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Abstract. In this paper we formulate a model for the investigation of the in-
fection of aphids by bacteria that protect them against parasitoid wasps. The
model accounts for the possible transmission mechanisms that can originate in
the environment. Mathematically, this corresponds to setting up a nonlinear
dynamical system comprising all the relevant populations, and describing their
possible mutual interactions via ordinary differential equations. A considerable
effort is exerted in assessing the system’s equilibria for feasibility and stability.
The main theoretical result concerns the latter issue, for which the full set of
the Routh-Hurwitz conditions are established analytically.
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1 - Introduction

Mathematical population theory dates back to the work of Malthus who was
mainly motivated by economic considerations [11]. His original model has been crit-
icized and improved by Verhulst [21], but it was not until about a hundred years ago
that Lotka and Volterra formulated the first dynamical system for population interac-
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tions, [9, 22]. Ever since, the use of differential equations for the modeling and un-
derstanding of populations mutual relationships has become a common tool in many
applications. Its benefits can be observed in ecology, epidemiology and the combina-
tions of the two, ecoepidemiology [20].

In this paper we consider an application to sustainable agriculture, where one of the
major crop pests, the aphids, need to be controlled. In particular, a biological mecha-
nism is modeled, for which the aphids are parasitized (i.e. ultimately killed) by wasps,
but this beneficial action may be reduced by endosymbiotic bacteria in the aphid host
that confer resistance to parasitoid wasps [25]. In addition, we account for horizontal
transmission via another set of generalist natural enemies of aphids (ladybirds) that
chew on the aphid body releasing aphid-hemolymph (potentially containing protective
bacteria) into the local environment; these bacteria could then infect and protect other
aphids in the surrounding colony.

The basic aphids-parasitoids interaction has already been examined in [27]. It
considers only 3 populations, i.e. the parasitizing wasps and the aphids, distinguished
among susceptible and bacteria-infected. We found that a small amount of horizontal
transmission via the wasps was required for co-existence of infected and uninfected
aphids to be maintained (as observed in natural populations). Here, we significantly
extend this to account for a more realistic system where complementary biological
control with generalist natural enemies is included. These results begin to identify
ways in which horizontal transmission may occur that we have as yet been unable to
fully study using whole-organism experiments. Thus, such models allow us to de-
sign hypothesis-driven ecological experiments that set out to test the ideas we have
explored here. Mathematically, the model proposed in this paper is much more com-
plex than the one of [27], as it includes more populations, the bacteria and the aphids
predators, namely the ladybirds, and distinguishes whether horizontal transmission of
the protective bacteria by the parasitoid wasps or by environmental exposure after la-
dybird feeding can further explain coexistence of these aphid populations. Often both
parasitoid wasps and ladybirds are used in complementary biological control strate-
gies [16] and it is important to understand how protective symbionts might alter the
effectiveness of these schemes. Overall, there are 7 populations, their mutual relation-
ships being described in Section 3. The corresponding system of ordinary differential
equations is analysed to assess its equilibria and their feasibility. A huge effort is also
devoted to the stability analysis, providing the full set of Routh-Hurwitz conditions.

This study may have application to many crops and regions, so that we do not
specifically focus on a specific type. Rather, it represents a proof-of-concept model
with possibly a very broad usage. Recent biological control efforts indeed aim to in-
crease natural diversity as well as abundance, but competition among natural enemies
themselves can also reduce the effectiveness of the biocontrol and is one of the moti-
vations of this investigation.
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The paper is organized as follows. In the next section we give the relevant bi-
ological background. The model is constructed in Section 3 and its equilibria are
established in Section 4. Section 5 contains the local stability analysis results, and a
final discussion concludes the paper.

2 - Biological background

Aphids are small herbivorous insects that feed on the phloem-sap of herbaceous
plants, shrubs and trees. From over 6000 identified aphid species only a few are ma-
jor crop pests, yet these are agriculturally and economically important as they reduce
crop yield through direct feeding and transmit devastating plant viruses [2,18] Aphids
colonise crop plants in spring and early summer where populations can increase ex-
ponentially causing pest outbreaks within agricultural landscapes. Generally, chemi-
cal pesticides are sprayed to control aphid populations on crop plants, but aphids are
evolving resistance to common pesticides worldwide [10]. Further, many chemical
pesticides are being banned (particularly in Europe) due to their negative effects on
non-target insect populations, such as honeybees [3].

In natural systems, aphid population growth is controlled by interactions with a di-
versity of other species, including numerous natural enemies that find the soft-bodied
aphids an easy-to-access food resource. Many generalist predators (e.g. ladybirds,
lacewings, and syrphid larvae) feed almost exclusively on aphids in summer when
population numbers are high. Aphid-specialist natural enemies include parasitic wasps
that lay their eggs inside a living aphid where the wasp larva develops, pupates, and
emerges as an adult from the dead aphid ‘mummy’, and entomopathogenic fungi that
infect the aphid cuticle, invading the haemolymph and internal organs. Together, these
different types of natural enemies interact to keep aphid population growth under con-
trol [19]. In agricultural systems, natural enemy diversity is reduced but the impor-
tance of natural enemies species as biological control agents is becoming increasingly
apparent and schemes are being implemented to increase natural biodiversity in our
managed systems [17].

The control of aphid populations by natural enemies is, however, also impeded
by the presence of protective bacteria (aphid symbionts) that are hosted by the aphids
within specialised cells [14]. Aphid symbionts are predominantly vertically transmit-
ted from mother to offspring, but horizontal transmission has been shown to occur
at low frequencies during sexual reproduction [13], by parasitoids when ovipositing
eggs into aphids [5], or even through infected honeydew [4]. These bacteria can be
costly to host by reducing aphid fitness (increased development time, reduced fecun-
dity, and reduced longevity), but they also provide strong survival benefits to the aphid
(e.g. resistance to parasitic wasps) [25]. In the absence of a protective symbiont, 60%
of aphids (averaged across all aphid and bacteria species) will be successfully para-
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sitized (no survival of the aphid) but this drops to 43% when an aphid hosts a bacterial
symbiont; however, some combinations of aphid and bacteria will give 100% protec-
tion [25]. Aphid individuals host an average of 1-2 symbionts in the field (30-50% in-
fection rate within populations), from nine common symbiont species, and symbionts
have been identified from over 300 aphid species across the world [6,26]. While many
studies still continue to use experimental work to uncover the mechanisms by which
aphids and aphid symbionts interact, there is also a drive to understand the conse-
quences of aphid symbionts in agricultural and natural systems [12, 23, 24]. In gen-
eral, aphid symbionts protect against specialist natural enemies (parasitic wasps and
entomopathogenic fungi), but there is evidence for this to also influence the general
predators [7]. Indirect effects on general predators can also occur through predation
of aphids that are already infected by parasitic wasps — aphids take a few days to
die when parasitized and slower movement may make them easier prey for predators.
This could enhance the removal of unprotected aphids (not hosting a symbiont) from
the population, leading to higher frequencies of infected aphids in a population.

In previous work, we have shown the importance of a low frequency of parasitoid-
mediated horizontal transmission for coexistence of infected and uninfected aphids
with the natural enemies in a population similar to levels found in field surveys [27].
Here, we explore the impact of introducing a generalist predator (e.g. a ladybird) to the
system. We investigate a potential new method of horizontal transmission, whereby as
the ladybird feeds on the aphid (chewing) it releases the insides of the aphid (including
the symbiotic bacteria) to the surroundings. As ladybirds often feed within aphid
colonies, this could expose nearby aphids to the bacterial symbionts; however, as yet
this method of transmission has not been experimentally tested.

In this paper, we use a modelling approach to try to investigate the above issues.
The paper is essentially aimed at assessing the theoretical properties of the model

proposed. Further ongoing work will be devoted to numerical simulations.

3 - The extended model

We consider wasps Y that are partitioned among bacteria non carriers, W , and
carriers, V , free bacteria B in the environment, i.e. the plants, and not attached to
other insects, uninfected aphids A and bacteria-infected aphids I and their predators,
ladybirds and ladybugsX , which are generalist predators, that can be bacteria-free, Z,
or carriers, J . We do not explicitly model the wasp larvae that grow inside the aphids,
nor the bacteria that are present and reproduce inside the infected aphids.

A scheme of the situation is contained in Figure 1 and the population interactions
are schematized in Figure 2.

The basic mechanisms involved in this rather complex interaction system are out-
lined in the scheme presented below. Let us introduce some further notation, in which
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Fig. 1. A schematic picture of the ecosystem whose model is represented by system (3.1).

the relevant populations appear as subscripts. Each such term would be a function of
possibly several other populations, that are not explicitly specified in (3.1), but will
be duly discussed in the remaining of this Section. Let L denote intraspecific popula-
tion losses, R reproduction, Cd direct contamination via bacteria, Cv contamination
through vectors, P predation by ladybirds, P i induced losses in the wasp population
due to ladybirds predation on aphids carrying the wasp eggs, E aphids losses due to
wasps emergence from parasitized aphids, F free bacteria release in the open environ-
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Fig. 2. A schematic representation of the population interactions.

ment by the predations on aphids.
Possible emigrations or immigrations for each population could also be considered

including constant inputs h ∈ R, but are omitted to keep the model tractable. The
following equations summarize the interactions:

dW

dt
= RW −WLW − CdW − CvW − P iW − P iV(3.1)

dV

dt
= −V LV + CdW + CvW

dA

dt
= RA −ALA − CdA − CvA − EA − PA
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dI

dt
= RI − ILI + CdA + CvA − EI − PI

dZ

dt
= RZ − CdZ − CvZ + PZ + PJ

dJ

dt
= RJ + CdZ + CvZ

dB

dt
= FB −BLB.

Note that wasps reproduction occurs via the egg-larva-nimpha-adult stages, for which
a good assumption is that if the deposing wasp carries bacteria on her body, the latter
are “washed out” in this multiple stage process, so that offsprings emerge as uncon-
taminated new individuals. This implies to assume RV = 0 in the above V equation.
Free bacteria in the open environment cannot thrive, hence we set RB = 0 and do
not consider it any longer. Aphids reproduce asexually, with possibly different rates
if they are healthy or infected. Also, once infected they cannot get rid of the bacteria
within their bodies, so the infection is unrecoverable.

Note that both W and V are the same population Y , in the sense that the demo-
graphic parameters must be the same, since carrying or not carrying bacteria on the
outside of their bodies does not affect them at all. Wasps are parasitoids, i.e. specialist
“predators” of the aphids, in the sense that reproduce only by deposing their eggs in-
side the aphids. Their larvae feed on the aphids, thus slowly killing them, and finally
emerge leaving an empty hull. The deposition rate (birth rate) p is the same for wasps
W as well as bacteria-carrying wasps V , while instead 0 ≤ e ≤ 1 is the fraction of the
eggs that eventually become adult wasps. In case of an egg deposited in the infected
aphids, reproduction is affected by a factor 0 ≤ f ≤ 1, because the emergence rate in
the presence of bacteria is much reduced, most likely and possibly even to zero, when
the larva is killed inside the host.

Note further that the predation gains for the ladybirds are accounted for in the
uncontaminated predators equation via the term PJ as we assume that all the newborns
ladybirds do not carry the bacteria on their bodies, for the same reason of the wasps,
since also ladybirds reproduce via an egg-larva-nimpha-adult cycle.

We now describe in detail the specific functional forms of the above possible in-
teractions among all the populations involved in this ecosystem.

3.1 - Demographic losses

We start from the demographic losses:

LW = LV = m+ aY ; LA = n+ gA+ g̃I; LI = µ+ cI + c̃A;(3.2)
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LB = n+ γY + λ(A+ I) + φX.

For the wasps, LW and LV , which must be the same function as mentioned above,
contain the wasps natural mortality m and then the intraspecific competition, at the
rate a; the latter also is exerted in the same way by both non-carrier wasps as well as
vector wasps, so we take the overall wasp population Y = W + V in it.

For the aphids however, we must distinguish among healthy and parasitized in-
dividuals. For the former, LA contains the natural mortality rate n which instead
becomes µ in case of the infected ones, in LI , and in both functions appear the in-
traspecific competition rates. In this case, however, the “infected” individuals host
within their bodies the wasp larva, which affects them, and we must take this into ac-
count. Thus the intraspecific competition rates are modified by the infection, so they
are distinguished both for and when due by healthy or infected aphids, with respective
rates a, ã and c, c̃.

Free bacteria, meaning those that are neither inside their aphid hosts, nor those that
are attached to the wasps bodies, i.e. just those that are present on the plant, do not
survive in the open environment and do not reproduce there, so that they experience
a natural mortality rate n. They also disappear from the environment when they are
picked up by wasps, both uncontaminated as well as carriers, second term, at rate γ,
with the mechanism earlier described. Note further that the contaminated wasps pick-
ing up more bacteria does not make them “more infected”, thus the equations previ-
ously described are not altered, as the V ’s were and remain carriers. The free bacteria
are also picked up by aphids in some way, this being the actual infection mechanism
hypothesized in this specific model, at rate λ. Again, when an infected aphid gets
infected by one more bacterium, we cannot count one more individual among the I’s
but we have to subtract a bacterium from the B’s. Similarly, bacteria can attach them-
selves to the ladybirds bodies, which may, J , or may not, Z, already carry some of
them, this phenomenon occurring at rate φ with the same proviso. Thus our notation
in this case is a bit stretched, in the sense that the function LB here does not really
model just intraspecific interactions.
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3.2 - Reproduction

We now describe each population reproduction function:

RW = W [epA+ efpI] + V [epA+ efpI]; RA = rA; RI = bI;(3.3)

RZ = uX − vZ − kZX; RJ = −vJ − kJX.

The deposition rate p is the same for wasps W as well as for bacteria-carrying
wasps V , for the reasons already described above, the bacteria attached externally on
their bodies do not affect their demographic capacities. We further denote by 0 ≤ e ≤
1 the fraction of new wasps emerging rate from eggs deposited in a healthy aphid body,
which is further reduced by a factor 0 ≤ f < 1 if the egg is deposited in an infected
aphid. Thus the net birth rate from a healthy aphid is ep, while from an infected one is
efp. As all newborn wasps are uncontaminated, these terms appear in the equation for
RW . When the deposing wasp is uncontaminated, the former is expressed by the first
term in the bracket, the latter by the second one. For a carrier wasp, the corresponding
newborns are modeled via the third and fourth terms, respectively.

For the aphids, we must distinguish among healthy and infected ones, so that the
healthy aphids reproduction rate is r, which becomes b for the infected ones.

Finally, reproduction of the predators is modeled via a logistic-like equation, be-
cause it is assumed that they have other food sources, with reproduction rate u and
natural mortality rate v. Summing the last two equations in (3.3) we obtain indeed a
logistic equation with total environmental carrying capacity (u − v)k−1. The repro-
duction rate is split among bacteria-uncontaminated and carriers so that each subpopu-
lation feels the intraspecific pressure k of the whole ladybirds population X = Z +J .
Furthermore, the whole new generation of the adults appears uncontaminated, because
as mentioned they undergo various stages before reaching full maturity, and we assume
then that the bacteria, if acquired, are possibly lost before reaching maturity.

3.3 - Contamination by bacteria

For the contamination functions we have:

CdW = γBW ; CdA = λBA; CdZ = φBZ;(3.4)

CvA = βV A; CvW = (ωI + δV )W ; CvZ = (χI + ψJ)Z.

Here the direct contamination rates, as already mentioned in discussing the aphid loss
functions, are taken as γ for the wasps, λ for aphids and φ for the ladybirds. Recall
that the corresponding interaction terms are losses for the bacteria population, as they
are removed from the plants. Further these are contamination mechanisms for which
the insect that picks up a bacterium leaves the class of uncontaminated population of
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its respective population and appears in the corresponding carrier population, with a
net balance that leaves the whole population size unchanged. If the bacteria are picked
up by already contaminated individuals, they are removed from the environment, but
do not contribute to new carriers in the respective population. For the indirect contam-
ination, which occurs via another bacteria-affected agent, the basic routes are mainly
interspecific. Namely, a new infected aphid is generated during the laying of the wasp
egg, at rate β. This term represents the hypothesis investigated already in [27]. Then,
a new wasp carrier is generated by contact of an healthy wasp with an infected aphid,
most likely during ovideposition, at rate ω, and a similar term with rate χ for the la-
dybirds. Finally, we can also consider intraspecific transmission, assuming that both
ladybird-ladybird and wasp-wasp interactions Z − J and W − I are relatively rare, so
that such transmissions of bacteria occur at respective rates that are very low, compared
to the former ones, namely δ << ω, ψ << χ.

3.4 - Parasitization effects

We next discuss the aphids losses due to emergence of newborn adult wasps from
their parasitised bodies:

EA = epWA+ epAV ; EI = efpWI + efpIV.(3.5)

For an healthy aphid, this can occur via egg deposition from an uncontaminated wasp
with subsequent hatching, which occurs at rate ep via the term epAW , or when the egg
is deposited by a carrier wasp, originating the term epAV . Emergence from infected
aphids is obtained by similar terms, scaled via the factor f , namely giving efpWI ,
the first term in EI . If the egg is deposited by a carrier, we have the term efpIV , i.e.
the second term in EI .

3.5 - Ladybirds predation

For the predation by ladybirds, we have to distinguish among two effects, one di-
rect on aphids with population losses and a corresponding advantage for the predators,
and an indirect one, as a loss of an aphid that is parasitized by a wasp larva constitutes
also a damage for the latter, a population loss in the parasitoids. Again, we remark that
whether the ladybirds are contaminated or not does not influence their demographic
behavior, in this case specifically the hunting rate. These facts are described as fol-
lows:

PA = qA(Z + J); PZ = q̃(A+ ηI)Z; P iW = pqAXY ;(3.6)

PI = qI(Z + J); PJ = q̃(A+ ηI)J ; P iV = pqfIXY.



proofs EZIO VENTURINO and SHARON ZYTYNSKA [12]

Predation on healthy and parasitized aphids is carried out at the same rate q by the
whole ladybirds population. These terms constitute instead a gain for each ladybird
subpopulation, expressed by the factor q̃ < q, possibly scaled via the factor η for
the infected aphids, as the presence of bacteria may alter the nutritional content for
the predators. Finally the losses of the wasps larval content in the inoculated aphids
corresponds to the predator removal of the fraction of the aphids that contain larvae,
that we know has already been denoted by p. In case of infected aphids, this must be
further scaled via the fraction f expressing, as we know, the larvae survival rate in the
presence of the bacteria in the aphids bodies.

3.6 - Bacteria release in the environment

Release of free bacteria from infected aphids occurs when an attacking ladybird
chews the aphid, so that part of its bodily content is released in the environment. Let
α denote the bacteria liberation rate into the open environment due to this mechanism.
In principle one may think that when the aphid dies naturally or by intraspecific com-
petition, expressed by the terms LI in (3.2), its body decomposes, again releasing in
the environment its content. This could be modeled via a different bacteria release
rate, α̃. However, as the bacteria thrive only in the living aphid, in such case they will
die together with the aphid. Therefore this possible contribution α̃(µ + cI + c̃A) to
FB cannot occur on biological grounds. Finally, mortality can be induced also by the
killing of the aphids when the new wasp emerges from them. Release of bacteria in
the environment in such case again does not occur as the aphid body at this point has
become an empty husk because the wasp larva has eaten all its contents. Therefore
also the possible contribution term to FB , of the type αepfY , is not included in the
model. The equation then reads:

FB = αqIX.(3.7)

Overall, defining the shorthands

(3.8) Y = V +W, X = Z + J,

we have the following equations

dW

dt
= Y [epA+ efpI]−W [m+ aY + γB]− (ωI + δV )W − pqAXY,

dV

dt
= γBW − V [m+ aY ] + (ωI + δV )W,(3.9)

dA

dt
= A[r − n− gA− g̃I]− λBA− βV A− epWA− epAV − qAX,
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dI

dt
= I[b− µ− cI − c̃A] + λBA+ βV A− efpWI − efpIV − qIX,(3.10)

dZ

dt
= uX − vZ − kZX − φBZ − (χI + ψJ)Z + q̃(A+ ηI)X,

dJ

dt
= −vJ − kJX + φBZ + (χI + ψJ)Z,(3.11)

dB

dt
= αqIX −B[n+ γY + λ(A+ I) + φX].(3.12)

4 - Model analysis

To assess the equilibria, we follow a path that allows their determination on the ba-
sis of the possibility of each population to appear or not to appear in the corresponding
equilibrium configuration. We expose the analysis in full detail, rather than summarize
just the points found, for completeness of presentation.

Clearly the originE0 is a possible equilibrium, in view of the fact that (3.9)-(3.10)-
(3.11)-(3.12) is a homogeneous system.

We discriminate at first on the bacteria population. Initially assume that it is not
present, so that B = 0.

The seventh equilibrium equation, (3.12), implies then that either I = 0 orX = 0,
i.e. Z = J = 0, The latter will be denoted as Case (B) and analysed later. For I = 0,
from the second equation in (3.10) we find either A = 0, that we next investigate, or
Case (A), namely V = 0.

4.1 - Case I = A = 0

In the situation with I = A = 0, the first equilibrium equation in (3.10) holds,
the first (3.9) gives W = 0, since W 6= 0 implies then that a linear combination of
populations with positive coefficients gives a negative value, and the second one in
turn V = 0, again because the opposite statement gives a negative value for V . From
the second equation in (3.11) we find

X =
1

k
(ψZ − v).

Summing the equations (3.11) instead, we find

X =
u− v
k

,
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which, upon substution into the former one, gives in turn

(4.1) Z1 =
u

ψ
, J1 =

(u− v)ψ − uk
kψ

which define the equilibrium E1 = (0, 0, 0, 0, Z1, J1, 0) or else J = 0 and a nonvan-
ishing value for Z, but this will constitute equilibriumE6 analysed later. E1 is feasible
for

(4.2) uψ ≥ vψ + uk.

4.2 - Case (A)

We now consider case (A). Here B = I = V = 0 and the second equilibrium
equations in (3.9) and (3.10) are satisfied. There are four equilibria to consider.

We find at first the point E8 = (WΨ
8+, 0, A

Ψ
8+, 0, Z

Ψ
8+, J

Ψ
8+, 0), which is fully anal-

ysed in the Appendix A. Its feasibility conditions are (6.3), (6.5), (6.6) and (6.7).

4.2.1 - Equilibria E11 and E12

We further discover the equilibrium E11 = (0, 0, A11, 0, Z11, 0, 0) with

A11 =
k(r − n)− q(u− v)

gk + qq̃
, Z11 =

(u− v)g + q̃(r − n)

gk + qq̃
,(4.3)

feasible for

(4.4) rk + qv ≥ nk + qu, gu+ q̃r ≥ gv + q̃n.

Further, the situations of simultaneously nonvanishing of the triples A, Z and J , as
well asW ,A andZ, lead to two additional equilibria, namelyE12 = (0, 0, A12, 0, Z12,
J12, 0) and E14 where for the former we find

A12 =
k(r − n)− q(u− v)

gk + qq̃
, X =

1

k
(u− v + q̃A12),(4.5)

Z12 =
1

ψ
(u+ q̃A12), J12 =

1

q
(r − n− gA12)− Z12,

with feasibility provided by the conditions

(4.6) r ≥ n+ gA12 +
qu

ψ
+
qq̃

ψ
A12, A12 ≥

v − u
q̃

,
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Table 1. Equilibria of the system (3.9), (3.10), (3.11), (3.12) and their feasibility conditions.
NI stands for Not Investigated, for the cases that cannot be analytically analysed.

Equilibrium Populations Feasibility
E0 (0, 0, 0, 0, 0, 0, 0) —
E1 (0, 0, 0, 0, Z1, J1, 0) (4.2)
E2 (W2, 0, A2, 0, 0, 0, 0) (4.7)
E3+ (W3+, V3+, 0, I3+, 0, 0, 0) (4.8); sufficient: (4.9)
E3± (W3±, V3±, 0, I3±, 0, 0, 0) (4.8), (4.10)
E4 (0, 0, A4, I4, 0, 0, 0) (4.11) or (4.12)

E5 (0, 0, 0, b−µc , 0, 0, 0) b ≥ µ
E6 (0, 0, 0, 0, u−vk , 0, 0) u ≥ v
E8 (WΨ

8+, 0, A
Ψ
8+, 0, Z

Ψ
8+, J

Ψ
8+, 0) (6.3), (6.5), (6.6), (6.7)

E10 (0, 0, r−ng , 0, 0, 0, 0) r ≥ n
E11 (0, 0, A11, 0, Z11, 0, 0) (4.4)
E12 (0, 0, A12, 0, Z12, J12, 0) (4.6)
E14 (W14+, 0, A14+, 0, Z14+, 0, 0) (6.10), (6.9)
E13 (W13, V13, A13, I13, 0, 0, 0) NI

E15 (0, 0, 0, I15, Z15, J15, B15, ) (6.17)
(6.20), (6.21)

E16 (0, 0, A16, I16, Z16, J16, B16, ) and conic intersections
discussed in the text

E9± (W9±, V9±, 0, I9±, Z9±, J9±, B9±, ) (6.25), (6.27), (6.30)
E7 (W7, V7, A7, I7, Z7, J7, B7) NI

the latter, once rewritten explicitly, corresponding to the second condition in (4.4).

The last equilibrium is E14 = (W14+, 0, A14+, 0, Z14+, 0, 0), again analysed in
Appendix A. For its feasibity conditions (6.9) and (6.10) must hold.

This concludes the analysis of case (A).

4.3 - Case (B)

We now turn to Case (B), where B = Z = J = 0. The equilibrium equations
(3.11) and (3.12) are satified.
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4.3.1 - Equilibria E2, E3, E4

Assume I = 0, Case (C). Then either V = 0 or A = 0. In the latter case, the first
equilibrium equation in (3.9) cannot be satisfied. In the former one instead, the second
equilibrium equation in (3.9) holds. The first ones in (3.9) and (3.10) yield

A2 =
emp+ a(r − n)

e2p2 + ag
, W2 =

r − n− gA2

ep
.

Nonnegativity of W2 requires ar + emp ≥ an but this condition is implied by the
corresponding one for A2. Feasibility for E2 = (W2, 0, A2, 0, 0, 0, 0) reduces thus to

(4.7) r ≥ n+
gm

ep
.

The case I 6= 0 and A = 0 entails that the first equilibrium equation in (3.10) holds.
From the corresponding first equilibrium equation in (3.9) and the second ones in
(3.10) and (3.11), the nonvanishing populations are found

I3 =
a(b− µ) + efmp

ac+ eef2p2
, W3 =

efpI3V3

ωI3 + δV3
,

for the positivity of which we need to require

(4.8) ab+ efmp ≥ aµ.

V3 is a root of the quadratic Γ(V ) =
∑2

k=0 πkV
k = 0, with

π2 = −aδ, π1 = δ(efpI3 −m)− aωI3 − aefpI3, π0 = ωI3(efpI3 −m).

Now, for a positive root V3+ it is sufficient to require efpI3 > m, i.e.

(4.9) befp > efpµ+ cm.

Instead if efpI3 < m, we need a positive discriminant ∆Γ > 0 to have two positive
roots:

(4.10) [δ(efpI3 −m)− (aω + aefp)I3]2 + 4aωI3(aω + aefp)δ > 0.

Now if I 6= 0, V = 0 and A 6= 0, the equations (3.9) are satisfied if W = 0, and
then from (3.10) we find E4 = (0, 0, A4, I4, 0, 0, 0) with

I4 =
(b− µ)g − c̃(r − n)

cg − c̃g̃
, A4 =

c(r − n)− g̃(b− µ)

cg − c̃g̃
,

with feasibility conditions given by one of the alternative sets:

bg + c̃n ≥ µg + c̃r, cr + c̃µ ≥ cn+ bg̃, cg > c̃g̃(4.11)

bg + c̃n ≤ µg + c̃r, cr + c̃µ ≤ cn+ bg̃, cg < c̃g̃.(4.12)
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4.3.2 - Equilibria E5, E6, E10

Alternatively, the case I 6= 0, V 6= 0 and A 6= 0 implies that the first equation
(3.9) if W = 0 is impossible. For B = 0, Z = 0 and J = 0, one can also have the
one-population equilibria E5 = (0, 0, 0, I5, 0, 0, 0) and E10 = (0, 0, A10, 0, 0, 0, 0); in
this context (which does not really belong to case (B), but is reported here anyway),
allowing Z 6= 0, we also find E6 = (0, 0, 0, 0, Z6, 0, 0), with

I5 =
b− µ
c

, A10 =
r − n
g

, Z6 =
u− v
k

and feasibility conditions given respectively by

(4.13) (E5) : b ≥ µ, (E10) : r ≥ n, (E6) : u ≥ v.

Finally, there is the possibility of equilibrium E13 = (W13, V13, A13, I13, 0, 0, 0).
Again, the feasibility details are reported in Appendix A.

This concludes the analysis of case (B) and therefore, together with case (A), of
the whole set of the bacteria-free equilibria. A schematic picture of these equilibria is
reported in Figure 3.

4.4 - Bacteria present in the environment: B 6= 0

We now consider the case in which bacteria are present in the system steady states,
B 6= 0.

In this condition I = 0 cannot occur, because the last equation, (3.12), would not
be satisfied, nor for the same reason can X vanish, entailing both Z = J = 0. Thus
there are three subcases left whenever X > 0. But Z > 0, J = 0 and Z = 0, J > 0
both cannot occur because the second equation (3.11) would not be satisfied. We are
thus reduced to assume

I 6= 0, Z 6= 0, J 6= 0, B 6= 0.

There are three more equilibria that arise, in addition to E7, the coexistence of all
the ecosystem populations. We find E15 = (0, 0, 0, I15, Z15, J15, B15), as well as
E16 = (0, 0, A16, I16, Z16, J16, B16) and E9 = (W9, V9, 0, I9, Z9, J9, B9). In this
situation the second equation (3.9) prevents the remaining possible subcases.

Again, the feasibility analysis of all these equilibria is deferred to Appendix A.
Figure 4 represents schematically the bacteria-affected equilibria.
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Fig. 3. Picture of the bacteria-free equilibria. Left to right, in each column are shown in
color the populations W , V , A, I , Z, J , B that thrive.

5 - Stability

5.1 - The bacteria-free equilibria

5.1.1 - Equilibrium E0

At E0, the Jacobian, fully reported in its general form in Appendix B, becomes a
diagonal matrix, from which the eigenvalues are immediately found

−m, −m, r − n, b− µ, u− v, −v, −n
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Fig. 4. Picture of the equilibria where bacteria thrive. Left to right, in each column are
shown in color the populations W , V , A, I , Z, J , B that thrive.

to give the stability condition

b < µ, r < n, u < v.(5.1)

5.1.2 - Equilibrium E1

For E1, five eigenvalues are immediate, recalling (3.8)

−m, −m, r − n− qX1, b− µ− qX1, −n− φX1,

the remaining two arise from a two by two minor ĴE1 , which using the equilibrium
equations, has a negative trace and a positive determinant,

tr(ĴE1) = −
(
kZ1 + u

J1

Z1

)
− kJ1 < 0,

det(ĴE1) =

(
kZ1 + u

J1

Z1

)
kJ1 − [u− (k + ψ)Z1](ψ − k)J1

=
J1

Z1
[kuJ1 + u(k − ψ)Z1 + ψ2Z2

1 ] =
J1

Z1
δ1.

But the feasibility condition (4.2) implies that u ≥ v, from which δ1 > 0 and in
turn det(ĴE1) > 0, so that it does not contribute to stability. The conditions for its
occurrence come from the eigenvalues above, giving

r < n+ qX1 = n+ q
u− v
k

, b < µ+ qX1 = µ+ q
u− v
k

.(5.2)
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5.1.3 - Equilibrium E2

Three eigenvalues are obtained easily for the Jacobian evaluated at E2,

u− v + q̃A2, −v, −n− λA2 − γW2 < 0.

The remaining part of the matrix factorizes into two minors, both two by two, ∆13
2

and ∆24
2 , where the superscripts denote the diagonal elements that they contain and

the index refers to the equilibrium. The Routh-Hurwitz conditions for the negativity
of their eigenvalues are now investigated. Suitably using the equilibrium equations,
we find

J11(E2) = −aW2 < 0, J33(E2) = −gA2 < 0.

For ∆13
2 then it follows

−tr∆13
2 = aW2 + gA2 > 0, det ∆13

2 = (ag + e2p2)A2W2 > 0

so that the conditions are satisfied unconditionally, while for ∆24
2 we have instead to

require the following conditions

β + δW2 < m+ aW2 + µ+ c̃A2 + efpW2,(5.3)

βωA2W2 + b(m+ aW2) + δW2(µ+ c̃A2 + efpW2)

< δbW2 + (µ+ c̃A2 + efpW2)(m+ aW2).

In addition negativity of the explicitly found eigenvalues is also needed, implying:

u+ q̃A2 < v.(5.4)

5.1.4 - Equilibrium E3

At the equilibriumE3 only one eigenvalue can be factorized immediately, J33(E3),
providing the first stability condition, recalling (3.8)

r < n+ g̃I3 + βV3 + epY3.(5.5)

Use of the equilibrium equations gives the negative diagonal elements

J11(E3) = −aW3 − efp
I3V3

W3
, J22(E3) = −aV3 − ω

I3W3

V3
, J44(E3) = −cI3.

The Jacobian further factorizes into the product of two minors of size three, ∆124
3 and

∆567
3 . A careful analysis of the latter then shows that it gives an additional negative
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eigenvalue, J77(E3) = −n − γY3 − λI3 < 0. The Routh-Hurwitz conditions for
the remaining part of the minor, ∆56

3 , −tr∆56
3 = −J55(E3) − J66(E3) > 0 and

det ∆56
3 = J55(E3)J66(E3)− J56(E3)J65(E3) > 0 explicitly give

u+ q̃ηI3 < 2v + χI3, (v + χI3)v > v(u+ q̃ηI3) + χI3(u+ q̃ηI3).(5.6)

For ∆124
3 the Routh-Hurwitz conditions require also the calculation of the sum

Σ124
3 = ∆12

3 + ∆14
3 + ∆24

3 of the minors of order two:

∆12
3 = J11(E3)J22(E3)− ((a+ δ)W3 − efpI3) ((a− δ)V3 − ωI3) ,

∆14
3 = −cI3J11(E3)− efpI3 (ωW3 − efpI3(V3 +W3)) ,

∆24
3 = −cI3J22(E3) + efpI3ωW3.

In addition, we need−tr∆124
3 = −J11(E3)−J22(E3)−J44(E3) > 0, which is always

true by the diagonal elements being negative and −det ∆124
3 > 0. Explicitly:

cI3∆12
3 + efpI3ωW3

[
efpI3

(
1 +

V3

W3

)
− ωI3W3

V3
− ωI3 − 2δW3

]
(5.7)

> efpI3 (V3 +W3)

[
ω
I3W3

V3
+ ωI3 + δV3

]
.

The final Routh-Hurwitz condition for stability is

−tr∆124
3 Σ124

3 > −det ∆124
3 .(5.8)

5.1.5 - Equilibrium E5

At E5 three eigenvalues are immediately found, J77(E5) = −n − λI5 < 0,
J44(E5) = −cI5 < 0 and one more from J33(E5) that provides the first stability
condition

r < n+ g̃I5.(5.9)

There are then two remaining minors of order two, ∆12
5 and ∆56

5 , for which the Routh-
Hurwitz conditions need to be assessed. The condition for ∆12

5 on the trace gives
2m + ωI5 > efpI5, which is implied by the determinant one. A similar situation
arises for the trace of ∆56

5 , 2v + χI5 > u + q̃ηI5. Thus stability is regulated only by
the conditions on the determinants of ∆12

5 and ∆56
5 , which respectively read

m > efpI5, v > q̃ηI5.(5.10)
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5.1.6 - Equilibrium E4

For E4 the Jacobian splits into three principal minors, the first two of order two,
∆12

4 and ∆34
4 the last one of order three, ∆567

4 , from which however a negative eigen-
value arises immmediately, J77(E4) = −n− λ(A4 + I4). The Routh-Hurwitz condi-
tions on the trace of the minors ∆12

4 and ∆56
4 are implied by their respective conditions

on the determinant, which give:

m > ep(A4 + fI4), v > u+ q̃(A4 + ηI4).(5.11)

The trace of ∆34
4 is instead always negative, −tr∆34

4 = gA4 + cI4 > 0, while the
determinant provides the additional stability condition for this equilibrium:

cg > c̃g̃.(5.12)

Thus this requirement entails that condition (4.12) gives raise just to an unstable fea-
sible equilibrium.

5.1.7 - Equilibrium E6

At this point all eigenvalues are explicitly known. Four of them are negative, −m,
double, J55(E6) = −kZ6 and J77(E6) = −n − φZ6, while the remaining three
provide the stability conditions:

r < n+ qZ6, b < µ+ qZ6, ψZ6 < v + kZ6.(5.13)

5.1.8 - Equilibrium E10

At E10 the third equilibrium equation gives the eigenvalue J33(E10) = −gA10 <
0, three more are negative, −m, −v, −n − λA10 and the remaining ones give the
stability conditions:

epA10 < m, b < µ+ c̃A10, u+ q̃A10 < v.(5.14)

5.1.9 - Equilibrium E11

The equilibrium equations for E11 give J33(E11) = −gA11, J55(E11) = −kZ11.
One eigenvalue is negative, −m, one more is known immediately giving the first sta-
bility condition (5.15) below. Expanding the remaining minor ∆34567

11 − ΛI5, where
I5 denotes the identity matrix of order 5, it factorizes into the product of the sub-
minor ∆47

11, the linear term J66(E11) − Λ that provides the additional eigenvalue
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J66(E11) = −v − (k − ψ)Z11, yielding the second stability condition (5.15) and
the quadratic Λ2 +(gA11 +kZ11)Λ+(gk+qq̃)A11Z11 = 0, which has negative roots
or roots with negative real part.

epA11 < m+ pqA11Z11, ψZ11 < v + kZ11.(5.15)

The Routh-Hurwitz conditions applied to the minor ∆47
11, −tr(∆47

11) > 0 and det(∆47
11)

> 0, give the remaining stability conditions:

b < n+ µ+ (c̃+ λ)A11 + (q + φ)Z11,(5.16)

(µ− b+ c̃A11 + qZ11)(n+ λA11 + φZ11) > αλqA11Z11.

The details for the remaining equilibria, E12, E8, E14 and E13 are deferred to
Appendix B.

5.2 - Equilibria with the presence of bacteria

For equilibria E15 and E9, we state here only the stability conditions that can
easily be established, reporting the more complicated ones in Appendix B, together
with the analysis of the point E16.

5.2.1 - Equilibrium E15

Here we find that one eigenvalue is J33 which gives the stability condition

n+ g̃I15 + λB15 + q(A15 + J15) > r.(5.17)

5.2.2 - Equilibrium E9

Here the situation is even more difficult, as only one eigenvalue can be evaluated,
and furthermore the remaining minor of order six cannot be factorized. The stability
condition arising from the eigenvalue J33(E9) reads

r < n+ g̃I9 + λB9 + epW9 + qX9.(5.18)

6 - Discussion

The aim of this model is the investigation of the aphids infection process by bacte-
ria that can protect them from wasp parasitoids. In this context, we should recall that
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Table 2. Equilibria of the system (3.9), (3.10), (3.11), (3.12) and their stability conditions. NI
stands for Not Investigated, for the cases that cannot be analytically analysed.

Equilibrium Populations Stability
E0 (0, 0, 0, 0, 0, 0, 0) (5.1)
E1 (0, 0, 0, 0, Z1, J1, 0) (5.2)
E2 (W2, 0, A2, 0, 0, 0, 0) (5.3), (5.4)
E3 (W3, V3, 0, I3, 0, 0, 0) (5.5), (5.6), (5.7), (5.8)
E4 (0, 0, A4, I4, 0, 0, 0) (5.11), (5.12)

E5 (0, 0, 0, b−µc , 0, 0, 0) (5.9), (5.10)
E6 (0, 0, 0, 0, u−vk , 0, 0) (5.13)
E8 (WΨ

8+, 0, A
Ψ
8+, 0, Z

Ψ
8+, J

Ψ
8+, 0) (6.38), (6.40), (6.39), (6.41)

E10 (0, 0, r−ng , 0, 0, 0, 0) (5.14)
E11 (0, 0, A11, 0, Z11, 0, 0) (5.15), (5.16)
E12 (0, 0, A12, 0, Z12, J12, 0) (6.34), (6.35), (6.36), (6.37)
E14 (W14, 0, A14, 0, Z14, 0, 0) (6.42), (6.43), (6.44)
E13 (W13, V13, A13, I13, 0, 0, 0) (6.46), (6.47), (6.48)

E15 (0, 0, 0, I15, Z15, J15, B15, ) (5.17), (6.49), (6.50)
E16 (0, 0, A16, I16, Z16, J16, B16, ) (6.51), (6.52)
E9± (W9±, 0, 0, I9±, Z9±, J9±, B9±, ) (5.18), (6.53)
E7 (W7, V7, A7, I7, Z7, J7, B7) NI

infecting bacteria are a nuisance, because they protect aphids from parasitoid wasps
and reduce the effectiveness of biological control efforts. The model accounts for all
the possible mechanisms that contribute to the infection.

By examining the equilibria of the model, it is immediately apparent that the pres-
ence of free bacteria in the environment, i.e. B 6= 0, entails also the presence of
the infected aphids, compare equilibria E15, E16 and E9 in Table 1. On the other
hand, the equilibria that one would strive to obtain are those in which no aphids are
present, while possibly the remaining environmental populations still thrive. It should
be clearly stated that these equilibria are ecologically very difficult, to achieve in the
field, if not impossible. In fact, here we considered a closed system, where no immi-
grations are possible.

Equilibrium E1 is not of this type, because together with the aphids also the par-
asitoids vanish, but this could be a price that can be willingly accepted, if the aphids
population can be eradicated. In order to achieve it, both the feasibility (4.2) and the
stability (5.2) conditions must be ensured. In these stability conditions, the reproduc-
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tion r, b and mortality n, µ rates of uninfected and infected aphids appear. As the latter
are usually smaller than the former, the quantity qk−1(u− v) should be large enough
so that (5.2) is satisfied. In turn, this implies that the aphids’ predators reproduce fast
(high u) and die slowly (small v), and/or that their intraspecific competition rate k is
small, and/or that their hunting rate on aphids q is large. On the other hand, to en-
sure feasibility, the ladybirds carrying capacity (u− v)k−1 should exceed the ratio of
reproduction u and transmission of bacteria ψ rates.

Equilibrium E2 contains both wasps and uninfected aphids, at nonzero levels. It
is therefore questionable if it is a target to be aimed at, as aphids are prone to be
parasitized, but still they thrive in the environment, damaging the crops. In case this
is found as an acceptable cost, assuming as mentioned above that aphids reproduce
already fast enough, r > n, for its achievement the parameters g and m should be low,
while e and p large, to ensure feasibility. The converse conditions would of course
be required if this equilibrium should instead be avoided. In the former case, a low
wasp mortality m is needed, as well as a low healthy aphids intraspecific competition
g, and/or high wasp maturation e and deposition p rates. The stability conditions
involve the equilibrium population values and therefore are more involved to interpret
ecologically.

Equilibria E3, E4, E5, E13 and E9 contain the infected aphids population and
therefore should be avoided as these are resistant to the parasitic wasps. Interestingly,
note that the first four equilibria contain the bacteria thriving only inside the aphids’
bodies, but not in the environment. This is possible clearly due to the reproduction
mechanism of the aphids described in the model formulation, because there is vertical
transmission of the bacteria. In order to achieve this aim, the feasibility or stability
conditions must be violated. An easy way of obtaining this result for E3 is via a
large infected aphids mortality µ, compare conditions (4.8) and (4.9), but this may be
difficult to hold, as in general their reproductive rate exceeds the mortality, b > µ.
But if for instance the parameters g̃, β and ep are low enough, it may be possible to
invalidate the stability condition (5.5). Thus for this to occur, a low wasp effective
reproduction rate, as well as low intraspecific contacts among healthy and infected
aphids and wasp carriers V would be needed.

To avoid equilibrium E4 for instance one could try see if the stability condition
(4.12) can be violated. This entails that the ratio of the intraspecific competition
among healthy aphids and of healthy and infected aphids, gg̃−1, should not exceed
the corresponding ratio of the intraspecific competition between infected and healthy
aphids with the one pertaining only to infected aphids, c̃c−1. Note also, that perhaps
paradoxically, a high level of aphids may entail that the stability condition (5.11) is
violated, if the right hand sides of one of the inequalities exceeds the wasp, m, or the
ladybirds, v, mortality rates. Similar considerations hold for the equilibrium E5, com-
pare (5.10). On the other hand, a low number of infected aphids may help in violating
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the first stability condition (5.9). For E13, in view of the fact that the feasibility are
not explicitly known, we focus only on stability. For instance, condition (6.47) would
be violated for a low enough v, the ladybirds natural mortality. Note that a negative
statement can also follow from this remark. For instance, the use of chemicals or other
agents that indiscriminately kill insects would artificially increase v, and are therefore
likely to favor the insurgence of equilibrium E13.

At E10 only healthy aphids thrive. But from the stability analysis, it turns out
easily that a low enough wasp mortality m coupled with a high effective reproduction
rate of theirs, ep, renders this point unstable, compare the first condition in (5.14).

Susceptible aphids can thrive with their predators, whether only not carriers, point
E11, or also including the carrier ones, E12. In both cases it is observed that a high
value of the parameter e, the wasp emergence rate from larvae implanted in the aphids,
may help in destabilizing these equilibria, compare (5.15) and (6.34). A high con-
tagion rate ψ of healthy wasps from carrier wasps may achieve the same result for
the point E11, when combined with low wasp mortality and intraspecific competition
rates. A high aphids population level coupled with a relatively low reproduction rate
may instead render the point E12 unfeasible, see the first condition in (4.6). The equi-
librium E14 can instead be destabilized by a high bacteria transmission rate among
healthy and carriers ladybirds, φ, combined with their low mortality and intraspecific
competition rates, see (6.42).

Equilibrium E6 contains only the predators. If we are willing to sacrifice the
parasitoid population, it can be achieved if the ladybirds population is high enough.
This can certainly be obtained by an artificial enrichment of the environment of such
predators, and indicates that at least in principle, biological control could be viable.

The above considerations are relevant, especially because some of the indicated
measures to achieve or avoid some equilibria involve insects intrinsic parameters, but
perhaps they could be acted upon by suitable external human actions. These could
represent viable indications for the field workers, suggesting possible strategies for the
biological control of these infestants.

6.1 - Comparison with the earlier, reduced model

Note that in the previous investigation [27] only four equilibria were found other
than the origin and coexistence. The infected-aphids-only point of [27] corresponds
to the equilibria E5 and E15 of this paper. The former has only the infected aphids
as nonvanishing populations, the latter also free bacteria and ladybirds. For E5 the
feasibility conditions are the same as in [27], while for E15 they can be relaxed or
strenghtened depending on the sign and magnitude of the quantity q(v − u)k−1. If
positive, the aphids birth rate can be lowered perhaps even below the mortality level,
without affecting the equilibrium feasibility, and conversely a large ladybirds net birth
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rate u − v would render this equilibrium unfeasible. For stability of E5, condition
(5.9) is the same as found in [27]. But now two more are necessary for stability,
(5.10), on which to act to prevent this equilibrium to arise. In particular, the wasps
m and ladybirds v natural mortalities, if low enough, would respectively drop below
the thresholds efb(b − µ)c−1 and q̃η(b − µ)c−1. In this situation a high infected
aphids mortality c would also be of help. Therefore the enlarged model at hand here,
shows that there are further tools available for controlling these pests, than those found
in [27].

In [27] another one-population equilibrium is the susceptible-aphids-only point. It
corresponds here to the points E10, E11 and E12. The feasibility condition r ≥ n for
which the susceptible aphids net birth rate is positive arises also here atE10 but it is re-
laxed for E11 and E12 where similar considerations as in the previous case of E15 can
be made. These equilibria could be rendered unfeasible by suitably playing with the
ladybirds net birth rate, for instance for E11. Also in this case the stability conditions
for the three points E10, E11 and E12 provide more options for their destabilization
than those found for the correspoding equilibrium in [27]. For instance, a very high
transmission rate ψ among ladybirds destabilizes E11, but with the most likely result
that the system settles toE12 where the two ladybirds populations are present, together
with aphids. Instead, a low wasp mortality rate m helps in destabilizing both E11 and
E12, see the first condition in (5.15) as well as (6.34).

When both susceptible and infected aphids are the only populations present, in [27]
the feasibility conditions are a bit more involved. This equilibrium corresponds here
to the points E4 and E16. For the latter we do not have equilibrium values, but dis-
cussed its feasibility through analytical means, and stability is even more complicated.
But with numerical information on the model parameters, in a specific situation, the
conditions could be used to destabilize the equilibrium. The feasibility conditions for
E4 are exactly the same as found in the former investigation. The stability condition
also coincides, but here one more is found. The point thus can be destabilized simply
if the ladybirds birth rate exceeds their mortality, see the second inequality in (5.11).

Wasps and infected aphids can also coexist, in the absence of susceptible aphids,
in [27]. Here this is expressed by the point E3 where also carrier wasps are present,
as well as E13 and E9. It is interesting that the two feasibility conditions found in
[27] appear here split among E3, see (4.8), and (4.9), both scaled via the fraction p.
Again here the stability conditions are more elaborated and provide additional possible
tools for the destabilization of this point, the simplest and most usable being (6.47)
already described above. This is further enhanced in the analysis of E9, which is the
coexistence point that thus contains also the healthy aphids, where for feasibility also
the parameters related to ladybirds and wasps appear, see (6.25), (6.27), (6.30). The
first stability condition (5.18), which is the same as the first one for E3, (5.5), can be
satisfied more easily than in the restricted model of [27]. But the additional Routh-
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Hurwitz conditions (6.53) make the stability requirements more stringent. The same
holds true for E3, where for instance low ladybirds mortality v and transmission rates
χ will help in the destabilization process, compare the first inequality in (6.53).

6.2 - Ecological considerations

The major result of this investigation, however, is that in [27] no point exists where
the aphids disappear, unless also the wasps are wiped out. Here this fact occurs as
well, but aphids can vanish leaving ladybirds thriving, at equilibria E1 and E6. Thus
disappearance of aphids entails the disappearance of their specialist parasitoids, a fact
that should be expected. Biological control in closed systems can potentially avoid
this by providing additional non-pest aphids on banker plants [1]. This maintains the
parasitic wasp populations when pest aphids are removed from the system, and keep
them available in case of reintroduction of the pest aphid.

A few points that can be raised by ecologists in this context are whether predation
by generalist natural enemies can alter the aphid-wasp interaction. We have positively
answered this issue in the discussion above and this is relevant for exploration of com-
plementary biological control strategies [16]. As for the mechanism responsible for
the alteration, it may be likely that the reason might be related to the aphids exposure
to the bacteria, increasing the proportion of infected aphids that are resistant to the
wasps, as well as increasing wasp losses by predation of parasitized aphids, reducing
the impact of wasps on the aphid population. Equilibrium E15 might be an answer to
the former statement, where healthy aphids vanish, and only infected thrive, as well as
ladybirds. Such a situation would be feasible only if the ladybirds were able to main-
tain low levels of aphids in the population. Combined with a reduced reproduction rate
of infected aphids [25], this could be a viable control strategy where protective bacte-
rial symbionts are fixed in the population. On the other hand, equilibria E15 and E16

may also be in support of the wasp pressure reduction, as also wasps vanish there. Fi-
nally, the ecologists may argue that with two types of natural enemies there are always
some infected and uninfected aphids in a population, i.e. always a polymorphism, no
fixed type. This is not necessarily true, because there are equilibria, whenever their
feasibility and stability conditions are verified, where infected aphids disappear, for
instance E2, or healthy ones vanish, E3 for instance.

In reality, we find that the proportion of aphids hosting protective bacteria is dy-
namic across a growing season [15]. (Smith et al 2015). A system therefore might
move between a number of these different states until a more constant environment is
experienced upon which the equilibrium may be achieved. Even in closed systems, a
change in the temperature or available host plant could disrupt the equilibrium, while
in the field many more factors might affect the interactions. Indeed, all these changes
will be reflected into and will affect the model parameters and therefore may ultimately
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lead to equilibria shifts. As we have seen, the addition of a further natural enemy
leads to more potential outcomes. But the latter would eventually be influenced by yet
untested abiotic and biotic factors.

So, overall, this theoretical analysis, although heavy at times and with conditions
that might in practice be difficult to interpret and use, is still worthy because it provides
some extra light on additional means to fight aphids in nature.
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Appendix A - Feasibility details

Equilibrium E8

From the second equation in (3.11), we find

ψZJ = J(kX + v)

which upon substitution into the first (3.11) gives

(6.1) X =
1

k
(u− v + q̃A)

that can be used in the first equation in (3.9) to yield

W = 1
aΦ(A), Φ(A) =

∑2
i=0 aiA

i,(6.2)

a2 = −pqq̃
ak

< 0, a1 =
p

a

[
e− qu− v

k

]
, a0 = −m

a
< 0.

This parabola has the roots Φ± and admits a feasible portion only if

∆ = a2
1 − 4a0a2 > 0.(6.3)

From the first equation in (3.10) we obtain

W = L(A) = b0 − b1A, b0 =
1

ekp
[k(r − n)− q(u− v)],(6.4)

b1 =
gk + qq̃

ekp
≥ 0.

The straight line L has a negative slope, so that also to have a feasible portion, the
following requirement must hold

b0 > 0.(6.5)

Four situations may then arise, based on the position of the zero of L, A0 = b0b
−1
1 .

No intersection between the straight line (6.4) and Φ(A) exists if A0 < Φ−. One
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intersection exists for Φ− < A0 < Φ+, two arise if Φ+ < A0 for a slope of L
sufficiently large in absolute magnitude, but these disappear through a saddle-node
bifurcation if the slope becomes too close to zero. Thus the alternative requirements,
loosely stated, are

(6.6) Φ− < A0 < Φ+; Φ+ < A0, gk + qq̃ >> ekp.

These intersections give AΨ
8± as well as WΨ

8± and in turn we obtain XΨ
8± upon

substitution into (6.1). From the second equation in (3.11) in turn

ZΨ
8± =

1

ψ
[v + kXΨ

8±], JΨ
8± = XΨ

8± −AΨ
8±.

Note that the latter is ensured to be nonnegative if the following condition holds

(6.7) u+ (q̃ − k)AΨ
8± ≥ v.

Thus for the equilibrium E8 = (WΨ
8+, 0, A

Ψ
8+, 0, Z

Ψ
8+, J

Ψ
8+, 0), the feasibility con-

ditions are (6.3), (6.5), (6.6) and (6.7).

Equilibrium E14

For E14, the first equations in (3.10) and (3.11) yield the equations of two planes:

π1 : gA+ qZ + epW = r − n, π2 : kZ − q̃A = u− v.(6.8)

These intersect on the coordinate planes respectively at the points

π1 : P̃W = (W̃0, 0, 0), P̃A = (0, Ã0, 0), P̃Z = (0, 0, Z̃0),

W̃0 =
r − n
ep

, Ã0 =
r − n
g

, Z̃0 =
r − n
q

;

π2 : Q̃ = (0, Â1, 0), Q̂ = (0, 0, Ẑ1), Â1 =
v − u
k

, Ẑ1 =
u− v
k

.

Note that surely one of Q̃ or Q̂ is admissible. For feasibility of P̃ , the first of the
following conditions is required, while to ensure that π1 ∩ π2 6= ∅, one of the last two
is necessary:

r ≥ n; 0 ≤ Â1 ≤ Ã0, 0 ≤ Ẑ1 ≤ Z̃0.(6.9)

The intersection of π1 and π2 on the plane W = 0 is the point P 1 = (0, A1, Z1),
the one on Z = 0 is the point P 2 = (W 2, A2, 0), and the one on A = 0 is the point
P 3 = (W 3, 0, Z3) where

A1 =
k(r − n) + q(v − u)

kg + qq̃
, Z1 =

u− v + q̃A1

k
; A2 =

v − u
q̃

,
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W 2 =
r − n− gA2

ep
; W 3 =

r − n− qZ3

ep
, Z3 =

u− v
k

.

These points are feasible under the conditions (6.9). In such case, the segment S
joining P 1 with P 2, when v > u, or alternatively joining P 1 with P 3 is feasible. Note
that the first equation in (3.9) gives the degenerate quadric surface

Φ(W,A,Z) = epA− aW − pqAZ −m = 0.

In order that the segment S intersects the quadric Φ, this intersection providing the
required equilibrium, the above two points must lie in the opposite half spaces into
which Φ partitions R3, i.e. respectively one of the following conditions must hold,

(6.10) Φ(P 1)Φ(P 2) < 0, Φ(P 1)Φ(P 3) < 0.

Feasibity for E14 thus requires (6.9) and (6.10).

Equilibrium E13

In this case the equations (3.9) and (3.10) can be reworked to yield two conic
sections. Summing the two equations of (3.9) we obtain

Y13 ≡ Y (A, I) =
1

a
[ep(A+ fI)−m].

Substituting this into the equations (3.10) and summing the two equations we find

(6.11) Θ(A, I) = A2(e2p2 + ag) +AI(ac̃+ 2e2p2f + ag̃)

+ I2(ac+ e2p2f2)−A[epm+ a(r − n)]− I[epmf + a(b− µ)] = 0.

On the other hand, solving the second equation in (3.9),

V =
1

β
H̃V , H̃V = r − n− gA− g̃I − epY,(6.12)

and substituting into the first of (3.10), we find the convex parabola

ΛV (V ) = δV 2 +HV V − ωIY = 0, HV = aY +m+ ωI − δY,(6.13)

which, because ΛV (0) = −ωIY < 0, has a unique positive root,

V+ =
1

2δ

[√
H2
V + 4δωIY −HV

]
.
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Substitution into (6.12) produces

δ

β2
H̃2
V +

1

β
HV H̃V = ωIY,

which, in expanded form, reads Π(A, I) =
∑2

i,k=0 πi,kA
iIk = 0, with

(6.14)
π2,0 = (ag + e2p2)[δ(ag + e2p2)− β(a− δ)ep],
π1,1 = {[2δ(ag̃ + e2p2f)− β((a− δ)epf + aω)](ag + e2p2)

−(ag̃ + e2p2f)(a− δ)ep− epβ2aω}
π0,2 = {(ag̃ + e2p2f)[δ(ag̃ + e2p2f)− β((a− δ)epf + aω)]− aefpβ2ω}
π1,0 = {[a(r − n) + emp][βep(a− δ)− 2δ(ag + e2p2)]− βδm(ag + e2p2)}
π0,1 = {[a(r − n) + emp][β(epf(a− δ) + aω)− 2δ(ag̃ + e2p2f)]

+a2β2ωm− βδm(ag̃ + e2p2f)}
π0,0 = δ[a(r − n) + emp][a(r − n) + emp+ βm].

But neither the invariants, respectively

∆Θ = [(ep)2 + ag][ac+ (epf)2]− [ac̃+ 2(ep)2f + ag̃]2

4
; ∆Π = π2,0π0,2 −

1

4
π2

1,1

nor the intersections with the coordinate axes, can have a sure sign. The latter are
respectively the origin and the points (AΘ, 0), (0, IΘ), (AΠ, 0), (0, IΠ), where

AΘ =
epm+ a(r − n)

e2p2 + ag
, IΘ =

epmf + a(b− µ)

ac+ e2p2f2
,

while AΠ and IΠ are respectively the roots of the two quadratic equations

2∑
k=0

πk,0A
k = 0,

2∑
k=0

π0,kI
k = 0.

Here again the signs of all the coefficients are not determined, giving rise to every
possible alternative. Therefore in this situation all the possible cases can arise, giving
more possibilities than the ones arising for equilibrium E16 listed below. Hence, we
do not pursue this case any further.

Equilibrium E15

In case of E15, the equations (3.9) and the first one in (3.10) are satisfied. Solving
the second one in (3.11) for BZ and substituting into the first one gives

(6.15) X =
1

k
(u− v + q̃ηI),
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and the latter into the second one of (3.10), provides

(6.16) I15 =
k(b− µ)− q(u− v)

ck + ηqq̃

from which the value of X15 is then obtained plugging (6.16) into (6.15). Nonnega-
tivity of these quantities requires

(6.17) kb+ qv ≥ kµ+ qu, u+ q̃ηI15 ≥ v.

Substituting further (6.15) into (3.12), in view of (6.17) the nonnegative bacteria
population level is then obtained

B15 =
αqI15(u− v + ηq̃I15)

nk + λkI15 + φ(u− v + ηq̃I15)
≥ 0.

Using (6.15) into the second equation of (3.11) yields

Z15 = J
v + kX15

ψJ15 + φB15 + χI15
= J

u+ q̃ηI15

ψJ15 + φB15 + χI15
≥ 0

where the value of J is the positive root J15 of the quadratic
∑2

k=0 βkJ
k = 0 obtained

combining (6.15) and (6.16). The existence of such a feasible J15 is always guaranteed
in view of the opposite signs of β0 = −X15(φB15 + χI15) < 0 and β2 = ψ > 0,
while β1 = v + (k − ψ)X15 + φB15 + χI15) ∈ R. Feasibility thus requires only
(6.17).

Equilibrium E16

For E16 we substitute the value of BZ from the second equilibrium equation of
(3.11) into the first one to find X , which differs from (6.15), here being

(6.18) X =
1

k
[u− v + q̃(A+ ηI)].

From (3.12) we then obtain

(6.19) B =
αqI[u− v + q̃(A+ ηI)]

nk + λk(A+ ηI) + φ[u− v + q̃(A+ ηI)]
.

Feasibility for X , which also gives B16 ≥ 0, entails

(6.20) u+ q̃(A+ ηI) ≥ v.
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Using (6.19) into the equilibrium equations (3.10), two conic sections in A and I ,
Ξ(A, I) and Ω̃(A, I), are obtained:

Ξ = (r − n− gA− g̃I − qX)[nk + λk(A+ ηI) + φkX]− kαλqIX = 0,

Ω̃ = kαλqAX + (b− µ− cI − c̃A− qX)[nk + λk(A+ ηI) + φkX] = 0.

We study Ξ, which can be written as Ξ(A, I) =
∑2

i,k=0 yikA
iIk with

y20 = (kg + qq̃)(kλ+ φq̃), y02 = (kg̃ + qq̃η)(kλ+ φq̃η) + kαλqq̃η,

y11 = (kg + qq̃)(kλ+ φq̃η) + (kg̃ + qq̃η)(kλ+ φq̃) + kαλqq̃η,

y10 = (kg + qq̃)[nk + φ(u− v)]− (kλ+ φq̃)[k(r − n)− q(u− v)],

y01 = kαλq(u− v) + (kg̃ + qq̃η)[nk + φ(u− v)]

−(kλ+ φq̃η)[k(r − n)− q(u− v)],

y00 = −[k(r − n)− q(u− v)][nk + φ(u− v)].

Assuming nondegeneracy, the sign of its invariant δΞ = y20y02 − 1
4y

2
11 cannot be

determined unambigously:

δΞ = (kg + qq̃)(kλ+ φq̃)kαλqq̃η

− 1

4
[(kg + qq̃)(kλ+ φq̃η)− (kg̃ + qq̃η)(kλ+ φq̃)]2

− 1

4
kαλqq̃[kαλqq̃ + 2(kg + qq̃)(kλ+ φq̃η) + 2(kg̃ + qq̃η)(kλ+ φq̃)],

so the nature of the conic could be both an ellipse, for δΞ > 0 or a hyperbola for
δΞ < 0. But its intersections with the axis I = 0 are

A(1) =
k(r − n)− q(u− v)

kg + qq̃
, A(2) =

φ(v − u)− nk
kg + qq̃

< 0,

the inequality coming from (6.20). Those with A = 0 are the roots of the quadratic∑2
k=0 y0,kI

k = 0. Now, if k(r − n) < q(u − v), we have y0,0 > 0 and noting that
u ≥ v from (6.20), also y0,1 > 0. These results combined with y0,2 > 0 imply that
both roots are negative, I± < 0, and further also A(1) < 0. Hence the hyperbola has
four negative intersections with the axes so that no feasible branch can exist. Thus in
such case E16 is unfeasible. Therefore assume

(6.21) k(r − n) > q(u− v),

so that y0,0 < 0 and I+ > 0, A(1) > 0.

(6.22) I+ > 0 > I−, A(1) > 0 > A(2).
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There are instead only three possible situations for the graph of Ξ(A, I) in the first
quadrant, that for our purposes reduce to two. If is a hyperbola, one alternative is that
the two points QΞ,A1 = (A(1), 0) and QΞ,I+(0, I+) lie on different branches, being
respectively connected with the points QΞ,I−(0, I−) and QΞ,A2 = (A(2), 0). Thus
the two branches emanating from these two points lie in part in the first quadrant.
Alternatively, whether it is a hyperbola or an ellipse, the branch joining the two points
QΞ,A = (A(1), 0) and QΞ,I(0, I+) lies in the first quadrant. In summary:

• Case (HΞ): two feasible branches emanate respectively fromQΞ,A1 = (A(1), 0)
and QΞ,I+(0, I+);

• Case (EΞ): the branch joining the two points QΞ,A = (A(1), 0) and QΞ,I(0, I+)
lies in the first quadrant.

Now, instead of studying Ω̃, we take the combination

Ω(A, I) = IΩ̃(A, I) +AΞ(A, I) = −k−1
∑2

i,k=0 κi,kA
iIk = 0,

κ20 = gk + qq̃, κ02 = ck + qq̃η, κ11 =
1

2
[c̃k + g̃k + qq̃(1 + η)] ,

κ10 = −1

2
[k(r − n)− q(u− v)], κ01 = −1

2
[k(b− µ)− q(u− v)], κ00 = 0.

Its invariant

I = cgk2 + gkqq̃η + ckqq̃

− 1

4
[(c̃2 + g̃2)k2 + q2q̃2(1− η)2 + 2(c̃+ g̃ + g)kqq̃(1 + η)]

however has no definite sign, so that Ω is either an ellipse for I > 0, or a hyperbola,
conversely. The conic goes through the origin, and further intersects the axes at

A+ =
k(r − n)− q(u− v)

gk + qq̃
> 0, Ĩ =

k(b− µ)− q(u− v)

ck + kqq̃η
.

Note that the inequality follows from (6.21). If it is an ellipse and Ĩ > 0, the arc
joining QΩ,A = (A+, 0) and QΩ,I(0, Ĩ) lies in the first quadrant, Case (EΩ+). Else
if Ĩ < 0 the arc joining the origin and QΩ,A = (A+, 0) is in the first quadrant, Case
(EΩ−). Thus:

• Case (E+
Ω ): the arc joining QΩ,A = (A+, 0) and QΩ,I(0, Ĩ) lies in the first

quadrant;

• Case (E−Ω ): the arc joining the origin and QΩ,A = (A+, 0) is feasible.
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If Ω instead is a hyperbola and Ĩ > 0, there are four subcases:

• Case (H+
Ω1): two feasible branches emanate respectively from QΩ,A = (A+, 0)

and QΩ,I(0, Ĩ);

• Case (H+
Ω2): a feasible branch emanates from QΩ,A = (A+, 0) and the arc

joining the origin and QΩ,I(0, Ĩ) is feasible;

• Case (H+
Ω3): a feasible branch emanates from QΩ,I(0, Ĩ) and the arc joining the

origin and QΩ,A = (A+, 0) is feasible;

• Case (H+
Ω4): the arc joining QΩ,A = (A+, 0) and QΩ,I(0, Ĩ) is feasible.

If Ω is a hyperbola and instead Ĩ < 0, there are three subcases, as two can be merged
together, their difference being in the unfeasible region and in the curvature of the
feasible branch:

• Case (H−
Ω1): the arc joining the origin and QΩ,A = (A+, 0) is feasible;

• Case (H−
Ω2): a feasible branch emanates from QΩ,A = (A+, 0) (concave or

convex);

• Case (H−
Ω3): two feasible branches emanate respectively from the origin and

QΩ,A = (A+, 0).

Note that, qualitatively, cases (E+
Ω ) and (H+

Ω4) are the same, except for the curva-
ture of the arc. Similarly cases (E−Ω ) and (H−

Ω1) are the same from the qualitative point
of view. Therefore, in the discussion that follows, the elliptic cases for Ω are omitted,
as they can be assimilated to the above mentioned hyperbolic situations.

We now discuss the possible intersections of Ξ and Ω by combining the various
cases.

• (EΞ) and (H+
Ω1): if satisfied, each one of the following two conditions gives raise

to one feasible intersection: I+ < Ĩ; A(1) < A+;

• (HΞ) and (H+
Ω1): if satisfied, each one of the following two conditions gives

raise to one feasible intersection: I+ > Ĩ; A(1) > A+;

• (EΞ) and (H+
Ω2): if satisfied, each one of the following two conditions gives raise

to one feasible intersection: I+ < Ĩ; A(1) > A+;

• (HΞ) and (H+
Ω2): one intersection guaranteed by I+ < Ĩ; another one on the

other branches depends on the respective curvatures of Ξ and Ω;
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• (EΞ) and (H+
Ω3): one intersection guaranteed by I+ > Ĩ; in this case there could

be two more, giving rise also to a saddle-node bifurcation, if A(1) > A+, or one
more if A(1) < A+; alternatively, one intersection guaranteed by A(1) < A+

and I+ < Ĩ;

• (HΞ) and (H+
Ω3): one intersection guaranteed by A(1) < A+; another one on

the other branches depends on the respective curvatures of Ξ and Ω;

• (EΞ) and (H+
Ω4): one intersection guaranteed by A(1) > A+ and I+ < Ĩ , or else

by A(1) < A+ and I+ > Ĩ;

• (HΞ) and (H+
Ω4): if satisfied, each one of the following two conditions gives

raise to one feasible intersection: I+ < Ĩ; A(1) < A+;

• (EΞ) and (H−
Ω1): one intersection guaranteed by A(1) < A+; two could arise

in the opposite case through a saddle-node bifurcation, but this depends on the
curvatures of the branches;

• (HΞ) and (H−
Ω1): one intersection guaranteed by A(1) < A+; in this case there

could be two more, giving rise also to a saddle-node bifurcation, depending on
the curvatures of the branches;

• (EΞ) and (H−
Ω2): one intersection guaranteed by A(1) > A+;

• (HΞ) and (H−
Ω2): the intersection depends on the curvatures of the curves; if

the branch of Ω is convex, it occurs for A(1) < A+, but two could instead arise
through a saddle-node bifurcation if A(1) > A+;

• (EΞ) and (H−
Ω3): one intersection is always guaranteed, one more exists ifA(1) >

A+;

• (HΞ) and (H−
Ω3): the occurrence of the intersections depends on the curvatures

of the curves.

This summarizes the cases in which feasible values of A16 and I16 arise. To com-
plete the analysis of this equilibrium, observe that X and B16 can now be obtained
respectively from (6.18) and (6.19). Using the first equation in (3.11) we find

Z = X
u+ q̃(A16 + ηI16)

v + kX + φB16 + χI16 + ψJ
.(6.23)

Using the definition of X and substituting into it (6.23), we are led to

X
u+ q̃(A16 + ηI16)

v + kX + φB16 + χI16 + ψJ
+ J = X,
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which gives the quadratic in J

Γ(J) =

2∑
i=0

γiJ
i = 0, γ2 = ψ > 0

γ1 = v + kX16 + ψB16 + χI16 +
ψ

k
[u− v + q̃(A16 + ηI16)],

γ0 = X16[u+ q̃(A16 + ηI16)− [v + kX16 + ψB16 + χI16]

= −X16[ψB16 + χI16] < 0.

Thus a positive root exists giving J16 and in turn Z16 can be obtained from (6.23).

Equilibrium E9

Finally we consider E9. The second equation in (3.11) gives now

(6.24) X =
1

k
(u− v + q̃ηI),

for the nonnegativity of which we need:

(6.25) u+ q̃ηI9 ≥ v.

On using (6.24) into the second (3.10) we also find

(6.26) Y =
1

efkp
[k(b− µ− cI)− q(u− v + q̃ηI)] ,

entailing the feasibility condition

(6.27) I9 ≤
k(b− µ)− q(u− v)

ck + qq̃η
.

Using (6.26) in (3.12), we obtain

B =
αq(u− v + q̃ηI)I

kn+ kγY + λkI + φ(u− v + q̃ηI)
,(6.28)

which is nonnegative in view of (6.25). An expression of Y can also be found by
adding the equations (3.9), obtaining efpI − (m + aY ) = 0, which matched with
(6.26) produces

I9 =
efmp+ a[k(b− µ)− q(u− v)]

e2f2p2 + a(ck + qq̃η)
.(6.29)
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It also allows the evaluation of Y from (6.26) and then the one ofB9 from (6.28). Note
that condition (6.27) is satisfied if

k(b− µ)− q(u− v) ≥ m

efp
(ck + qq̃η),(6.30)

which in turn implies the nonnegativity of I9. Finally from the second (3.11), using
(6.24), (6.28) and (6.29) a hyperbola is found:

Z(J) = J
u+ q̃ηI9

φB9 + χI9 + ψJ
.(6.31)

Because it is concave and crosses the origin, an intersection with the straight line
defined by (6.24), is always guaranteed, providing the values of J9 and Z9. Note that
the straight line, namely k(Z + J) = u− v + q̃ηI9, has a nonnegative right hand side
because (6.25) holds.

Finally from the second equation in (3.9) we find another hyperbola

W = V
m+ aY

γB9 + ωI9 + δV
(6.32)

which has always an intersection with the straight line provided by (6.26), namely
efkp(V +W ) = k(b− µ− cI)− q(u− v + q̃ηI), which lies in the first quadrant in
view of (6.27), giving the values of W9 and V9. Hence, the feasibility conditions for
E9 are just (6.25), (6.27) and (6.30).

Appendix B - Stability details

The Jacobian J of the system (3.9)-(3.10)-(3.11)-(3.12) has the following entries:
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(6.33)

J11 = (A+ fI)ep− (m+ aV + γB)− 2aW − (ωI + δV )− pqAX,
J12 = (A+ fI)ep− (a+ δ)W − pqAX,
J13 = Y [ep− pqX], J14 = epfY − ωW,
J15 = J16 = −pqAY, J17 = −γW, J21 = γB − aV + ωI + δV,

J22 = −(m+ aW + 2aV ) + δW, J24 = ωW, J27 = γW,

J31 = −epA, J32 = −βA− epA, J34 = −g̃A, J35 = J36 = −qA,
J33 = r − n− 2gA− g̃I − λB − βV − epY − qX, J37 = −λA,
J41 − efpI, J42 = βA− efpI, J43 = λB + βV − c̃I,
J45 = J46 = −qI,
J44 = b− µ− c̃A− 2cI − efpY − qX, J47 = λA,

J53 = q̃X, J54 = q̃ηX − χZ, J56 = u− kZ − ψZ + q̃(A+ ηI),

J55 = u− v − 2kZ − kJ − φB − χI − ψJ + q̃(A+ ηI), J57 = −φZ,
J64 = χZ, J65 = −kJ + φB + χI + ψJ,

J66 = −v − k(Z + 2J) + ψZ, J67 = φZ, J71 = J72 = −γB,
J73 = −λB, J74 = −λB + αqX,

J75 = J76 = αqI − φB, J77 = −[n+ γY + λ(A+ I) + φX].

while all the remaining ones vanish.

Equilibrium E12

One eigenvalue is negative also for E12, namely J22(E12) = −m < 0, another
one is J11(E12) that gives

epA12 < m+ pqA12X12.(6.34)

The remaining part of the Jacobian factorizes into the product of the two minors ∆47
12

and ∆356
12 . From the third, fifth and sixth equilibrium equations, we find

J33(E12) = −gA12, J55(E12) = −kZ12 − (u+ q̃A12)
J12

Z12
, J66(E12) = −kJ12.

The Routh-Hurwitz conditions −tr(∆47
12) > 0, det(∆47

12) > 0 imply

µ+ (c̃+ λ)A12 + (q + φ)X12 + n > b,(6.35)

[µ+ c̃A12 + qX12 − b][n+ λA12 + φX12] > qαλA12X12.

The Routh-Hurwitz conditions for ∆356
12 need the sum of the minors of order two
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Σ356
12 = ∆35

12 + ∆36
12 + ∆56

12, with

∆35
12 = gA12

[
kZ12 + (u+ q̃A12)

J12

Z12

]
+ qq̃A12X12, ∆36

12 = gkA12J12,

∆56
12 = kJ12

[
kZ12 + (u+ q̃A12)

J12

Z12

]
+ (k − ψ)J12[u− (k + ψ)Z12 + q̃A12].

The condition on the trace holds:

−tr(∆356
12 ) = gA12 + kZ12 + (u+ q̃A12)

J12

Z12
+ kJ12 > 0.

The determinant instead gives the following stability condition

(6.36) det ∆356
12 = qq̃(ψ − k)J12A

2
12 − qq̃A12X12kJ12

− gA12

[
kZ12 + (u+ q̃A12)

J12

Z12

]
kJ12

+ gA12(ψ − k)J12(u− kZ12 + q̃A12 − ψZ12) > 0

and then the following additional condition must be satisfied:

−tr∆356
12 Σ356

12 > −det ∆356
12 .(6.37)

Equilibrium E8

The diagonal elemements of the Jacobian that simplify are in this case

J11(E8) = −aW8, J33(E8) = −gA8,

J55(E8) = −kZ8 − (u+ q̃A8)
J8

Z8
, J66(E8) = −kZ8.

Further, the Jacobian splits into two minors, ∆1356
8 and ∆247

8 . The condition on the
trace holds unconditionally for the former,−tr∆1356

8 = aW8+gA8+J55(E8)+kZ8 >
0, while for the latter the following stability condition arises, −tr∆247

8 > 0, which
explicitly reads:

m+ aW8 > δW8 + J44(E8) + J77(E8).(6.38)

From the conditions on the determinants det ∆1356
8 > 0 and −det ∆247

8 > 0 we
respectively obtain the further conditions

(6.39)

aW8∆356
8 + ep2A2

8qq̃W8X8[kZ8 − (ψ − k)J8] < ep2A8(e− qX8)W8∆56
8 ,

[δW8 − (m+ aW8)]J44(E8)J77(E8) + αβγqA8W8X8

< [δW8 − (m+ aW8)]αλqA8X8 + βωA8W8J77(E8).
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Then we calculate the sums of the minors of order 2, where the relevant minors are
listed in the Appendix C,

Σ1356
8 = ∆13

8 + ∆15
8 + ∆16

8 + ∆35
8 + ∆36

8 + ∆56
8 ,

Σ247
8 = [δW8 − (m+ aW8)][J44(E8)− J77(E8)]

+ J44(E8)J77(E8)− βωA8W8 − αλqA8X8.

and for ∆1356
8 also of those of order 3 that provide the condition

Θ1356
8 = ∆135

8 + ∆136
8 + ∆156

8 + ∆356
8 < 0.(6.40)

Finally the following additional stability conditions must be satified:

−tr∆247
8 Σ247

8 > −det ∆247
8 ;(6.41)

tr∆1356
8 Σ1356

8 Θ1356
8 > (Θ1356

8 )2 + det ∆1356
8 (tr∆1356

8 )2.

Equilibrium E14

Here the diagonal elements that simplify upon use of the equilibrium equations are

J11(E14) = −aW14, J33(E14) = −gA14, J55(E14) = −kZ14.

The Jacobian splits into the product of two minors of order 3 and 4, respectively ∆135
14

and ∆2467
14 , but from the latter the eigenvalue J66(E14) factorizes giving the first sta-

bility condition

φZ14 < v + kZ14.(6.42)

The traces of the first minor is negative,

tr∆135
14 = −(aW14 + gA14 + kZ14) < 0,

while the correspoding one of ∆247
14 provides the second stability condition

(6.43) m+ µ+ n+ (c̃+ λ)A14 + (a+ efp+ γ)W14

+ (q + φ)Z14 > δW14 + b.

The sums of the minors of order two are

Σ135
14 = a(g + k)A14W14 + ep2A14W14(e− qZ14) + (gk + qq̃)A14Z14,

Σ247
14 = [(δ − a)W14 −m][b− µ− c̃A14 − efpW14 − qZ14]

− [(δ − a− efp)W14 −m+ b− µ− c̃A14 − qZ14](n+ λA14 + φZ14 + γW14)

− λαqA14Z14 − βA14W14,
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while the determinants det ∆135
14 and det ∆247

14 respectively provide the stability con-
ditions

(6.44) ep2q̃qA2
14W

2
14Z14 < a(gk + qq̃)A14W14Z14 + ekp2A14W14Z14(e− qZ14),

βA14ωW14(n+ λA14 + φZ14 + γW14) + βA14αqZ14γW14

< [(δ − a)W14 −m][αλqA14Z14

+ (b− µ− c̃A14 − efpW14 − qZ14)(n+ λA14 + φZ14 + γW14)].

In addition the following conditions, which we do not write explicitly, must hold:

−tr∆135
14 Σ135

14 > −det ∆135
14 , −tr∆247

14 Σ247
14 > −det ∆247

14 .(6.45)

Equilibrium E13

At E13 the Jacobian factorizes into two minors, ∆1234
13 and ∆567

13 , the latter giving
immediately the negative eigenvalue J77(E13) = −n − γY13 − λA13. The Routh-
Hurwitz conditions on ∆56

13 give the first set of stability conditions:

b13 < 2v + χI13, b13 = u+ q̃(A13 + ηI13) > 0,(6.46)

v[u− v − χI13 + q̃(A13 + ηI13)] + χI13[u+ q̃(A13 + ηI13)] < 0.

Noting that the latter is a concave parabola in v with a positive value at v = 0, the
inequality holds for v > v+, where

v+ =
1

2

[
b13 − χI13 +

√
(b13 − χI13)2 + 4b13χI13

]
= b13

denotes the largest of its roots. Thus (6.46) are equivalent to

(6.47) v > max

{
b13,

1

2
(b13 − χI13)

}
.

Further, the diagonal elements that simplify using the equilibrium equations are

J11(E13) = −aW13 − ep
V13

W13
(A13 + fI13), J22(E13) = −aV13 − ω

I13

V13
,

J33(E13) = −gA13, J44(E13) = −cI13 − β
A13V13

I13
.

Thus the trace condition is seen immediately to hold −tr(∆1234
13 ) > 0. For the remain-

ing Routh-Hurwitz conditions, we find

Σ1234
13 = ∆12

13 + ∆13
13 + ∆14

13 + ∆24
13 + ∆34

13 + J22(E13)J33(E13),

Θ1234
13 = ∆123

13 + ∆124
13 + ∆134

13 + ∆234
13 .



proofs EZIO VENTURINO and SHARON ZYTYNSKA [46]

The final conditions to hold are thus

det ∆1234
13 > 0, Θ1234

13 < 0,(6.48)

tr∆1234
13 Σ1234

13 Θ1234
13 > (Θ1234

13 )2 + det ∆1234
13 (tr∆1234

13 )2.

Equilibrium E15

By the equilibrium equation, we obtain the simplifications along the Jacobian’s
diagonal

J44(E15) = −cI15, J55(E15) = − J15
Z15

(u+ q̃ηI15)− kZ15,

J66(E15) = −Z15

J15
(φB15 + χI15)− kJ15, J77(E15) = −αqI15X15

B15
.

The remaining minor splits into the product of ∆12
15 and ∆4567

15 . The Routh-Hurwitz
conditions on the former yield the stability conditions

2m+ γB15 + ωI15 > +efpI15,(6.49)

J11(E15)J22(E15) > efpI15(γB15 + ωI15).

For ∆4567
15 the condition on the trace holds,

−tr∆4567
15 = cI15 + (u+ q̃ηI15)

J15

Z15
+ (φB15 +χI15)

Z15

J15
+

(
k + αq

I15

B15

)
X15 > 0.

To assess the stability conditions, we need the sums of minors of various orders. They
are explicitly listed in the Appendix, as well as the determinant.

We then obtain the sums

Σ4567
15 = ∆45

15 + ∆46
15 + ∆47

15 + ∆56
15 + ∆57

15 + ∆67
15,

Θ4567
15 = ∆456

15 + ∆457
15 + ∆467

15 + ∆567
15 .

The final conditions to hold are

−tr∆247
15 Σ247

15 > −det ∆247
15 , det ∆4567

15 > 0,(6.50)

tr∆4567
15 Σ4567

15 Θ4567
15 > (Θ4567

15 )2 + det ∆4567
15 (tr∆4567

15 )2, Θ4567
15 < 0.

Equilibrium E16

The diagonal entries of the Jacobian that simplify are in this case

J22 = −m, J33 = −gA16, J44 = −
(
cI16 + λ

A16

I16
B16

)
,
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J55 = −
(
kZ16 + [q̃(A16 + ηI16) + u]

J16

Z16

)
,

J66 = −
(
kJ16 + [φB16 + χI16]

Z16

J16

)
, J77 = −αqI16

Z16 + J16

B16
.

We find the splitting into the minors ∆12
16 and ∆34567

16 . For the former, the Routh-
Hurwitz conditions give

−tr∆12
16 = 2m+ γB16 + ωI16 + pqA16X16 − ep(A16 + fI16) > 0,(6.51)

det ∆12
16 = (γB16 + ωI16)[pqA16X16 − ep(A16 + fI16)]−mJ11 > 0.

For ∆34567
16 we need the minors and their sums from order two up to order four, re-

spectively Σ34567
16 , Θ34567

16 and Ω34567
16 . The minors are listed in the Appendix C. For

their sums, we have

Σ34567
16 = ∆34

16 + ∆35
16 + ∆36

16 + ∆37
16 + ∆45

16 + ∆46
16 + ∆47

16 + ∆56
16 + ∆57

16 + ∆67
16,

Θ34567
16 = ∆345

16 + ∆346
16 + ∆347

16 + ∆356
16 + ∆357

16 + ∆367
16 + ∆456

16 + ∆457
16

+ ∆467
16 + ∆567

16 , Ω34567
16 = ∆3456

16 + ∆3457
16 + ∆3467

16 + ∆3567
16 + ∆4567

16 .

Finally there is the determinant, det ∆34567
16 . The full Routh-Hurwitz conditions that

must be satified are

(6.52)

− tr∆34567
16 > 0, −det ∆34567

16 > 0,

D34567
(2),16 = Θ34567

16 − tr∆34567
16 Σ34567

16 > 0,

D34567
(3),16 = tr∆34567

16 [det ∆34567
16 − tr∆34567

16 Ω34567
16 ]−Θ34567

16 D34567
(2),16 > 0,

D34567
(4),16 = Ω34567

16 D34567
(3),16 + det ∆34567

16 [tr∆34567
16 Ω34567

16

+ Σ34567
16 Θ34567

16 − tr∆34567
16 (Σ34567

16 )2 − det ∆34567
16 ] > 0.

Equilibrium E9

The diagonal elements of the Jacobian that simplify are

J11(E9) = −aW9, J22(E9) = −m− (a− δ)W9, J44(E9) = −cI9,

J55(E9) = −kZ9 − (u+ q̃ηI9)
J9

Z9
, J66(E9) = −kJ9 − (φB9 + χI9)

Z9

J9
,

J77(E9) = −αq I9

B9
X9.
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Define the sums of the minors of the various orders as follows, which are explicitly
listed in the Appendix:

Σ124567
9 =

6∑
i<j=1

∆ij
9 , Θ124567

9 =
6∑

i<j<k=1

∆ijk
9 ,

Ω124567
9 =

6∑
i<j<k<m=1

∆ijkm
9 , Ξ124567

9 =
6∑

i<j<k<m<n=1

∆ijkmn
9 .

Then the Routh-Hurwitz conditions for stability can be written as

(6.53)

− tr∆124567
9 > 0, D124567

(2),9 = −tr∆124567
9 Σ124567

9 + Θ124567
9 > 0,

D124567
(3),9 = −Θ124567

9 D(2),9 + tr∆124567
9 [Ξ124567

9 − tr∆124567
9 Ω124567

9 ] > 0,

D124567
(4),9 = Ω124567

9 D124567
(3),9 − Σ124567

9 [tr∆124567
9 Σ124567

9 Ξ124567
9

− (tr∆124567
9 )2 det ∆124567

9 −Θ124567
9 Ξ124567

9 ]

+ tr∆124567
9 [Ω124567

9 Ξ124567
9 −Θ124567

9 det ∆124567
9 ]− (Ξ124567

9 )2 > 0,

D124567
(5),9 = −Ξ124567

9 D124567
(4),9 − det ∆124567

9 [−Θ124567
9 D124567

(3),9

+ tr∆124567
9 (+tr∆124567

9 Σ124567
9 Ξ124567

9

− (tr∆124567
9 )2 det ∆124567

9 −Θ124567
9 Ξ124567

9 )] > 0.

Appendix C

Minors of Equilibrium E8

Recalling (3.8), we now calculate the minors of order 2

∆13
8 = [ag + ep2(e− qX8)]A8W8, ∆15

8 = −aW8J55(E8), ∆16
8 = akW8Z8,

∆35
8 = qq̃A8X8 − gA8J55(E8), ∆36

8 = gkA8Z8,

∆56
8 = (k − ψ)J8[u− (k + ψ)Z8 + q̃A8]− kZ8J55(E8),

and those of order 3

∆135
8 = ∆13

8 J55(E8)− X̃8(a− ep2A8)qA8W8, ∆136
8 = −kZ8∆13

8 ,

∆156
8 = −aW8∆56

8 , ∆356
8 = −{g∆56

8 + qq̃X8[(ψ − k)J8 − kZ8]}A8.
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Minors of Equilibrium E13

We have here

J12(E13) = ep(A13 + fI13)− (a+ δ)W13, J21(E13) = ωI13 + (δ − a)V13.

Then we can write the minors of order 2

∆12
13 = J11(E13)J22(E13)− J12(E13)J21(E13),

∆13
13 = J11(E13)J33(E13) + e2p2A13Y13,

∆14
13 = J11(E13)J44(E13)− efpI13(efpY13 − ωW13),

∆24
13 = J22(E13)J44(E13)− (βA13 − efpI13)ωW13,

∆34
13 = J33(E13)J44(E13) + g̃A13(βV13 − c̃I13),

and those of order 3

∆123
13 = J33(E13)∆12

13 + epY13[epA13J22(E13)− J21(E13)(β + ep)A13],

∆124
13 = J44(E13)∆12

13 − ωW13[J11(E13)(βA13 − epfI13)− epfI13J12(E13)]

+ (efpY13 − ωW13)[(βV13 − c̃I13)J21(E13)− J22(E13)efpI13],

∆134
13 = J33(E13)∆14

13 − epY13[J21(E13)J44(E13)− ωW13efpI13]

+ (c̃I13 − βV13)[epA13(efpY13 − ωW13)− g̃A13J11(E13)]

∆234
13 = J22(E13)∆34

13

+ ωW13[(efpI13 − βA13)J33(E13)− (β + ep)A13(βV13 − c̃I13)].

Finally,

det ∆1234
13 = J33(E13)∆124

13 + epY13{epA13∆24
13 − J21(E13)[J44(E13)(β + ep)A13

− g̃A13(βA13 − efpI13)] + efpI13A13[J22(E13)g̃ + ωW13(β + ep)]}
+ (c̃I13 − βV13){(β + ep)A13[epA13(efpY13 − ωW13)− g̃A13J11(E13)]

− g̃A13∆12
13 − epA13[ωW13J12(E13)]− J22(E13)(efpY13 − ωW13)}.

Minors of Equilibrium E15

Observe that in this case we have

J56(E15) = u− (k + ψ)Z15 + q̃ηI15, J65(E15) = (ψ − k)J15 + φB15 + χI15.
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Recalling (3.8), we now calculate the minors of order 2,

∆45
15 = cI15

[
(u+ q̃ηI15)

J15

Z15
+ kZ15

]
+ qI15(q̃ηX15 − χZ15),

∆46
15 = cI15J65(E15) + χqI15Z15, ∆47

15 = cI2
15αq

X15

B15
,

∆56
15 = +

[
kJ15 + (u+ q̃ηI15)

J15

Z15

] [
kJ15 + (φB15 + χI15)

Z15

J15

]
− J56(E15)J65(E15),

∆57
15 =

[
kJ15 + (u+ q̃ηI15)

J15

Z15

]
αq

I15

B15
X15 + φZ15(αqI15 − φB15),

∆67
15 =

[
kJ15 + (φB15 + χI15)

Z15

J15

]
αq

I15

B15
X15 − φZ15(αqI15 − φB15)

and those of order 3

∆456
15 = −cI15∆56

15 − qI15χZ15[J56(E15)− J55(E15)]

+ qI15(q̃ηX15 − χZ15)[J66(E15)− J65(E15)]

∆457
15 = J44(E15)∆57

15 + qI15[J77(E15)(q̃ηX15 − χZ15) + φZ15(αqX15 − λB15)]

∆467
15 = −cI15∆67

15 − qI15

[
χαq

I15

B15
X15 + φZ15(αqX15 − λB15)

]
∆567

15 = J55(E15)∆67
15 − J56(E15)[J65(E15)J77(E15)− φZ15(αqI15 − λB15)]

− φZ15(αqI15 − λB15)[J65(E15)− J66(E15)].

Finally, the determinant is

det ∆4567
15 = −cI15∆567

15 + qI15

{
(q̃ηX15 − χZ15)∆67

15

− χZ15

[
φZ15(αqX15 − λB15)− αq I15

B15
X15J56(E15)

]
+ (αqX15 − λB15)φZ15 [J56(E15) + J66(E15)]

− (q̃ηX15 − χZ15)

[
αq

I15

B15
X15J65(E15)− φB15(αqI15 − φB15)

]
− χZ15∆57

15

+(αqX15 − λB15)φZ15 [J55(E15) + φB15 + ψ(I15 + J15)− kJ15]} .

Minors of Equilibrium E16

Observing that

J56 = φB16 + χI16 + ψJ16 − kJ16, J65 = u+ q̃(A16 + ηI16)− (k + ψ)Z16



[51] APHID BACTERIAL SYMBIONTS proofs

and recalling (3.8), the minors of order 2 are:

∆34
16 = J33(E16)J44(E16)− (c̃I16 − λB16)g̃A16,

∆35
16 = J33(E16)J55(E16)− qq̃A16X16, ∆36

16 = J33(E16)J66(E16),

∆37
16 = J33(E16)J77(E16)− λ2A16B16,

∆45
16 = J44(E16)J55(E16)− [χZ16 − q̃ηX16]qI16,

∆46
16 = J44(E16)J66(E16) + qχZ16I16,

∆47
16 = J44(E16)J77(E16) + λA16[λB16 − αqX16],

∆56
16 = J55(E16)J66(E16)− J56(E16)J65(E16),

∆57
16 = J55(E16)J77(E16)− φZ56(φB16 − αqI16),

∆67
16 = J66(E16)J77(E16) + φZ56(φB16 − αqI16),

so that

Σ34567
16 =

7∑
i<j=3

∆ij
16.

The minors of order 3:

∆345
16 = J33(E16)J44(E16)J55(E16) + g̃A16[J55(E16)(λB16 − c̃I16) + qq̃I16X16]

− qA16[(c̃I16 − λB16)(χZ16 − q̃ηX16)− q̃X16J44(E16)],

∆346
16 = ∆34

16J66(E16) + χZ16[J33(E16)qI16 − qA16(λB16 − c̃I16)],

∆347
16 = ∆34

16J77(E16) + [λB16 − αqX16]λA16[J33(E16)− c̃I16 + λB16]

+ λ2A16B16[g̃A16 − J44(E16)],

∆356
16 = ∆56

16J33(E16)− q̃qX16A16[J56(E16)− J66(E16)],

∆357
16 = ∆57

16J33(E16) + q̃A16X16[qJ77(E16) + λ(φB16 − αqI16)]

− λB16A16[qφZ16 + λJ55(E16)],

∆367
16 = ∆37

16J66(E16)− φZ16[J33(E16)(αqI16 − φB16)− λqA16B16],

∆456
16 = ∆56

16J44(E16) + qI16[J66(E16)(q̃ηX16 − χZ16)− χZ16J56(E16)

− J65(E16)(q̃ηX16 − χZ16) + χZ16J55(E16)],

∆457
16 = ∆57

16J44(E16) + qI16[J77(E16)(q̃ηX16 − χZ16) + φZ16(αqI16 − λB16)]

+ λA16[(αqI16 − φB16)(q̃ηX16 − χZ16) + J55(E16)(λB16 − αqX16)],

∆467
16 = ∆67

16J44(E16) + qI16[J77(E16)χZ16 − φZ16(αqX16 − λB16)]

+ λA16[χZ16(αqI16 − φB16)− J66(E16)], ∆567
16 = ∆56

16J77(E16)

− φZ16(αqI16 − φB16)[J55(E16)− J56(E16)− J65(E16) + J66(E16)].
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The minors of order 4:

∆3456
16 = J66(E16)∆345

16 − J65(E16){J56(E16)∆34
16 + qI16J33(E16)[(q̃ηX16

− χZ16) + g̃q̃X16A16]− q̃A16[(λB16 − c̃I16)(q̃ηX16 − χZ16)− q̃X16J44(E16)]}
+ χZ16{J56(E16)[qA16(λB16 − c̃I16)− cI16J33(E16)] + qI16∆35

16

− qA16[J55(E16)(λB16 − c̃I16) + qq̃I16X16},

∆3457
16 = J77(E16)∆345

16 + φZ16[J33(E16)J44(E16)(αqI16 − φB16)

− g̃A16qI16λB16 − qA16(c̃I16 − λB16)(λB16 − αqX16)− λB16J44(E16)qA16

+ (αqX16 − λB16)qI16J33(E16)− (c̃I16 − λB16)g̃A16(φB16 − αqI16)]

+ λA16{J33(E16)(q̃ηX16 − χZ16)(αqI16 − φB16) + λB16g̃A16J55(E16)

− q̃X16(αqX16 − λB16)qA16 − λqA16B16(q̃ηX16 − χZ16)

− J55(E16)J33(E16)(αqX16 − λB16) + q̃g̃X16A16(αqI16 − φB16)

− (c̃I16 − λB16)(αqI16 − φB16)(q̃ηX16 − χZ16)− q̃qX16I16(αqX16 − λB16)

− J55(E16)J44(E16)λB16 − λB16qI16(q̃ηX16 − χZ16)

− (λB16 − αqX16)J55(E16)(c̃I16 − λB16)− q̃X16J44(E16)(αqX16 − φB16)},

∆3467
16 = J33(E16)∆467

16 + (c̃I16 − λB16)[(χZ16λA16 + φZ16g̃A16)(φB16

− αqI16)− g̃A16J66(E16)J77(E16)− (φqA16Z16 + λA16J66(E16))(αqX16

− λB16) + χZ16qA16J77(E16)] + λB16[J66(E16)λg̃A2
16 + J44(E16)qA16φZ16

− J44(E16)J66(E16)λA16 − χZ16qIλA16 + g̃A16qI16φZ16 − qλA2
16χZ16],

∆3567
16 = J33(E16)∆567

16 − q̃X16{qA16J65(E16)J77(E16)− [φZ16qA16

+ φZ16qA16 + J66(E16)λA16 − J65(E16)λA16](φB16 − αqI16)

− qA16J66(E16)J77(E16)] + λB16[−qA16J56(E16)φZ16 + J65(E16)qA16φZ16

− λA16∆56
16 + (J55(E16)− J66(E16))qA16φZ16},

∆4567
16 = J44(E16)∆567

16

+ qI16[J66(E16)J77(E16)(q̃ηX16 − χZ16)− (λB16 − αqX16)(J56(E16)

+ J66(E16))φZ16 + (φB16 − αqI16)[χφZ2
16 − φZ16(q̃ηX16 − χZ16)

− χZ16J56(E16)J77(E16) + J65(E16)(λB16 − αqX16)φZ16

+ χZ16J55(E16)J77(E16)

+ (φB16 − αqI16)φZ16(χZ16 − q̃ηX16) + (χZ16 − q̃ηX16)J65(E16)J77(E16)

+ χZ16J55(E16)(λB16 − αqX16)− χφZ2
16(φB16 − αqI16)]

+ λA16{(φB16 − αqI16)[(χZ16 − q̃ηX16)J66(E16)− χZ16J55(E16)]

+ ∆56
16(λB16 − αqX16)− [(χZ16 − q̃ηI16)J65(E16)

− χZ16J56(E16)](φB16 − αqI16)}.
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Finally there is the determinant:

∆34567
16 = J33(E16)∆4567

16 + (c̃I16 − λB16){J56(E16)− J66(E16)

− g̃A16[J55(E16)J66(E16)J77(E16)

+ (φB16 − αqI16)φZ16(J65(E16)− J56(E16))

− J65(E16)J56(E16)J77(E16)] + qA16[J66(E16)J77(E16)(q̃ηX16 − χZ16)

− χZ16J56(E16)J77(E16) + (J56(E16) + J66(E16))φZ16(λB16 − αqX16)

− φZ16(φB16 − αqI16)(χZ16 − q̃ηI16)]− qA16[χφZ2
16(φB16 − αqI16)

− (χZ16 − q̃ηX16)J65(E16)J77(E16)− J55(E16)φZ16(λB16 − αqX16)

− φZ16J65(E16)(λB16 − αqX16)− φZ16(φB16 − αqI16)(χZ16 − q̃ηX16)

− χZ16J55(E16)J77(E16)]− λA16[χZ16(φB16 − αqI16)(J56(E16)− J55(E16))

+ J55(E16)J66(E16)(λB16 − αqX16)− (λB16 − αqX16)J56(E16)J65(E16)

− (χZ16 − q̃ηX16)(J65(E16)− J66(E16))(φB16 − αqI16)]}
+ q̃X16{−g̃A16[−qI16J66(E16)J77(E16) + qI16J77(E16)J65(E16)

+ λA16(J66(E16)− J65(E16))(φB16 − αqI16)]

+ qA16[J44(E16)J66(E16)J77(E16) + (φB16 − αqI16)(φZ16J44(E16)

− χZ16λA16) + χZ16qI16J77(E16) + (λB16 − αqI16)(φZ16qI16

− λA16J66(E16))]− qA16[J44(E16)J65(E16)J77(E16)

+ (qI16φZ16 + λA16J65(E16))(λB16 − αqX16)

− (φB16 − αqI16)(φZ16J44(E16)− λA16χZ16) + χZ16qI16J77(E16)]

+ λA16[J44(E16)(J66(E16)− J65(E16) + χZ16qI16)(φB16 − αqI16)

+ (λB16 − αqX16)qI16(J66(E16)− J65(E16))]}
− λB16{g̃A16[qI16φZ16(J65(E16)− J56(E16) + J55(E16)− J66(E16))

+ λA16∆56
16]− qA16[qI16φχZ

2
16 + J44(E16)J56(E16)φZ16

− (χZ16 − q̃ηX16)(λA16J66(E16) + φZ16qI16)

+ χZ16λA16J56(E16) + φZ16J66(E16)J44(E16)] + qA16[(qI16χZ16

+ J44(E16)J55(E16))φZ16 − (λA16J65(E16) + qI16φZ16)(χZ16 − q̃ηX16)

− χZ16λA16J55(E16) + J65(E16)χZ16J44(E16)]− λA16[J44(E16)∆56
16

− χZ16qI16(J55(E16)− J56(E16))− qI16(J65(E16)

+ J66(E16))(χZ16 − q̃ηX16)]}.
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Minors of Equilibrium E9

Recalling (3.8), the minors of order 2 of ∆124567
9 are:

∆12
9 = −aW9J22(E9)− J12(E9)(γB9 + ωI9), ∆15

9 = −aW9J55(E9),

∆14
9 = −aW9J44(E9) + efpI9W9(efp− ω), ∆16

9 = −aW9J66(E9),

∆17
9 = −aW9J77(E9)− γ2B9W9, ∆24

9 = J22(E9)J44(E9) + efpI9ωW9,

∆25
9 = J22(E9)J55(E9), ∆27

9 = J22(E9)J77(E9) + γ2B9W9,

∆26
9 = J22(E9)J66(E9), ∆45

9 = J44(E9)J55(E9) + qI9(q̃ηX9 − χZ9),

∆46
9 = J44(E9)J66(E9) + qI9χZ9, ∆47

9 = J44(E9)J77(E9),

∆56
9 = J55(E9)J66(E9)− J56(E9)J65(E9),

∆57
9 = J55(E9)J77(E9) + φZ9(αqI9 − φB9),

∆67
9 = J66(E9)J77(E9)− φZ9(αqI9 − φB9).

The minors of order 3 are:

∆124
9 = −aW9J22(E9)J44(E9)− J12(E9)efpI9ωW9

− efpI9(γB9 + ωI9 − J22(E9))W9(efp− ω)

− aW9efpI9ωW9 − (γB9 + ωI9)J12(E9)J44(E9),

∆125
9 = J55(E9)∆12

9 , ∆126
9 = J66(E9)∆12

9 ,

∆127
9 = −aW9∆27

9 − (γB9 + ωI9)(J12(E9)J77(E9)− γ2B9W9)

− γ2B9W9(J12(E9) + J22(E9))

∆245
9 = J55(E9)∆24

9 + qI9J22(E9)(q̃ηX9 − χZ9),

∆246
9 = J66(E9)∆24

9 + qI9J22(E9)χZ9,

∆247
9 = J77(E9)∆24

9 − ωW9[efpI9(qαX9 − λB9) + γB9J44(E9)],

∆256
9 = J22(E9)∆56

9 , ∆267
9 = J22(E9)∆67

9 + γ2W9B9J66(E9),

∆257
9 = J22(E9)∆57

9 + γ2B9W9J55(E9),

∆456
9 = J44(E9)∆56

9 − qI9[χZ9J56(E9)− (q̃ηX9

− χZ9)(J66(E9)− J65(E9))− χZ9J55(E9)],

∆457
9 = J44(E9)∆57

9 + qI9[J77(E9)(q̃ηX9 − χZ9) + φZ9(αqX9 − λB9)],

∆467
9 = J44(E9)∆67

9 + qI9[χZ9J77(E9)− φZ9(αqX9 − λB9)],

∆567
9 = J55(E9)∆67

9 − J56(E9)[J65(E9)J77(E9)

− φZ9(αqI9 − φB9)] + φZ9(αqI9 − φB9)(J65(E9)− J66(E9)),
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∆145
9 = −aW9∆45

9 +W9(efp− ω)efpI9J55(E9),

∆146
9 = −aW9∆46

9 +W9(efp− ω)efpI9J66(E9),

∆147
9 = −aW9∆47

9 +W9(efp− ω)efpI9J77(E9)

− γW9[γB9J44(E9) + efpI9(αqX9 − λB9)],

∆156
9 = −aW9∆56

9 , ∆157
9 = −aW9∆57

9 − γ2W9B9J55(E9),

∆167
9 = −aW9∆67

9 − γ2W9B9J66(E9),

∆247
9 = J77(E9)J24(E9) + γW9[γB9J44(E9)− efpI9(αqX9 − λB9)].

Then we list the minors of order 4:

∆1245
9 = J55(E9)∆124

9 + qI9(q̃ηX9 − χZ9)∆12
9 ,

∆1246
9 = J66(E9)∆124

9 + qI9χZ9∆12
9 ,

∆1247
9 = J77(E9)∆124

9 + γW9[(αqX9 − λB9)efpI9(aW9 + J12(E9))

+ γB9(∆14
9 − J12(E9)J44(E9)) + efpI9W9(efp− ω))]

+ γW9{(αqX9 − λB9)efpI9(J22(E9)− γB9 − ωI9)

+ γB9[J44(E9)(γB9 + ωI9) + efpI9ωW9]− γB9∆24
9 }

∆2456
9 = J66(E9)∆245

9 − J65(E9)[J56(E9)∆24
9 + qI9J22(E9)(q̃ηX9 − χZ9)

− χZ9J22(E9)(J56(E9)− J55(E9)),

∆2457
9 = J55(E9)∆247

9 − (αqI9 − φB9)[φZ9∆24
9 + γW9efpI9(q̃ηX9 − χZ9)]

+ qI9[(q̃ηX9 − χZ9)∆27
9 + φZ9(J22(E9)(αqX9 − λB9)

+ γωB9W9], ∆2467
9 = J22(E9)∆467

9 − ωW9[qI9γB9φZ9 − efpI9∆67
9 ]

+ γW9{γB9∆46
9 + efpI9[(αqI9 − φB9)χZ9 − J66(E9)(αqX9 − λB9)]},

∆1456
9 = −aW9∆456

9 +W9(efp− ω)efpI9∆56
9 ,

∆1457
9 = −aW9∆457

9 +W9(efp− ω)[efpI9∆57
9 + γB9qI9φZ9]

− γW9{efpI9[(q̃ηX9 − χZ9)(αqI9 − φB9)

− (αqX9 − λB9)J55(E9)] + γB9∆45
9 },

∆1467
9 = −aW9∆467

9 +W9(efp− ω)[efpI9∆67
9 − γB9qI9φZ9]

− γW9{efpI9[χZ9(αqI9 − φB9)− J66(E9)(αqX9 − λB9)] + γB9∆46
9 },

∆4567
9 = J44(E9)∆567

9 + qI9{(q̃ηX9 − χZ9)∆67
9 − χZ9[J56(E9)J77(E9)

+ φZ9(αqI9 − φB9)] + (αqX9 − λB9)φZ9[J56(E9) + J66(E9)]}
− qI9{(q̃ηX9 − χZ9)[J65(E9)J77(E9)− φZ9(αqI9 − φB9)]− χZ9∆57

9

+ (αqX9 − λB9)φZ9[J55(E9) + J65(E9)]},
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∆1567
9 = −aW9∆567

9 − γ2B9W9∆56
9 ,

∆1256
9 = ∆12

9 ∆56
9 ,

∆1257
9 = ∆127

9 J55(E9) + (αqI9 − φB9)φZ9∆12
9 ,

∆1267
9 = ∆127

9 J66(E9)− (αqI9 − φB9)φZ9∆12
9 ,

∆2567
9 = ∆567

9 J22(E9) + γ2B9W9∆56
9 .

Let us define the following quantities:

L = (q̃ηX9 − χZ9)(αqI9 − φB9)(J65(E9)− J66(E9)) + ∆56
9 (αqX9 − λB9)

+ χZ9(αqI9 − φB9)(J56(E9)− J55(E9)),

Q = qI9φZ9(J55(E9) + J65(E9)− J56(E9)− J66(E9)),

R = (αqI9 − φB9)(q̃ηX9 − χZ9)(J65(E9)− J66(E9))

+ (αqI9 − φB9)χZ9(J56(E9)− J55(E9)) + (αqX9 − λB9)∆56
9 .

Next the minors of order 5:

∆12456
9 = −aW9∆2456

9 − J12(E9)[(γB9 + ωI9)∆456
9 + efpI9ωW9∆56

9 ]

+W9(efp− ω)efpI9∆56
9 [J22(E9)− (γB9 + ωI9)],

∆12457
9 = −aW9∆2457

9 − J12(E9){(γB9 + ωI9)∆457
9 + efpI9[ωW9∆57

9

+ γW9((q̃ηX9 − χZ9)(αqI9 − φB9)− (αqX9 − λB9)J55(E9))]

+ γB9[ωW9qI9χZ9 + γW9J44(E9)J55(E9)] + γW9qI9(q̃ηX9 − χZ9)]}
+W9(efp− ω){efpI9∆257

9 − (γB9 + ωI9)[efpI9∆57
9 − γB9qI9χZ9]

+ γB9[J22(E9)qI9φZ9 − efpI9γW9J55(E9)]}
− γW9{J55(E9)[(γB9 + ωI9)(J44(E9)γB9 − efpI9(αqX9 − λB9)]

− J22(E9)[γB9J44(E9)− efpI9(αqX9 − λB9)]]

+ (q̃ηX9 − χZ9)[(γB9 + ωI9)[γB9qI9 − efpI9(αqI9 − φB9)]

− J22(E9)(qI9γB9 − efpI9(αqI9 − φB9)]},

∆12567
9 = −aW9∆2567

9 − J12(E9)[(γB9 + ωI9)∆567
9 + γ2B9W9∆56

9 ]

− γW9γB9[∆256
9 − (γB9 + ωI9)∆56

9 ],

∆14567
9 = −aW9∆4567

9 −W9(efp− ω)[γB9Q− efpI9∆567
9 ]

− γW9[γB9∆456
9 − efpI9L],

∆24567
9 = J22(E9)∆4567

9 + efpI9[ωW9∆567
9 − γW9R] + γB9[γW9∆456

9

+ ωW9qI9χZ9(J56(E9) + J66(E9)− J55(E9)− J65(E9))]
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∆12467
9 = −aW9∆2467

9 − (γB9 + ωI9){J12(E9)∆467
9 + efpI9[W9(efp− ω)∆67

9

− γW9(χZ9(αqI9 − φB9)− J66(E9)(αqX9 − λB9))]

− γB9[qI9φZ9W9(efp− ω) + γW9J44(E9)J66(E9) + χZ9qI9γW9]}
− efpI9{J12(E9)[ωW9J66(E9)J77(E9)− (αqX9 − λB9)J66(E9)γW9

+ χZ9(αqI9 − φB9)− φZ9(αqI9 − φB9)ωW9]

− J22(E9)[W9(efp− ω)(J66(E9)J77(E9)− (αqI9 − φB9)φZ9)

− γW9(χZ9(αqI9 − φB9)− (αqX9 − λB9)J66(E9))]

− J66(E9)γW9[(efp− ω) + ωW9]}.

Finally the determinant:

∆124567
9 = −aW9∆24567

9 − (γB9 + ωI9){J12(E9)∆4567
9 + efpI9[γW9R

+W9(efp− ω)∆567
9 ] + γB9[γW9∆456

9 +W9(efp− ω)Q]}
+ efpI9{J12(E9)[ωW9∆567

9 − γW9L]

− J22(E9)[W9(efp− ω)∆567
9 + γW9L]

− γB9efpγωW
2
9 ∆56

9 }+ γB9{J12(E9)[ωW9Q− γW9∆456
9 ]

− J22(E9)[W9(efp− ω)Q+ γW9∆456
9 ]− e2f2p2I9γW

2
9 ∆56

9 }.
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