.
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Figure 3.11: The double exponential attenuation curve fitted to data (black) used
for the fibre scaling correction in the DS-ECal. Previous fits are shown in red and
blue [78].

3.2.4 Scintillator ageing

The light yield of plastic scintillator detectors tends to degrade over time; this is referred to

as ‘scintillator ageing’. The response of the scintillator-based T2K subsystems has been

observed to reduce by 0.9–2.2% per year [73], and it has been confirmed that this is due

to the scintillator plastic rather than that of the WLS fibres. The exact cause remains

unknown, though it is hypothesised to be some combination of crazing or shearing due

to mechanical stress, fogging due to water penetrating into the material and condensing,

and oxidation of the scintillator through photochemical processes [73]. This is corrected

for by fitting an exponential function to the measured light yield degradation over time,

which is then used to scale the MPVs for each time bin such that they remain constant

with time [80]. It has been projected that the ECal scintillator light yield will drop by

∼50–60% for all bar types by 2040, and although this remains above the minimum charge

threshold of 5.5 PEU required by the current reconstruction algorithms, there is a risk that

information will be lost for particle interactions that deposit energy below the MIP MPV if

improvements are not made [73].
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3.3 ECal reconstruction and performance

Hits recorded in the tracker ECals are reconstructed into track and shower objects by

the ecalRecon software package [72]. Clusters of hits are identified in each 2D view and

matched to form 3D cluster objects, and Michel electron candidates are identified using

timing information. The energy and dimensions of each cluster are computed by fits of the

hits associated with it. The resulting track and shower objects are passed to the global

reconstruction to be matched with objects from other subdetectors.

First, hits in each view are grouped by time to form ‘hit selections’, such that the

time between successive hits in a selection is less than 50 ns. Each hit selection is treated

separately by the reconstruction algorithms. Where two hits are recorded in the same

double-ended bar corresponding to the same physical energy deposit, they need to be

recombined, and in this case the effective speed of light can be used to estimate the position

along the bar. This in turn is used to apply the fibre scaling correction described previously.

3.3.1 Clustering

Hits in a selection are ‘clustered’ to group the hits arising from a single incident particle

into one object in each 2D view. This is done in three stages by three separate algorithms:

Basic Clustering, Combine Clusters and Expand Clusters. In Basic Clustering, the hit with

the highest charge is used as a seed to cluster nearby hits. A hit is clustered with the seed

if it satisfies all of the following criteria (illustrated in Figure 3.12):

• The hit lies in the same, neighbouring, or next-to-neighbouring layer as the seed

• Along the layer, the hit lies within one bar either side of the seed bar

• The hit time is within 15 ns of that of the seed.

Once this has been completed, each clustered hit becomes the seed, continuing recursively

until no more hits can be grouped with any of the hits in the cluster. The process is then

repeated with any hits that are not associated with the first cluster, continuing until no

more clusters can be formed.

The Combine Clusters algorithm aims to merge basic clusters for events that have

regions with sparse hits, as is often seen for hadronic showers. The cluster with the most

hits is used as a seed, and is merged with nearby smaller clusters if their average hit times

are within 40 ns and their average positions and widths (determined by principle component
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Figure 3.12: Schematic illustrating the spatial criteria of the basic clustering
algorithm, where the boxes represent bars of one view with the layers shown vertically;
the gaps between these layers are the layers of the other view. The seed hit shown in
dark grey will be clustered with hits in the bars shown in lighter grey [81].

analysis) are found to match geometrically. Clusters must have at least three hits to be

valid for Combine Clusters. The Expand Clusters algorithm is similar, and attempts to

match unclustered hits into the existing clusters. Each unclustered hit is considered in

turn and the algorithm attempts to match it to the existing clusters. A hit is matched and

added to a cluster if its time is within 40 ns of the cluster average and its position matches

the cluster geometrically.

Next, clusters in each 2D view are matched to create 3D cluster objects. A likelihood

variable which takes into account the ratio of their charges and the difference in starting

layer (the closest hit layer to the centre of ND280) determines whether a pair of clusters

should be matched. All possible cluster pairs are considered, and those with the best

likelihood values are combined provided the likelihood passes a quality cut. Each 2D cluster

may only be matched with one cluster from the other view, as illustrated in Figure 3.13.

Any clusters that fail to match may be ‘rematched’ with unclustered hits from the other

view, and are otherwise stored separately as 2D cluster objects. Once 2D clusters have

been matched, the hit positions along the bar can be recalculated using information from

the other view, providing a more accurate result than the recombination estimate. This is

then used to re-calibrate the fibre scaling correction.

The overall reconstruction efficiencies (that is, the probabilities of an ECal cluster being

reconstructed for an incident particle) of the downstream and barrel ECals are summarised
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Figure 3.13: Illustration of how overlapping clusters are handled by the 2D-3D
matching. Two separate clusters (B and C) are seen in one view, while in the other
view they are superimposed as a single cluster (A). Due to their similarity, cluster A
would be matched to cluster B to form a 3D cluster object, leaving cluster C as an
unmatched 2D cluster [81].

in Figure 3.14, and their momentum and angle dependencies are shown in Figures 3.15

and 3.16. It can be seen that the efficiency of the downstream ECal is higher than that of

the barrel, and the efficiency for tracks is higher than for showers. There are also strong

dependencies on the kinematics, with higher-momentum particles generally having better

reconstruction efficiency, and perpendicular impact angles resulting in better efficiency than

shallower ones. Further information on the reconstruction efficiency of the ECal can be

found in [82].



Chapter 3. ND280 Electromagnetic Calorimeter 65

Figure 3.14: Overall efficiencies for shower and track reconstruction in the down-
stream and barrel ECals, calculated using enhanced e± (shower-like) and enhanced
µ− (track-like) control samples of both MC and real data. These were selected by
TPC PID from samples of TPC tracks with trajectories approaching the ECals.
The efficiencies here are defined as the proportion of shower-like/track-like TPC
candidates for which a shower-like/track-like object is seen in the expected ECal.
It can be seen that the reconstruction efficiency is generally higher for tracks than
for showers (though this may be due to muon and pion impurities in the e± control
sample), and higher for the downstream than the barrel ECals (thought to be due
to all DS-ECal scintillator bars being double-ended, while the barrel ECals contain
both double- and single-ended bars, the latter of which perform more poorly). The
data-MC discrepancy for track-like objects in the barrel ECal is due to a detector
geometry issue which is corrected for in real data but not MC [82].

3.3.2 Energy and shape fits

An energy fitting algorithm is applied to all reconstructed 3D clusters to calculate an energy

deposit from the calibrated hit charges. The fit assumes an electromagnetic shower and is

a likelihood fit of parameters of the cluster charge distribution: the total charge, the RMS

divided by mean, and the skew (though the result is mainly dependent on the total charge).

The fit is tuned on a Monte Carlo particle gun photon sample with energies ranging from

75 MeV to 25 GeV to ensure validity across the expected energy range. The resolution of

this energy measurement has been calculated from test beam measurements to be around
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Figure 3.15: Shower reconstruction efficiency in the downstream (left) and barrel
(right) ECals, plotted as a function of momentum (top) and impact angle with respect
to the ECal surface (bottom). The efficiencies are defined and calculated as in Figure
3.14 from the same control samples [82].

8–20% for EM showers [72][83].

Each cluster is then fitted as both track and shower objects: the track fit consists of 2D

linear fits in each view which are combined into a 3D linear fit, and the shower fit is a 3D

principle component analysis. These fits assign position, direction and shape information to

the cluster, and particle identification is later used to determine which hypothesis (shower

or track) is used.
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Figure 3.16: Track reconstruction efficiency in the downstream (left) and barrel
(right) ECals, plotted as a function of momentum (top) and impact angle with respect
to the ECal surface (bottom). The efficiencies are defined and calculated as in Figure
3.14 from the same control samples [82].

3.3.3 Global reconstruction

Reconstructed ECal objects are passed to the global reconstruction, which matches and

combines them with objects from the other subdetectors to form global objects. A Kalman

filter [84] is used to refit the individual objects (provided they are track-like, not shower-like)

and to refit combinations of matched objects. The reconstruction attempts to iteratively

match pairs of objects in adjacent subdetectors by extrapolating one to a matching plane

with the other; they are matched if the calculated χ2 is less than 100 (200 when the objects

include the PØD or SMRD) and the time difference is within 300 ns. Only two objects are
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matched at a time, and the resulting combined object is used in the next iteration. This

begins with objects in the tracker subdetectors, then proceeds to unmatched objects in the

PØD and ECal respectively until no more matches can be found [81]. Global tracks are

the main reconstruction objects used at the analysis level, but the local objects remain

accessible as well.

ND280 event selections typically require a track with at least one TPC segment, so

the efficiency for matching tracks between the TPC and ECal is an important quantity to

consider. Measurements of this efficiency have been made by selecting tracks that appear

to enter the downstream or barrel ECals; the matching efficiency is then the proportion

of such tracks for which an ECal segment is reconstructed [82]. These efficiencies have

been measured for e-like, µ-like and proton tracks; an example is shown in Figure 3.17 and

the full set of plots can be found in [82]. It has been found that the matching efficiency

generally increases with momentum and is higher for shallower track angles, as well as

differing between particle types, with µ-like tracks generally showing the highest efficiencies

[82].
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Figure 3.17: TPC-ECal matching efficiency for e-like tracks entering the DS-ECal,
shown as a function of momentum and impact angle with respect to the ECal surface.
The efficiencies are shown for both real data (black) and Monte Carlo (red), and
from ν mode (left) and ν̄ mode (right) samples [82].



Chapter 4

Muon-antineutrino CC1pi selection

development in ND280

As described in Section 1.4 above, neutrino-nucleus interactions are an essential and highly

active topic of research in neutrino physics. They are difficult to describe theoretically, since

the target nucleon is not free but bound within a nucleus. The interaction is subject to

nuclear effects which are difficult to model, and significant discrepancies still exist between

current models and experimental data. As neutrino oscillation experiments move towards

higher and higher precision, neutrino interaction models have become a critical source of

systematic uncertainties. Cross-section measurements are needed in order to constrain

and improve models to increase the precision of experiments that rely on neutrino-nucleus

interactions.

It is impossible to directly observe the products of the initial interaction, since it occurs

inside the nucleus; only the particles that leave the nucleus can be detected. For this

reason, T2K classifies events based on the topological information: the set of particles

that leave the nucleus. One such category is known as νµ(ν̄µ) CC1pi: events in which a

muon-(anti)neutrino interacts with a nucleus via the charged current weak interaction,

producing an (anti)muon, a charged pion and no other particles besides protons. In FHC

mode, this is known as νµ CC1π+:

νµ +A → A′ + µ− + π+ +Np (4.1)

and ν̄µ CC1π− in RHC mode:

70
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ν̄µ +A → A′ + µ+ + π− +Np (4.2)

where A is the nuclear target, and N ≥ 0 since the topology definition allows any number

of protons. The interaction channels that can give rise to CC1pi topology are discussed in

Section 1.4.3 above. The work in this thesis only considers events originating in FGD1, for

which the nuclear target is primarily carbon with a small proportion of hydrogen.

One-pion topologies make up a significant proportion of charged-current events at T2K.

As a result they form a major background for CCQE samples which are essential to the

oscillation analysis, and can themselves be used as a sample for oscillation fits. This requires

precise cross-section measurements, which can also contribute towards the testing and

development of neutrino-nucleus interaction models. In turn, cross-section measurements

require the development of high-performing event selection algorithms, here referred to

simply as ‘selections’.

A selection is a sequence of cuts on the reconstructed event information, designed to

select events of a particular signal topology and reject its backgrounds. As part of this

process, the selection designates reconstructed objects (e.g. global tracks) as candidates

for each of the particles in the event topology. A ν̄µ CC1π− selection should therefore

identify candidate tracks for both a µ+ and a π− (and any number of protons), and reject

events otherwise. This is challenging, since the RHC beam has a significant contribution

from νµ, here termed the ‘wrong-sign background’. The wrong-sign background can for

example give rise to νµ CC1π+ events, for which the signature is a µ− and a π+. This

mimics the signal µ+ and π− since muons and pions can behave very similarly. For this

reason, particle identification (PID) is a crucial element of ν̄µ CC1π− selections in ND280.

However, previous attempts have been derivative of the ν̄µ CC inclusive selection and have

not used PID suited to the particular challenges of selecting the CC1π− topology. As a

result they perform poorly. This thesis presents efforts to improve on the existing ND280

FGD1 ν̄µ CC1π− event selection by developing high-performing PID algorithms, with a

focus on muon-pion discrimination to address the wrong-sign background issue.

4.1 Data and Monte Carlo samples

The data and MC samples used for the work presented in this chapter and Chapter 7 were

taken from the T2K Production 6T RHC samples for runs 5, 6, 7 and 9. The POT statistics
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of these samples are summarised in Table 4.1. The MC sample is T2K Production 6T

simulated data, which was generated using ND280 software version nd280v11r31p43 and

NEUT [51] version 5.4.0.1, with the neutrino beam flux predicted by the JNUBEAM [62]

software. The relative quantities of each interaction type are as predicted by NEUT and

have not been modified. Further information concerning Production 6T can be found in

[85].

ND280 Run MC POT ×1020 Data POT ×1020

Run 5 21.9125 0.445156
Run 6 26.0132 3.42020
Run 7 32.3090 2.43498
Run 9 5.10102 2.30244

Total 85.3358 8.60279

Table 4.1: Summary of real data and Monte Carlo production POT used for the
work presented in Chapters 4 and 7.

4.2 The current ND280 ν̄µ CC1π− event selection

The selection development described in this thesis takes the pre-existing ND280 event

selection as its starting point. This selection is part of a branched selection for multiple

pion analyses [86]. This begins with a number of pre-selection cuts designed to select events

of suitable data quality and remove certain backgrounds before applying PID:

• Event quality: Only events compatible with timing information from the beam are

selected. The T2K beam is produced by eight proton ‘bunches’ at a time, each of

width 15 ns. To pass this cut, events must be associated with the beam trigger and

compatible with one of the bunches; that is, they must fall within 4σ of the centre of

a bunch.

• Total multiplicity: Events must have at least one reconstructed track crossing

TPC2 or TPC3.

• Track quality and fiducialisation: The reconstructed vertex of the event must fall

within the fiducial volume (FV) of FGD1. Additionally, the TPC track must have

more than 18 clusters (sets of contiguous pads in a row or column) in order to be
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selected. This requirement is imposed because the TPC reconstruction is less reliable

for shorter tracks.

• Leading track: Of all tracks originating in the FGD1 FV, the highest-momentum

positively-charged track (HMPT) is considered the antimuon candidate. The leading

track cut requires that this also be the highest-momentum track (HMT) overall, in

order to reduce π+ contamination.

• Upstream background veto: Events in which the second-highest-momentum track

starts > 150 mm upstream of the muon candidate are rejected. This cut is applied in

order to remove misreconstructed events in which the true muon originated upstream

of the FGD1 FV but the reconstructed track starts inside it.

• Broken track: If the muon candidate track starts in the last (most downstream)

two layers of the FGD, and a fully FGD-contained track is also present, the event

is rejected. This is to remove misreconstructed events in which the muon track is

‘broken’ into two tracks.

Events that pass the pre-selection are then subject to a ‘primary’ PID cut to identify an

antimuon and thus select an inclusive sample of ν̄µ charged-current events, and additional

tracks (such as pions and protons) are identified by applying ‘secondary’ PID to each of

them. The primary and secondary PID are described in Sections 4.2.1 and 4.2.1 respectively.

At this point the sample is split into three selection branches according to the number

of reconstructed mesons: CC0pi (zero mesons), CC1π− (one negative pion only, no other

pions), and CC-Other (any other topologies). The CC1π− branch is selected by requiring

one reconstructed π− candidate and no other pion signatures. The π− candidate must be

in the same time bunch and start in the same FGD FV as the muon candidate. If it enters

one of the TPCs downstream of the starting FGD, then it must also pass the TPC quality

cut. Events tagged as containing π+, π0 or additional π− are rejected.

4.2.1 Particle identification

The existing ν̄µ CC1π− selection relies on TPC PID (or where it is unavailable, FGD PID).

This section describes how the TPC and FGD PID variables are constructed, and how they

are applied in the primary and secondary PID.
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TPC PID variables

Particle ID in the TPCs is based on the rate of energy loss per unit distance travelled

(‘dE/dx’) in the gas. This is measured from the ionisation charge clusters reconstructed

along the track. Since the processes of energy loss in the gas are subject to large stochastic

fluctuations, the mean dE/dx given by the Bethe-Bloch function is not useful in this case;

instead, the ‘straggling function’ is used, which describes the distribution of energy loss

for a thin gas layer [87]. The most probable value (MPV) of this function depends only

on the mass and momentum of the particle, and can therefore be used for particle ID in

conjunction with the reconstructed momentum. Since the distribution of dE/dx has a long

tail, the mean of the measured energy loss is a poor approximation to the MPV of the

straggling function. Instead a truncated mean is used, in order to measure a quantity more

closely related to the peak of the distribution by discarding measurements with very large

energy deposition. This is defined:

CT =
1

αN

αN∑
i

CC(i) (4.3)

where CC(i) is the energy in cluster i (with the clusters ordered in increasing energy), N is

the numbers of cluster energy measurements in the TPC, and α is the truncation fraction

which has been set at 70% to optimise energy resolution [87]. CT is further calibrated to

account for differences in the direction and number of clusters of the track [87][88] to a

calibrated truncated mean C̄T .

The high-level particle ID for the ND280 TPCs compares the measured C̄T to the

expected MPV CE for different particle types (µ, π, proton, electron), considering the

probability that a particle of mass m and with the measured momentum yields the observed

C̄T . For each particle type, a pull δ is defined which describes the distance between the

expected and measured values. For the i-th particle hypothesis the pull is defined:

δi =
C̄T − CE(i)

σo(i)
(4.4)

where σo(i) is the total width, defined as

σo(i) = σT (i)⊕ (dCE/dp)σp (4.5)

where σT is the standard deviation of the distribution of C̄T whose mean is CE , (dCE/dp)
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the derivative of CE with respect to momentum, and σp the uncertainty of the momentum

measurement [87]. Furthermore for a given track, the pulls can be used to construct a

likelihood variable L for each hypothesis:

Li =
e−δ2i∑
l e

−δl
(4.6)

where l are the full set of particle hypotheses. Hence the likelihoods Li represent the

estimated probability that the identity of the particle producing the track is the same as

the hypothesis i, based on energy loss in the TPC.

FGD PID variables

If a track is contained to the FGD, that is, if a particle stops before leaving the FGD, no

TPC information is available so PID can only be performed via FGD information. Like the

TPC PID, the FGD PID is based on the energy loss of the particle due to ionisation in the

medium, also known as the ‘stopping power’ S(E). This is described by the Bethe-Bloch

equation [89]:

S(E) = −dE

dx
= 4πNAr

2
emec

2z2
Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Tmax

I2
− β2 − δ

2

]
(4.7)

where z is the charge of the incident particle as a multiple of the electron charge; Z and

A are the atomic number and atomic mass number of the medium respectively; NA is

Avogadro’s number; re is the classical electron radius; β and γ are the usual relativistic

kinematic variables; mec
2 is the electron rest mass; I is the mean excitation energy; Tmax

is the maximum possible kinetic energy that can be imparted to a free electron; and δ is a

parameter that corrects for density effects. The stopping power can be used to calculate

the expected range R of a particle traversing a medium:

R =

∫ R

0
dx =

∫ 0

E

dx

dE
dE =

∫ E

0

dE

S(E)
. (4.8)

At low energies (β ≪ 1), the stopping power of particles with the same kinetic energy

differs according to their mass; hence stopping particles of the same kinetic energy and

different mass will have different track lengths in the FGD, and we can use the measured

energy and track length to construct PID variables. The track length is defined as the

length of the straight line between the initial and final 3D positions, which are obtained by
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fitting a straight line in each 2D projection. The total energy deposited is obtained from

the sum of the energy recorded for each hit making up the track. Using these and Equation

4.8, a set of pulls δi are constructed for the muon, pion and proton hypotheses:

δi =
E − Ei(x)

σi(x)
(4.9)

where i = µ, π, p is the particle hypothesis, E is the measured energy deposited, x is the

measured track length, and Ei and σi are the expected energy deposited and resolution

respectively for the ith hypothesis. These pulls assume a stopping particle, so are only

valid when the track is found to be contained to the FGD [90].

Primary PID

In ND280 ν̄µ CC selections the antimuon candidate track is referred to as the ‘primary

track’, and all other tracks as ‘secondary tracks’. The primary track is required by the

pre-selection to have a TPC segment, so TPC PID is used to identify it. This is implemented

as follows:

• Antimuon TPC PID: Particle identification is performed using the TPC likelihood

variables of the designated antimuon candidate, considering the muon, pion, electron

and proton hypotheses as defined in Section 4.2.1. The following cuts are applied,

accepting events for which:

Lµ > 0.1 (4.10)

LMIP =
Lµ + Lπ

1− Lp
> 0.9 if p < 500 MeV/c (4.11)

where Lµ, Lπ, Lp and LMIP are the muon, charged pion, proton and minimum ionising

particle (MIP) likelihoods respectively; and p is the reconstructed momentum of the

track.

In the case of the pre-existing ν̄µ CC selection, the primary track is the highest-

momentum positive track in the event (and also required to be the highest-momentum track

overall). This PID is applied to select an inclusive selection of ν̄µ charged-current events,
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accepting approximately 93% of signal (all ν̄µ charged-current topologies) and rejecting

77% of backgrounds, yielding a ‘CC-inclusive’ sample that is 82% pure1.

Secondary PID

Following the primary PID cut, the sample is split into three selection branches according

to the number of detected mesons: CC0pi (zero mesons), CC1π− (one negative pion only,

no other pions), and CC-Other (any other topologies). This requires identification of all

secondary tracks in the event. To be considered as a secondary track, a track must be in

the same time bunch and start in the same FGD FV as the antimuon candidate. If a track

passes through the TPC, then it must pass the TPC quality cut and PID is performed

using the TPC likelihoods; if it is contained to the FGD, then the FGD pulls are used

instead. For TPC PID of secondary tracks, only the pion, proton and electron hypotheses

are considered, since muons and pions cannot be distinguished in the TPC (see Section

4.2.2) and it is assumed that the antimuon candidate is the only µ in the event.

The secondary PID process begins by identifying pion candidates. Positive TPC tracks

are identified as π+ if Lπ is greater than Lp and Le. The proton hypothesis is not needed

for negative TPC tracks, which are identified as π− if Lπ > 4Le. FGD-contained tracks are

identified as charged pions if −2.0 < δπ < 2.5 where δπ is the FGD pion pull. Charged pions

may also be tagged in the FGD via Michel electrons which are produced in the decay of

muons, themselves produced in pion decay. Michel electrons are identified by the presence

of time-delayed hits in the same FGD as the interaction vertex. A Michel electron tag is

more likely to indicate a π+ than a π− since the latter are more likely to be absorbed, so

for the purposes of this selection a Michel electron is considered evidence of a π+.

Neutral pions do not themselves leave tracks in ND280, but they can be identified by

positrons and electrons pair-produced by their decay photons. Positive tracks in the TPCs

are identified as positrons if Le is greater than Lp and Lπ (provided that the momentum is

below 900 MeV/c, as otherwise the track is more likely to be a proton). Negative tracks

are identified as electrons if Lπ < 4Le. Tracks contained to the FGD are identified as e±

if δπ < −2.0, or δπ < −3.0 if one or more Michel electrons have been tagged. Since e±

TPC tracks are unlikely to be produced by any other source2, any reconstructed e± are

1These values were obtained from testing with the MC sample used in this thesis.
2While e± can also be produced in muon decay or νe/ν̄e interactions, these do not generally result in

TPC tracks in νµ/ν̄µ selections. Muon decay typically occurs after the muon stops in a solid medium such
as the FGDs or TPCs, and the resulting Michel e± are produced following a delay so are reconstructed
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considered evidence of π0 decay.

Following the identification of pion candidates, proton candidates are selected from any

remaining FGD-contained or positive TPC tracks. Positive TPC tracks are identified as

protons if Lp > 0.5, and FGD-contained tracks if δp > −4 where δp is the FGD proton pull.

Following this, all tracks that have been identified as µ+, π±, e±, or protons are

considered to assign the event topology. If a track has not been assigned a PID identity,

then it is disregarded. The CC1π− branch is selected by requiring one and only one

reconstructed π− candidate (either a negative TPC pion or an FGD-contained pion) and

no other pion signatures (negative TPC pions, Michel electrons, or π0 electrons). This is

referred to as the one pion cut. Optionally, an ‘ECal π0 veto’ may be applied in order

to further remove events with neutral pions, but this has been found to reject significant

numbers of signal events [91] so is not generally used. The one pion cut accepts 30% of ν̄µ

CC1π− signal and rejects 96% of backgrounds, but since the backgrounds are here much

more plentiful than the signal, this yields a sample with only 48% purity (values again

obtained from testing with the MC sample used in this thesis).

4.2.2 Limitations

The above set of cuts will here be referred to as the ‘existing selection’. Previous testing

of this selection on MC simulated events [86] found that the selected CC1π− sample was

only 45.4% pure i.e. contained only 45.4% true ν̄µ CC1π− events. Non-ν̄µ CC processes

made up 36.7% of the sample, of which 77.9% were νµ interactions. The ability to better

reject wrong-sign events is therefore a crucial target for efforts to improve this selection.

Furthermore, the selection testing undertaken for this analysis also shows that the one pion

cut rejects a large proportion of signal (∼ 70%), so increasing selection efficiency is also

desirable.

The leading track cut described above was originally introduced to mitigate the wrong-

sign background, but it brings with it its own issues. Only the highest-momentum track is

considered as a µ+ candidate, so any signal events in which the π− and/or a proton has

higher reconstructed momentum than the µ+ will be rejected. This makes the selection

highly dependent on the event kinematics, and therefore on the neutrino interaction model.

Ideally this should be avoided, so it is desirable to remove this cut, but doing so results in

separately from other tracks. A νe/ν̄e event typically will not contain muon-like tracks, which are already
required by the primary PID.
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even greater wrong-sign contamination of the sample (demonstrated below). This further

adds to the importance of accurately rejecting wrong-sign backgrounds.

Figure 4.1: Measured distributions of energy loss as a function of momentum for
negatively charged (left) and positively charged (right) particles in the ND280 TPC.
Energy loss curves predicted by MC simulations are shown for muons, electrons,
protons and pions [67].

The misidentification of wrong-sign events as signal arises as a result of incorrect track

PID. This can be seen by considering the track purity: the proportion of tracks that

have been assigned the correct identity by the PID. Of the µ+ candidate tracks in the

selected MC sample, only 64.2% are associated with true µ+. The dominant backgrounds

are true π+ and protons, which make up 19.7% and 13.6% respectively. Similarly, of

selected π− candidates with TPC segments, 67.7% are true π− and 30.1% are µ−. This

high misidentification rate is a result of the PID relying entirely on TPC energy loss (for

tracks that cross the TPC). Figure 4.1 shows the measured TPC dE/dx as a function of

momentum, compared with the expected dE/dx curves for different particle types. The

curves for muons and pions are very similar across the momentum spectrum, and are thus

very difficult to distinguish at the resolution of the TPC. Additionally, for positive tracks,

the proton dE/dx curve crosses the muon curve at around 1500 GeV/c, so protons will be

indistinguishable from muons in this momentum region. The consequence of this can be

seen in Figure 4.2: the proton contamination of the µ+ candidate track peaks at around

1500 MeV/c, causing a corresponding drop in the µ+ purity. The π+ contamination is

approximately constant across the momentum spectrum.

Although µ+ candidate PID using only TPC energy loss information performs well at
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Figure 4.2: MC predicted purities of the µ+ candidate track in the existing ν̄µ
CC1π− selection, plotted as a function of reconstructed momentum. Only the
dominant three particle types (antimuons, positive pions and protons) are shown.

rejecting e+/e− since they have a distinct dE/dx curve, it is clear that it performs poorly

for muon-pion discrimination, and for muon-proton discrimination at around 1500 MeV/c.

To better identify tracks and reject wrong-sign backgrounds, additional sources of PID

information are required. One such source is the ECal, which can induce pions to shower

and thus distinguish them from muons, making ECal PID an obvious choice to supplement

TPC PID. The following section describes an attempt to improve the performance of this

selection by developing additional PID cuts using ECal information.

4.3 Improved ν̄µ CC1π− event selection

The goal of this work was to improve the performance of the ν̄µ CC1π− selection, with

a focus on improving the wrong-sign background rejection to the extent that the leading

track cut would no longer be necessary. This was pursued by developing cuts on ECal

variables to be added to the PID of the µ+ and π− candidate tracks.
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4.3.1 Removing leading track requirements

As described above, the existing selection only considers the highest-momentum positive

track as a µ+ candidate, and rejects events for which the HMPT is not the highest-

momentum track overall. This means the selection rejects any signal events for which the

π− or a proton track is reconstructed with higher momentum than the µ+, introducing a

model dependency. Removing this dependency involved two steps:

• No leading track cut: the requirement that the HMPT be the HMT was removed.

This allows π− tracks to have higher momentum than the µ+.

• Antimuon candidate selection loop: the selection of the µ+ candidate track was

modified to consider all good-quality positive TPC tracks. The TPC antimuon PID

cut is applied to each such track. If exactly one track passes the cut, this is chosen as

the µ+ candidate. Otherwise, if zero or more than one µ+-like tracks are found, the

event is rejected. This allows proton tracks to have higher momentum than the µ+.

With these changes made, the selection is referred to as the ‘modified selection’. Testing

the effect of these changes on the MC sample showed a severe impact on the purity of

the selection, since large numbers of wrong-sign events are no longer being screened by

the kinematic restrictions. The purity of ν̄µ CC1π− events fell from 47.8% to 30.6%, with

the non-ν̄µ CC backgrounds rising from 33.2% to 57.1%. The purity of the µ+ and π−

candidate tracks fell considerably (see Table 4.3 below). This demonstrates the scale of

the wrong-sign background issue, and the extent to which the leading track requirements

mitigate it in the existing selection. The failure of the current PID to distinguish pions

from muons is clear in the large contamination of the µ+ and π− candidates by π+ and

µ− respectively. To make a ν̄µ CC1π− selection viable with the above changes, a new

high-performance particle ID must be developed.

4.3.2 ECal particle ID cuts

Particles behave very differently in the ND280 ECal compared to the TPCs and FGDs,

since the lead layers of the ECal can induce the production of hadronic and electromagnetic

showers. The behaviour of different particle types in the ECal results in different distribu-

tions of the deposited charge, which can be used to identify them. Muons tend to behave

as MIPs and so pass through the ECal without showering, leaving a single track. Protons
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Figure 4.3: MC predicted MipPion distributions for µ+ (left) and π− (right)
candidate tracks in the ν̄µ CC1π− selection with leading track requirements removed.
Only the signal particle and the dominant backgrounds are shown.

tend to immediately produce hadronic showers upon entering the ECal. Charged pions can

behave as MIPs similarly to muons, or they may produce showers — though unlike protons,

they often pass some distance into the ECal before showering. Quantifying these different

charge distributions yields PID variables that are independent of and complementary to

the dE/dx-based TPC PID. This is discussed in greater detail in Section 6.1.1.

The aforementioned differences in behaviour between muons, pions and protons made

the addition of ECal PID an obvious approach to reducing the wrong-sign background

contamination. Approximately 60% of TPC µ+ and π− candidate tracks in the modified

selection have an ECal segment associated with them, and 86% of events have an ECal

segment associated with at least one of the two, so ECal information is usually available

for PID. High-level ECal PID variables have already been developed using neural network

techniques (see Section 6.1.1 and references [92] and [93]); of these, the ‘MipPion’ variable

was chosen for this application because it is designed to distinguish between MIP-like and

showering-pion-like behaviour. The distributions of MipPion for the µ+ and π− candidate

tracks are shown in Figure 4.3, from which its separating power can be seen: true µ tend

to have lower values, and true π/p tend to have higher values. However, there is significant

overlap between the particle types, so a second ECal PID variable was constructed to

provide further separating power.

The energy loss behaviour of MIPs is different to that of showering particles: all MIPs

deposit approximately the same energy per unit length. We can therefore divide the total
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Figure 4.4: MC predicted E/L distributions for µ+ (left) and π− (right) candidate
tracks in the ν̄µ CC1π− selection with leading track requirements removed. Only
the signal particle and the dominant backgrounds are shown. A logarithmic scale is
used to make the long tail of the pion and proton distributions more clearly visible.

EM energy3 of an ECal track by its length, and expect this variable (here called ‘E/L’) to

have a sharply peaked distribution for MIP-like tracks. For showers, on the other hand,

the EM energy will be dependent on the total energy of the stopping particle, and the

‘length’ of the shower cluster is defined differently. Hence we can expect a wide range

of E/L values for showering tracks. This can be seen in Figure 4.4: a sharp MIP-like

peak can be seen for muons and part of the pion distribution, whereas a shower-like long

tail can be seen for pions and protons. Thus E/L too can be used as a PID variable for

µ/π and µ/p discrimination. The correlation factor between MipPion and E/L is 0.68

for µ+ candidates and 0.62 for π− candidates in the modified selection (calculated from

2D histograms using the TH2::GetCorrelationFactor function in ROOT [69]), so these

variables are moderately correlated. Some degree of correlation is to be expected since both

separate track-like and shower-like behaviour, but since these factors are not close to 1, the

variables may be sufficiently independent to be complementary for PID.

Cuts on MipPion and E/L for the µ+ and π− candidate tracks of the modified selection

were optimised by maximising the efficiency multiplied by purity for the track. Only

tracks with an ECal segment associated were considered; if no such segment exists, ECal

3The ECal EM energy is computed under the assumption of an EM shower, which does not hold for MIPs,
but the fit depends mainly on the total charge so it still behaves as needed for the E/L PID variable. The
total charge itself would be a more appropriate choice, but was not used due to a bug in its implementation
in the ND280 software.



84 Gabriel Charles Penn

PID cannot be performed so the ECal cut will be waived. The purity was defined as the

proportion of µ+ (π−) candidates associated with true µ+ (π−), and the efficiency as the

proportion of true µ+ (π−) tracks passing the modified selection that go on to pass the

ECal cuts. The significance S/
√
S +B, where S is the number of µ+ (π−) candidate tracks

associated with true µ+ (π−) and B is the number not associated with true µ+ (π−), was

also optimised and found to yield the same results as efficiency*purity.

Figure 4.5: Surface plot for optimisation of ECal PID cuts on the µ+ candidate
track. The product of efficiency and purity of the track is shown as a function of cut
values on the two variables considered. The purity is defined as the proportion of µ+

candidates associated with true µ+, and the efficiency as the proportion of true µ+

tracks passing the modified selection that go on to pass the ECal cuts. The maximal
efficiency*purity is 0.64, for a cut accepting tracks of E/L ≤ 0.88 MeV/mm and no
cut on MipPion.
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Figure 4.6: Surface plot for optimisation of ECal PID cuts on the π− candidate
track. The product of efficiency and purity of the track is shown as a function of cut
values on the two variables considered. The purity is defined as the proportion of π−

candidates associated with true π−, and the efficiency as the proportion of true π−

tracks passing the modified selection that go on to pass the ECal cuts. The maximal
efficiency*purity is 0.43, for a cut accepting tracks of MipPion ≥ 1.0 and no cut on
E/L.

The optimisation was performed by a regular grid search (see Section 5.4.1) of cuts on

MipPion and E/L. A total of 2500 pairs of cuts (50 values of each variable) were tested,

and the efficiency*purity was computed for each point in this grid, as shown in Figures

4.5 and 4.6. The pair of cuts yielding the highest efficiency*purity was deemed to be the

optimised PID for use in the selection. Despite the expected complementarity of the two

variables, the optimisation favoured a cut on only one variable in each case: E/L for the
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µ+ candidate, and MipPion for the π− candidate. This suggests that they are in fact too

correlated to provide complementary PID cuts in this case. The resulting ECal PID cuts

are:

• Antimuon ECal PID: If the µ+ candidate track has one ECal segment associated

with it, a cut is applied to the ECal EM energy divided by length (E/L) for that

segment, accepting events for which:

E/L ≤ 8.8 MeV/cm. (4.12)

This cut is waived if zero or multiple ECal segments are associated with the µ+

candidate.

• Pion ECal PID: If the π− candidate track has one ECal segment associated with it,

a cut is applied to the ECal MipPion variable for that segment, accepting events for

which:

MipPion ≥ 1.0. (4.13)

This cut is waived if zero or multiple ECal segments are associated with the µ+

candidate.

4.3.3 Improved selection performance

The combination of the modified selection with the optimised ECal PID is referred to as

the ‘improved selection’. This begins with a pre-selection similar to that of the existing

selection but lacking the leading track cut, comprising the following cuts:

• Event quality

• Total multiplicity

• Track quality and fiducial

• Upstream background veto

• Broken track
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These are followed by the particle identification cuts:

• Antimuon candidate selection loop

• One pion cut

• Antimuon ECal PID

• Pion ECal PID

The performance of this selection was tested using the same MC sample and compared

to that of the existing and modified selections. The overall performance of the three

selections is summarised in Table 4.2, quantified by the significance (S/
√
S +B, where S

is the number of signal events selected and B the number of backgrounds), the ν̄µ CC1π−

purity, and the contamination by non-ν̄µ-CC backgrounds. A slight improvement over

the existing selection and a substantial improvement over the modified selection can be

seen in all cases, indicating that the performance of the ECal PID is sufficient to replace

the leading track cut. Although the overall improvement in performance is small, the

momentum dependence introduced by the leading track cut has been removed. This is

demonstrated in Figure 4.7, which shows that events for which the π− candidate has higher

momentum than the µ+ candidate are now accepted into the selection, and that the ECal

PID cuts remove a large proportion of the resulting backgrounds while preserving most of

the signal in that kinematic region. However, it should be noted that the contamination by

non-ν̄µ-CC backgrounds remains large at 33.8% overall, and accepted events are dominated

by backgrounds in the momentum region that would otherwise be rejected by the leading

track cut.

Selection Significance ν̄µ CC1π− purity Non-ν̄µ-CC backgrounds

Existing 39.5 47.8% 33.2%

Modified 34.7 30.6% 57.1%

Improved 39.6 47.5% 33.8%

Table 4.2: Summary of performance metrics for the existing, modified and improved
selections.
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Figure 4.7: Histograms of the difference between the reconstructed momenta of
the µ+ and π− in the modified (left) and improved (right) selections, i.e. before and
after the application of ECal PID. Signal events (true ν̄µ CC1π−) are shown in blue
and background events (all others) in red. The leading track cut from the existing
selection is shown in black.

Table 4.3 compares the true particle content of the µ+ and π− candidate tracks in

the existing, modified and improved selections. The purity of both tracks is substantially

increased by the application of ECal PID (moving from the modified to the improved

selection). The improved selection also shows similar or better track ID (greater purity and

less contamination) compared to the existing selection in most cases, with the exception of

π+ contamination of the µ+ candidate, which increases from 19.7% to 26.4%, though this is

balanced out by the reduction in proton contamination. The effect of the PID changes on

track purity can be seen in more detail in Figure 4.8, which shows the true particle content

of the µ+ candidate track as a function of its reconstructed momentum (similarly to Figure

4.2 for the existing selection). The peak in the proton contamination at around 1500 MeV/c

is still present but reduced in size; at higher momenta the proton and pion contamination

are greatly reduced. At lower momenta however, especially below 1000 MeV/c, the pion

contamination is increased compared to the existing selection due to the removal of the

leading track cut, resulting in lower µ+ purity in this momentum region.
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Selection
µ+ candidate true particle π− candidate true particle

µ+ π+ p π− µ−

Existing 64.1% 19.7% 13.7% 67.7% 30.1%

Modified 41.6% 43.2% 13.1% 44.1% 54.0%

Improved 63.7% 26.4% 7.9% 70.1% 26.7%

Table 4.3: Summary of the true particle content of the µ+ and π− candidate tracks
in the existing, modified and improved selections.

Figure 4.8: MC predicted purities of the µ+ candidate track in the improved ν̄µ
CC1π− selection, plotted as a function of reconstructed momentum (cf. Figure 4.2).
Only the dominant three particle types (antimuons, positive pions and protons) are
shown.

Figure 4.9 shows the purity and efficiency of the improved selection as a function of the

µ+ candidate reconstructed momentum and angle. The efficiency (defined with respect to

the pre-selection) is largely stable with both variables. The purity exhibits some dependence

on the momentum, being lower around 1500 MeV/c as a result of the proton contamination

peak; and strong dependence on the angle, decreasing as the angle increases. This may be

due to the effect of angle on track length: higher-angle tracks will traverse shorter distances

in the TPC before exiting it, resulting in fewer data points for the dE/dx fit and thus
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poorer PID performance.

Figure 4.9: MC predicted purity and efficiency of the improved ν̄µ CC1π− selection,
plotted as a function of the reconstructed momentum (top) and angle (bottom) of
the µ+ candidate track with respect to the detector Z-axis. The efficiency is defined
here as the number of signal events passing the full selection divided by the number
of signal events passing the pre-selection.

Overall, these results indicate that the developed ECal PID offers slightly better ν̄µ
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CC1π− selection performance compared to the leading track cut of the existing selection,

while avoiding the momentum dependence of the latter. The overall purity of the sample

remains low at 47.5%, with around a third of µ+ and π− candidates being misidentified. To

increase the selection purity without cutting on the event kinematics, further improvements

to the PID are needed. This is indicative of a wider problem for event selections in ND280:

particle identification currently relies on rectangular cuts on a small subset of the available

PID information. A wide variety of PID variables are available from the various ND280

subdetectors, but rectangular cuts typically perform poorly for large numbers of variables, so

the addition of further such cuts is unlikely to yield substantial performance improvements.

To make efficient use of all the available PID information associated with a track, taking

into account the values and correlations of the different variables, a multivariate approach is

needed. The following chapter discusses the principles and methods of multivariate analysis.

Although multivariate PID variables such as the ECal MipPion have been developed,

they each only include information from a single subdetector. A ‘global’ particle ID,

combining variables from each subdetector a track crosses, has yet to be developed for

ND280. The development of such a global PID tool is described in Chapter 6 and its

application to the ν̄µ CC1π− selection in Chapter 7.
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Multivariate analysis techniques

Data analysis for modern high-energy physics experiments presents significant challenges.

Data is the main output of these experiments and represents the result of large investment

of funding and person-hours, so it is essential that we make as good use of it as possible.

Advancements in readout electronics have enabled the recording of data at extremely high

rates, yielding enormous data samples from which event types must be selected and physics

quantities extracted. Modern computing technology enables very fast processing of large

amounts of data, but requires sophisticated analysis methods to do so effectively [94].

Analysis tasks can be grouped into the categories of classification and regression. In

classification, the task is to assign objects or events to one of a number of discrete classes.

Regression is the process of extracting one or more variable parameters; this may involve

fitting a known function, or deriving one empirically from the data. This chapter will

mainly discuss multivariate analysis (MVA) in the context of classification problems, since

they are very important in the HEP context and more relevant to the topic of this thesis.

Nonetheless, in both cases functional approximation is the underlying task and many of

the same multivariate analysis principles apply.

As more common physics processes become well-understood, we seek to analyse rarer

categories of event. These can typically be mimicked by a wide variety of other processes,

meaning a small number of signal events must be separated from a large number of

backgrounds. The conventional approach to event selection has been to apply cuts on

individual variables, but this is rarely optimal, particularly for complicated detectors in

which many different variables can be recorded for a single event. Instead, a multivariate

approach can be far more effective. This chapter describes the challenges in handling such

92
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Figure 5.1: Illustration of a classification problem with multivariate data. Points
belonging to two classes A and B are shown in red and blue respectively, plotted in
two feature variables x1 and x2. Three example choices of a decision boundary to
select class A are shown. A simple cut on x1 as shown in a does not separate the
classes well. A cut on a linear combination of x1 and x2 as shown in b gives better
separation, while a nonlinear boundary as shown in c is required to fully resolve the
two classes.

multivariate data, the principles involved in multivariate analysis, and a number of the

methods that have been developed for this purpose.

5.1 Treatment of multivariate data

Each object or event in a data set is characterised by a number of quantities referred to

as feature variables, which in most cases are correlated. In a multivariate treatment, the

possible values of the feature variables are considered to form a d-dimensional feature space,

in which each object or event is be represented by a vector x = (x1, x2, ..., xd). Feature

variables in a HEP data set may include such quantities as energy deposited in detector

elements, track curvatures, reconstructed kinematic variables, etc.

Objects or events of a particular class should occupy specific contiguous regions in the

feature space. In order to extract information about a particular class, we must be able to

distinguish its members from those of other classes. The objective of a classification analysis

is therefore to construct a function y = f(x) that can form a useful decision boundary; that

is, one that separates objects or events of one class from those of others. The ideal function

y maximises some selection quality criterion. It is rarely feasible to calculate the ideal y
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analytically, so in practice we typically attempt to approximate it by ỹ = f(x,w), where

w are one or more adjustable parameters. Examples of decision boundaries of varying

classifying power are illustrated in Figure 5.1.

Before applying more advanced techniques, data may be preprocessed: the selected

feature variables may be manipulated by applying a transformation to make them more

useful for analysis. The transformation may be a simple scaling of the quantities, or

something more sophisticated such as a decorrelation or the construction of more refined

physics-motivated variables from a combination of the existing ones. These transformations

alone may be sufficient to solve some problems, or may provide a starting point for a more

advanced multivariate analysis.

5.2 Machine learning

In the conventional approach to finding the approximating function ỹ = f(x,w), one

chooses a mathematical model and derives its parameters analytically or numerically using

an optimisation criterion. To be effective, this requires an appropriate choice of model,

whether from a priori knowledge of the function or simply a good guess. Machine learning

offers a powerful alternative, since the form of the approximating function can be inferred

automatically from the data.

‘Machine learning’ refers to the use of algorithms that automatically learn from pro-

vided data in order to make predictions about future data; in other words, to find the

approximating function f(x,w). While multiple approaches to machine learning exist (e.g.

unsupervised learning, reinforcement learning), this text will discuss only the category of

supervised learning. In supervised learning, a training data set is provided that contains

both the feature vectors that form the input of the desired function, and the target outputs

associated with them. In the training phase, the algorithm learns the relationship between

inputs and desired outputs from the training data set, thus generating an approximating

function f and its optimal parameters w. In the testing phase, the learned function is

applied to a testing data set to evaluate its performance. The testing data set should be

statistically independent of the training data set, so as to avoid adaptation to statistical

fluctuations in the training data. This is known as ‘overtraining’: the algorithm ‘learning’

features that do not exist in the true distributions in the feature space will typically lead to

reduced performance.

Obtaining an optimal approximating function entails minimising the information loss
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incurred. This is quantified by a loss function L{y, f(x,w)}, the average of which over

the training data set is known as the risk R(w). By minimising the risk function, a

learning algorithm takes into account mistakes made in predictions and finds the best set

of parameters w. Depending on the specific method and problem, it may also be desirable

for the optimisation to take into account some constraint, which can be added to the risk

function. In this case the algorithm attempts to minimise the resulting cost function:

C(w) = R(w) + λQ(w) (5.1)

where Q(w) is the constraint to be imposed, and λ an adjustable parameter that determines

the strength of the constraint. Constraints are typically used for regularisation, that is,

controlling model complexity which if unchecked will result in overtraining. A machine

learning algorithm attempts to find the global minimum of the risk (or cost) function in

the parameter space, though in practice it is usually only possible to find a local minimum.

Nevertheless, machine learning methods are virtually always superior to conventional ones

when dealing with multivariate data.

5.3 Bayesian statistics

Many multivariate analysis techniques have their underpinnings in the Bayesian framework

of statistical analysis [95]. The Bayesian approach is one of inductive inference: using prior

knowledge and new data to update probabilities. The fundamental principle of Bayesian

statistics is the Bayes theorem:

p(B|A) = p(A|B)p(B)

p(A)
(5.2)

where p(B) is referred to as the prior probability of B, p(B|A) as the posterior probability,

and p(A|B) as the posterior likelihood. First let us take the simple case of a binary

classification problem where data must be categorised as one of two classes, e.g. classifying

events as either signal s or background b. It is natural to define a decision boundary such

that a feature vector x is classified as signal if p(s|x) > p(b|x) (the Bayes rule), which

minimises the probability of misclassification. Thus the Bayes discriminant is defined:

r(x) =
p(s|x)
p(b|x)

=
p(x|s)p(s)
p(x|b)p(b)

(5.3)
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where p(x|s) and p(x|b) are the probabilities of obtaining a feature vector x from a signal

and a background event respectively. The classification problem then becomes a task of

calculating r(x) or any one-to-one function thereof. With r defined thus, the posterior

probability for the signal class can then be expressed

p(s|x) = p(x|s)p(s)
p(x|s)p(s) + p(x|b)p(b)

=
r

1 + r
(5.4)

with the task then being to estimate p(x|s) and p(x|b). Alternatively, with a flexible enough

f(x,w), p(s|x) may be directly approximated. If p(s) and p(b) are not known, but p(s)/p(b)

is, the discriminant function

D(x) =
p(x|s)

p(x|s) + p(x|b)
(5.5)

may be calculated. D(x) can then be used to obtain p(s|x) as follows:

p(s|x) = D(x)

D(x) + (1−D(x))/k
(5.6)

where k = p(s)/p(b).

For classification into an arbitrary number N of classes C, the Bayes posterior probability

for class Ck becomes

p(Ck|x) =
p(x|Ck)p(Ck)∑N
i=1 p(x|Ci)p(Ci)

(5.7)

and the Bayes rule is to assign the object to the class with the highest posterior probability.

5.4 Multivariate analysis methods

Over the past decades, numerous methods have been developed that can make more efficient

use of multivariate data than conventional ones. They vary in complexity and power, and

each has its benefits and drawbacks. This section outlines a number of methods that are

particularly useful and popular in high-energy physics.

5.4.1 Grid searches

Returning to the typical problem of separating signal events from background events, the

conventional approach is to apply a simple cut on each feature variable, selecting events for
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which x1 > z1, x2 > z2, ..., xd > zd where z are the cut values. This corresponds to a set of

hyperplanar decision boundaries in the feature space, oriented parallel to the axes. This

method is known as ‘rectangular cuts’, or the ‘cut-based method’.

While the cut values are often chosen through trial and error based on knowledge of the

underlying physics of the variables, this will not necessarily yield the optimal set of cuts,

especially for larger numbers of variables. Instead, the optimal set of rectangular cut values

can be found by a grid search: a systematic search over the feature space in which many

candidate sets of cuts are sampled to form a grid. The performance of the cuts defined by

each point in the grid is tested to find the best set.

The choice of grid is an important aspect of this approach. Searching over a regular

grid, while thorough, is inefficient: many of the points will lie in regions containing low

numbers of signal or background points, wasting processing time. More problematic still is

the ‘curse of dimensionality’: the number of grid points required Md grows rapidly with

the bin count in each variable M and the number of feature variables d. Fortunately, more

efficient options exist. One example is a random grid search, in which the grid points are

generated from a random distribution. Other methods such as genetic algorithms and

simulated annealing can also be used [96].

Even when fully optimised, rectangular cuts are not a true multivariate method. Each

decision boundary is a hyperplane parallel to the feature space axes, so they cannot take

into account correlations between the feature variables. A set of rectangular cuts can only

be competitive when feature variables exist with excellent separating power, making an

MVA unnecessary. Consequently the following multivariate methods will always perform

at least as well as, and typically better than, a grid search. However, grid searches are

relatively simple and fast to compute, so they can still be useful to compare the separating

power of individual variables, or provide a performance benchmark for more sophisticated

methods.

5.4.2 Linear methods

One of the simplest improvements that can be made upon rectangular cuts is to allow

decision boundaries rotated with respect to the axes, as illustrated by Figure 5.2. To achieve

this, one may use a linear combination of the feature variables:

ỹ(x,w) = w0 + w1x1 + w2x2 + ... =
∑
i

wixi = wx (5.8)
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that is, a model where the parameters w are a set of weights on the feature variables.

Methods for finding the optimal set of weights are known as linear methods.

Figure 5.2: Example of a classification problem where linear methods are highly
applicable [94]. Two classes (shown in red and blue) have bivariate Gaussian densities
in feature variables x1 and x2 shown in (c). Rectangular cuts on the one-dimensional
densities (d and e) would give poor discrimination between the two classes, whereas
a linear discriminant function (f) almost fully separates them. The optimal decision
boundary derived from a cut on the linear discriminant is shown in panel c.
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The quintessential linear method is Fisher’s discriminant [97]. In the Fisher method,

one seeks to to find a set of weights w that ‘pushes’ the signal and background classes

away from each other (maximising the distance between their means), while ‘pulling’ the

events of a particular class close together (minimising their variances). Thus the Fisher

discriminant to be maximised is defined:

F (w) =
(µs − µb)

2

σ2
s + σ2

b

(5.9)

where µs and µb are the means of the signal and background classes along the w direction,

and σs and σb the corresponding variances. This yields a set of weights such that

w = Σ−1(µs − µb) (5.10)

where Σ is the common covariance matrix, and µs and µb the means of the signal and

background classes in the feature variables.

When a variable has the same mean for signal and background in the sample, the Fisher

method cannot discriminate at all, regardless of the shapes of the distributions; this may

however be mitigated by applying an appropriate transformation to the input variables.

Fisher discriminants perform well when the variables are Gaussian distributed with linear

correlations, but are not competitive with more sophisticated methods otherwise [96].

5.4.3 Näıve Bayes classifier

A common approach to finding the Bayes discriminant (Equation 5.5) is to assume that,

within each class, the distributions (densities) of the feature variables are independent, and

therefore that the multivariate densities can be written as products of one-dimensional

densities without loss of information. The Bayes discriminant then becomes

D(x) =
Πisi(xi)

Πisi(xi) + Πibi(xi)
(5.11)

where si(xi) and bi(xi) are the densities of the ith variable in the signal and background

classes respectively. The task then simplifies to finding the univariate densities, which

are generally easy to estimate. This is known as the ‘näıve’ Bayes classifier [98], since in

practice the independence assumption usually does not hold, but classifiers constructed in

this way are often competitive with more sophisticated methods nonetheless. It has been
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found that the performance of a näıve Bayes classifier does not directly depend on how

independent the feature variables are, but rather on how much information is lost as a

result of the assumption.

5.4.4 Kernel-based methods

Multivariate densities can be estimated by counting the number of events in the data sample

in some small regions of the feature space. The most obvious way to do so is to take a

d-dimensional histogram, binning the data in Md bins similarly to the regular grid search;

but like the grid search, this suffers from the curse of dimensionality. The granularity of

the histogram (i.e. the number of bins M) must be chosen such that the structure of the

density is adequately resolved: too few bins and the structure will be washed out, too many

and the estimation will be spiky due to statistical noise. With a suitable number of bins, a

huge amount of data will be needed to fill them sufficiently.

Instead, it is more efficient to take each individual data point as the centre from which to

sample the density in a surrounding small region of the feature space: its ‘neighbourhood’.

The neighbourhood is defined by a kernel function H, describing the contribution of each

other data point to the density estimate for the neighbourhood based on its proximity.

The size of the neighbourhood is controlled by a smoothing parameter h known as the

‘bandwidth’.

A basic example of a kernel function is a hypercube of side h placed with its centre

at the point x: all points that lie within the hypercube contribute equally to the density

estimate at x, and those that lie outside do not contribute. This is still similar to the

d-dimensional histogram described above and shares many of its shortcomings; it is better

to weight the data points based on their proximity to the central point, as this yields

smoother and more robust density estimates. This is achieved by using a smooth functional

form for the kernel, such as a multivariate Gaussian, in which case the bandwidth h is the

Gaussian width.

As with the granularity in the histogram approach, good resolution of the density

depends on a good choice of bandwidth. In standard kernel methods the bandwidth is the

same for all points, which can result in over-smoothing in high-density regions and spiky

estimation in low-density ones. This can be addressed by use of the adaptive kernel method:

scaling the bandwidth based on the local density. Instead of the global width h, a local

width hi = λih is defined, where λi is a scaling factor determined by the number of sample
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points in the locality. Alternatively, the volume of each kernel can be varied such that it

contains some fixed number of points K, and the density at a point x is then

p̃(x) =
K

NV
(5.12)

where V is the volume of the kernel and N is the total number of points in the data sample.

This is known as the K-nearest neighbour method, and is generally the most robust type

of kernel methods.

Kernel-based methods can perform well when the separation between signal and back-

ground has irregular features that cannot be easily approximated by parametric learning

methods, but tend to perform poorly for larger numbers of input variables [96].

5.4.5 Neural networks

Artificial neural networks (ANNs or simply NNs) are a powerful and popular class of

methods inspired by the human brain. An ANN consists of a simulated collection of neurons

(nodes) with connections between them, with each neuron receiving signals (input) and

producing response (output). Inputs may be received either from external stimuli (data)

or the response of other neurons; outputs may be transmitted to other neurons along

connections, or form the overall output of the network. The relationship between the

input received by a node and the output it transmits is governed by some activation (or

transformation) function. An ANN therefore acts as a mapping from a space of input

variables x to a space of output variables y, which is nonlinear provided that at least one

neuron has a nonlinear response to its input.
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Figure 5.3: Diagram of an example MLP neural network with a single layer of
hidden nodes.

Multilayer perceptrons (MLPs), can be considered the basic type of neural network. In

an MLP the nodes are arranged in layers, the first of which receives the external inputs (i.e.

the feature variables) and outputs them to the next layer. The final layer outputs the final

response of the network as a whole. Between these are one or more ‘hidden layers’: layers

that receive information from the preceding layer of nodes, and output to the next. The

activation function g may be modified by some bias or threshold parameters θ, and the

interconnections between nodes may be characterised by weights w; together these form

the parameters of the MLP which are to be optimised in the training phase. The output of

a node k is given by

Ok = g

θk +
∑
j

wjkIj

 (5.13)

where Ij are the inputs to that node and wjk are the interconnection weights on the inputs.

Hence we can express the output of a MLP as a nonlinear function. For example, for a

MLP as shown in Figure 5.3 with input nodes i, one hidden layer of nodes h, and a single
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output node o, the response of the hidden nodes is given by

Oh = g

(
θh +

∑
i

wihxi

)
(5.14)

and hence the output of the network as a whole is

f(x,w) = Oo = g

(
θo +

∑
h

whoOh

)
(5.15)

which can model the posterior probability to arbitrary accuracy.

For a given configuration (number of nodes and hidden layers), the MLP must be

trained in order to optimise the network parameters and thus ‘learn’ the decision function.

A number of algorithms exist for NN training; in each case an error function is minimised

iteratively in order to find the optimal set of parameters, typically with hundreds or

thousands of iterations. After some number of iterations the error will stop decreasing, or

may begin to increase as the NN overfits to the training data: at this point the training

should be stopped.

The choice of configuration, or structure, is an important part of finding the ideal MLP

for a particular problem. The hidden nodes are critical to the modelling of the function,

so the number required for optimal performance depends on the density of the data. If

not enough hidden nodes are provided, the flexibility of the network will be too low and

result in underfitting; too many, and the flexibility will be too high, leading to overfitting.

This can be addressed via structure stabilisation: optimising the size of the network by

starting either with a large or a small network and pruning or adding nodes respectively as

needed. Alternatively, one may employ regularisation: penalising network complexity by

adding a term to the risk function. The network structure must be defined before training

(and therefore performance testing) can be done, so each candidate configuration must be

trained individually, making the overall optimisation of the network potentially a very slow

process. Nonetheless, when completed it will typically result in a powerful classifier.

Various more sophisticated forms of neural network have been developed. A ‘deep’

neural network (DNN) is a NN with several hidden layers and a large number of neurons

in each layer. With a sufficiently large training sample to avoid overfitting, such neural

networks can learn complex and highly non-linear relations [96]. In convolutional neural

networks (CNNs), the input data is treated as an image: instead of connecting every neuron
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of a particular layer with every neuron of the previous layer, parameters are learned only for

a set of small kernels (typically 3×3 or 5×5 squares) at a time, sliding over the input. This

reduces the number of learnable parameters and can substantially outperform conventional

neural network methods. Generally, such advanced NN methods can outperform MLPs,

but will require more work to optimise their configuration for the data.

Rather than attempting to find a single “best” network, the concept of neural networks

can be expanded using Bayesian principles to work with the space of possible NN parameters:

this is the concept of Bayesian neural networks (BNNs) [99]. A probability density can

be assigned to each point w in the NN parameter space (including the meta-parameters

describing the network structure e.g. number of hidden nodes), and used to perform a

weighted average over all points (all possible networks). This probability density is given

by the Bayes theorem:

p(w|T ) = p(T |w)p(w)

p(T )
(5.16)

where T refers to the training data T = {y,x}. The average over the posterior distribution

for a given input vector x then estimates y(x) from the output of all possible networks:

ỹ(x) =

∫
f(x,w)p(w|T )dw (5.17)

where f is the NN output for the input vector x with parameters w. In practice this is

difficult to implement, since the parameter space typically has large dimensionality; the

only feasible way to obtain (or rather estimate) the integral is to sample the density p(w|T )
and approximate using the average:

ỹ(x) ≈ 1

K

K∑
k=1

f(x,wk) (5.18)

where K is the number of points sampled.

BNNs help address the issue of network configuration and overtraining. Since they

average over many network configurations, they generally offer a more robust classifier. By

assigning lower probability densities to larger networks, the need to limit the number of

hidden nodes (and therefore flexibility) is removed, since unnecessarily large networks are

effectively pruned away automatically. The main drawback is computing time: the more

points to be sampled, and therefore the better the estimate of the integral in Equation 5.17,
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the more individual NNs will have to be trained.

5.4.6 Decision trees

The decision tree (DT) is a simple but useful algorithm. A decision tree consists of a

sequence of cuts with more flexibility than the basic rectangular cuts method described

above: the decision flow splits at each cut, forming a node with two branches connecting to

further nodes. The decision flow terminates in ‘leaf’ nodes, which output the classification

decision of the tree. This is illustrated in Figure 5.4. The event selections described in

Chapter 4 are examples of (non-optimal) decision trees.

Figure 5.4: Diagram of a simple decision tree of maximum depth 3. Cut nodes are
shown in yellow. Leaf nodes are shown in blue and orange for signal and background
respectively, representing the output decision of the tree.

To optimise a decision tree, a criterion is defined to quantify the performance of a cut

(generally some measure of the reduction of impurity). At each node, the best performing

cut on each feature variable is found from the training data; of these, the best cut overall

is used to split the data at that node. This is repeated, finding the optimal cut at each

node, until some terminal criterion is reached: this may be when the improvement in purity

becomes negligible, when insufficient events remain, or when the tree depth (the maximum

number of nodes a datapoint may pass through) reaches a predefined maximum. At this
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point, the splitting stops and the node becomes a leaf with an output response based on

the data that have reached it.

This is equivalent to partitioning the feature space into a d-dimensional histogram with

bins of varying size (represented by the leaves), and a response value assigned to each

bin. In other words, they form a piecewise constant approximation to the function being

modelled. As the training data sample becomes arbitrarily large (also the number of bins,

albeit slower than the size of the training sample) and the bin sizes arbitrarily small, the

predictions of a decision tree approach those of the target function.

Decision trees have many advantages, and are very popular methods as a result. They

are simple and transparent to understand and implement; they have high tolerance to

missing variables in the training and testing data; they are insensitive to irrelevant variables;

and they are invariant to one-to-one transformations of variables, making such preprocessing

techniques unnecessary. However, these advantages are offset by several limitations: they

are unstable with respect to the training sample, potentially producing a very different tree

from slightly different data; predictions are constant within each bin and discontinuous at

the boundaries, resulting in suboptimal performance; and as a consequence of recursive

splitting, fewer and fewer training data can be used at each branch, increasing the effect of

statistical fluctuations and therefore the risk of overtraining for trees with large depth.

Fortunately, the shortcomings of the individual decision tree can be overcome with the

use of ensemble learning techniques, which are discussed in the following section.

5.5 Ensemble learning

Many individually weak classifiers can be combined to produce a single much more powerful

and robust classifier. This is known as ‘ensemble learning’. Each individual classifier in the

ensemble is optimised differently: they may receive different subsets or weightings of the

training sample, or have access to different subsets of the feature variables. The output of

the ensemble is obtained by a (weighted) average of the outputs of the individual classifiers:

ỹ(x) =

M∑
m=1

αmym(x,wm) (5.19)

where ym and wm are the output and parameters of the mth classifier, and αm a set

of weighting coefficients for the classifiers. The coefficients αm depend on the ensemble
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learning algorithm(s) used.

While in principle any classifier can be used as the building block for ensemble methods,

decision trees are the most common choice due to their simplicity and flexibility. An

ensemble of decision trees is known as a ‘forest’.

5.5.1 Boosting

A natural concept for iteratively training ensemble classifiers is the idea of learning from

mistakes: the more poorly previous attempts performed in a particular region, the more

subsequent attempts should focus on that region. This is applied in a technique known

as ‘boosting’: when optimising each individual classifier, the events in the training sample

are assigned weights based on the performance of the previous classifier(s). The worse the

performance, the higher the weight; thus the training focuses more and more with each

iteration on the events that previous iterations failed to classify.

A boosted ensemble of decision trees is known as a ‘boosted decision tree’ (BDT),

a far more robust and powerful classifier than an individual DT. Since boosting works

well for weak individual classifiers, the maximum depth of each tree can be kept small

with minimal loss of overall performance. This ensures that a good amount of training

data will be used at each split, thus reducing the effect of statistical fluctuations on tree

structure (improving stability). Limiting tree depth to two or three has been found to

almost completely eliminate overtraining [96].

A number of different boosting algorithms exist. In the most popular, known as

AdaBoost (adaptive boost) [100], a boost weight α is defined for each tree:

α = ln
1− rerr
rerr

(5.20)

where rerr is the misclassification rate of the tree. After training each tree, the event weights

are updated: the pre-existing weight for each event misclassified by that tree is multiplied

by β, and the weights of the entire training sample are renormalised to keep their sum

constant. This yields a new set of event weights which are used in training the next tree.

When all trees have been trained, the boost weights β determine the weight on the output

of their corresponding trees, such that the overall classification is given by:

ỹ(x) =
1

N

N∑
i

αiyi(x) (5.21)
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where yi and αi are the output and boost weight of tree i, and N is the total number of

trees in the BDT. The performance of AdaBoost can be further enhanced by enforcing

‘slow learning’: reducing the learning rate of the BDT and thus allowing a larger number of

boost steps, by modifying the boost weight as α → αl where 0 < l < 1.

The underlying loss function in AdaBoost is exponential loss, L(y, f) = e−F (x)y, which

lacks robustness in the presence of outliers or mislabelled data points. This can be mitigated

by modifying the loss function to, for example,

L(y, f) = ln
(
1 + e−2f(x)y

)
(5.22)

which is the loss function used in the TMVA GradientBoost algorithm [96]. However,

obtaining the corresponding boosting algorithm analytically is non-trivial, so instead a

steepest-descent approach is used for the loss function minimisation. Like AdaBoost,

GradientBoost works best with weak classifiers (i.e. trees of depth 2–4) and thus avoids

overtraining, and its learning rate can be reduced to potentially improve accuracy.

Boosted decision trees are sometimes referred to as the best “out of the box” classifiers

[96]: like neural networks, they are capable of learning complex relationships, but require

comparatively little tuning to obtain good classification results. The NN architecture has

many adjustable parameters, and needs to be adapted to specific problems in order to obtain

full efficacy and robustness. BDTs on the other hand have fewer adjustable parameters,

and generally perform well provided that a sensible configuration is chosen [101]. Neural

networks are in principle more powerful than BDTs, and with sufficient tuning work (and

recent advancements such as deep learning) they may eventually yield the superior classifier,

as demonstrated in [102]. However the example of [102] also shows that the improvement

in performance may be small, and can be limited by external factors such as how the data

has been processed. Thus, for practical purposes, these gains may not justify the greater

investment of development time. It is for these reasons that the multivariate particle ID

development described in Chapter 6 used a BDT rather than a neural network.

5.5.2 Bagging

In ‘bagging’ (bootstrap aggregating), each classifier in an ensemble is trained on a randomly

selected subset (bootstrap sample) of the training data. The ensemble classifier output is

then the simple average of the outputs of the individual classifiers. While this does not

emphasise improving the classification performance directly, it has the effect of smearing
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over statistical representations of the training data. This stabilises the response with respect

to statistical fluctuations.

Bagging can easily be used in combination with other ensemble learning techniques.

For example, the GradientBoost algorithm can benefit from the addition of a bagging-like

resampling, in which each tree is grown only from a random subsample of the training data;

this is known as ‘stochastic gradient boosting’ [96].

5.5.3 Random forests

Rather than selecting the datapoints at random when training an individual classifier, one

may instead select a random subset of the feature variables: for decision trees this technique

is known as ‘random forests’. In a random forest, the feature variables are randomly sampled

at each DT node when choosing the ‘best’ cut. Like bagging, this improves robustness

with respect to statistical fluctuations in the training sample [103], and can be added to

boosting techniques such as GradientBoost.

5.6 Performance metrics

To evaluate the performance of a classifier and thereby optimise its parameters, it is

necessary to choose a performance metric. A performance metric is a figure of merit for the

classification output, which is to be maximised to obtain the optimal set of parameters. A

great many performance metrics have been defined for classification tasks; these can measure

very different things, and consequently evaluating performance with different choices of

metric can yield very different results [104]. The suitability of a particular performance

metric when developing a classifier depends on the requirements of the intended application,

and there is not necessarily an objectively ‘best’ choice of metric for any given problem.

Rather, performance metrics are often constructed intuitively to balance multiple desirable

features.

Datasets in HEP typically contain large numbers of events of various different types,

so a classification algorithm is needed in order to select events of a particular signal

process and reject its backgrounds. When developing such an algorithm, it is usual to

test its performance using Monte Carlo simulated data. For a given sample size, this

provides predictions of the total number of events that will be selected Nsel. From the truth

information, this can be broken down into signal and background such that Nsel = Ssel+Bsel,
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where Ssel and Bsel are the numbers of signal and background events selected respectively.

The performance metric for this algorithm will typically be a function of these predictions,

constructed in such a way as to minimise the expected uncertainty of the intended physics

measurement.

One of the most important aspects of an event sample is its purity, that is, the fraction

of the selected events that originate from the signal process:

P =
Ssel

Nsel
(5.23)

which quantifies the degree to which the sample is contaminated by backgrounds. The more

background events selected (and therefore treated as signal in analysis of the sample), the

greater the uncertainty of the analysis result, so a high purity is usually desirable. However,

increasing the purity requires applying more stringent cuts on the classifier, which is often

subject to diminishing returns: at the high end of the purity scale, more and more signal

events will be rejected for smaller and smaller purity gains. This may be acceptable if

signal events are abundant in the dataset, in which case the purity may be suitable as

the (primary) performance metric. But otherwise, we are throwing away large numbers

of potentially useful signal events, resulting in a small sample and consequently a large

statistical uncertainty.

For this reason, we usually also consider the efficiency, that is, the fraction of the total

available signal events that are actually selected:

E =
Ssel

Stot
(5.24)

where Stot is the total number of signal events in the MC dataset. The efficiency on its own

is a poor performance metric (no cut at all yields 100% efficiency) but can be combined

with other quantities. To balance the different sources of uncertainty, a compromise is

needed between accepting more signal (increasing efficiency) and rejecting more backgrounds

(increasing purity). This is often done by simply multiplying the efficiency and purity

to form a combined quantity EP , which is often used as a performance metric in HEP

analyses and usually yields good results. However, this metric has its shortcomings in some

situations, since it gives equal weight to the constituent quantities regardless of the size of

the resulting sample. When the number of recorded events is small, and particularly when

the numbers of signal and background events are similar, maximising EP may select very
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few events. This will cause a large statistical uncertainty on any measurement made using

the sample.

A more statistically-motivated performance metric can be derived by attempting to

maximise the significance of the signal, S/∆N , where ∆N is the uncertainty on the number

of selected events. We can estimate ∆N by treating the signal and background as Poisson

processes. Assuming that the systematic uncertainty on the number of background events

is small compared to the statistical uncertainty, by Poisson statistics the uncertainties on S

and B are then ∆S =
√
S and ∆B =

√
B respectively, and this leads to

∆N =
√
(∆S)2 + (∆B)2 =

√
(
√
S)2 + (

√
B)2 =

√
S +B. (5.25)

The significance then becomes S/
√
S +B, so we can use the performance metric

Z =
Ssel√

Ssel +Bsel
(5.26)

or, when B ≫ S, a simplified version S/
√
B. Z estimates the statistical significance with

which we expect to establish the existence of the signal process, given the model used to

predict Ssel. Maximising the significance is desirable when attempting to establish discovery

of a process, so these are commonly-used performance metrics in HEP [105].

The decision of which performance metric to use in a particular context is ultimately

subjective, but the properties of the data set and the needs of the experiment should

be taken into account. Maximising EP can yield good results when N is large and it

is not necessary to maximise discovery significance (e.g. when the goal is to measure a

rate parameter rather than establish discovery), whereas Z is generally a better choice

for discovery searches and/or when N is small. The ND280 data contains only small

numbers of candidate ν̄µ CC1π− events, resulting in small sample sizes and therefore large

statistical uncertainties, so Z was chosen as the overall performance metric for the selection

development described in Chapters 4 and 7.

5.7 MVA implementation

Since most of the above methods are complex but broadly applicable, the typical user need

not implement them from scratch; instead it is common practice to make use of one of

many available software packages. These packages provide tools for the training, testing
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and application of MVA methods, allowing the user to define the input and configuration

while automating the required algorithms. Some are dedicated to a particular method, such

as the variants of the neural network. Others are more general and offer many different

methods, often with the option to test multiple methods simultaneously and compare their

performance.

For the analysis described in this thesis, the TMVA package [96] was an obvious choice

due to its flexibility and integration with the ROOT framework on which the Highland

analysis software is built. TMVA was used for the training and application of the BDT

described in Chapter 6, using the GradientBoost BDT algorithm in multiclassification

mode. Since the version of TMVA (ROOT 5.34.34) currently compatible with Highland

offers only limited performance evaluation for multiclassification analyses, more rigorous

testing was conducted by applying the BDT to a sample of testing events in Highland.

5.7.1 The TMVA package

The TMVA package [96] is a general multivariate analysis package provided as part of the

ROOT framework [69], written in C++. It offers object-oriented implementations of a large

variety of methods, utilities such as parameter fitting and transformations, and a system

of user interfaces for evaluation of input variables and MVA output. Training, testing,

performance evaluation, and application can all be automated via the TMVA tools.

The methods implemented in TMVA include (but are not limited to): rectangular cut

optimisation, linear and nonlinear discriminants, kernel methods, ANNs, and BDTs. All

TMVA methods fall under the category of supervised learning, and thus require both input

variables and desired outputs for each event. All methods can be used for binary classification,

and in some cases classification into more than two output classes (‘multiclassification’)

and/or regression. The implementations are abstract and object-oriented, allowing the

user to define input variables and event classes and adjust method configuration options as

needed. TMVA analyses are separated into two phases: training and application. In the

training phase, the MVA methods chosen by the user are trained, tested and evaluated.

Following this, in the application phase, the trained methods are applied to data to perform

the required classification (or regression) task.
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Figure 5.5: Flow (top to bottom) of the typical TMVA training (left) and application
(right) sequences [96].

Interaction between the user and the multivariate methods for the training phase is

managed by a Factory class. This provides member functions to specify the data sets for

training and testing, to register the input variables to be considered (alongside any desired

transformations/preprocessing), and to ‘book’ the desired MVA methods. The Factory

object performs preanalysis of the data sets, computing useful information regarding the

input variables such as their correlation coefficients and a preliminary ranking according

to their 1D separation power. The requested preprocessing is applied, and the booked

MVA methods are trained, tested and evaluated. ‘Weight’ files are created containing

the optimised parameters for each method, and various graphical representations of the

evaluation information are produced for the user’s perusal. Using this information (and/or

any further testing the user may wish to perform by applying the methods themselves)

the method configuration options can be tuned; that is, the training can be re-run with

different options in order to improve performance.

For the application phase, a Reader class is provided. This reads and interprets the

weight files of the trained methods. Taking the input variables from an event, it can then
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compute the MVA response values. This enables the user to apply the chosen MVA method

to the data set to be analysed. Alternatively, standalone response classes can be generated

for integration into any C++ application without dependencies on ROOT or the weight

files.

5.7.2 BDT configuration

The BDT implementation offered by TMVA was used for the PID development described

in Chapter 6. Since there are multiple particle types to identify, it made sense to use a

multiclassification BDT, for which GradientBoost was the only algorithm available. For

BDT training a separation criterion must be defined; that is, the performance metric to

be maximised at each tree node. For multiclassification GradientBoost, the only option

available was the Gini index p · (1 − p) where p is the purity obtained by the node cut.

Other parameters for BDT training include:

• nCuts: the number of grid points used to find the optimal cut in node splitting. A

high value provides high granularity.

• MaxDepth: the maximum allowed depth of each decision tree. This determines the

extent to which each individual decision tree can adapt to the training data. Thus

greater values of MaxDepth can be expected to yield greater performance, but setting

this too high may lead to overtraining. For this reason, the TMVA documentation

[96] recommends values between 2 and 4.

• MinNodeSize: the minimum percentage of training events required in a leaf node.

This is implemented to avoid overtraining.

• NTrees: the number of trees in the forest. More trees enable more learning, but

increase training and evaluation time.

• Shrinkage: reduction in the algorithm learning rate. Smaller values can improve the

accuracy of the prediction in some settings, but require more trees [96].

• BaggedSampleFraction: the size of the bagged event sample relative to the full training

sample (when using bagging). Bagging does not aim to improve the performance

of the BDT directly, but rather its stability with respect to statistical fluctuations.

TMVA recommends values between 0.5 and 0.8.
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• UseNVars: determines the size of the subset of input variables used at each node split

(when using random forests). This may be a fixed number or the mean of a Poisson

distribution for random number generation. Similarly to bagging, random forests

aims to improve stability with respect to statistical fluctuations.

Different values of MaxDepth, NTrees, Shrinkage, BaggedSampleFraction and UseNVars

were tested in order to maximise performance. Other parameters were not tuned: nCuts

was kept fixed at 2000 in order to provide adequate granularity (provided that the value

chosen is high enough to adequately separate the training data in each input variable, this

parameter is unlikely to benefit from tuning) and MinNodeSize was kept fixed at 5% to

avoid overfitting. The BDT parameter tuning process is described in Section 6.5.1.

5.7.3 Highland integration

Developing the BDT required interfacing the tools provided by TMVA with the Highland

analysis framework used by ND280. The input events for the TMVA training phase had

to be extracted from the output of a Highland analysis package processing Monte Carlo

simulated data. Following training, testing and evaluation within TMVA, the trained BDTs

had to be applied within Highland in order to test performance with various event samples

for a number of specific particle identification tasks.

The training dataset was generated from Monte Carlo simulations of particles traversing

the ND280 detector, which were processed using the ND280 reconstruction algorithms and

then a Highland analysis package. The Highland package applied a sequence of pre-selection

cuts to select appropriate reconstructed tracks, and saved various event and track variables

to file. These included the reconstructed variables identified as candidates for the MVA

input variables, and the true particle identities of the tracks which defined the desired PID

outputs. With the pre-selection applied and the required variables saved, the output was

then used as input to a TMVA training macro.

The trained BDTs were applied within the Highland analysis package by instantiating a

Reader object and reading in the TMVA-produced weight files. This enabled the Highland

package to compute the BDT response as part of the event selection and analysis, and use

it to apply cuts to the testing data. The performance of these cuts for particle ID tasks

was used to evaluate the various BDT configurations tested. The details of this work are

described in the following chapter.



Chapter 6

Particle ID development with

boosted decision trees

As demonstrated in Chapter 4, the ND280 ν̄µ CC1π− event selection suffers from low purity,

due in large part to the poor performance of its track PID in distinguishing muons, pions

and protons. Although the addition of further rectangular cuts has been shown to help

mitigate this, the improvement in performance is limited. This is part of a wider issue for

ND280 event selections: as T2K physics analyses begin to consider rarer processes (such as

ν̄µ CC1π−) for which statistics are low, selection efficiency becomes more of an issue, so

PID performance must be as high as possible. Unfortunately, the conventional approach

does not yield sufficiently high-performing PID, so a move towards multivariate methods is

needed.

A large number of complementary PID variables are derived from the ND280 subdetector

data, and may have correlations with other quantities such as the particle kinematics and

each other, but the conventional approach to track identification has been to apply cuts on

a small number of individual PID variables. This cut-based method cannot efficiently take

into account all of these variables and their correlations, whereas a multivariate approach

does. Additionally, the conventional PID cuts are not consistent: different variables and

cut values have been developed for different individual selections. This motivates the

development of a single ‘global’ PID for tracks in ND280, combining information from all

subdetectors such that it can be used consistently to identify tracks in any event selection.

This chapter presents the development of such a PID using multivariate methods.

116
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6.1 Charged particle ID in ND280 event selections

Reconstruction of charged particle tracks is one of the core functions of ND280, and identify-

ing them is an essential part of any event selection. Charged particles traversing the detector

deposit ionisation energy in its sensitive volumes, which is recorded and used to reconstruct

a track. The spatial and temporal distribution of this energy depends on the particle species

and the subdetector, and this forms the basis of PID methods. The commonly-occurring

charged particle species that need to be distinguished are muons/antimuons (µ±), charged

pions (π±), electrons/positrons (e±), and protons (p).

Tracks selected for analysis generally originate from a vertex in one of the FGDs. The

particle may be absorbed or decay before leaving the FGD (this is known as an ‘FGD-iso’

track), in which case PID can only be performed via FGD information. Otherwise the

track will go on to traverse other subdetectors. Only the TPCs can measure a particle’s

momentum, so a reconstructed TPC segment is often a requirement for non-FGD-iso tracks

in event selections. As described in Section 4.2.1, the rate of energy deposit recorded in

the TPC is compared to that expected for the µ, π, p and e hypotheses to construct the

TPC PID variables. Similarly, for FGD-iso tracks, FGD PID variables are constructed

by comparing the energy deposit and track length to that expected for the µ, π and p

hypotheses as described in Section 4.2.1.

6.1.1 ECal PID

Particle identification in the ECal is based on the shape of the charge cluster, which

differs according to whether or not a shower is produced and which interaction (strong or

electromagnetic) dominates in the shower. Three topologies are defined: MIP-like tracks

(referred to simply as ‘tracks’), electromagnetic (EM) showers, and hadronic showers [92].
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Figure 6.1: Event display 2D side view of a MIP-like track produced in the DS-Ecal
by a muon [92]. The green line shows the true path of the muon. The coloured boxes
represent the hits recorded in each bar, with the colour indicating the measured
charge.

Tracks are produced by particles that behave as MIPs: they do not shower, and deposit

energy along their path according to a Landau distribution. This results in a very narrow

track with a relatively small spread in charge deposits. Low-energy MIPs may stop in the

ECal, but tracks will otherwise tend to span the full depth of the module. An example of a

MIP-like track reconstructed in the ECal is shown in Figure 6.1.
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Figure 6.2: Event display 2D views of an EM shower produced in the DS-Ecal by a
medium energy electron, with track information (left) and without (right) [92]. The
red line shows the true path of the electron. The coloured points represent the hits
generated by the simulation, and the coloured boxes the hits recorded in each bar,
with the colour indicating the hit charge.

Electromagnetic showers are produced by electrons/positrons and photons. Although

the granularity of the ECal does not provide good resolution of the characteristic cone

shape of a typical EM shower, they can be identified by a charge cluster with a large width

compared to length and high variation in hit charges. EM showers tend to be centred on

the inner part of the ECal since the particle will usually shower immediately upon contact

with the ECal lead layers. An example of an EM shower cluster reconstructed in the ECal

is shown in Figure 6.2.
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Figure 6.3: Event display 2D views of hadronic showers produced in the DS-Ecal
[92]. The shower on the left converts soon after entering the detector, while the
shower on the right passes through much of the ECal before converting. The coloured
points represent the hits generated by the simulation, and the coloured boxes the
hits recorded in each bar, with the colour indicating the hit charge.

Compared to tracks, hadronic showers are very similar to EM showers. They too are

typified by a charge cluster with large width compared to length and high variation in hit

charges, but do exhibit some differences by which they may be distinguishable. Hadronic

showers tend to have a more spherical shape than EM showers, although this difference

is subtle at the ECal resolution. Additionally, hadronic showering particles (particularly

charged pions) may pass through multiple lead layers before they shower, resulting in a

short MIP-like section and a cluster centred further from the inner edge. Examples of

hadronic shower clusters reconstructed in the ECal are shown in Figure 6.3.
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Figure 6.4: Distributions of the low-level ECal variables for particles entering the
DsECal in the T2K neutrino beam, simulated by particle gun MC reweighted to the
kinematic distribution predicted by the full neutrino event MC [93].

The existing high-level PID variables developed for the ECal (MipEm, EmHip, MipPion)

are designed to distinguish between MIP-like, EM-shower-like, hadronic-shower-like and

showering pion-like charge distributions. They are derived from the low-level variables, which

quantify different aspects of the charge distribution and are designed to be dimensionless

and insensitive to the overall charge of the cluster [93]. The low-level variables are as

follows:

• Circularity: a measure of the transverse spread of the charge distribution relative to

its length. It is calculated from a combination of results from 2D principle component

analysis (PCA) of hits in both 2D views, weighted by their measured charge. The

circularity in each view i is a function of the 2nd principal component, and the

combined circularity variable is the product of the circularities in the x and y views.
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This distinguishes between track-like (long and thin) clusters which peak near 1, and

shower-like (short and wide) clusters that produce lower values.

• FrontBackRatio: compares charge deposited at either end of a track. The cluster is

divided along its principal axis into four quarters of equal length. The FrontBackRatio

is defined as the ratio of the total charge in the back and front quarters. This

distinguishes between MIP-like tracks which deposit charge uniformly with distance

and thus peak around 1, stopping tracks which deposit more charge in a Bragg peak

at the end of the track and thus produce values greater than one, and EM showers

which deposit more energy towards the front end and thus produce values less than

one.

• TruncatedMaxRatio: compares per-layer charge deposits, exploiting the differences

in the longitudinal charge profiles of showering and MIP-like particles. The hits are

ordered by charge and the top 20% and bottom 20% are removed to truncate the

distribution and thus mitigate sensitivity to noise and very high hit charges. Then the

charge deposited in each layer of the ECal is calculated, and the TruncatedMaxRatio

is defined as the ratio of the lowest and highest per-layer charge deposits. This

distinguishes between MIP-like tracks which have more uniform per-layer charge

deposit and thus produce values closer to 1, and showering and stopping particles

which have greater variation in hit charge and thus produce values closer to zero.

• QRMS: derived from the variance of the hit charge distribution to provide distinction

between MIPs which deposit charge uniformly, and other track types which do not.

QRMS is defined

qRMS =
1

q̄

√√√√ N∑
i

(qi − q̄)2

N
(6.1)

where qi is the charge of hit i, q̄ the mean hit charge, and N the number of hits within

the cluster. Showering particles tend to have larger QRMS than non-showering ones.

Figure 6.4 shows distributions of the low-level ECal variables. The high-level ECal

variables are constructed as log-likelihood ratios (LLRs) derived from the low-level variables,

that is,
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ln |λ(x)| = ln |P (x|H0)| − ln |P (x|H1) (6.2)

where λ(x) is the likelihood ratio, x are the low-level variables, H0 and H1 the hypotheses

considered, and P the probability density functions (PDFs). The PDFs are factorised by

assuming the input variables are independent:

P (x|H0) =
N∏
i

P (xi|H0). (6.3)

These PDFs are estimated by histograms generated from particle gun MC for four

hypotheses: MIPs modelled with muons, EM showers modelled with electrons, showering

pions modelled with stopping charged pions, and highly ionising particles (HIPs) modelled

with stopping protons. The high-level ECal variables are LLRs comparing three pairs of

these hypotheses:

• MipEm: MIP hypothesis vs EM shower hypothesis.

• MipPion: MIP hypothesis vs showering pion hypothesis.

• EmHip: EM shower hypothesis vs HIP hypothesis.

Distributions of these variables for a particle gun sample can be found in Section 6.4.4

below. The LLRs are the main form of ECal PID currently used in ND280 event selections (if

any), but in some cases a comparison of the energy measured in the ECal and the momentum

measured in the TPC is used. The calculation of the total EM energy of a cluster (EEM )

assumes an EM shower. When this assumption is correct, the relationship between EEM

and preco should be approximately one-to-one. In the case that the assumption is wrong

(i.e. for MIP-like tracks or hadronic showers) this relationship will not hold, so comparing

EEM and preco can provide additional information as to whether the ECal segment is EM

shower-like or otherwise. This is done by cutting on their ratio, EEM/preco, also referred to

simply as E/p (shown in Figure 6.19c below).

6.1.2 Current usage

PID implementations differ between event selections. As outlined in Section 4.2.1, the

ν̄µ charged-current selection takes the highest-momentum positive track as the antimuon

candidate and applies PID in the form of an optimised cut on the LLRs (Lµ > 0.1,
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LMIP > 0.9 if p < 500 MeV/c) from the TPC immediately downstream of the vertex.

Secondary tracks are then identified as π, p or e by comparing the corresponding TPC

likelihoods as described in Section 4.2.1. The νµ CC selection PID is similar, but uses a

different optimised cut (Lµ > 0.05, LMIP > 0.8 if p < 500 MeV/c) to identify the muon

candidate, since different rates of signal and background events are expected between the

νµ and ν̄µ cases. As discussed in Section 4.2.2, this fully TPC-dependent approach fails to

distinguish µ± from π±, and also µ+ from protons at certain momenta.

The νe/ν̄e selections, on the other hand, use a much more complicated cut flow for PID.

These selections have been developed with much more stringent background rejection, since

νe events are much rarer than νµ and have very large backgrounds by comparison. Rather

than rely entirely on information from a single TPC, PID is applied to e± candidates

using information from TPC2, TPC3 and the ECal. Additionally, the cut flow splits

depending on the presence or absence of ECal information: tracks with an ECal segment

have ECal cuts applied, and those without an ECal segment are subject to tighter cuts on

the TPC pulls. It also splits based on the momentum, in order to take into account the

momentum-dependent performance of certain variables. The νe/ν̄e selection PID cut flow

for primary electron/positron candidates is as follows:

• Initial TPC2 electron pull cut: accept if −2.0 < δe < 2.5.

• TPC2 pull cuts (tracks without ECal segments): accept if −1.0 < δe < 2.0,

reject if −2.5 < δµ < 2.5 or −2.5 < δπ < 2.5.

• TPC2 pull cut (tracks with ECal segments and < 36 TPC hits): reject if

−2.5 < δπ < 2.5.

• ECal PID cuts (tracks with ECal segments): split according to momentum.

If p > 1000 MeV/c, then accept if the ECal EM energy E > 1100 MeV. If p ≤ 1000

MeV/c, then accept if ECal MipEm > 0.

• TPC3 pull cut: differs between the νe and ν̄e selections. For νe, reject if −2.5 <

δµ < 2.5. For ν̄e, if 600 < p < 1650 MeV/c and the track has no ECal segment, then

accept if −3.0 < δe < 3.0.

• ECal proton rejection (ν̄e selection only): only applied if p > 600 MeV/c and

the track has an ECal segment. Reject if ECal EmHip > 0. If p < 1650 MeV/c, then

reject if E/p < 0.65. If p ≥ 1650 MeV/c, then reject if E/p < 0.15.
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This PID process makes use of information from multiple subdetectors, and adapts to

the momentum of the track and the presence or absence of an ECal segment. However,

it is still a simple decision tree and so would likely be outperformed by a MVA approach

that could fully take into account the correlations between kinematic and subdetector PID

variables. The existing νe and ν̄e selections have been found to suffer from relatively low

efficiency (∼ 36% for both). Although the main background is photons, which do not

produce TPC tracks, these selections also suffer from proton and pion backgrounds and

require stringent muon rejection [106]. Improvements to e± identification could increase the

signal efficiency and/or reduce p, π± and µ± contamination, improving the performance of

these selections.

6.2 Towards a global PID with boosted decision trees

Improving PID performance in ND280 requires the development of new tools to make more

efficient use of the available information. The goal of the work presented in this chapter

was to develop a PID tool fulfilling three main criteria:

• Global: Information from each subdetector crossed by the track should be considered

in the PID decision-making.

• Multivariate: The PID should use multivariate analysis methods to make efficient

use of the many variables available.

• Versatile: The PID tool should be generally applicable to tracks in ND280, rather

than designed for one event selection in particular, and use methods that can be

easily extended to include new input variables.

As described in Chapter 5, multivariate classification methods enable the user to combine

many input variables into a single powerful classifier. To fulfil the ‘global’ criterion, a

number of candidate input variables were identified, drawing from each subdetector that a

forward-going FGD1-originated track may cross: the FGDs, TPCs, ECals, and SMRDs.

The variables considered include existing PID variables from the TPCs and ECals, as

well as other quantities known to have some separating power such as the ECal E/L.

Since the behaviour of many of the considered variables depends on the kinematics of the

track, kinematic variables were also included as inputs. The candidate input variables are

discussed in Section 6.4.
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Of the many multivariate methods available, boosted decision trees were chosen in order

to guarantee a good baseline of classification performance. BDTs generally work well ‘out

of the box’, offering high classification power with little tuning required. Although a deep

neural network might yield greater performance, the tuning required to optimise it would

likely be substantially more time-consuming than the relatively minimal tuning required by

a BDT. Considering the project’s time constraints, a BDT was judged to be a safer choice

than a NN. Conventional ND280 PID processes are themselves decision trees, so a BDT

can be seen as a natural evolution (via ensemble learning) of the existing methods. The use

of a BDT also contributes to the ‘versatility’ of the tool: new input variables can easily be

added to train a new version of the BDT. Given their characteristic stability, a BDT can be

expected to immediately exploit the performance improvements offered by new variables.

To fulfil the ‘versatility’ requirement that the tool be generally applicable, the desired

output must be considered. ND280 PID needs to distinguish between four main species of

charged particles: µ±, π±, e±, p. This can be achieved by using a multiclassification BDT:

one that classifies objects into multiple categories (as opposed to binary classification, which

considers only signal and background). The multiclassification BDT algorithm offered by

TMVA achieves this by outputting a value between 1 and 0 for each category, representing

the estimated probability that the object is a true member of that category. The outputs

must therefore sum to 1, and the classification decision of the BDT is represented by the

category with the largest output value. The categories chosen for the PID tool were µ-like,

π-like, p-like and e-like, since the candidate input variables should have minimal sensitivity

to the charge of the track.

6.3 Training and testing samples

Training and testing the BDT required a sample of reconstructed tracks. Tracks recon-

structed from Monte Carlo simulations are the natural choice for this purpose, since their

true particle identities are known. Although these tracks could have been taken from the

ND280 neutrino interaction event MC samples, the decision to include kinematic variables

among the inputs would introduce model bias, since the kinematics of neutrino interaction

products depend strongly on the interaction model. To avoid this, ‘particle gun’ MC was

used instead to generate dedicated training and testing samples for the BDT, with flat

prior distributions of momentum and angle. A particle gun (PG) generator enables the

generation of events containing individual simulated particles with user-defined identity,
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starting position, direction and energy. Thus the distributions of energy and direction, as

well as the relative numbers of each particle type, can be chosen so as to avoid any bias

from neutrino interaction models or specific event selection use cases.

Subsamples of each positive particle type (µ+, π+, e+, p) were produced, each comprising

5× 105 particle gun events. Each subsample was further divided in half to yield statistically

independent training and testing samples each comprising 2.5 × 105 events per particle

type. The particle gun was configured to generate simulated events with the following

distributions:

• Starting position: uniformly distributed throughout FGD1.

• Momentum: uniformly distributed between limits of 150 MeV/c and 2000 MeV/c.

• Direction: uniformly distributed in a cone of opening angle 65◦.

The limits of these distributions were chosen to contain a wide range of possible FGD1-

originating tracks, while avoiding devoting processing time to kinematic regions where

low statistics are expected. Since the simulated distributions are uniform, the lower the

expected statistics in a kinematic region, the more inefficient it is to simulate tracks in that

region.

The simulated data generated from the particle gun events was processed using the

ND280 software, with the same method used for full neutrino event MC. The propagation

of each particle and the detector response were modelled with Geant4. The reconstruction

algorithms were applied, and the resulting reconstructed tracks analysed in Highland

to apply pre-selection cuts and extract the variables to be inputted into the BDT. The

procedure used to select tracks suitable for BDT training and testing is as follows. First,

for consistency with the usual ND280 analysis pre-selection, the following cuts (as defined

in Section 4.2) are applied:

• Event quality

• Total multiplicity

• Track quality and fiducial

• Upstream background veto

• Broken track
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Events for which the true particle type associated with the reconstructed track is not

the same as the original generated by the particle gun are cut from the training sample.

This is done to avoid training on events where a secondary particle of different type to the

original is produced in the FGD and reconstructed as the main track. Additionally, cuts are

applied to the reconstructed momentum and angle of the tracks to remove those close to the

bounds of the particle gun distributions. Due to detector resolution and other factors, there

is a degree of ‘smearing’ between the true and reconstructed values of momentum (Figure

6.5) and angle. For this reason I define a region of validity for the particle gun sample in

each of these values, in order to avoid training or application of the BDT on tracks with

kinematics in the smeared regions. The validity region is defined by a momentum range

of 200 < preco < 1500 MeV/c and angle θreco < 60◦. Tracks outside the validity region are

cut from the training and testing samples. The distributions of true and reconstructed

momentum for each subsample following the kinematic cuts are shown in Figure 6.6.

Figure 6.5: Distributions of reconstructed (a) and true (b) momentum in the
original particle gun training sample for each of the true particle types following the
pre-selection cuts. The kinematic cuts are not applied. The smearing effect can be
seen at both ends of the reconstructed momentum spectra.
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Figure 6.6: Distributions of reconstructed (a) and true (b) momentum in the
original particle gun training sample for each of the true particle types following
the pre-selection and kinematic cuts. Note the drop-off in proton statistics at low
momenta.

Particle gun events passing these cuts are considered valid for input into the BDT. Half

of the overall sample is designated as the training sample to be used for developing the

BDT in TMVA: this is split in half again between the training and TMVA’s built-in testing

functions. The other half of the overall sample is used as the particle gun testing sample to

evaluate the BDT’s performance outside of TMVA.

6.3.1 Event weighting and momentum sensitivity

For the BDT training, an overall weighting is applied to the four particle type subsamples

to equalise their total sizes. Additionally, it was found that the identical particle gun

momentum distributions do not yield similarly identical distributions in reconstructed

momentum, as can be seen in Figure 6.6. In particular, there is a drop-off in proton

statistics at low momenta (around 500 MeV/c and below), most likely due to detector

acceptance (lower-momentum protons are more likely to be absorbed before reaching the

TPC); and the momenta of positrons are skewed heavily towards lower values, possibly due to

brehmsstrahlung energy loss which is not accounted for in the momentum reconstruction. If

the BDT has access to these momentum distributions its outputs will be directly momentum-

dependent, which is undesirable: the momentum should be used only to better interpret

the values of other variables. To avoid this, the events are weighted so as to make each

subsample’s momentum distribution appear uniform and identical in the training. These
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weights are calculated from histograms of the reconstructed momenta for each subsample:

Wpreco(i) =
1

N(i)
(6.4)

where Wpreco(i) is the weight for events in reconstructed momentum bin i, and N(i) is the

total number of events in that bin.

A further problem arises as a result of this weighting, however. As Figure 6.6 shows,

the proton subsample exhibits a sharp drop-off in statistics at low momenta (around 500

MeV/c and below); this is due to the detector threshold. In this region, the lower the

momentum of a proton, the less likely it is to escape the FGD and produce a track. Under

the weighting scheme in Equation 6.4 this causes very large weights to be given to proton

track events in the low-momentum region, which will result in large statistical fluctuations

from these events. To avoid this, additional low-momentum proton tracks were generated

and added to the training sample in order to ‘pad out’ the low momentum region, resulting

in the distributions shown in Figure 6.7. Even with these additional events, proton statistics

were still very small at the lowest momenta, so a cut was applied to exclude protons below

300 MeV/c from the training sample. Due to the detector threshold we would not expect

to identify tracks below 300 MeV/c as protons anyway, so the lack of proton training

data in this region should not be an issue. This is the only significant difference between

the subsample momentum distributions in the weighted training sample. The angular

distributions are not weighted, since they are judged to be sufficiently similar between

subsamples (see Figure 6.8). The total numbers of training and testing events for each

subsample following the above cuts and ‘padding’ are listed in Table 6.1.
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Subsample Training events Testing events

µ+ 68976 69031

π+ 56005 58424

p 63759 57848

e+ 67418 67350

Table 6.1: Numbers of events selected for the training and testing samples for each
particle type.

Figure 6.7: Distributions of reconstructed (a) and true (b) momentum in the
‘padded’ particle gun training sample for each of the true particle types following the
pre-selection and kinematic cuts.

6.4 Candidate BDT input variables

A number of candidate input variables were considered based on their known or expected

discriminating power for particle ID, drawing from each of the relevant subdetectors:

the FGDs, TPCs, ECal and SMRD. These variables are extracted from the particle gun

MC Highland analysis files following the application of the above cuts. The rationale for

including each candidate input variable is given in this section, along with their distributions

in each of the training subsamples as ‘seen’ by the BDT (i.e. with the above cuts and

weightings applied). In some cases, multiple representations of the same information are

available, such as the TPC energy loss which may be represented by the dE/dx truncated

mean, pulls, or likelihoods. In these cases, each representation was considered for the BDT

input, and the relative performance yielded by the different representations is explored in
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Section 6.5.2.

In the case of variables from FGD2, TPC3 and the ECal, a reconstructed segment

in these subdetectors is not required by the selection. When such a segment does not

exist no value exists for the related variables, but the BDT must be provided with a value

nonetheless. This is handled by assigning a default value, chosen in each case to be outside

the normal range for the variable. Additionally, some variables may be assigned very

large positive or negative values by the reconstruction in a small number of cases. This is

undesirable since the BDT uses a set number of bins to determine split points; such large

outlier values will effectively reduce the granularity of the variable distributions as seen by

the BDT. For this reason, a limited range is chosen for each variable, with outliers placed

in overflow/underflow bins. The default and overflow/underflow values are not shown in

the histograms presented in this section.

6.4.1 Kinematic variables

Many PID variables are affected by the kinematics of the particle: correlations may exist

between a PID variable and one or more kinematic variables, and these correlations may

differ between different particle types. One can therefore expect the BDT to perform better

if it can take the relevant kinematic variables into account in its decision-making. For this

reason, the reconstructed momentum measured in the TPCs (preco) and the starting angle

of the track with respect to the detector Z-axis (θreco) were considered as candidate input

variables. As described in Section 6.3.1, the training sample was constructed with flat

priors in momentum and angle; the four subsamples were produced and weighted to have

approximately identical distributions in preco and θreco. The BDT therefore should not cut

on the prior distributions of these variables, only on the correlations between them and the

other inputs.
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Figure 6.8: Distributions of the reconstructed momentum (a) and angle (b) with
respect to the detector Z-axis in the Monte Carlo training sample for each of the
true particle types. The distributions are shown weighted by the reconstructed
momentum. The number of bins used here for the momentum is a multiple of that
used for the weighting histogram, so the distributions appear perfectly flat, and the
µ+ and π+ momentum distributions are identical to that of e± (and are therefore
obscured). The proton momentum distribution appears different due to the higher
threshold.

The momentum of a particle is crucial to interpreting its rate of energy loss, so variables

derived from the dE/dx (the truncated means in the TPC, and the E/L in the FGDs and

ECals) should be more useful to the BDT in conjunction with preco. Additionally, the

separating power of a variable can depend on the momentum: for example, the dE/dx

curves for different particles overlap in certain momentum regions, so dE/dx-based PID

will perform poorly for distinguishing those particles in those regions. With access to preco,

the BDT could prioritise other input variables (e.g. ECal information) in those regions.

The reconstructed momentum is therefore expected to be a very useful input variable for

the BDT.
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Figure 6.9: Diagram of ND280 YZ side view with examples of charged particle
trajectories. The subdetector sensitive volumes are shown: FGDs (orange), TPCs
(blue), ECal (green), and SMRD (yellow). The solenoid material between the ECal
and SMRD is shown in grey. Regions of the detector upstream of TPC1 are not
shown. Four example particles are shown, illustrating different directions of travel
and stopping behaviour. As required by the pre-selection, all originate in FGD1 and
enter TPC2. Particle A is forward-going, having large momentum and small angle
with respect to the detector Z-axis, and so passes through FGD2, TPC3 and the
DS-ECal. Particle B is also forward-going but stops in FGD2. Particle C has large
angle, and thus moves upward through the barrel-ECal, traversing the magnet and
SMRD. Particle D is also high-angle but stops in the solenoid.

As illustrated in Figure 6.9, the direction in which the particle travels will also have

an effect on certain variables; this can be simply represented by the reconstructed angle

θreco with respect to the ND280 Z-axis, as measured at the beginning of the track. Only

forward-going tracks (small θreco) can reach FGD2, and only high-angle tracks (large θreco)

can reach the SMRD; thus θreco can indicate whether a segment in each of these subdetectors

should be expected based on the particle’s expected range, which differs according to particle

type and the material traversed (for example, µ± are the most likely to traverse the dense

material of the ND280 magnet and reach the SMRD). The weighted distributions of preco

and θreco in the training sample are shown in Figure 6.8.
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6.4.2 TPC particle ID

The TPC energy loss PID variables described in Section 4.2.1 were included among the

candidate inputs. These offer good separation between MIPs, protons and electrons; but as

discussed above, they cannot distinguish between muons and pions and have momentum-

dependent performance. The pulls and likelihoods contain a built-in comparison to the

expected energy loss for each particle type, but the BDT may be able to infer these

relationships from those in the MC provided that it has access to the momentum, so each

representation is included. These variables are extracted from the TPC2 segment and,

if one exists, the TPC3 segment as well. From TPC2, the dE/dx truncated mean and

the derived pulls and likelihoods are all included as candidate inputs. From TPC3, the

truncated mean and the pulls are included (since the likelihoods are not calculated for

TPC3 from an FGD1 vertex). As part of the selection, a track quality cut (requiring 19

or more reconstructed nodes) is applied to the TPC2 segment, but no such cut is applied

for the TPC3 segment, so the information quality of the TPC3 variables may be poor in

some cases. To test the effect of this, two variants of the TPC3 variables were considered:

with and without the track quality check applied. For the versions with the quality check

applied, if the segment has 18 nodes or fewer, the reconstructed value is replaced with the

default value. These ‘good quality’ versions of the TPC3 variables are denoted by ‘GQ’.

The distributions of the TPC2 and TPC3 PID variables in the weighted training sample

are shown in Figures 6.10–6.14.

Additionally, the number of TPC segments associated with the track, here referred to as

‘nTPCs’, is equivalent to the presence/absence of a TPC3 segment (since a TPC2 segment

is guaranteed) and shows some separation between particle types, so was also included.

The distributions of nTPCs are shown in Figure 6.15.
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Figure 6.10: Distributions of the dE/dx truncated mean recorded by TPC2 (a) and
TPC3 (b, c) in the Monte Carlo training sample for each of the true particle types.
The distributions are shown weighted by reconstructed momentum and subsample
size. In the case of TPC3, the version with the data quality check is shown (c) in
addition to the version without (b).
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Figure 6.11: Distributions of the TPC2 PID pulls in the Monte Carlo training
sample for each of the true particle types. The muon-like (a), charged pion-like (b),
proton-like (c) and electron-like (d) pulls are shown. The distributions are shown
weighted by reconstructed momentum and subsample size.
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Figure 6.12: Distributions of the TPC2 likelihood variables in the Monte Carlo
training sample for each of the true particle types. The muon-like (a), charged pion-
like (b), proton-like (c) and electron-like (d) likelihoods are shown. The distributions
are shown weighted by reconstructed momentum and subsample size.
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Figure 6.13: Distributions of the TPC3 PID pulls (without the track quality check)
in the Monte Carlo training sample for each of the true particle types. The muon-like
(a), charged pion-like (b), proton-like (c) and electron-like (d) pulls are shown. The
distributions are shown weighted by reconstructed momentum and subsample size.
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Figure 6.14: Distributions of the TPC3 PID pulls (with the track quality check) in
the Monte Carlo training sample for each of the true particle types. The muon-like
(a), charged pion-like (b), proton-like (c) and electron-like (d) pulls are shown. The
distributions are shown weighted by reconstructed momentum and subsample size.
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Figure 6.15: Distributions of the number of TPC segments in the Monte Carlo
training sample for each of the true particle types. The distributions are shown
weighted by reconstructed momentum and subsample size.

6.4.3 FGD particle ID

The FGD PID variables described in Section 4.2.1 rely on the expected range of particles,

and are therefore only applicable for FGD-contained tracks. As such they are not suitable

inputs for this tool. However, the FGDs energy loss information can still be incorporated

by considering the total energy and length of an FGD segment.

The ND280 reconstruction software clusters FGD hits from the two 2D views into

a 3D track. Each hit contains the charge deposit measured by scintillation light, which

is corrected for WLS fibre attenuation and Birks saturation [107], and converted to an

energy deposit in MeV. The total energy deposit E of an FGD segment is the sum of

the energy deposited in each hit. The length L of the FGD segment is calculated as the

length of the straight line between the final and initial 3D positions, which are obtained

by fitting a straight line for each 2D projection [90]. Thus a simple PID variable E/L can

be constructed, representing the mean energy loss along the track. Per the Bethe-Bloch

equation, in a given medium this quantity depends only on the mass and momentum of the

particle. Hence, if the BDT also has access to the reconstructed momentum of the track,

E/L may be a useful input variable. In addition, a segment in FGD2 is not guaranteed,

and its presence or absence (represented by the default value for the FGD2 E/L) may

provide some useful information e.g. about the range of the particle.
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Figure 6.16: Distributions of the FGD1 (a) and FGD2 (b) energy/length variables in
the Monte Carlo training sample for each of the true particle types. The distributions
are shown weighted by reconstructed momentum and subsample size.

The values of E/L measured in FGD1 and FGD2 were considered as BDT input variable

candidates. The distributions of these variables in the training sample are displayed in

Figure 6.16. Little separation is seen between the particle types, but as previously argued,

their main PID potential is in combination with the reconstructed momentum.

6.4.4 ECal particle ID

As discussed in Section 6.1.1, ECal PID variables are computed from the shape of the

charge cluster, and are therefore independent of the TPC and FGD variables which measure

energy loss per unit length. This makes ECal PID variables highly complementary to those

of the TPCs and FGDs, and therefore valuable inputs to the BDT (provided that an ECal

segment exists).

Both the high-level and the low-level ECal variables were considered as candidate

input variables for the BDT. Although the high-level variables have been shown to provide

good distinction in the contexts they are designed for, the low-level variables may contain

additional information that can be extracted by the BDT but is lost in the construction of

the LLRs. The distributions of the low-level variables in the training sample are shown in

Figure 6.17, and the high-level variables in Figure 6.18.
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Figure 6.17: Distributions of the ECal low-level PID variables in the Monte Carlo
training sample for each of the true particle types. The low-level variables comprise
the Circularity (a), FrontBackRatio (b), TruncatedMaxRatio (c), and QRMS (d).
The distributions are shown weighted by reconstructed momentum and subsample
size.
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Figure 6.18: Distributions of the ECal high-level PID variables in the Monte Carlo
training sample for each of the true particle types. The high-level variables comprise
MipEm (a), EmHip (b), and EmHip (c) The distributions are shown weighted by
reconstructed momentum and subsample size.

As described in Section 6.1.1 above, the relationship between EEM and preco offers PID

information, for which they are usually used in the form E/p. With preco already included,

EEM was also considered as a candidate input for the BDT. Additionally, the EM energy of

the cluster divided by its length (E/L, referred to in this chapter as ‘EEM/L’ to distinguish

it from the FGD E/L) is a good discriminator between MIP-like and showering particles

(as demonstrated in Section 4.3.2), and is therefore included as a candidate input variable.

The distributions of EEM and EEM/L for tracks in the training sample are shown in Figure

6.19.
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Figure 6.19: Distributions of the ECal EEM (a) and EEM/L (b) variables in the
Monte Carlo training sample for each of the true particle types. The distributions
of EEM/preco (c) are also shown to illustrate the separating power of EEM when
considered in conjunction with the reconstructed momentum. The distributions are
shown weighted by reconstructed momentum and subsample size.

6.4.5 SMRD particle ID

Although the SMRD is too coarse to provide high-level PID information, it can still help

identify tracks via the simple presence or absence of a reconstructed SMRD segment. The

SMRD is located within the UA1 magnet yoke, so to reach it, particles originating in the

FGDs must penetrate a large amount of dense material in the yoke and the magnet itself.

Due to their high penetrating power, muons are much more likely to reach the SMRD

than the other particle species considered in this PID development. Hence any track with

a reconstructed SMRD segment is likely to be a muon. For this reason, the number of

SMRD segments associated with the track (‘nSMRDs’) was considered as a candidate input
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variable for the BDT. The distributions of nSMRDs in the training sample are shown in

Figure 6.20.

Figure 6.20: Distributions of the number of SMRD segments in the Monte Carlo
training sample for each of the true particle types. The distributions are shown
weighted by reconstructed momentum and subsample size.

6.5 Performance analysis and optimisation

Having identified the methods and inputs to be used for the development of the PID tool,

the next step was to optimise the choice of BDT parameters and input variables. This

was achieved by training different configurations of the BDT on the training sample, and

applying each version to the tracks in the training sample to test the performance. The

space of possible configurations (values for each of the BDT parameters and combinations

of input variables) is very large, and training and testing each BDT required non-negligible

computing time, so testing a wide variety of them was not feasible. Instead the optimisation

was performed sequentially: a number of decision points (choice of parameter value, choice

of variable set, etc) were identified and tested in turn. At each decision point, the optimal

choice was identified and used in all following training/testing.

The performance of the BDT is here assessed by computing its efficiency when selecting

each particle type; that is, the fraction of tracks of each true particle type identified by

the BDT as each particle type. For each track in the testing sample, the BDT outputs are

compared and the largest taken as the PID decision for the track (this will be referred to
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as the BDT ‘preference’). The efficiencies for correctly identifying each particle type in this

way (µ+ as µ+, π+ as π+ etc) are computed, yielding four primary performance metrics

by which each BDT configuration can be judged. The nine ‘background’ efficiencies for

incorrectly identifying each particle type as each other particle type (µ+ as π+, e+ as p etc)

are also computed and considered, in order to better interpret the four ‘signal’ efficiencies.

A perfect PID would have signal efficiencies of 1, and background efficiencies of 0.

6.5.1 BDT training parameters

The BDT parameters MaxDepth, NTrees, Shrinkage, BaggedSampleFraction and UseNVars

were considered for tuning. These parameters are defined in Section 5.7.2. As a starting

point, each of these parameters was set equal or close to its default value. MaxDepth was

set to 3 and NTrees to 1000. Shrinkage was set to 1.0 (i.e. no reduction in learning rate)

and the bagging and random forests functionalities were turned off.

When tuning the BDT parameters, a ‘default’ set of input variables was chosen. This

comprised all candidate input variables, except those that are different representations

of the same information (e.g. the TPC dE/dx and pulls), in which cases the lowest-level

representations were chosen as defaults. The default input variables were as follows:

• preco

• θreco

• FGD1 E/L

• FGD2 E/L

• TPC2 dE/dx

• TPC3 dE/dx

• nTPCs

• ECal Circularity

• ECal FrontBackRatio

• ECal TruncatedMaxRatio

• ECal QRMS

• ECal EEM

• ECal EEM/L

• nSMRDs

For MaxDepth, values from 2 to 5 were tested, in the expectation that the effects of

overtraining (if any) would be seen in diminishing returns above 4. The results of this

testing are shown in Figure 6.21: the µ, π and p efficiencies appear relatively stable, while

the e efficiency increases with MaxDepth (though even here the overall change is small).

The increase in e efficiency between 4 and 5 is smaller than between 3 and 4, which may



148 Gabriel Charles Penn

indicate the expected diminishing returns due to overtraining. On this basis, a value of

MaxDepth = 4 was chosen for maximum e efficiency while keeping within the recommended

bounds.

Figure 6.21: Particle identification efficiencies of BDT configurations with different
values of the MaxDepth parameter: the maximum allowed depth of each decision
tree. The overall efficiencies are shown on the left-hand plot. The right-hand plot
shows the differences in efficiency relative to MaxDepth = 3.

The number of trees in the forest NTrees determines the overall learning capacity of the

BDT (as well as the computing time required for training). Thus we can expect an increase

in performance with NTrees until the BDT is extracting most of the useful information

from the input, beyond which additional trees become increasingly redundant leading to

diminishing returns. A range of NTrees values between 500 and 2500 were tested; it was

found that above 2500 the training time became prohibitively long for the purposes of

further tuning. The results of this testing are shown in Figure 6.22. Again, the greatest

variation between configurations is seen in the e efficiency, which increases with NTrees at

low values. Diminishing returns set in between 1000 and 1500, with little gain in e efficiency

and a growing loss in µ efficiency above 2000. On this basis, a value of NTrees = 1500 was

chosen.
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Figure 6.22: Particle identification efficiencies of BDT configurations with different
values of the NTrees parameter: the number of decision trees in the forest. The
overall efficiencies are shown on the left-hand plot. The right-hand plot shows the
differences in efficiency relative to NTrees = 1000.

Values of Shrinkage between 0.1 and 1.0 were tested, the results of which are shown

in Figure 6.23. Reducing the learning rate resulted in a sharp drop-off in the e efficiency

and negligible improvements in the others, so the original value of Shrinkage = 1.0 was

maintained.

Figure 6.23: Particle identification efficiencies of BDT configurations with different
values of the Shrinkage parameter: the learning rate of the BDT. The overall
efficiencies are shown on the left-hand plot. The right-hand plot shows the differences
in efficiency relative to Shrinkage = 1.0 (i.e. no shrinkage of learning rate).

Values of BaggedSampleFraction between 0.1 and 0.9 were tested; TMVA recommends
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values between 0.5 and 0.8. The results are shown in Figure 6.24. The performance for

each particle type appears largely unaffected by bagging, with the exception of the lowest

value BaggedSampleFraction = 0.1 which causes a drop in all four efficiencies. On this

basis, bagging was not used.

Figure 6.24: Particle identification efficiencies of BDT configurations with different
values of the BaggedSampleFraction parameter: the size of the subsample used in
bagging relative to that of the full training sample. The overall efficiencies are shown
on the left-hand plot. The right-hand plot shows the differences in efficiency relative
to the configuration without bagging enabled.

Values of NVars (set as the mean of a Poisson distribution) between 4 and 12 were

tested, from the total of 14 default input variables. The results are shown in Figure 6.25.

The efficiency for each particle type appears largely unaffected by NVars. Since it appears

to have negligible effect on performance, and to avoid adding unnecessary complexity, the

random forests method was not used. Together with the results for bagging, this may

indicate that the effect of statistical fluctuations in the training sample is minimal.
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Figure 6.25: Particle identification efficiencies of BDT configurations with different
values of the UseNVars parameter: the mean of a Poisson distribution used to
determine the number of variables considered at each node splitting in the ‘random
forests’ method. The overall efficiencies are shown on the left-hand plot. The right-
hand plot shows the differences in efficiency relative to the configuration without
random forests enabled.

6.5.2 Comparing representations

To represent certain PID information, multiple options exist among the candidate input

variables, for example the TPC dE/dx truncated mean itself and the pulls and likelihoods

which are calculated by comparing it to predictions for the four particle hypotheses. Where

these multiple options exist, including more than one representation of the same information

will most likely be inefficient, so a single representation should be chosen. However it is

not obvious which representations will be optimal: the more mature ‘higher-level’ variables

may present the PID information in a form more accessible to the BDT for decision-making

by incorporating predictions (or similar), or alternatively, information lost in the process

of constructing the higher-level variables may still be accessible to the BDT in the lower-

level variables. Additionally, different representations often comprise different numbers of

variables, so if the same information can be ‘packaged’ more efficiently in a smaller number

of variables this will be favourable. These options should therefore be tested in order to

find the optimal choice in each case. This was determined similarly to the BDT parameter

choice studies: BDT configurations were trained with each choice of representation, and

evaluated using the particle identification efficiencies defined in the previous section. In

each case the representation judged to offer the best overall performance was selected.
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In TPC2, the choice is between the dE/dx truncated mean, the pulls, and the likelihoods.

The truncated mean is a single variable rather than a correlated set of four, but the pulls

and likelihoods also contain a comparison to the expected energy loss; with only the dE/dx,

the BDT will have to learn the energy loss distributions for the four particle types from

the training data. The efficiencies for these variable choices are shown in Figure 6.26. The

pulls and likelihoods both outperform the truncated mean; of these two, the likelihoods

offer slightly better e efficiency, but this is outweighed by the greater efficiencies in π and p

efficiency offered by the pulls. On this basis, the pulls were chosen as the representation for

the TPC2 energy loss information.
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Figure 6.26: Particle identification efficiencies of BDT configurations with different
representations of the TPC2 energy loss information: the dE/dx truncated mean
itself, the pulls, and the likelihoods. The overall efficiencies are shown on the left-
hand plots. The right-hand plots show the differences in efficiency relative to the
configuration with the truncated mean. The top and bottom plots show the ‘signal’
and ‘background’ efficiencies respectively.

In TPC3, the choice is between the dE/dx truncated mean and the pulls; addition-

ally, versions of each of these with a data quality check were considered, since including

information from poor quality TPC3 tracks (i.e. those with a small number of nodes) may

impact the performance of the BDT. The data quality check requires at least 19 nodes in

the track; otherwise a default value is assigned. The efficiencies for these variable choices

are shown in Figure 6.27. The data quality check makes a substantial difference to the e

efficiency, showing an improvement of almost 30% between the two configurations with the

truncated mean. This brings the e efficiency, which was previously relatively poor, up to
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a level similar to the µ and p efficiencies. Comparing the ‘good quality’ versions of the

truncated mean and the pulls, there is little difference in performance: the truncated mean

was chosen for its slightly better µ and p efficiencies, and for the sake of simplicity (a single

input variable instead of four).

Figure 6.27: Particle identification efficiencies of BDT configurations with different
representations of the TPC3 energy loss information: the dE/dx truncated mean,
the pulls, and versions of these with the data quality check imposed (denoted ‘GQ’).
The overall efficiencies are shown on the left-hand plots. The right-hand plots show
the differences in efficiency relative to the configuration with the truncated mean and
no data quality check. The top and bottom plots show the ‘signal’ and ‘background’
efficiencies respectively.

In the ECal, the choice is between the low-level variables (Circularity, FrontBackRatio,

TruncatedMaxRatio, QRMS) and the high-level LLRs derived from them (MipEm, MipPion,

EmHip). The high-level variables are constructed to compare four specific ECal track types
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(MIP-like, HIP-like, EM shower, pion shower), but only include three of the 12 possible

comparisons, so some information may be lost. The efficiencies for these variable choices

are shown in Figure 6.28. The main difference between the two representations is the e

efficiency, which is almost 40% lower when the high-level variables are used. This makes

the low-level variables the clear choice.

Figure 6.28: Particle identification efficiencies of BDT configurations with different
representations of the ECal charge distribution information: the low-level variables
and the high-level LLRs. The overall efficiencies are shown on the left-hand plots. The
right-hand plots show the differences in efficiency relative to the configuration with
the low-level variables. The top and bottom plots show the ‘signal’ and ‘background’
efficiencies respectively.
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6.5.3 Variable removal

Following the decisions described in the previous section, the candidate input variables

were:

• preco

• θreco

• FGD1 E/L

• FGD2 E/L

• TPC2 muon pull

• TPC2 charged pion pull

• TPC2 proton pull

• TPC2 electron pull

• TPC3 dE/dx (GQ)

• nTPCs

• ECal EEM

• ECal EEM/L

• ECal Circularity

• ECal FrontBackRatio

• ECal TruncatedMaxRatio

• ECal QRMS

• nSMRDs

To test the importance of each of these variables to the performance of the BDT, a

series of configurations were tested, each with a single input variable removed. These are

referred to as ‘N-1 studies’. By comparing the performance of the BDT with and without

each variable, variables that contribute little to (or indeed reduce) the BDT performance

can be identified and removed from the input. Only the kinematic variables preco and θreco

were not considered for removal, due to their expected importance for interpreting other

variables.
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Figure 6.29: Particle identification efficiencies of BDT configurations with each
candidate input variable removed. The X-axis labels denote the variable removed
in each configuration. The Y-axis shows the difference in efficiencies relative to the
configuration with all variables present.

The results of the N-1 studies are shown in Figure 6.29. The more positive the difference

in efficiency for each particle type, the more useful the variable can be said to be; conversely,

the more negative the difference, the more of a detriment the variable is to the BDT’s ability

to correctly identify that particle type. Almost all variables show a positive contribution

to two or more of the four efficiencies, with minimal loss in the others. One exception is

the TPC charged pion pull, for which the improvement in π efficiency is roughly balanced

by the loss in e efficiency. Another is the TPC3 dE/dx truncated mean, which yields

relatively large gains of about 2% in the π and p efficiencies, but also losses of about 1%

in µ and e. Although the differences are small overall (all less than 4%, and many below

1%) it is interesting to note the various contributions of the different variables. Some make
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significant contributions to a single efficiency: for example, nTPCs makes a 3% difference to

the π efficiency while having negligible effect on the others, and similarly the TPC2 electron

pull for the e efficiency. Others offer smaller contributions but in multiple efficiencies,

such as the ECal E/L which adds modestly to each of the four particle types. The overall

highest-performing individual variable is the FGD1 E/L, which adds at least 2% to each

of the π, p and e efficiencies, with negligible change in µ; while the lowest-performing

variable is the TPC2 pion pull, for which the increase in π efficiency is offset by the loss in

e efficiency. On the basis of these efficiency changes, the TPC2 pion pull was removed from

the input variables. All other variables were kept, including the TPC3 dE/dx: the increase

it offers in π and p efficiency was deemed to outweigh the losses in µ and e.
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Figure 6.30: Particle identification efficiencies of BDT configurations with variables
from each subdetector removed. The kinematic variables preco and thetareco were
kept in all configurations. The X-axis labels denote the subdetector removed in
each configuration. The overall efficiencies are shown on the left-hand plots. The
right-hand plots show the differences in efficiency relative to the configuration with
all variables included. The top and bottom plots show the ‘signal’ and ‘background’
efficiencies respectively.

Additionally, to demonstrate the importance of each subdetector to the BDT perfor-

mance, a similar study was performed by removing all variables from each subdetector in

turn. The results of this are shown in Figure 6.30. From this it can be seen that the greatest

overall contribution comes from the TPC, impacting more on the π, p and e efficiencies

when removed than any other subdetector. Conversely, the greatest loss in the µ efficiency

comes from removing the ECal. The smallest overall contributions come from the FGDs

and SMRD, which is unsurprising as they each contribute only one or two variables and



160 Gabriel Charles Penn

have inferior resolution compared to the TPCs and ECal. Nevertheless, each subdetector

makes a significant positive contribution to the BDT performance, which demonstrates the

value of a global PID.

6.6 Final configuration performance

After the above tuning process, the final BDT configuration uses the following parameters:

• MaxDepth = 4

• NTrees = 1500

• Shrinkage = 1.0

• nCuts = 2000

• MinNodeSize = 5%

and the following input variables:

• preco

• θreco

• FGD1 E/L

• FGD2 E/L

• TPC2 muon pull

• TPC2 proton pull

• TPC2 electron pull

• TPC3 dE/dx (GQ)

• nTPCs

• ECal EEM

• ECal EEM/L

• ECal Circularity

• ECal FrontBackRatio

• ECal TruncatedMaxRatio

• ECal QRMS

• nSMRDs
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Figure 6.31: Correlation matrices of the input variables used for the final BDT
configuration, in each of the training subsamples (clockwise from top left): muon-like
(µ+), charged pion-like (π+), electron-like (e+), proton-like (p). These were generated
using only tracks with ECal segments, since otherwise the default values cause the
correlation coefficients between ECal variables to appear inflated (that is, for tracks
without an ECal segment, all ECal variables will have their default values).

The correlations between the input variables are displayed in Figure 6.31. A lot of

variation can be seen in the correlation coefficients between different pairs of variables, as

well as in the different subsamples, and these complex correlations support the use of a
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Rank Variable Importance

1 TPC2 electron pull 0.09737

2 TPC3 dE/dx 0.09116

3 TPC2 muon pull 0.09101

4 preco 0.09024

5 θreco 0.08089

6 TPC2 proton pull 0.07659

7 FGD1 E/L 0.07350

8 ECal EM energy 0.05713

9 ECal E/L 0.05265

10 ECal TruncatedMaxRatio 0.05251

11 ECal QRMS 0.05136

12 ECal Circularity 0.04880

13 FGD2 E/L 0.04731

14 ECal FrontBackRatio 0.04508

15 nTPCs 0.02563

16 nSMRDs 0.01877

Table 6.2: Importance ranking of the final BDT configuration input variables as
computed by TMVA.

BDT as opposed to lower-level MVA methods. Although some pairs of variables have high

correlation coefficients (>∼ 80%) in certain subsamples, none have greater than 65% in all

four. This, along with the N-1 study, confirms that each variable contributes some amount

of information that is independent of that contributed by other variables. An estimate of the

‘importance’ of each input variable is computed by TMVA during the training phase: this

is derived by counting how often each variable is selected for node splitting, and weighting

each split by the separation gain-squared it achieves and the number of events in the node

[96]. The importance values for the input variables are displayed in Table 6.2. Although

some variation can be seen, most of the importance values are similar and all lie within an

order of magnitude of each other, indicating that the input variables are all contributing to

a relatively similar extent to the overall functionality of the BDT.
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Figure 6.32: Distributions of the muon-like (a), charged pion-like (b), proton-like
(c) and electron-like (d) outputs of the final BDT configuration for tracks in the
testing sample. The y-axis is shown with a logarithmic scale for clarity.

The distributions of the BDT outputs for tracks in the testing sample are displayed

in Figure 6.32. As expected, each particle type is most likely to have values near 1 for its

corresponding BDT output (and 0 for the others), with the probability decreasing as the

output moves further from 1 (0). The exceptions are the muon- and pion-like outputs for

π+, which each have a broader distribution of values with a second peak at the opposite

end of the spectrum; this is due to the large proportion of pions that exhibit MIP-like

behaviour and are thus interpreted by the BDT as appearing partly or fully muon-like. The

BDT outputs can be used for PID in multiple ways: in the preference method, all four

are compared, selecting the hypothesis corresponding to the largest as the PID decision.

Alternatively, cuts can be applied to the individual outputs. The advantage of the preference
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is that it can be applied to multiple tracks consistently and unambiguously: each track will

be assigned one and only one PID identity. This makes it suitable for PID of secondary

tracks. On the other hand, when a particular particle type is sought for selection purposes

(i.e. primary PID), a cut on a single output can be more useful e.g. to obtain greater purity.

In this case, the cut can be optimised to maximise a figure of merit in the usual way.

Figure 6.33: Particle identification ‘signal’ efficiencies of the final BDT configuration
preference cuts as a function of the reconstructed momentum.

The performance of the final configuration is here assessed using both the preference and

single-output cut methods. The performance with the preference is assessed by computing

the particle identification efficiencies as a function of the reconstructed momentum preco.

These efficiencies are calculated by binning the PG testing sample events by the reconstructed

momentum, before and after application of the BDT PID cut in question, and calculating

the PID efficiencies for each of the momentum bins. This helps reveal the extent to which

the BDT decision-making is influenced by preco, and enables a meaningful comparison to

the existing PID methods while still using the particle gun testing sample. The ‘signal’

and ‘background’ efficiencies (i.e. misidentification rates) for the BDT preference cuts

are shown in Figures 6.33 and 6.34 respectively. Overall, the signal efficiencies appear
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high: all but the π+ efficiency remain above 80% across the momentum spectrum, and

the π+ efficiency remains between 50% and 70% (since a large proportion of charged pions

behave near-identically to muons, this can still be considered good performance). The main

confusions appear to be between muons and pions, which is to be expected since both can

exhibit very similar MIP-like behaviour; and between protons and positrons, particularly at

higher momenta. This too is to be expected since their TPC dE/dx curves cross at around

1 GeV/c, and both produce showers in the ECal which can be difficult to distinguish.

Figure 6.34: Particle identification ‘background’ efficiencies of the final BDT
configuration preference cuts as a function of the reconstructed momentum. The
efficiencies are grouped for each plot by the intended selection: µ-like (a), π-like (b),
p-like (c), and e-like (d).

Although the signal efficiencies do not show much momentum-dependence, most of the

background efficiencies (Figure 6.34) do: in several cases, such as π+ being misidentified as

e+, the misidentification rate is much higher at the very lowest momentum bin. Conversely,

the misidentification rate for π+ as protons increases with momentum. Others peak in

particular momentum ranges, such as e+ being misidentified as protons between 1 and

1.3 GeV/c. Regions of higher misidentification generally coincide with overlapping in the
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dE/dx curves. However, as will be seen later in this section, these momentum dependencies

are generally less pronounced than those of the existing PID methods.

Unlike the preference, the performance of a cut on an individual variable depends on

the choice of cut values, which is generally a tradeoff between efficiency (correctly accepting

the desired ‘signal’ particle type) and purity (rejecting the unwanted ‘background’ particle

types). The ‘tighter’ the cut value, the higher the purity and the lower the efficiency, and

vice versa. It is therefore useful to examine the full range of efficiency and purity values

that can be obtained by cuts on the classifier in question. This has been achieved here

by testing a series of cut values on each BDT output with the testing sample, attempting

to select the corresponding particle type and reject the others, and plotting a receiver

operating characteristic (ROC) curve of the resulting efficiency and purity values. The

efficiency is here defined as the proportion of signal tracks in the sample that are selected

by the cut, and the purity as the proportion of tracks selected by the cut that belong to

the signal particle type. The closer the ROC curve comes to the top and right edges of the

plot (that is, the closer the efficiency and purity both come to 1), the better the classifier

can be said to perform. Hence the top-right corner (efficiency = purity = 1) represents

perfect performance, and the closer the ROC curve approaches it, the better. For each

BDT output, 50 cuts were tested in a range between 0 (total acceptance) and 0.98 with

equal increments of 0.02. The resulting ROC curves are shown in Figure 6.35. The best

performance is obtained when selecting positrons: the curve for the e-like output comes

closest to the top-right corner. This is followed by protons (p-like output), and then by

antimuons (µ-like output) and pions (π-like output). This can be explained by considering

the similarities and differences in the behaviour of the four particle types: positrons exhibit

the most characteristic behaviour in the ND280 subdetectors, having a TPC dE/dx curve

that is generally well-separated from the others (Figure 4.1) and reliably producing EM

showers in the ECal, so it is unsurprising that they should be the most readily identifiable

to the BDT. Protons generally produce hadronic showers in the ECal, but these may also

be produced by pions, and their dE/dx curve overlaps with those of pions and antimuons,

so there is somewhat more ambiguity to their behaviour and hence the PID performance

is poorer. As previously discussed, antimuons and pions are difficult to distinguish; the

TPC dE/dx cannot be relied upon and pions may produce MIP-like tracks in the ECal

as well, so it is to be expected that the performance is poorest for these particle types.

It is interesting to note that the curves for the µ-like and π-like outputs cross: at higher

efficiencies, better purity is obtained for µ+ than π+, whereas the reverse is true for lower
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efficiencies. This can be understood by considering the variety of pion behaviours in the

ND280 subdetectors: some π+ will behave entirely as MIPs as they traverse the detector,

and thus be effectively indistinguishable from µ+, so a selection of µ+ will always contain

some amount of π+ impurity. Conversely, by rejecting all MIP-like behaviour, a selection

of π+ can eliminate µ+ and thus reach higher purity, albeit with large efficiency cost.

Figure 6.35: ROC curves for selecting each particle type from the testing sample
via cuts on the corresponding BDT output, showing the efficiency and purity that
can be obtained with a range of 50 cut points in each case.

6.6.1 Comparisons to existing PID

To contextualise the performance of the BDT, existing ND280 PID methods were applied

to the particle gun testing sample following the same pre-selection cuts used for the BDT,

and their performance for selecting each particle type was measured in the same ways

as that of the BDT. The signal and background efficiencies of the existing PID methods

were computed as a function of preco, and compared to those of the BDT PID as shown in

Figures 6.33 and 6.34. Although the event selection scenarios for which the existing PID

methods are designed have different kinematic distributions to the particle gun sample, the

selected events are often binned by the reconstructed momentum of the primary track, so
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the efficiencies as a function of preco can be usefully compared to assess the momentum-

sensitivity of the performance. Similarly, although the proportions of particle types differ

between the particle gun samples and the selection use cases, by considering the relevant

background efficiencies as well as the signal, a useful comparison can be made. For each

particle selection, the performance of the existing PID was compared to that of the BDT

preference and/or an example cut on the relevant BDT output, depending on which made

the most appropriate comparison (this will be explained in greater detail below in each

case). Furthermore, the ROC curves shown in Figure 6.35 were compared to equivalent

ROC curves for the TPC likelihoods, as well as the efficiency and purity values obtained

with existing PID cut flows.

For µ+ selection, the BDT was compared to the primary PID from the ν̄µ CC-inclusive

selection in both its existing form (Lµ > 0.1 and LMIP > 0.9 if preco < 500 MeV/c) and the

improved version described in Chapter 4 (the existing cuts plus the ECal cut E/L < 8.8

MeV/cm). Pion and (to a lesser extent) proton rejection were found to be major issues

for this PID in the CC1pi selection, so a focus is placed on these backgrounds; positron

contamination is less of an issue so is not considered in this case. Figure 6.36 shows the

signal and background efficiencies for µ+ selection as a function of preco, comparing the

existing and improved ν̄µ selection primary PID to the BDT preference, as well as a tighter

cut on the BDT µ-like output (> 0.8) to illustrate how higher purity can be obtained. It can

be seen that the BDT preference cut greatly improves pion and proton rejection with little

efficiency loss, and the tighter cut selects a much purer sample with moderate efficiency

loss. Additionally, the BDT PID efficiencies show much less sensitivity to the momentum

than those of either conventional PID. Further comparisons are made in Figure 6.37, which

shows the ROC curves of efficiency and purity for cuts on the BDT µ-like output and the

TPC µ likelihood, as well as the efficiency and purity yielded by the conventional primary

PID cuts. The ROC curve for the BDT output lies well above that of the TPC likelihood

and both points representing the conventional PID cuts, showing that a cut on the BDT

output offers much higher purity for the same efficiency (and vice versa). These results

show that the BDT PID greatly outperforms these existing PID methods at selecting µ+

tracks.
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Figure 6.36: Particle identification efficiencies for µ+ selection as a function of the
reconstructed momentum, comparing conventional ν̄µ selection primary PID methods
to cuts on the BDT output. The efficiencies for correctly identifying µ+ (a) are
shown, along with those for misidentifying π+ (b) and protons (c) as µ+. Although
the existing PID offers high signal efficiency (except in the lowest-momentum bin),
it fails entirely to reject π+ at all but the lowest momenta. Above 500 MeV/c, the
improved conventional PID rejects ∼ 30% of π+ while maintaining signal efficiency
very close to that of the original, but at lower momenta, the signal efficiency suffers.
Both conventional PIDs offer similarly poor proton rejection above 1200 MeV/c. The
BDT preference yields slightly reduced µ+ efficiency, but successfully rejects ∼ 70%
of π+ across the momentum spectrum and improves proton rejection to a similar
extent. The tight BDT cut, on the other hand, rejects ∼ 90% of π+ at the cost of
∼ 40–50% of µ+ efficiency, and rejects at least 98% of protons at all momenta.
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Figure 6.37: ROC curves for selecting µ+ from the PG testing sample, comparing
the efficiency and purity obtained with a range of 50 cut points on the BDT µ-
like output (solid line) and TPC µ likelihood (dashed line). The specific values of
efficiency and purity obtained with the existing and improved ν̄µ selection primary
PID cuts are also shown as individual points. It can be seen that the curve for the
BDT PID lies well above that of the TPC likelihood and the points representing the
conventional selection PID. This shows that, for a given efficiency, the µ+ purity
that can be obtained with the BDT PID is significantly higher than with the TPC
likelihood in all cases. The point for the ν̄µ selection primary PID lies on the curve of
the TPC likelihood, since it consists entirely of cuts on the TPC likelihood variables.
The addition of the ECal cut increases the performance somewhat with respect to
the TPC curve, but this improvement is much smaller than that offered by the BDT
PID.

For π+ selection, the BDT preference was compared to the existing secondary track

PID from the ν̄µ CC multiple pion selections and the preference of the TPC likelihoods (i.e.

taking the largest of the likelihoods as the PID decision). The secondary pion PID is itself

a TPC likelihood preference cut, albeit one that does not consider the µ-like hypothesis;

that is, a track is identified as a π+ if Lπ > Lp and Lπ > Le. Figure 6.38 shows the

signal and background efficiencies for π+ selection as a function of preco, comparing the

existing secondary pion PID to the BDT preference, as well as the TPC preference with
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all hypotheses considered. It can be seen that the BDT preference far outperforms the

conventional PID at rejecting µ+ tracks, removing over 90% across the momentum range,

at only moderate π+ efficiency cost. Proton rejection is also improved, and the efficiencies

again appear less momentum-dependent for the BDT than for the conventional PID. The

ROC curves for cuts on the BDT π-like output and the TPC π likelihood are compared in

Figure 6.39. The ROC curve for the BDT output again lies well above that of the TPC

likelihood, demonstrating the superior performance of the former. These results show that

the BDT outperforms the conventional TPC PID for selecting π+, and together with the

results for µ+ selection, demonstrates greatly improved muon-pion discrimination. Based

on this, the BDT PID can be expected to greatly reduce the wrong-sign background in the

ν̄µ CC1pi selection (as is investigated directly in Chapter 7).
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Figure 6.38: Particle identification efficiencies for π+ selection as a function of the
reconstructed momentum, comparing the results for the conventional ν̄µ selection
secondary PID and the TPC likelihood preference to the BDT PID preference.
The efficiencies for correctly identifying π+ (a) are shown, along with those for
misidentifying µ+ (b) and protons (c) as π+. Although the BDT preference only
offers about two-thirds the signal efficiency of the existing secondary pion PID, it
far outperforms both conventional options in background rejection. Whereas the
secondary PID does not attempt to reject muons, the BDT preference does so with
over 90% efficiency at all momenta. The BDT preference also suffers less signal
efficiency drop-off at higher momenta, and rejects protons with significantly greater
efficiency than the secondary PID (and slightly greater than the TPC preference).



Chapter 6. Particle ID development with boosted decision trees 173

Figure 6.39: ROC curves for selecting π+ from the PG testing sample, comparing
the efficiency and purity obtained with a range of 50 cut points on the BDT π-like
output (solid line) and TPC π likelihood (dashed line). The TPC likelihood shows
very little purity improvement as the efficiency is reduced, and the highest purity
obtainable barely passes 60%, showing that a large proportion of backgrounds cannot
be removed at all by a cut on this variable. By contrast, the BDT PID shows much
higher purity at all but the highest efficiency levels, increasing to near 1 as the
efficiency is reduced.

Figure 6.40 shows the signal and background efficiencies for proton selection as a function

of preco, comparing the ν̄µ selection secondary PID (a cut on the TPC proton likelihood

Lp > 0.5) and the TPC and BDT preferences similarly to the π+ selection testing. It

can be seen that the BDT preference offers significantly better signal efficiency, as well as

similar or better rejection for each background, and again the BDT efficiencies shows less

momentum dependence. The ROC curves for cuts on the BDT proton-like output and

the TPC proton likelihood are compared in Figure 6.41, and again the curve for the BDT

PID is seen to lie well above that of the TPC likelihood. These plots demonstrate that the

BDT PID offers greatly improved identification of proton tracks, and could therefore be

of value to event selections for which the number of protons is important, such as ν̄µ CC

one-pion-one-proton.
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Figure 6.40: Particle identification efficiencies for proton selection as a function of
the reconstructed momentum, comparing the results for the conventional ν̄µ selection
secondary PID and the TPC likelihood preference to the BDT PID preference. The
efficiencies for correctly identifying protons (a) are shown, along with those for
misidentifying µ+ (b), π+ (c) and e+ (d) as protons. The BDT preference offers
greater signal efficiency across the full momentum range, especially at at momenta
above 1 GeV/c where there is a significant drop-off in the efficiency of the conventional
options, most likely due to the proton dE/dx curve crossing those of µ and π. The
BDT preference also rejects µ+ and e+ much more efficiently than either conventional
option, and has similar π+ rejection efficiency to the existing secondary PID.
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Figure 6.41: ROC curves for selecting protons from the PG testing sample, com-
paring the efficiency and purity obtained with a range of 50 cut points on the BDT
p-like output (solid line) and TPC p likelihood (dashed line). The curve for the BDT
output lies well above that of the TPC likelihood, showing that the BDT PID offers
much greater purity for the same efficiency (and vice versa).

For e+ selection, the BDT was compared to the primary PID from the ν̄e CC-inclusive

selection (see 6.1.2 for the relevant cuts). Figure 6.42 shows the signal and background

efficiencies for e+ selection as a function of preco, comparing the performance of the existing

ν̄e primary PID to that of the BDT PID. This selection requires very efficient rejection

of µ+ and protons, so the BDT preference is not a suitable comparison; instead, it is

compared to tight cuts on the BDT output (> 0.8 and > 0.9). It can be seen that the BDT

PID offers both higher signal efficiency and better background rejection than the existing

PID, particularly above 600 MeV/c, where the existing PID incorporates tighter cuts in

an attempt to reject protons, resulting in a severe drop in signal efficiency (and a large

peak of proton contamination can still be seen). By contrast, the BDT PID offers several

times better proton rejection and suffers no such drawback, retaining high e+ efficiency

across the momentum range. This impression is reinforced by Figure 6.43, which compares

the ROC curves for cuts on the BDT e-like output and the TPC e likelihood as well as

the efficiency and purity obtained with the existing ν̄e selection primary PID. The BDT
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PID again compares very favourably to the existing primary PID cuts: at the same purity

of ∼ 92%, the efficiency of the existing cuts is ∼ 50%, whereas that of the BDT PID is

much higher at ∼ 98%. For the same efficiency, the purity with the BDT PID is close to 1.

These results indicate that the BDT PID could significantly improve both the efficiency

and purity of the ν̄e CC-inclusive selection.

Figure 6.42: Particle identification efficiencies for e+ selection as a function of
the reconstructed momentum, comparing the results for conventional ν̄e selection
primary PID to cuts on the BDT output. The efficiencies for correctly identifying
e+ (a) are shown, along with those for misidentifying µ+ (b) and protons (c) as e+.
Below 600 MeV/c, the BDT cuts at 0.9 and 0.8 offer similar and slightly better
signal efficiency respectively compared to the ν̄e primary PID. Above 600 MeV/c,
the efficiency of the ν̄e primary PID drops sharply, whereas that of the BDT remains
high. This drop is due to the differences in cuts in the ν̄e primary PID above and
below 600 MeV/c: above 600 MeV/c, tighter cuts are applied in an attempt to
reduce the proton background, but this also results in a loss of signal efficiency. For
µ+ rejection, the the BDT cut at 0.9 offers better performance than the existing
PID; for proton rejection, both BDT cuts outperform the existing PID at almost all
momenta, particularly around 1.1 GeV/c.
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Figure 6.43: ROC curves for selecting e+ from the PG testing sample, comparing
the efficiency and purity obtained with a range of 50 cut points on the BDT e-like
output (solid line) and TPC e likelihood (dashed line). The specific values of efficiency
and purity obtained with the existing ν̄e selection primary PID cuts are also shown as
an individual point. The curve for the BDT output lies well above that of the TPC
likelihood, showing that the BDT PID offers greater purity for the same efficiency
(and vice versa). The curve for the BDT output also lies particularly far to the
right of the point representing the ν̄e selection primary PID, showing that the BDT
PID can achieve similar (or indeed higher) purity while retaining much higher signal
efficiency.

Overall, the BDT appears to substantially outperform the existing PID methods tested.

In each particle selection case, the BDT preference or a single-output cut offers significantly

improved signal efficiency and/or background rejection, while also exhibiting less momentum

dependence than the existing methods. Furthermore, the ROC curves show that cuts on

the BDT outputs can achieve much greater efficiency and purity than is possible with the

TPC likelihoods or the existing ν̄µ and ν̄e selection primary PID cuts.
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6.6.2 Overtraining

Overtraining is an important factor to consider in applications of machine learning. Since

the BDT was trained on a limited sample of simulated tracks, it may have adapted to

statistical fluctuations in the training dataset. Although steps were taken to avoid this

(keeping the TreeDepth and MinNodeSize parameters within the ranges recommended

by TMVA) it is still important to evaluate the level of overtraining in the final BDT

configuration. This can be done by comparing the performance of the BDT when applied

to the statistically-independent training and testing samples: the more overtraining has

occurred, the greater the difference in performance will be.

Initially, this was only tested by comparing the BDT preference signal efficiencies for

the training and testing samples as in Figure 6.44. For each subsample, the efficiencies

appear largely similar, though that of the training sample is generally somewhat higher for

µ+ and π+, indicating a small amount of overtraining. There is also a larger discrepancy

for protons at low momentum (preco < 600 MeV/c), increasing as the momentum decreases,

up to ∼ 10% for the lowest momentum bin. This is likely due to the low statistics of the

proton training sample at low momenta, even with the ‘padding’ described in Section 6.3.1.

However, the low detector efficiency for low-momentum protons also means that the tool

would rarely be applied to proton tracks with such low momenta, so the overtraining in

this region should have little effect in practice. On the basis of this plot, the overtraining of

the BDT was initially judged to be minimal, so no further steps were taken to reduce it

before its use in the performance testing above and in Chapter 7. However, with subsequent

investigation, the degree of overtraining became more evident. Figure 6.45 compares the

ROC curves for the BDT outputs (as in Figure 6.35) between the training and testing

samples. The effect of overtraining can be clearly seen when selecting µ+ with the BDT

µ-like output: the performance is consistently higher for the training sample than the testing

sample. This impression is confirmed by the results of a two-sample Kolmogorov-Smirnov

(K-S) test [108][109], which estimates the probability that two samples come from the same

distribution. The ROOT [69] implementation of the two-sample K-S test was performed on

the distributions of each BDT output for the training and testing samples. The results are

shown in Table 6.3. Since the Kolmogorov probability is close to zero in all cases, this test

indicates that the training and testing sample BDT outputs are not consistent (i.e. very

unlikely to be drawn from the same distribution) and hence that overtraining has occurred

despite the precautions taken in setting the training parameters.
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Figure 6.44: Particle identification ‘signal’ efficiencies of the final BDT configuration
preference cuts as a function of the reconstructed momentum, comparing the results
for the training and testing samples, denoted by solid and dashed lines respectively.
Some evidence of overtraining can be seen where the performance is higher for the
training sample than the testing sample, particularly at low proton momenta (likely
due to the low statistics and hence larger weights for individual events in this region).
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Figure 6.45: ROC curves for selecting each particle type via a cut on the correspond-
ing BDT output as in Figure 6.35, comparing the results for the training and testing
samples. Versions are shown with (a) and without (b) the extra low-momentum
protons in the training sample; the testing sample does not contain such protons, so
in the latter case the samples are more consistent. The effect of overtraining can be
seen in the higher µ+ selection performance with the training sample compared to
the testing sample in both plots. Higher training sample performance is also seen
for protons in (a), but not in (b), so this may be an artifact of the low-momentum
protons rather than overtraining.
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BDT output
Kolmogorov probability for training and testing samples
Full training sample Extra low-mom. protons removed

µ-like 1.84452× 10−11 2.8786× 10−12

π-like 4.06449× 10−09 7.46376× 10−10

p-like 1.18527× 10−31 1.3937× 10−33

e-like 2.54713× 10−09 1.05733× 10−09

Table 6.3: Two-sample Kolmogorov-Smirnov test results obtained by applying the
ROOT [69] TMath::KolmogorovTest function to the BDT output distributions of
the training and testing samples. Versions of the training sample with and without
the extra low-momentum protons have been tested, since the latter case should be
more consistent with the testing sample (which does not contain extra low-momentum
protons). The Kolmogorov probability estimates the probability that both samples
are drawn from the same distribution.

Since the discrepancy between the training and testing samples in Figures 6.44 and 6.45

appears relatively small, the impact of this overtraining on the BDT is likely also small.

Nevertheless, the overtraining should be removed in future development if possible. The

most obvious way to do this would be to choose more conservative values of certain BDT

training parameters known to help eliminate overtraining: larger values of MinNodeSize

and/or smaller values of TreeDepth should be tested. Indeed it is possible that eliminating

the overtraining may improve the classification performance of the BDT somewhat.

6.7 Conclusions

Despite some overtraining, the BDT PID outperforms the existing conventional PID

methods in nearly all cases tested above. Thus it appears that the development goal of

‘versatility’ has been achieved: a single PID tool has been developed which nonetheless

outperforms the existing PID methods in a variety of use cases, often very significantly

and despite the latter having been developed and optimised specifically for those use cases.

These results illustrate the power of multivariate methods to make efficient use of the large

numbers of PID variables recorded by ND280, and the limitations of conventional methods

by comparison, and strongly motivate the use of a global BDT PID tool in ND280 event

selections. This will be further demonstrated in the following chapter, in which the BDT

PID tool is applied directly within a ν̄µ CC1pi selection.
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Muon-antineutrino CC1pi selection

with BDT PID

In this chapter, the finalised BDT PID tool is applied within a ν̄µ CC1π− event selection

in place of conventional PID methods, and the performance is compared with the selections

described in Chapter 4. Versions of the ν̄µ CC1π− selection that use the BDT PID will

be referred to collectively as ‘BDT selections’. Three BDT selection variants were tested

to evaluate the effect of different ways the BDT PID may be applied, and thus determine

which will yield the best selection performance.

As outlined in the previous chapter, the BDT preference may be used to classify tracks,

taking the hypothesis corresponding to the highest of the outputs as the PID decision.

Depending on the class of track, better performance may be obtained by excluding certain

hypotheses: for example, we do not expect to detect antiprotons, so the proton-like output

can be ignored for negative tracks. Although we do expect large numbers of µ− due to

the wrong-sign background, true π− that do not shower in the ECal will closely resemble

them, so rejecting muon-like negative tracks may not be desirable — a large proportion

of π− from signal events will be rejected. To examine this, selections were prepared with

and without the muon-like hypothesis included when evaluating the preference for negative

tracks, and their performance is compared below.

Additionally, depending on the relative signal and background rates for the selection

in question, cuts on individual BDT outputs may substantially outperform the preference

provided a suitable cut value is chosen. To test this for the ν̄µ CC1π− selection, a pair

of cuts on the µ-like and π-like BDT outputs for the muon and pion candidate tracks

182
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respectively have been optimised and applied in a further BDT selection variant.

7.1 Track identification by BDT preference

The BDT selections presented in this chapter use the same starting (‘pre-selection’) cuts as

in the ‘improved’ selection as described in Chapter 4:

• Event quality

• Total multiplicity

• Track quality and fiducial

• Upstream background veto

• Broken track

For antimuon candidate PID, the loop over positive tracks is used, with the TPC

likelihood cuts replaced by a cut on the output values of the BDT. For the initial comparisons,

the preference was used (that is, identifying a positive track as a µ+ if the BDT muon-like

output is the highest of the four). A version with optimised cuts to select µ+ and π− tracks

is presented later in this chapter.

For PID of secondary tracks, the BDT preference replaces the decision flow described in

Section 4.2.1. For positive tracks, the pion, proton and positron hypotheses are considered

(since additional µ+-like tracks are rejected as part of the primary PID loop), with positrons

being considered evidence of π0 as in the existing selection. For negative tracks, two versions

were tested: a ‘full’ version which attempts to identify and reject µ− tracks, and one which

does not (since a large proportion of π− will appear MIP-like and therefore muon-like). In

the former case, the muon, pion and electron hypotheses are considered; in the latter, only

the pion and electron hypotheses are. Having identified each secondary track, single-pion

events are then selected using the same criteria as in the one pion cut. No further PID

cuts are applied.

To properly assess the performance of the BDT PID, its kinematic region of validity

should be considered. The BDT can be expected to more reliably identify tracks with

reconstructed momentum and angle within the range provided in the training phase (200

MeV/c < preco < 1500 MeV/c, θreco < 60◦). To account for this when comparing the
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performance of the BDT selections to that of the conventional selections, a BDT validity

cut was added to each of them, selecting events in which both the µ+ and π− candidate

tracks satisfy the validity criteria.

Figure 7.1: Significance (a), efficiency (b), purity (c), and efficiency*purity (d) for
ν̄µ CC1π− event selections as a function of antimuon candidate momentum. The
existing (black) and improved (red) selections with conventional PID are compared
to selections using the BDT PID tool, with (green) and without (yellow) considering
the µ− hypothesis for negative tracks. The kinematics of the µ+ and π− candidate
tracks have been limited to the region of validity of the BDT.

The selection significance (S/
√
S +B) is again taken as the primary performance metric,

though the efficiency, purity and their product are also taken into consideration. Each of

these is plotted as a function of the µ+ candidate preco in Figure 7.1. The BDT selection

without µ− rejection offers the best significance, outperforming the other options across

the momentum spectrum. Although the version with µ− rejection has the greatest purity

of the selections tested, it also has the lowest efficiency, resulting in a significance mostly

similar to that of the conventional selections. It is interesting to note that the existing

selection has the highest efficiency*purity at momenta below 900 MeV/c while the same

is not seen in the significance; this is because the efficiency*purity is not sensitive to the
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overall number of events selected, whereas the significance is. These results show that BDT

PID can be used to build event selections that outperform conventional ones, even without

optimisation, provided that the PID is applied to tracks with kinematics within those of

the training data set.

Figure 7.2: Significance (a), efficiency (b), purity (c), and efficiency*purity (d) for
ν̄µ CC1π− event selections as a function of antimuon candidate momentum, as in
Figure 7.1 but without restrictions on the track kinematics for BDT validity (i.e.
removing the BDT validity cut).

The importance of kinematics for BDT validity is demonstrated by Figure 7.2, which

shows the same metrics as in Figure 7.1 but without the BDT validity cut applied. The

significance of the BDT selections is considerably lower here, often similar or worse than

the conventional selections. Although an improvement in purity can still be seen, it is offset

by the loss of efficiency, resulting in poor overall performance. This indicates that the BDT

PID does not perform well when applied to tracks that do not meet its validity criteria. For

practical applications within event selections, a larger training data sample with broader

kinematic distributions may be needed, in order to train the BDT on a set of tracks with

momenta and angles reflecting the full range of tracks to which we will wish to apply PID.
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Figure 7.3: Purity of µ+ (a) and contamination of π+ (b) and protons (c) as a
function of reconstructed momentum for antimuon candidates in ν̄µ CC1π− event
selections. The kinematic restrictions for BDT validity have been applied to both
the µ+ and π− candidate tracks for the events shown.

Figure 7.4: Purity of π− (a) and contamination of µ− (b) as a function of recon-
structed momentum for negative pion candidates in ν̄µ CC1π− event selections. The
kinematic restrictions for BDT validity have been applied to both the µ+ and π−

candidate tracks for the events shown.

The purities and main background contaminations of the antimuon and pion candidate

tracks for each selection version are shown in Figures 7.3 and 7.4 respectively. Broadly
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speaking, the ‘full’ BDT selection has the highest track purities, followed by the BDT

selection without muon rejection and the improved conventional selection, and the existing

selection has the lowest. The improved selection offers greater π− track purity than the BDT

selection without muon rejection because it includes an ECal cut to reject µ−, but as noted

previously, this is offset by the greater efficiency of the BDT selection. The background

contaminations can all be seen to be lower with the BDT selection than the existing

selection, with the exception of the π+ contamination at low momentum (∼ 300 MeV/c),

but this is most likely due to the absence of the leading track cut in the BDT selections

rather than the performance of the PID itself. These comparisons show improvements of as

much as a factor of 2 (µ+ purity) and 5 (π− purity), demonstrating that the BDT PID can

greatly improve the accuracy with which the main tracks in this selection are identified.

7.2 Optimised cuts

To improve selection performance further, optimal cuts on the BDT outputs for the antimuon

and pion candidate tracks can be found and applied. To demonstrate this, a simple grid

search was performed across the space of cuts on the µ+ candidate µ-like output and

the π− candidate pi-like output, here referred to as Bµ and Bπ respectively. The same

pre-selection from the previous section (event quality to broken track cut) was used, with

an additional requirement that selected events have only one positive and one negative TPC

track (two-track cut) since allowing proton tracks would complicate the process. The

BDT output cuts were tested with 20 different values each in increments of 0.02, ranging

between 0 (no cut) and 0.98, for a total of 400 cut pairs. For each point in the cut space the

significance was computed, and the point with the highest significance overall was taken as

the optimised cut pair. This is visualised in Figure 7.5, and yields a cut pair of Bµ > 0.26,

Bπ > 0.12. It can be seen that looser cut values are favoured, particularly for Bπ, and cut

values approaching 1 result in a sharp drop-off in significance.
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Figure 7.5: Optimisation plot for cuts on the BDT outputs of the CC1π− selection
antimuon and pion candidates, showing the full cut space (left) and the peak region
(right). The significance (S/

√
(S +B)) is shown on the Z-axis as a function of

cuts on the antimuon candidate µ-like output and the pion candidate π-like output,
rejecting events below the cut value. The optimal cut point is found for a cut pair of
Bµ > 0.26, Bπ > 0.12, with a significance of 29.6.

The selection comprising the pre-selection cuts and these optimised cuts on the BDT

outputs will be referred to as the ‘optimised BDT selection’. The performance of this

selection is compared to that of the existing selection and the BDT selection using the

preference (without muon rejection) in Table 7.1 and Figure 7.6, with the two-track

cut and BDT validity criteria added to all selections. The optimised BDT selection

improves performance further compared to the preference selection, yielding equal or better

significance, with the difference being greater at lower momentum values. The optimised

selection has similar efficiency to the existing selection, while that of the preference selection

is lower; and similar purity to the preference selection, while that of the existing selection

is lower (except in the lowest momentum bin). The efficiency*purity is here also higher for

the optimised selection than the existing selection across the momentum spectrum.
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Selection Significance ν̄µ CC1π− purity Non-ν̄µ-CC backgrounds

Existing 22.7 51.9% 38.8%

BDT (no µ− rejection) 27.4 66.5% 23.6%

BDT (optimised) 29.6 65.5% 22.2%

Table 7.1: Summary of performance metrics for the existing selection and the
preference-based and optimised BDT selections. Only events with one positive and
one negative TPC track have been selected, and each required to have kinematics in
the region of validity of the BDT.

Figure 7.6: Significance (a), efficiency (b), purity (c), and efficiency*purity (d) for
ν̄µ CC1π− event selections as a function of antimuon candidate momentum. The
existing (black) selection with conventional PID is compared to BDT selections using
the preference (yellow) and the optimised cut pair (blue). Only events with one
positive and one negative TPC track have been selected, and each required to have
kinematics in the region of validity of the BDT.

Table 7.2 compares the overall track purities similarly to Table 4.3, again with the

two-track cut and BDT validity criteria applied. Compared to the existing selection, the

BDT selections show an increase from 59.8% to ∼ 78% in the µ+ candidate purity and a
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particularly striking reduction in the proton contamination, which drops from 12.6% to

less than 2%. The purity of π− candidates is similarly improved. The two BDT selections

have similar µ+ candidate purity and background contaminations, while for π− candidates

the purity is about 5% better in the optimised selection. These track purity improvements

combine to yield the increases in overall selection purity seen in Table 7.1, and demonstrate

that the BDT PID is making a substantial improvement to the identification of the main

tracks in the ν̄µ CC1π− selection.

Selection µ+ candidate true particle π− candidate true particle

µ+ π+ p π− µ−

Existing 59.8% 26.7% 12.6% 66.6% 32.2%

BDT (no µ− rejection) 77.8% 20.3% 1.5% 75.8% 20.3%

BDT (optimised) 77.6% 20.2% 1.8% 79.3% 18.6%

Table 7.2: Summary of the true particle content of the µ+ and π− candidate tracks
in the existing selection and the preference-based and optimised BDT selections.
Only events with one positive and one negative TPC track have been selected, and
each required to have kinematics in the region of validity of the BDT.

The potential performance of the BDT PID for this selection is further assessed in

Figures 7.7 and 7.8, which show the track identification efficiency and purity of various

PID methods for the antimuon and pion candidates respectively. The ROC curves for the

respective BDT outputs and and TPC likelihoods are shown, as well points representing

the performance of the cuts used in the existing and improved selections. Similarly to

comparisons made with the particle gun sample in Chapter 6, it can be seen that the

curves for the BDT outputs lie well above those of the TPC likelihoods, showing that

the BDT offers track identification performance that is greatly superior to that of TPC

PID alone, as expected. In Figure 7.7, the points representing the existing and improved

selection µ+ candidate cuts both lie above the ROC curve for the TPC likelihood, showing

the improvements in performance yielded by the leading track cut and the ECal E/L cut

respectively; but these points also lie well below the curve for the BDT output, showing that

a cut on the BDT PID can greatly outperform both. In Figure 7.8, however, the positions

of the points representing the existing and improved selection π− candidate cuts are more

surprising. The point for the existing selection π− PID lies below the TPC likelihood ROC

curve, indicating that the leading track cut causes a loss in π− identification performance
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rather than a gain. Conversely, the point for the improved selection π− PID lies above the

curve for the BDT output, implying that better performance is achieved with simple TPC

and ECal cuts than with the BDT! Thus it appears that, while offering much improved

PID for the µ+ candidate, the BDT is actually underperforming for the π− candidate. It is

not immediately clear why this should be the case, but it may indicate that the assumption

that the BDT will perform well for negative tracks (despite only having been trained on

positive tracks) does not hold, perhaps due to the inclusion of the proton hypothesis. This

motivates further testing of the BDT PID performance for negative tracks (for example,

with a particle gun sample of µ−, π− and e−). If the performance is found to be generally

poorer for such tracks, this could be mitigated by the inclusion of negative tracks in the

training sample (as well as the track charge information that would then be necessary) or

the separate training of a second BDT specifically for negative tracks.

Figure 7.7: ROC curves for PID of the µ+ candidate in ν̄µ CC1pi selections,
comparing the track identification efficiency (proportion of true µ+ accepted by the
preselection that are then accepted by the µ+ PID) and purity (proportion of tracks
accepted by the µ+ PID that are true µ+) obtained with a range of 50 cut points.
The curves for the BDT µ-like output and TPC µ likelihood are shown, as well as
points representing the performance of the µ+ candidate cuts of the existing selection
PID (including the leading track cut) and the improved selection PID. The BDT
validity and two-track cuts are applied in all cases.
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Figure 7.8: ROC curves for PID of the π− candidate in ν̄µ CC1pi selections,
comparing the track identification efficiency (proportion of true π− accepted by the
preselection that are then accepted by the π− PID) and purity (proportion of tracks
accepted by the π− PID that are true π−) obtained with a range of 50 cut points.
The curves for the BDT π−-like output and TPC π− likelihood are shown, as well as
points representing the performance of the π− candidate cuts of the existing selection
PID (including the leading track cut) and the improved selection PID. The BDT
validity and two-track cuts are applied in all cases.

7.3 Comparisons to real data

To verify the above selection performance predictions, the event selections were applied to

a sample of real T2K data (see Section 4.1) and the selected events in the data and MC

samples were compared to assess their consistency. Comparisons were made between the

pre-selection (comprising again the series of cuts quoted in Section 7.1, followed by the

BDT validity and two-track cuts), the selection using the existing PID, and the optimised

BDT selection.
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Selection Data events MC events (unscaled) MC events (POT scaled)

Pre-selection 1136 11041 1113

Existing 220 (19.3%) 1922 (17.4%) 194 (17.4%)

BDT (optimised) 207 (18.2%) 2036 (18.4%) 205 (18.4%)

Table 7.3: Overall numbers of events accepted by each selection, comparing real
data and MC. The statistics for MC are given both in full and scaled by POT to the
data. The percentages of events selected relative to the pre-selection are also given.
A greater data-MC discrepancy is seen for the existing selection: this may be due to
greater model-dependency in that selection as a result of the leading track cut.

The overall numbers of events accepted by each selection are summarised in Table 7.3,

and appear similar between data and MC when the latter is scaled to the same POT.

However these values alone are not very illustrative; the degree of consistency between data

and MC can be assessed in more detail from histograms of the event kinematics, which

are shown in Figures 7.9 and 7.10. Figure 7.9 shows the distributions of the reconstructed

momentum of the µ+ candidate, which appear largely consistent between data and MC for

each selection. The main discrepancy is seen in the lowest momentum bin for each selection,

in which the content for real data is somewhat higher than MC. The reason for this excess

is not obvious, but its presence for the pre-selection shows that it is not a result of model

dependencies of either PID; rather it may be due to underestimation of low-momentum µ+

by NEUT.

Figure 7.10 shows similar broad agreement between data and MC for the momentum of

the π− candidate, but some discrepancies can be seen. The lowest-momentum bin again

shows a discrepancy in each case, but here the bin content appears underestimated for

the pre-selection and existing selection but overestimated for the BDT selection. It is not

clear why this difference should arise, though given the size of the error bars it may be a

statistical effect.

These plots also provide further illustration of the performance of the selections in

question, particularly in Figure 7.9. The wrong-sign background contamination is very

evident in the pre-selection1, and while the existing PID does succeed in removing a large

proportion of it, the accompanying loss of ν̄µ CC1π− signal for lower-momentum µ+ can

be clearly seen. By contrast, the BDT selection shows a still greater reduction in the

1The pre-selection used here results in a particularly large wrong-sign contamination since the two-track
cut requires a negative TPC track, which will often be a µ− from a νµ event.
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wrong-sign background, and much more acceptance of signal events at low µ+ momenta.

These results indicate that the selection behaviour with MC simulated data is for the most

part consistent with real data, so we can reasonably expect the BDT PID to improve

selection performance as predicted by the MC, though the discrepancies (particularly for

low-momentum tracks) may need to be investigated.
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Figure 7.9: Reconstructed momentum of the µ+ candidate for ν̄µ CC1π− event
selections, comparing between real data (black) and MC, which is shown as a
histogram stacked by topology categories: the ν̄µ CC1π− signal (blue), other ν̄µ CC
topologies (green), the wrong-sign νµ CC background (red), any other backgrounds
(magenta), and out-of-fiducial-volume events (grey). The MC histogram bin content
has been scaled by POT to the data. The uncertainty in the number of entries N for
each momentum bin is taken to be

√
N .
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Figure 7.10: Reconstructed momentum of the π− candidate for ν̄µ CC1π− event
selections, comparing between real data (black) and MC, which is shown as a
histogram stacked by topology categories: the ν̄µ CC1π− signal (blue), other ν̄µ CC
topologies (green), the wrong-sign νµ CC background (red), any other backgrounds
(magenta), and out-of-fiducial-volume events (grey). The MC histogram bin content
has been scaled by POT to the data. The uncertainty in the number of entries N for
each momentum bin is taken to be

√
N .
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Comparisons between real data and MC can also help verify the predicted behaviour of

the BDT outputs more directly, by comparing their distributions. Figures 7.11–7.14 show

histograms of each of the four BDT outputs for µ+ candidate tracks in the pre-selection. A

version with a logarithmic scale has been provided in each case so that the bins with low

content can be more easily compared. The MC predicted distributions appear consistent

with real data for the most part, with the main discrepancy being seen in the lowest and

highest bins of the proton-like output. It is difficult to draw conclusions from these plots in

isolation, since the relative quantities of each particle type are model-dependent and so

may differ between real data and MC regardless of the BDT behaviour, but together with

the above momentum histograms, a general consistency can be seen which suggests that

the MC predictions are close to reality.
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Figure 7.11: Histograms of the BDT µ-like output for µ+ candidates in the ν̄µ
CC1π− pre-selection sample, comparing between real data (black) and MC, which is
shown stacked by the true particle type: antimuons (blue), π+ (red), protons (green),
and any other particles (grey). Versions with linear (top) and logarithmic (bottom)
scales are shown. The MC histogram bin content has been scaled by POT to the
data. The uncertainty in the number of entries N for each momentum bin is taken
to be

√
N .
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Figure 7.12: Histograms of the BDT π-like output for µ+ candidates in the ν̄µ
CC1π− pre-selection sample, comparing between real data (black) and MC, which is
shown stacked by the true particle type: antimuons (blue), π+ (red), protons (green),
and any other particles (grey). Versions with linear (top) and logarithmic (bottom)
scales are shown. The MC histogram bin content has been scaled by POT to the
data. The uncertainty in the number of entries N for each momentum bin is taken
to be

√
N .
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Figure 7.13: Histograms of the BDT p-like output for µ+ candidates in the ν̄µ
CC1π− pre-selection sample, comparing between real data (black) and MC, which is
shown stacked by the true particle type: antimuons (blue), π+ (red), protons (green),
and any other particles (grey). Versions with linear (top) and logarithmic (bottom)
scales are shown. The MC histogram bin content has been scaled by POT to the
data. The uncertainty in the number of entries N for each momentum bin is taken
to be

√
N .
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Figure 7.14: Histograms of the BDT e-like output for µ+ candidates in the ν̄µ
CC1π− pre-selection sample, comparing between real data (black) and MC, which is
shown stacked by the true particle type: antimuons (blue), π+ (red), protons (green),
and any other particles (grey). Versions with linear (top) and logarithmic (bottom)
scales are shown. The MC histogram bin content has been scaled by POT to the
data. The uncertainty in the number of entries N for each momentum bin is taken
to be

√
N .
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7.4 Conclusions and outlook

In summary, the above MC studies show that the BDT PID tool can be applied in the

ND280 ν̄µ CC1π− event selection to improve identification of µ+, π− and proton tracks

and thus increase the selection performance significantly, and these predictions appear

largely consistent with real data. Good performance can be obtained by simply using

the BDT preference to identify tracks, but finding optimal cuts on the BDT outputs for

the main tracks yields higher performance still. The purity of the µ+ and π− candidate

tracks is improved greatly, resulting in higher overall CC1π− purity. Provided that the

tracks have kinematics within the region of validity of the BDT, the loss of efficiency is

more than outweighed by the purity gains, and consequently the selection significance is

improved across the momentum spectrum compared to conventional selections. As the T2K

experiment continues operations and the size of its data sample increases — an increase of

around a factor of 5 is currently expected by the end of the experiment’s lifetime [110] —

the purity will have greater and greater impact on selection significance compared to the

efficiency, so these improvements will become more and more valuable over time.

Given the substantial increases in track identification efficiency for each particle type

seen in the testing presented in Chapter 6, and the corresponding improvement in selection

performance demonstrated above for ν̄µ CC1π−, it seems likely that BDT PID will yield

similar improvements if applied in other event selections such as ν̄e. This in turn will

enable more precise measurements of the corresponding interaction rates, improving our

understanding of neutrino-nucleus cross-sections and of neutrino oscillations as part of the

wider T2K experiment.

The work presented in this thesis demonstrates the power and value of global multivariate

PID for ND280 event selections, and sets out a development process that yields good results

and can be replicated and expanded upon to develop a fully usable tool for T2K. The tuning

results for the BDT parameters and the choice of input variables should provide a strong

starting point (provided that the issue of overtraining is first addressed, as discussed in

Section 6.6.2), and an obvious next step will be to expand the kinematic region of validity —

that is, to re-train the BDT with a new particle gun sample with a wider range in momentum

and angle. Additionally, it would be ideal for the tool to support tracks originating in

FGD2, high-angle tracks which do not pass through the TPC, or backward-going tracks, in

order to be applicable in as many ND280 event selections as possible. The performance for

negative tracks should be assessed, and if found to be substantially poorer than for positive
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tracks, steps should be taken to address this (such as including negative tracks in the

training sample). An understanding of the systematic uncertainties on the BDT outputs is

also needed, and will need to take into account those of the various input variables and how

they interact within the complex structure of the BDT. Improvements in performance might

be obtained by increasing the statistics of the training samples, and/or by using a neural

network instead of boosted decision trees, so these options should be investigated. With

further development, the multivariate global PID methods explored in this thesis should

yield a broadly-applicable tool that will enable significant performance improvements in

multiple ND280 event selections.

The ND280 upgrade, in which the PØD is replaced by a new suite of subdetectors,

presents an important opportunity in this context. The new subdetectors, which include

a ‘super-FGD’ scintillator detector with significantly improved granularity and angular

acceptance compared to the existing FGDs [111], will yield new PID information and thus

new input variables for the BDT which will substantially improve its performance; and

conversely, any new PID information will be more effective as part of a global multivariate

PID than on its own. T2K will soon start taking data with the upgraded ND280 detector,

the analysis of which would benefit greatly from global BDT PID, so we recommend that

such methods be pursued and adopted by T2K as soon as possible.
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