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Many dogs and cats are a�ected by chronic diseases that significantly impact

their health andwelfare and relationships with humans. Some of these diseases

can be challenging to treat, and a better understanding of early-life risk factors

for diseases occurring in adulthood is key to improving preventive veterinary

care and husbandry practices. This article reviews early-life risk factors for

obesity and chronic enteropathy, and for chronic behavioral problems, which

can also be intractable with life-changing consequences. Aspects of early

life in puppies and kittens that can impact the risk of adult disorders include

maternal nutrition, establishment of the gut microbiome, maternal behavior,

weaning, nutrition during growth, growth rate, socialization with conspecifics

and humans, rehoming and neutering. Despite evidence in some species that

the disorders reviewed here reflect the developmental origins of health and

disease (DOHaD), developmental programming has rarely been studied in dogs

and cats. Priorities and strategies to increase knowledge of early-life risk factors

and DOHaD in dogs and cats are discussed. Critical windows of development

are proposed: preconception, gestation, the suckling period, early growth

pre-neutering or pre-puberty, and growth post-neutering or post-puberty to

adult size, the durations of which depend upon species and breed. Challenges

to DOHaD research in these species include a large number of breeds

with wide genetic and phenotypic variability, and the existence of many

mixed-breed individuals. Moreover, di�culties in conducting prospective

lifelong cohort studies are exacerbated by discontinuity in pet husbandry

between breeders and subsequent owners, and by the dispersed nature of

pet ownership.
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Introduction

There is increasing awareness that aspects of early life in

puppies and kittens, especially nutrition during gestation and

early growth, impact the risk of neonatal mortality (1–3) and the

development of chronic diseases in adulthood (4, 5). In many

mammalian species, early-life and parental experiences have

been investigated as potential contributors to the developmental

origins of health and disease (DOHaD). The concept of DOHaD

encompasses the observations that environmental exposures

during development can drive epigenetic changes that modify,

or “program” the expression of genes, affecting structural and

functional development, with rapid or delayed risks to health.

In humans, the first 1,000 days of life, which approximates to

gestation plus 2 postnatal years, have been identified as a critical

period when developmental programming sets the foundations

for optimal neurodevelopment, growth and health (6). Much

of what is known about DOHaD and the epigenome is derived

from laboratory animal models (7), but experimental knowledge

has also accrued for ruminants, pigs and even horses (7–9).

In dogs and cats, most research into the etiology of chronic

adulthood conditions has focused on adult environmental

predictors and risk factors, without investigating whether

these have developmental origins. Literature searches in

PubMED
R©

(31 July, 2022) with the broad search string

(epigenetics OR “developmental programming” OR DOHaD

OR “developmental origins of health and disease”), combined

with “Dogs” or “Cats” as Medical Subject Headings, retrieved

218 articles. After screening titles and abstracts for relevance,

51 articles relating to dogs and 6 relating to cats remained; the

most apparent topics of interest were epigenetic modifications in

cancer cells [32 articles (56%)], and epigenetic aspects of breed

phenotype. Overall, there has been inadequate consideration

in dogs and cats of the extent to which the environment,

during different stages of growth and maturation, can influence

the subsequent occurrence of adult conditions and behavioral

traits, even if these environmental factors are chronologically

distant. Research in domestic carnivores has been led mainly

by experts in specialized fields of veterinary medicine, including

nutrition, reproduction, gastrointestinal microbiology, and

behavior, with a paucity of expertise in DOHaD that crosses the

relevant disciplines.

This review provides an overview of themain environmental

risk factors in puppies and kittens that can affect the occurrence

of obesity, chronic enteropathy (CE) and behavioral problems

in adulthood. These chronic disorders are common in domestic

carnivores, challenging to treat, and have major deleterious

effects on health, quality of life and potentially longevity (10–

12). Difficult behavior can lead to a break-down in the human–

animal bond, and may result in abuse, relinquishment or

euthanasia of pets (13–15). It is possible that some of the

modifiable variables explored may represent ongoing risks that

commence or become apparent in early life, and some may be

manifestations of DOHaD, with changes in the epigenome at

periods of developmental plasticity. There is also the potential

for exposures to unmask the effects of DOHaD. Suggested

research priorities are discussed for each condition, based

on existing research in puppies and kittens, factors in adult

dogs and cats known to be associated with the condition and

hypothesized to become established during early life, and on

knowledge of developmental programming in other species.

Research strategies are proposed to increase our understanding

of the long-term impact of early environment and life events for

dogs and cats. Such strategies must include studies to determine

the role of DOHaD as has been done for other species. These

studies might ultimately allow the generation of guidelines

to inform disease prevention from as early as preconception.

This is not only important for animal welfare, but should be

considered in the broader economic and societal context of dog

and cat ownership.

Building upon evidence in dogs and cats, humans and

laboratory animals, we propose a timeline of key exposures

and developmental milestones in puppies and kittens that

shape and define “early life.” Early life in this review is not

intended to relate to a fixed chronologic age or necessarily

to the same period of development classically considered in

DOHaD studies in other species. It is used to describe the

periods preceding adulthood in which the physiological and

psychological maturation of puppies and kittens can be affected

for good or bad, or modifiable risk factors for later chronic

disease emerge. This is intended to help frame future research

and to encourage breeders, owners and veterinarians to take

a holistic, integrated and proactive approach to promoting the

long-term health of pets (10–12).

The context for research on
early-life development of dogs and
cats

Societal

Dogs and cats are cherished as family members in many

households, making their long-term health a high priority for

owners. Societal benefits of dog and cat ownership include the

promotion of human health and wellbeing (16, 17); dogs also

work in a wide variety of service roles. While these factors,

combined with a general concern for animal welfare, provide

a rationale for advancing our understanding of early-life risk

factors for chronic diseases, they also mean that acceptance of

invasive research in these species is limited; this is likely to

be one reason for the relatively slow advancement of DOHaD

knowledge in dogs and cats.

With respect to large-scale observational studies, the

dispersion of the pet population makes studying connections

between early and late exposures and events particularly
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challenging. There is no coherent network of the relevant parties

throughout a pet’s life. For example, each individual dog or

cat may have a different breeder who is responsible for its

prenatal and first 2–3 postnatal months of life, and each pet may

subsequently be homed with a different owner, who in turn may

have a different veterinarian.

Economic

The size of the pet population and the direct economic

significance of pets are tangible measures that help to

contextualize the importance of pursuing avenues for preventive

medicine. There are an estimated 92.9 million dogs in Europe

(25% of households; 2021 data) (18), and 83.7–88.9 million

in the USA (45% of households; 2020 data) (19). The total

population of cats is estimated to be more than 113.6 million

in Europe (26% of households; 2021 data) (18) and 60.2–61.9

million in the USA (26 % of households; 2020 data) (19). Sales

of pet food products were€27.2 billion in Europe in 2021 (18).

In the USA in 2021, market sales were $50.0 billion for pet foods

and treats, $34.3 billion for veterinary care and product sales,

and $9.5 billion for other services outside of veterinary care, such

as boarding, grooming and insurance (20).

Biological

Breed

Large phenotypic variability within the canine species, and

to a lesser extent the feline species, contributes to the complexity

of research in companion animals. The canine species exhibits

the widest morphological and weight differences between breeds

of all terrestrial mammalian species. More than 350 breeds of

dogs are recognized by the International Cynological Federation

(21). Adult weights range from 1 kg, for a Chihuahua, to more

than 100 kg, for an EnglishMastiff. Moreover, many pet dogs (up

to 40% in the UK) are a mix of breeds (22). Age at which adult

body weight is attained correlates with dog breed size, ranging

from ∼9 to 10 months for toy, small and medium-sized breeds,

to 11–15 months for large and giant breeds (23). Size diversity

is less pronounced in the cat population, in which 45 breeds

are recognized (24) and only 5–15% of cats are pedigreed (25).

Adult cat weights range from∼2 kg for a Munchkin to 10 kg for

a Maine Coon (25).

Reproductive biology

Understanding early-life risk factors for adult diseases

and the potential for developmental programming requires a

knowledge of species-specific biology of conception and fetal

and neonatal development (summarized for dogs and cats

in Supplementary Figure 1, Supplementary Tables 1, 2). This

allows the timing of environmental exposures to be related to

the differentiation of cell types and the development of specific

tissues and organs. Overall embryonic and fetal development is

similar between dogs and cats (26) with the exception of oocyte

maturation and ovulation. Ovulation in cats is typically induced

by coitus (26), although spontaneous ovulation seems to bemore

than anecdotal (27). Oocytes are released in metaphase II, so

fertilization can occur as soon as they reach the oviduct (28).

In dogs, there is spontaneous ovulation of immature oocytes at

prophase I. Oocyte meiosis resumes after ∼ 48 h in the oviduct,

and fertilization occurs from 90 h after ovulation (28, 29).

Another difference in dogs is that follicles undergo preovulatory

luteinization, so serum progesterone concentrations are already

high at ovulation (28, 29).

Milestones of early life

Dogs and cats share many major biological milestones

with other species, but the timing and biological details

differ. These milestones include embryonic and fetal events

(Supplementary Figure 1; Supplementary Tables 1, 2), neonatal

survival, transition to solid foods and neutering. Periods of

organ and organ/system development and maturation in which

external factors can modify its developmental trajectory are

numerous. These critical periods represent different windows

of opportunity to promote development beneficial to long-

term health.

Early-life environmental exposures
and events as risk factors for
selected disorders in adult dogs and
cats

Obesity in dogs and cats

As stated by Kopelman (2000), “obesity can be defined

as a disease in which excess body fat has accumulated such

that health may be adversely affected” (30). Obesity is defined

as a chronic relapsing disease, which itself can predispose to

other non-communicable diseases, such as diabetes mellitus,

cardiovascular diseases and cancer in dogs and cats (31).

In the field of veterinary medicine, over 20 national and

international veterinary and associated organizations support

the classification of obesity as a disease (32), which is regarded

as the number one health problem in companion animals (33).

Overweight and obesity in both dogs and cats is generally

measured by determining the body condition score (BCS),

which correlates well with adipose tissue mass (32–35). On this

basis, a study of dogs at family pet shows in the UK reported

that 65% of adult dogs were overweight or had obesity, and 9%

had obesity (10). In the 2018 obesity prevalence survey in the

USA conducted by the Association for Pet Obesity Prevention

Frontiers in Veterinary Science 03 frontiersin.org

https://doi.org/10.3389/fvets.2022.944821
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Gaillard et al. 10.3389/fvets.2022.944821

FIGURE 1

Overview of comorbidities associated with obesity or overweight in dogs (31, 37–40, 42, 43, 46–49). Some associations were specific to either

obese dogs or overweight dogs. CaOx, calcium oxalate.

(APOP), veterinarians assessed 36.9% of dogs as overweight, and

18.9% as having obesity (36). Obesity and/or overweight in dogs

are associated with many comorbidities, functional impairments

(37–43), a shorter lifespan (44), and a poorer quality of life (45)

(Figure 1). In the APOP 2018 survey for cats, the prevalence

of overweight and obesity were 26 and 34%, respectively. The

prevalence of overweight or obesity in adult cats at vaccination

visits in New Zealand was 22 and 3%, respectively (50). As for

dogs, overweight and/or obesity in cats is associated with an

increased risk of a wide range of co-morbidities (46, 51, 52), a

reduced lifespan and a higher risk of death (severe obesity only)

(53, 54), and some, but not all data, suggest a reduced quality of

life (55) (Figure 2).

Early-life risk factors for obesity in adult dogs

Risk factors for obesity can be identified in early life, as early

as the fetal period. For example, low birth weight in Labrador

Retrievers has been associated with overweight in adulthood

even after adjusting for age and neuter status: 70% of dogs

with birth weights below the median were overweight as adults,

compared with 47% of dogs with birth weights above the median

(5). No association was found between adult obesity and growth

rate between birth and Day 2 or between Day 2 and Day 15.

In contrast, in a study of female Beagle colony dogs raised

in controlled environmental conditions, birth weight did not

correlate with adult overweight status, but fast growth rate from

birth to 2 weeks was a predictor for adult overweight at 2 years

of age (4). By the age of 7 months, BCS discriminated between

dogs that would be overweight as adults and those that would be

slightly overweight or ideal weight (4). No significant difference

was found between adult weight groups in their energy intake or

resting energy expenditure corrected for metabolic bodyweight

at the age of 4 months. Resting energy balance between the

age of 7 and 10 months was significantly higher in puppies

who were overweight compared with ideal weight in adulthood.

During this study, dogs were fed ad libitum (time-restricted after

weaning) with a diet formulated for growth, or for neutered

adults, as appropriate. In a different study, a retrospective

analysis of veterinary practice records found that dogs that were

obese by 3 years of age (127 breeds, 93% neutered) had faster

growth in body weight between 12 and 60 weeks of age than that

modeled in healthy dogs in ideal body condition (59).

Neutering is common for dogs and cats and is often

performed before puberty while they are still developing. The

exact timing varies between countries, species and breeds, and

is still a controversial issue. Neutering is well established as one

of the most significant risk factors for obesity in adults (46, 60–

65). Prepuberty or peripuberty neutering in the context of this

review is considered an early-life environmental exposure of

relevance to the risk of obesity, albeit during the later stages

of development. The potential impact of sex (60, 66, 67) and

age of neutering on the effects of neutering on adult obesity

are unclear because findings differ by study. A prospective

cohort study of Golden Retrievers identified an ∼ 42% greater

risk of obesity in dogs neutered between 6 and 12 months
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FIGURE 2

Overview of comorbidities associated with obesity or overweight in cats (31, 52, 53, 56–58). Some associations were found only for certain body

condition scores within the obese or overweight range. Associations were often found between obesity or overweight and a general category of

disease or conditions pertaining to an organ/organ system. In these cases, examples are provided of some of the conditions that the study

included in the category definition.

of age compared with those neutered at >1 year of age,

but no difference in risk between neutering at <6 months

compared with 6–12 months and >1 year (66). Conversely,

in a retrospective study of veterinary records, age at neutering

(ages ≤6 months, >6 months to ≤1 year and >1 to ≤5

years of age) was not associated with the risk of obesity (67).

When growth patterns of pet dogs from the same proprietary

data source were examined, neutering before and after 37

weeks was associated with slight upward or downward shifts in

growth trajectory, respectively; however, these shifts were small,

suggesting limited overall impact on weight gain and, therefore,

future obesity (68). Differences in study design and dog breeds

might explain apparent inconsistencies between these studies.

Indeed, interactions between breed size, age at neutering and

number of veterinary visits per year were reported to affect the

risk of overweight (67).

Hormonal changes resulting from neutering could have a

direct effect on the risk of obesity. Neutered dogs have lower

metabolizable energy requirements than sexually intact dogs

(69, 70), and neutering can increase indiscriminate appetite

(71). Evidence suggests that neutering could also unmask or

augment the effects of environmental exposures in the younger

animal. Increases in the bodyweight of female Beagle dogs after

neutering between the ages of 7 and 10 months were higher in

dogs retrospectively identified to be at risk of adult obesity by

having a higher neonatal growth rate than their contemporaries

of an ideal adult bodyweight (4). The growth of Labrador

Retrievers between 2 and 21 days of life was associated with risk

of obesity at adulthood, but only in neutered dogs (72).

Early-life risk factors for obesity in adult cats

In humans, breast feeding has a protective effect against

childhood obesity compared with feeding formula milk (73),

which might in part be associated with the presence of leptin

in breast milk. Leptin is a hormone produced by adipose tissue

that inhibits food intake and modulates glucose metabolism; the

main source for neonates may be maternal milk (74). In a small

study in cats, the odds for overweight in adulthood were 3 times

less in kittens suckled for >6 weeks compared with <6 weeks,

and there was a predisposition for overweight with suckling

duration of 11 weeks or less (75). The investigators hypothesized

that a short suckling period might lead to perturbations in the

development of control mechanisms for fat accumulation and

body composition through curtailment of leptin intake. A fast

growth rate in cats is a key risk factor for obesity. A comparison

of ad libitum-fed colony cats that were overweight with those

of ideal weight at a median of 8.5 years of age, showed a

significant association between growth rate between 3 and 12

months and later overweight status (76). In a different study

that modeled the growth of colony cats fed ad libitum from

weaning, early growth rate indicated by weight at 15 weeks of

age was a significant predictor of being overweight at 9 years

(77). Hypotheses to explain these associations include genetic,

epigenetic and in utero factors, in addition to physical activity,

food quality, feeding behavior and the gut microbiome (76).

Faster growth rate, smaller litter size, lower birthweight, and

maternal overweight before pregnancy were associated with a

predisposition of kittens to be overweight at 8 months of age in

a study focused on genetic factors, and designed to reduce the
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potential for non-genetic confounders and epigenetic differences

(78). Despite the study design, some of the findings suggested

that developmental programming might have played a role. The

authors speculated that epigenetics might underlie the weak but

significant negative correlation of litter size with overweight at

8 months. Also, epigenetic differences might have contributed

to the observation that, although both overweight mothers vs.

lean and variable-weight mothers, and male vs. female sex were

associated with faster weight gain of kittens, this relationship

became statistically significant for the maternal phenotype later

than the sex difference.

As in dogs, neutering of male and female kittens is a

risk factor for adult obesity (65, 79, 80). Whilst neutering is

associated with increased appetite and food intake (81–83), it is

also associated with reduced maintenance energy requirements

(70, 81, 84). There is insufficient evidence in cats to know

whether the age at neutering is associated with risk of obesity.

However, differential changes in appetite have been associated

with age of neutering; acute hyperphagia was observed in female

cats neutered at 31 weeks of age but not in those neutered at 19

weeks of age (85). These behavioral changes may be associated

with the effects of neutering on appetite-related hormones such

as ghrelin, leptin, adiponectin and glucagon-like peptide-1 (86).

For example, in a study of adult male cats, serum concentrations

of adiponectin rapidly decreased after neutering, and within 7

days, there was a significant increase in serum concentration of

ghrelin (83).

Potential research priorities

Nutrition

The role of early-life nutrition in the development of

adult obesity demands more extensive and diverse research. In

puppies and kittens and their parents, nutrition is relatively easy

tomodify in both research and “real-world” settings, and is likely

to have multiple impacts on factors associated with obesity (87–

91). At its simplest, chronic excessive calorie intake that starts

at a young age results in progressive accumulation of body fat

that ultimately manifests as adult obesity. However, a wealth

of evidence in other species, including humans, shows that

nutritional insults both in utero and postnatally can program

later obesity and other metabolic disorders (92, 93). Models of

obesity in polytocous species demonstrate that poor maternal

nutrition (quantitative and/or qualitative) can modulate aspects

of fat deposition and energy homeostasis in offspring through

epigenetic mechanisms (89, 94, 95). Alterations in the

development of the offspring’s hypothalamus-adipose tissue axis

are believed to be particularly important for obesogenic traits,

manifested as structural changes, mal-programming of appetite

regulation favoring orexigenic pathways, central leptin and

insulin resistance, and alterations in noradrenergic innervation

of adipose tissue (96, 97). Research is needed to determine if low

birth weight in puppies, as a risk factor for adult obesity, is an

example of fetal programming of a “thrifty” phenotype, whereby

a metabolic profile set to cope with inadequate nutrition during

pregnancy, later becomes a risk factor for obesity in the context

of abundant postnatal nutrition. Paternal nutrition in laboratory

animal models can also program obesogenic traits in the

offspring (98), but this does not appear to have been researched

yet in companion animals.

Obesogenic traits can also be sensitive to postnatal

nutritional environment as development of organs and

hormonal pathways continues after birth in mammals (87).

The literature on postnatal maturation of domestic carnivores

is limited, and as in other species, the timing depends on the

organs involved (Supplementary Tables 1, 2). For example,

changes in the morphology of organs such as the adrenal gland

can occur during the first year (99), functional maturation of

digestive processes may not occur until 3 months (100) and

the immune system may not attain all adult characteristics

until 12 months (101). Myelination of the neocortex continues

to increase until ∼9 months after birth (102). Nevertheless, it

is reasonable to hypothesize that developmental plasticity is

concentrated in the suckling period. Research is needed in dogs

and cats to determine the effects of diet in the pregnant and

lactating dam on the quantity and quality of colostrum andmilk,

and whether these effects have consequences for the offspring’s

adult body composition and metabolism. The evaluation of the

impact of food intake and nutritional interventions of the first

days of life is particularly relevant for low birth weight puppies

and kittens when considering nutritional interventions; rapid

catch-up growth is associated with an increased risk for adult

obesity in other species (97).

Growth

In both puppies and kittens, higher growth rates have been

associated with adult obesity (59, 77). It is unclear if and how

aspects of energy balance regulation during growth predispose

adults to be obese or of ideal weight. Postprandial decreases

in acylated ghrelin, an orexigenic gut hormone, are delayed in

7-month old female Beagles already identified as being on a

trajectory to adult overweight, and this may promote excess

food intake (4). The basal plasma concentration of leptin is

positively associated with adiposity but does not appear to

be an early predictor of weight gain. In humans; evidence

suggests that leptin’s main role is to signal low body fat stores

in situations of negative energy balance (4, 103). Research is

needed in larger study populations with different breeds and

sexes to characterize further the dynamics of energy balance

during growth associated with adult obesity, and to evaluate

any role of developmental programming and the environmental

triggers. Ideally, studies of growth and obesity should evaluate

body composition. However, whilst for practical reasons BCS is

most commonly used to evaluate adiposity, the scoring scales

have only been properly validated in adult dogs and cats.

Puppies and kittens have different body composition profiles
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and morphologies compared with adult dogs and cats (104–

106), which makes diagnosing overweight status with BCS

scales designed for adults unsatisfactory. Greater objectivity and

more uniformity between studies might easily be achieved by

evaluating growth against growth rate standards now available

for a comprehensive range of different breed sizes from 12 weeks

of age (68, 107). These standards will be valuable in facilitating

DOHaD research in obesity by identifying rapid or slow growth

at an early age, and for case ascertainment in body composition

and metabolic studies.

Gut microbiota

Differences in the gut microbiota and/or microbiome

of obese vs. lean adult dogs and cats have been observed

(108–112) and changes characterized in obese dogs and cats

during diet-driven weight-loss studies (108, 113, 114). However,

associations between diet, gut microbiota, enteroendocrine

hormones and metabolic disturbances are complex, with studies

reporting contrary findings (113, 115, 116). When the effects of

macronutrient ratios in diets fed to both dams and their kittens

were evaluated, composition of the pre-weaning diet did not

affect the profile of bacterial populations in kitten feces at 8

weeks, but did modulate expression levels of genes in the glucose

and metabolic pathways in blood samples taken at 18 weeks

(117). The findings were reversed for a comparison between two

post-weaning diets. What has not been investigated directly is

any association between gut microbiota as it is developing in

the puppy and kitten and adult obesity, and the potential for

early nutrition to influence this. Research in other species on

developmental programming suggests that could be a fruitful

avenue of research (118, 119).

In mice, gut microbiota mediate changes in global histone

acetylation and methylation of DNA both locally in cells of

the colon and distally in tissues such as liver and white

adipose tissue (120). These microbe-mediated changes have

been demonstrated in species other than dogs and cats during

early life at a time when the gut microbiota is developing

(121). Microbial metabolites have a direct role in epigenetic

modifications, and the composition of the gut microbiota

is relevant because the profile of metabolic byproducts of

dietary constituents such as short-chain fatty acids (SCFAs)

may differ between bacterial species (120, 122). Factors such as

suckling vs. bottle feeding, lifestyle, environment and exposure

to antimicrobials may also impact obesogenic traits through

their effects on the emergent microbiota (123, 124).

Neutering

The strength of neutering as a modifiable risk factor for

obesity in both dogs and cats demands a greater understanding

of the interactions between sex hormones and diet on appetite-

related hormones and blood metabolites (86). The impact of

neutering at different stages of development (early vs. late) needs

to be dissected to resolve differences between studies and explore

sex, species and breed differences. The impact of environmental

exposures such as nutrition and growth rate during the first

days/weeks/months on the effects of subsequent neutering is

under-researched, but existing data warrant further longitudinal

prospective studies (4). One question to be addressed is whether

neutering unmasks or potentiates the effects of developmental

programming puppies or kittens.

Interaction of environmental exposures with genetic

susceptibilities to overweight and obesity

The interaction of genetic risk factors with modifiable

variables in development can increase or decrease the likelihood

of particular phenotypes. In humans, genes enriched or

only expressed within the central nervous system have a

central role in the biology of obesity (125). Knowledge of

genetic susceptibilities can help researchers design studies on

developmental programming and interpret their results.

Dog breeds including Pug, Beagle, Golden Retriever, English

Springer Spaniel, Border Terrier, Labrador Retriever, and

Cavalier King Charles Spaniel are at a higher risk for overweight

than crossbred dogs (126, 127), whilst domestic short-hair

cats have an increased risk of obesity (127). Candidate genes

for genetic variants suspected to increase the risk of obesity

in dogs include POMC, FTO, PPARG, MC4R, and MC3R,

INSIG2, GPR120 (127). Genetic variants may be restricted to

a small number of breeds, e.g., a 14 base-pair deletion in

POMC associated with obesity and food motivation found in

Labradors and Flat-coated Retrievers (128, 129). Genetic risk

factors need to be a consideration in studies investigating

the impact of early-life environment on obesity. Genome-

wide association studies could help elucidate the genetic

background of obesity in companion animals and there is

potential value in both within breed and large-scale across-

breed approaches.

Chronic enteropathy in dogs and cats

Chronic enteropathy is an overarching term that

encompasses subgroups of chronic intestinal disorders

based on treatment response: immunosuppressant-responsive

enteropathy [IRE, previously known as idiopathic inflammatory

bowel disease (IBD)], food-responsive enteropathy, and

antibiotic-responsive enteropathy (12). The prevalence of CE

reported in different studies ranges from 1 to 18% (12). In cats,

IRE frequently coexists with small cell lymphoma (130), which

is considered to fall under the umbrella of CE in this species

(131). Although the underlying etiology of each subtype of CE is

unclear, andmay not be the same, they are chronic inflammatory

conditions, and the pathogenesis reflects interactions between

the gut microbiota and gut immune systems in the context of

environmental factors such as diet, and genetic susceptibilities

in some breeds.
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Early-life risk factors for chronic enteropathy in
adult dogs

There are very few data on early-life risk factors for CE

in dogs; however, these limited data implicate a diverse range

of variables that warrant full investigation. Puppies that had

historically presented in the acute stages of canine parvovirus

infection at a median of 12 weeks of age, had a greater

risk of owner-reported chronic gastrointestinal signs in later

life than control dogs that presented at the veterinary clinic

either for a routine check or for signs not associated with

parvovirus [odds ratio 5.33 (95% CI: 2.12–14.87)] (132). A

similar study also found that previous parvovirus enteritis

was a risk factor for persistent gastrointestinal signs, and

among dogs that had recovered from parvovirus infection,

markers of disease severity were associated with that risk

(133). In another study, early modifiable risk factors for CE in

adulthood included vaccination of the dam during pregnancy,

type of solid food fed to puppies during the first 6 months,

and the puppy’s body condition (“slim” rather than “normal

weight”) (134). These results should be interpreted with caution

because of methodological limitations such as retrospective

owner questionnaires, participant bias and broad diet types that

were not nutritionally controlled. In a retrospective review of

veterinary records from a medical teaching hospital in the USA,

neutering was associated with an increased odds of IBD in males

and especially female dogs (odds ratios for neutered vs. sexually

intact 1.43 and 2.0, respectively, p < 0.05 for both) (135).

The authors hypothesized that the same anti-inflammatory and

antioxidant effects of estradiol demonstrated in murine models

could be protective against IBD in dogs.

Early-life risk factors for chronic enteropathy in
adult cats

Although chronic enteropathy in cats is well described

in the literature (131, 136), no studies were found that have

investigated modifiable risk factors in kittens.

Potential research priorities

Disruption to the maturing gut microbiota, which might

be due to diet or antimicrobials, is associated with increased

risk of later IBD in humans or experimental colitis in animal

models (137). Research suggests that epigenetic modifications

underlie interactions between diet, the immune system and the

microbiota in the development of chronic diseases including

IBD (121, 138).

We suggest that investigation of any association between

gut microbiota in puppies and kittens and development of

CE in adulthood should be a research priority (Figure 3).

There are complex interrelationships between gut microbiota,

host metabolism, the immune system, intestinal inflammation

and gastrointestinal health or dysfunction (139). Is there a

relationship between the gutmicrobiota that develops in puppies

and kittens and that found in adult dogs and cats with CE, which

differs from that in healthy adults? Do perturbations in the

developing gut microbiota affect the maturation of the immune

system and acquisition of tolerance in ways that predispose

puppies and kittens to later CE? Do the effects of microbiota

dysbiosis on the gut metabolome in these pets epigenetically

program susceptibility to future CE and/or dysbiosis? Pieces

of the puzzle have been characterized in puppies and kittens

(140, 141), and separately in adults with CE (139, 142, 143), but

the existence of a link between these has not yet been established.

Bacterial dysbiosis is defined as alterations in the

composition of the bacterial gut microbiota leading to

functional changes in the microbial transcriptome, proteome

or metabolome, and/or decreased bacterial diversity

(139, 144, 145). It is reported that 72%−79% of dogs and

76% of cats with CE have dysbiosis as evaluated by dysbiosis

indices (142, 146, 147). Research in humans and animal models

suggest that the role of dysbiosis in the pathogenesis of IBD

could be causative (148, 149). This makes the development of

the gut microbiota in puppies and kittens, and perturbations of

this, of particular interest as a potential risk factor for CE.

The possibility in dogs of intra-uterine bacterial transfer

from dam to fetus is controversial, but after birth, data suggest

that the dam seeds the initial bacteria and her individual

microbial profile plays a fundamental role in shaping the gut

microbiota of her litter (150). The richness of bacterial species

in the neonatal gut increases from day 2 after birth, and

the gut microbiota changes significantly with age during the

suckling and weaning period (151). The greatest changes to the

microbiota of healthy puppies had occurred by 5–6 weeks of

age in one investigation (151), although differences between the

microbiota of offspring and dam were still apparent at 8 weeks

in another study (152), and small changes might feasibly occur

until 1 year of age (153). As with puppies, the gut microbiota

of healthy kittens develops substantially during suckling and

weaning, although the adult profile might not be fully achieved

in those periods (154, 155). In a study in kittens, changes in

the microbiome were still evident at 18–30 weeks of age, but

had stabilized by 30–42 weeks (156). In another study, the

microbiome was relatively stable in kittens aged 8–16 weeks

(141, 157). Further longitudinal investigation is clearly needed.

It is contended that the microbiota established in puppies and

kittens is likely to be generally stable during healthy adult life as

for humans, but this needs to be verified (139, 151, 152).

The relevance of dietary influences on gut microbiota

and the gut microbiome in puppies and kittens to later

gastrointestinal health status is likely to be multifactorial.

Existing research needs to be extended to investigate early diet as

a potential risk or protective factor for CE. For example, pre- and

probiotic supplementation of Great Danes in the last week or last

4 weeks of pregnancy reduces the risk of neonatal gastroenteritis

in their offspring (158). It is hypothesized that this protective
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FIGURE 3

Early-life environmental exposures to investigate as potential risk factors for chronic enteropathies in adulthood. GI, gastrointestinal.

effect is conveyed via the entero-mammary link, given that in

other studies feeding dams with pro and/or prebiotics improved

the immune properties of their colostrum (159, 160). Another

hypothesis (not mutually exclusive) is that the effect is mediated

by the selection of health-promoting bacteria in the dam that

then colonize the neonates.

The most profound disturbances to gut microbiota are

those caused by antibiotic use. It is hypothesized that

antibiotic use could be a major priming factor in puppies

for later CE. In humans, antibiotic treatment in the first

postnatal year is associated with an increased risk of later

development of IBD (161–163). Acute diarrhea is common

in puppies, and it is often treated with antibiotics. The fecal

microbiota changes in dogs with acute diarrhea and the

bacterial groups involved are not consistently reported to be

the same as in chronic diarrhea, although reduction in fecal

concentrations of SCFAs is a shared finding (139, 145, 164).

In a prospective controlled study, metronidazole (a common

antibiotic treatment for acute diarrhea) significantly altered the

fecal microbiome and metabolome of healthy dogs, including

a decrease in the abundance of Fusobacteria, which are key

SCFA-producing bacteria, and the main bile acid converting

bacterium Clostridium hiranonis that was associated with a

reduction in secondary bile acids (165). Changes persisted in

nearly half of the dogs for at least 4 weeks. The long-term effects

of such treatment in puppies still establishing a normal gut

microbiota needs to be explored in studies on developmental

programming. A course of antibiotic treatment (20 or 28 days)

in 2-month old cats with upper respiratory tract disease was

shown to delay the maturation of their gut microbiota compared

to healthy untreated cats (166). The duration of effects differed

between antibiotics; the impact of amoxicillin-clavulanate on

the microbiome occurred mainly during treatment, whereas

the impact of doxycycline was observed from 1 to 3 months

after antibiotic withdrawal (166). Research should extend to the

use of antibiotics in pregnant dogs; data in humans and mice

suggest that this is a risk factor for gastrointestinal disease in the

offspring (167, 168).

It is not known whether the gut microbiota influences early

development of the gastrointestinal tract and susceptibility to
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chronic disease through epigenetic modifications in puppies

and kittens. Data from mouse studies however, point to

the importance of gut microbiota in modulating post-natal

development of the gut through DNA methylation of genes in

intestinal epithelial cells associated with immunity, metabolism,

and vascular regulation (122, 162). Changes in bacterial

metabolites associated with CE in dogs are known in other

species to influence epigenetic modifications affecting immune

and inflammatory pathways. For example, decreased fecal

abundance of Fusobacterium and Faecalibacterium in dogs

with CE is associated with reduced fecal concentrations

of the SCFA propionate (147, 169). Short-chain fatty acids

can regulate epigenetic modifications by inhibiting histone

deacetylases (HDACs) and contributing acetyl donors for DNA

or histone modifications.

Abnormalities or deficiencies in immune responses to

environmental antigens, together with genetic susceptibilities,

appear to play central roles in the development of CE in dogs

(170). The possibility that some of the immunopathogenesis in

dogs with CE has origins in epigenetic changes was raised by

an investigation of the reduced intestinal expression of mucosal

IgA found in these dogs (171). Hypermethylation of the gene

for TACI was negatively associated with expression of mucosal

IgA; the authors hypothesized that such changes in methylation

status might have been induced by inflammatory mediators and

exposure of the gut to an altered intestinal microflora (171). Such

mechanisms might therefore be a link between environmental

exposures during development and risk of later CE.

Across all the avenues of research suggested, developmental

periods of particular interest in puppies and kittens include

initial colonization of the neonatal gut, weaning, and the

transition from breeding facilities to new owners, when diarrhea

is common, coinciding with changes in diet, stress and exposure

to different microbial environments. Large populations need

to be studied to understand interindividual variations in

microbiota—there may not be a single “normal,” “healthy”

microbiota. Robust studies are needed that use nutritionally

specific diets and record only veterinarian-diagnosed CE. Those

conducting research in developmental programming must of

course consider breed susceptibilities and breed-independent

genetic associations with disease. Dog breeds susceptible to

CE include Weimaraner, Rottweiler, German Shepherd, Border

Collie and Boxer (12, 172).

Behavioral problems in dogs and cats

Behavioral problems in dogs and cats are common and can

affect their welfare and quality of life (173), their relationship

with humans, and their suitability for assistance work (174).

Difficult behavior is frequently cited by owners as being at least

one of the reasons for them relinquishing their pets to animal

rescue centers, being the primary reason for 10% of dogs in

a recent Canadian study (13), and the sole reason for 27% of

dogs and 19% of cats in a US study (14). They can also drive

some owners to seek elective euthanasia for their pets (15).

Although the nature of behavioral problems is wide ranging,

such as aggression toward humans and other animals, separation

anxiety, and soiling in the house, at least some adverse behavior

traits detrimental to the long-term future of dogs and cats can be

attributed to their early-life environment.

Most neurological development occurs during fetal life;

it continues rapidly in the neonate, but myelin formation

and maturation continues until at least 36 weeks of age in

dogs (175). Regions of the brain develop at different rates

throughout early life, potentially therefore remaining susceptible

to environmental exposures (175–177). The development of

behavioral and cognitive traits can be considered in different

phases: gestation, the neonatal period including feeding,

neurological stimulation and mothering in the first 3 weeks,

early socialization from∼ 3 to 12 weeks of age, late socialization

from 12 weeks up to 6 months, and the enrichment period,

which may extend to 1 year of age (177, 178). It is believed

that experiences during each period have cumulative effects on

trainability, health and performance (177, 178).

Early-life risk factors for behavioral problems in
adult dogs

No research in dogs investigating the effects of maternal

stress or diet during pregnancy on the behavior of offspring

was identified, except a mention that puppies of malnourished

dams were extremely nervous in addition to displaying physical

abnormalities (179).

Poor maternal care and socialization before 3 months of age

have been associated with fearfulness in dogs, and poor maternal

care alone was also associated with a combination of fearfulness,

noise sensitivity and separation anxiety (180). These data were

derived from a survey of owners, but other studies with more

objective measures show that the level of mothering can affect

the performance of dogs in cognition tests, stress responses,

and temperament in later life. However, some research findings

appear to be contradictory as to whether an environmental

exposure has a positive or negative effect. For example, in one

prospective study, guide dogs that had experienced more intense

mothering had poorer problem-solving abilities and showed

higher levels of anxiety at 14–17 months of age, both of which

were associated with a significantly greater risk of failing the

guide dog training program (174). In contrast, a benefit of

greater maternal care was demonstrated in male and female

Beagle puppies; the mean duration of daily maternal care in

their first 3 weeks was positively correlated with exploration

and latency of the first yelp, and negatively correlated with

stress in isolation tests at 8 weeks of age (181). A study with

long-term follow up found that a higher level of maternal care

of male and female German Shepherd dogs was associated
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with greater physical and social engagement (e.g., ball retrieval,

positive acceptance of handling) as well as aggression in young

adults at 18 months of age (182). In summary, stimuli in the

suckling period appear to effect some behaviors of adult dogs,

but the direction of reported associations is not always intuitive

or consistent, perhaps reflecting the complexity of the biology

as well as interstudy differences in behavior tests, ages, and

breeds (181).

In a review of seven observational studies on dogs

originating from high-volume commercial breeding

establishments and sold either online or through pets shops, risk

factors were highlighted for later behavioral and psychological

problems (183). In the largest of these seven studies, UK dogs

acquired from sources such as pet stores and the internet

were 1.8 times more likely to show aggression toward humans

than dogs acquired directly from breeders (183, 184). Across

studies, aggression was the most common problem behavior

associated with commercial breeding establishments or puppy

farms and pet stores. Although causative factors were not

investigated, potential causes discussed included stress in

the dam, insufficient or excessive neonatal stimulation, early

weaning and maternal separation, and social isolation between

the age of 3 and 12 weeks.

By the early socialization period, the central nervous

system has developed to a stage that allows conditioning

and associated learning (177). Socialization of puppies with

familiar conspecifics is important for the development of

communication competency, and early interactions with non-

familiar conspecifics may influence the risk of aggressiveness in

adult life (177, 185). For example, restriction of a puppy’s contact

with conspecifics in the 8 weeks after their first exposure to

other dogs in a public setting was found to be associated with

aggression toward unfamiliar dogs when they were 1–3 years

old (185). Early socialization with humans is important for later

responses to handling, leash training and stress tests (186).

Behavioral traits and non-social cognitive abilities continue

to develop in puppies during the late socialization and

enrichment periods (187–189). In young candidate working

dogs, measures of inhibitory control, attention and spatial

cognition improved between 3 and 12 months of age (187).

In a second longitudinal study, performance of cognitive tasks

improved between the age of ∼ 9 weeks and 21 months, and

the adult phenotype for some traits could be predicted from

test results in puppyhood (188). However, little is known about

specific exposures in these periods that might influence the

course of brain development, and the general environmental

context, breed and sex are also likely to play a role (189).

Questionnaires completed by foster carers of puppies from ∼ 2

months of age until the initiation of formal guide-dog training,

showed a positive behavioral effect of growing up in a household

with another dog and with more experienced puppy raisers

(189). Puppies that had been attacked or threatened by an

unfamiliar dog showed significantly higher “dog-directed fear”

and “stranger-directed aggression” at the age of 12 months old

compared with puppies that had not experienced that trauma

and had worse training outcomes (189). However the age at

which the trauma had occurred was not specified.

A link between epigenetic changes and human-directed

social behavior in dogs was found in one study (190). The

DNA methylation of the promoter region of the oxytocin

receptor gene (OXTR) wasmeasured by bisulfite pyrosequencing

followed by methylation-specific PCR in mouth epithelial cells

obtained from various Canidae. Four differentially methylated

5′-cytosine–phosphate–guanine_3′ (CpG) sites were identified.

They were subsequently studied in a large population (n= 217)

of Border Collies. Not only did DNA methylation status differ

between females and males, it was also associated with their

response in a “threatening approach” test in a sex-dependent

manner. For example, more methylation at a specific CpG

site in female dogs tended to correspond with a greater

likelihood of appeasing behavior in the test, whereas the opposite

relationship was found in male dogs. In addition, CpG sites

differed in whether promotermethylation increases or decreased

OXTR expression levels (190), both neuter status itself and

the interaction of sex with neuter status did not predict

methylation levels at the three CpG sites investigated. This study

highlights the complexity of relationships between epigenetic

modifications and behavior in dogs, and the need for research

on environmental factors that influence the epigenetics of the

OXTR gene.

Early-life risk factors for behavioral problems in
adult cats

There is a dearth of knowledge on the effect of the maternal

environment during pregnancy and subsequent behavioral

problems in adult feline offspring. However, one study showed

that when the kittens of dams that had been malnourished

throughout pregnancy were fostered onto non-food deprived

cats, both physical and behavioral development were delayed

(179, 191). The behaviors affected included time spent playing

and the use of a litter tray. Moreover, in adulthood the cats

displayed marked antisocial behavior and alternation between

dominant and submissive behaviors. These observations could

potentially represent classic DOHaD in cats. In other research,

protein restriction of cats during late gestation and lactation

adversely affected the attachment processes in both dams and

kittens in the first 12 days after birth (192).

There is ongoing neurological development of kittens during

the first 3 postnatal months (193). This is observed, for example,

in increasingly sophisticated ability to respond to sound,

development of visual placing and binocular coordination, and

gross behaviors during interactions with siblings (193). Early

life experiences of cats affect behavior in adulthood (194). For

example, human handling of kittens during the sensitive period

for socialization has been associated with more friendly behavior
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toward humans at the age of 1 year (195, 196). The extent

to which epigenetic modulation and/or genetic differences

contribute to these observations is unknown.

Potential research priorities

We suggest that research into the risk factors for behavior

problems in dogs and cats needs to diversify to include

assessments in utero and more studies of environmental

influences in animals aged 6–12 months. This should not

be at the expense of further work in neonates when brain

development is particularly plastic. Neonatal studies are

facilitated by the relative ease with which the environment can

be controlled for related individuals in the same litter, although

this does not allow for the distinction between genetic and

environmental effects. Apparently contradictory results for the

effect of maternal care on stress responses need to be explored,

perhaps by comparing different stress challenges and intensities

at various ages in animals kept in standardized environments.

More long-term studies are required to determine the durability

and reversibility of the effects of early-life environment on

adult behavior.

The extent to which epigenetic modulation drives risk

factors for behavioral disorders in dogs and cats is not known.

The few existing data linking epigenetic changes to dog behavior

(190) highlight the complexity of the relationships involved.

Environmental factors influencing known epigenetic variation

of OXTR are especially important to explore. Polymorphisms

in the gene for the dopamine receptor 2 (DRD2) are associated

with fearful behavior in some breeds of dog (197), and a variant

haplotype in this gene is associated with anxiety separation in

Golden Retrievers (198). DRD2 could therefore be another gene

of interest to study for epigenetic changes affecting behavior.

Studies in other species provide a rich source of

developmental behavioral data and hence hypotheses for

dogs and cats. Various cognitive, behavioral and emotional

disturbances in children have been associated with stress during

development (199, 200). Prenatal stress can result in structural

and functional changes in multiple regions of the developing

fetal brain, including the hypothalamus-pituitary axis (199, 201).

DNA methylation of the glucocorticoid receptor gene and

OXTR are examples of mechanisms believed to link childhood

experiences with psychiatric disorders and temperament,

respectively (202, 203). Preconception experiences of parents

may also be relevant and can affect anxiogenic responses of

their offspring and subsequent generations of descendants

(204, 205). Rodent studies highlight the importance of the exact

timing of environmental exposures and sexual dimorphism

in the developmental sequelae (206). Stresses that may affect

the behavior of offspring include, for example, preconception

psychological trauma of either parent, maternal diet during

pregnancy, early separation of offspring from their dam, and

mothering behaviors (201, 205, 207, 208). Evidence from

various species also links the composition of the gut microbiota

with neurocognitive and behavioral development, building the

concept of a microbiome-gut-brain axis (138, 209, 210).

Strategies for research to understand
early-life risk factors for chronic
diseases and behavioral problems in
dogs and cats, and the potential role
of developmental programming

The developmental origins of health and disease have not

yet been confirmed in pets, but the examples discussed suggest

that developmental programming is likely to be as important as

in other species. We recommend a concerted multidisciplinary

approach to explore developmental programming in dogs and

cats and to close the large knowledge gaps compared with

other species.

Human research and information campaigns onDOHaD are

conducted in the context of a species-specific critical window

of development. We believe that the overall critical window of

time implicated in the development of dogs and cats extends

from preconception to the end of growth, comprising five

periods: preconception, gestation, the suckling period, early

growth pre-neutering or pre-puberty, growth post neutering or

post puberty to adult size (Figure 4). Within this window, there

will be different and sometimes overlapping critical periods

for different aspects of health and disease according to the

developmental plasticity of the relevant tissues. The upper age

limit of this “window” will depend upon species and breed.

Variables of particular interest for DOHaD research in dogs and

cats, both individually and in combination, include the maternal

and neonatal environment, nutrition and associated weight gain

and/or growth rate, the gut microbiota, weaning stress, and

neutering (Figure 4). Work in other species highlights the need

for studies to consider the periconception period (211), the exact

timing of environmental exposure, differences in programming

between the sexes (212–214), the role of the placenta (215),

paternal influences on the offspring’s epigenome, breed and

genetic variation (216–218).

It is critical for the whole scientific research community

to be able to access large datasets encompassing high quality

“whole of life” data and biobanks of tissue samples in order to

explore the long-term impact of exposures in early life. Research

colonies of cats and dogs with internal breeding programs

are useful to address the effect of individual interventions,

but they are uncommon and do not reflect the situation of

household pets, which are exposed to many non-controlled,

interacting environmental factors. Analysis of large prospective

observational cohorts of privately owned animals, perhaps

spanning up to 15 years to encompass whole lifespan, may

identify effects of programming that are small in the individual
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FIGURE 4

Windows of developmental programming proposed in dogs and cats. BCS, body condition score; FG/SG, folliculogenesis/spermatogenesis; FZ,

fertilization; Pre-SPG, prespermatogonia.

and very variable between individuals. A particular challenge

to be addressed is obtaining longitudinal data for a dog or

cat that follows both parents in the preconception period and

extends through gestation and neonatal life to adulthood and

end of life. This might need data from two breeders (one

for the sire and one for the dam), at least one owner, and

probably at least three veterinary surgeons (one each for the

sire, dam and puppy or kitten). These stakeholders need to

be engaged with the potential wide-ranging and long-term

implications of DOHaD and themany possible opportunities for

intervention. Institutions that breed and train dogs for service

roles, and subsequently monitor their progress, e.g., guide dogs,

can provide collaborative opportunities for researchers.

Although there are ongoing large, prospective and

observational longitudinal studies, these primarily target dogs

after they have left the breeder, and so will lack data from the

first 2 months after birth. For example, the Generation Pup

project operated by the Dogs Trust in the UK was initiated

in 2016 to use owner and veterinary data from up to 10,000

dogs to identify modifiable risk factors during development

that impact adult health and welfare (219). The research will

investigate relationships between genotype, environment, and

health and behavior outcomes at different life stages. There

are also breed-specific longitudinal cohort studies such as the

Golden Retriever Lifetime Study run by the Morris Animal

Foundation in the USA, which is collecting data on the lifestyle,

environment, behavior and health of 3,000 dogs recruited

between 2012 and 2015, including annual biological samples

(66, 220, 221). The ongoing Dogslife epidemiological project

(University of Edinburgh, University of Manchester, University

of Liverpool and the Kennel Club) recruits UK pedigree

Labrador Retrievers born after January 2010 (n = 6,084 dogs by

December 2015) (222, 223). Owners complete questionnaires

each month for the first year of their dog’s life and every 3

months thereafter (222, 223). In the USA, the ongoing Dog

Aging Project (University of Washington and Texas A&M

University) has recruited tens of thousands of companion dogs

to explore aspects of “health-span” i.e., the period of life spent

free from disease (224). The Norwegian School of Veterinary

Science cohort established to investigate skeletal disease in four

large dog breeds (n = 700 puppies recruited 1998–2001), is

notable as an example of a longitudinal cohort in which dog

litters were recruited from the time of the dam’s mating, and

data were obtained from breeders, owners and veterinarians

(225, 226).

Longitudinal cat registries and cohort studies appear to be

scarce. The landmark Bristol Cats Study led by the University

of Bristol is the first reported birth cohort study of kittens
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(227). Cats were registered between the ages of 8 and 16 weeks,

and owners complete questionnaires at set intervals. Analyses

reported to date include the prevalence of and risk factors for

obesity, and owner-reported lower urinary tract signs (228–

230). The Cat Phenotype and Health Information Registry in

the USA (UC Davis Veterinary Medicine) collects DNA samples

from healthy and diseased cats with long-term follow-up where

possible (231).

Data on epigenetic mechanisms linking early-life

experiences to adult disorders in dogs and cats are scant;

they are needed to help confirm and understand developmental

programming, and unravel the effects of genetic background.

Methods for profiling genome-wide DNA methylation are well

established, and much can be achieved before attempting to

identify the specific genes responsible for an epigenetically

determined phenotype (232, 233). Epigenetic mechanisms

other than DNA methylation should also be studied, such as

histone modifications, including but not limited to methylation

and acetylation, and non-coding RNA that can regulate gene

expression during cell differentiation and development (234).

A publicly available repository of canine epigenomic data

(BarkBase) has recently been established, comprising the

results of RNA sequencing and assays determining chromatin

accessibility across the genome (235). The database includes

27 different adult tissues and five fetal tissue types at four

embryonic timepoints. The Royal Veterinary College has

instituted the Companion Animal Brain Bank—a standardized

collection of brain tissue and other biological samples from

dogs and cats euthanized with neurological conditions, together

with appropriate controls. Although such tissue banks could

be used to investigate changes in the epigenome, including

those associated with disease, without corresponding data on

environmental aspects of pregnancy and early life, they will not

provide evidence of developmental programming.

The effect of early-life experiences and developmental

programming on at least some physiological characteristics will

be affected by genotypic differences between the many breeds

and mixed breeds. Targeting research to specific breeds on the

basis of their propensity for developing the disease or behavior

of interest can be advantageous, e.g., the Labrador Retriever

for obesity.

There are fewer breeds of cats to contend with in DOHaD

research, but overall the knowledge gaps are greater than in

dogs. There appear to be fewer longitudinal field data in cats

compared with dogs, and there is probably less public awareness

of the potential impact of developmental programming on

chronic diseases.

Concluding remarks

There is direct evidence for early-life risk factors associated

with obesity and behavioral problems in dogs and cats, and to

a much lesser extent CE in dogs. However, multidisciplinary

prospective long-term research is needed to confirm DOHaD

in these species. Extensive data from other species provide

a scientific foundation to help prioritize early-life events and

exposures for investigation. The diversity of dog and cat

breeds, breeding management and lifestyles adds complexity

to such research. It is believed that breeders, owners and

veterinary surgeons each have a critical window of opportunity

in one or more of the life stages from preconception to the

end of the dog or cat’s growth phase in which to promote

programming beneficial to long-term health. An appreciation

by each of these groups of the overall window of development

may also help to foster shared responsibility, transparency and

information sharing.

Dogs and cats are considered to be family members, and

yet veterinary medicine struggles to treat common conditions

that adversely impact pets’ quality of life, the special owner–pet

bond, and the health benefits pets can bring to individuals

and society. Preventive medicine and husbandry practices from

preconception onwardsmust take a higher priority and be fueled

by a better understanding of developmental programming at the

population level.
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