
Signal-independent RFF Identification for LTE
Mobile Devices via Ensemble Deep Learning

Yanjin Qiu∗, Linning Peng∗†, Junqing Zhang‡, Ming Liu§, Hua Fu∗†, Aiqun Hu¶†
∗School of Cyber Science and Engineering, Southeast University, Nanjing, China

†Purple Mountain Laboratories for Network and Communication Security, Nanjing, China
‡Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom

§School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
¶School of Information Science and Engineering, Southeast University, Nanjing, China

Abstract—Radio frequency fingerprint (RFF)-based wireless
device authentication is an emerging technique to prevent po-
tential spoofing attacks in wireless communications. The random
access preamble of the physical random access channel (PRACH)
in Long Term Evolution (LTE) systems is the first message
sent from a user equipment (UE). However, PRACH preambles
change under different evolved Node B (eNB), which will affect
the RFF extraction. In this paper, a signal-independent RFF
extraction method is first proposed to extract varying LTE
PRACH preambles under different LTE eNBs. Residual transient
segment (RTS) features from the varying PRACH preambles are
extracted for RFF identification. A convolutional neural network
(CNN) based ensemble deep learning scheme is proposed to
integrate benefits from different RFF features. An experimental
system under real operator LTE eNB is designed to capture
and identify real UE signals. Experimental results show that
the classification accuracy of five UEs can reach more than
95% under the same eNB and 85% under different eNBs.
Furthermore, longtime evaluations show that the UE RTS feature
is robust over time.

Index Terms—LTE, RFF, PRACH, residual transient segment,
CNN, ensemble learning.

I. INTRODUCTION

Radio frequency fingerprint (RFF)-based identification is an
emerging technology for wireless device authentication [1].
There are subtle hardware differences between electronic com-
ponents due to the manufacturing process, which will distort
the emitted signals. RFF features are extracted from these
distorted signals, which are unique, persistent, and difficult
to clone or tamper with [2]. It can be used as an auxiliary
mechanism for device access authentication to enhance system
security from the physical layer without affecting the upper-
layer protocols.

Long Term Evolution (LTE) is the primary global cellular
standard, which has been employed by mobile operators
worldwide. Though LTE offers higher spectral efficiency and
better security mechanisms, it is still vulnerable to physical
layer threats such as radio frequency (RF) jamming, spoofing
and sniffing [3]. Therefore, it is of great significance to study
the security scheme with practical application under LTE.
Previous work on LTE signal identification was mainly based
on other protocols, such as the Global System for Mobile
Communications (GSM). Karami et al. proposed an algorithm

based on the pilot-induced second-order cyclostationarity for
the identification of GSM and LTE signals [4]. In [5]–[7],
GSM mobile phone identification based on RFF was studied.
Wang et al. proposed a differential constellation trace figure
(DCTF) physical layer RFF extraction and convolutional neu-
ral network (CNN) based classification scheme to identify six
GSM mobile phones, with accuracies of 99.77% at signal-to-
noise ratio (SNR) levels of 50 dB [8]. In a recent work [9],
Yin et al. extracted DCTF from the physical random access
channel (PRACH) preambles under a pseudo base station im-
plemented on the universal software radio peripheral (USRP)
and completed effective classification of six mobile terminals
using multi-channel CNN.

Generally, RFF extraction methods can be structured into
three categories, namely transient-based, modulated-based and
other signal-part based [10]. In this paper, the LTE random
access preamble signals are segmented to extract RFF features.
The wireless terminal will experience a transient process when
switched on or off. In the transient phase, the signal converts
between 0 and normal power, which does not contain data
information, depends only on the hardware characteristics of
the device [11]. The steady phase is the part of the signal
sent when the received terminal power is stable, which is
the modulated waveform of the specific symbol data. PRACH
preambles emitted by user equipment (UE) are different due to
the parameter change of the Zadoff-Chu (ZC) sequences [9].
Therefore, it is necessary to find a signal-independent RFF
extraction method to adapt to the changing PRACH signals.

In this paper, an RFF-based CNN scheme is proposed for
the LTE mobile phone identification under different evolved
Node B (eNB) of real operators. To the best knowledge of
the authors, the stability of RFF features of LTE terminals
under different real operator eNBs has not been verified,
which is related to the security performance in practical
applications. The transient-on, steady, and transient-off parts
of PRACH signals are extracted and adopted as RFF features
to successfully distinguish five LTE UEs. The research results
based on PRACH signals in LTE can be extended to 5G for
the similar random access preamble. The main contributions
of our work are as follows:

• We propose a residual transient segment (RTS) RFF
extraction method for LTE PRACH preamble. With the978-1-6654-3540-6/22/$31.00 ©2022 IEEE
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Fig. 1. Generation of the PRACH preamble.

help of the proposed synchronization process, we can
obtain the difference between the received PRACH signal
and the standard one, which enables signal-independent
RFF extraction. We also discover the semi-steady phase
of a received PRACH preamble, which varies with UE,
can be combined with the traditional transient phase to
contribute to terminal identification.

• We design a CNN based ensemble deep learning scheme
for different RTS features. Classification advantages of
single RFF feature can be combined to achieve the
optimized identification effect.

• We implement an experimental system that can capture
the UE signal communicating with real operator’s eNBs.
The RFF identification for LTE UE under the real oper-
ator eNB scenario is investigated, which is, to the best
knowledge of the authors, the first work in this area.

The rest of the paper is structured as follows. Section II
introduces the LTE PRACH preamble. Section III introduces
the semi-stable state of the PRACH preamble and the RTS
RFF. Section IV describes the process of RFF identification.
Section V introduces the collection of PRACH preambles and
analyzes the experimental results. Section VI concludes the
paper.

II. PRELIMINARY: LTE PRACH PREAMBLE

In LTE, PRACH preamble is the first message transmitted
from the UE when accessing the eNB during the radio resource
control (RRC) establishment, which is used to achieve the up-
link synchronization and obtain resources from the eNB, e.g,
RRC connection request.

As shown in Fig. 1, each eNB, represented by a physical
cell identifier (PCI), sets a different root sequence index (RSI),
which is broadcast as part of the system information from
eNB. Once the UE receives the RSI, the UE will determine
a root sequence from a pool of 839 sequences. It will then
generate a set of 64 preambles through a cyclic shift of the root
sequence. The generated preambles are orthogonal to avoid
interference. Each PRACH preamble in the frequency domain
occupies 6 resource blocks (RB) of up-link subframe, which is
1.08 MHz. In the time domain, the PRACH preamble consists
of a cyclic prefix (CP) and a sequence part. CP is a segment
taken from the back of the sequence part, as shown in Fig. 1.
More specific generation principle of the PRACH preamble
can be referred to [12].

When a UE moves across different eNBs, PRACH pream-
bles sent by the same UE will be significantly different due
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(a) RSI=0
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Fig. 2. Different PRACH preambles with a specific RSI.
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Fig. 3. Part of PRACH signals under self-built USRP base station (RSI=0,
bandwidth=1.08 MHz, RS=16 MHz, 20 signals per device).

to the change of the root sequence. As shown in Fig. 2, the
waveforms of the PRACH preambles under the same RSI
are similar, while the waveforms between RSIs are obviously
different. It indicates that the waveform is mainly affected by
RSI changes compared with the shift under the same RSI.

III. PRACH RESIDUAL TRANSIENT SEGMENT

As shown in Fig. 3, the received PRACH preamble is
well synchronized at the 100th sample. It is the logical start
point of the signal unit impulse response in the digital circuit,
found by correlating with the standard signal. The transient
state only exists before the start point [11], and the signal
region after the 100th point in Fig. 3(a) should be the steady
state to the traditional understanding. However, an unstable
region of the PRACH signal from start point to the normal
power is exist, which could be named as semi-steady state
and it is varying with different UE. This paper forms the
transient RFF feature using the semi-steady part as well as
the classical transient part. And we call the combined parts
transient-on and transient-off at the beginning and end of the
signal respectively.
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Fig. 5. Comparison of transient-off features under different RSI (60 signals
per figure).

As indicated in Section II, the PRACH preamble will be
different and orthogonal. As discussed in [13], different data
patterns will interfere with the RFF extraction. Therefore, it
is not ideal to extract RFF from the received signal directly.
Instead, a residual signal r(n) can be obtained by the subtrac-
tion of the normalized received PRACH preamble ỹ(n) and
the standard PRACH preamble s(n), given as:

r (n) = ỹ (n)− s (n) , 1 ≤ n ≤ LCP + LZC , (1)

RTS is the transient-on or transient-off part of the residual
signal. Fig. 4 illustrates the RTS extraction process. The
areas circled in black are the classical transient and semi-
steady regions of the signal. Table I explains the abbreviation
of different RFF features used in this paper. Fig. 5 shows
the stability of RTS feature from the same device under
different RSI. As RSI changes, the semi-steady part in Fig. 5(a)
varies, while the corresponding RTS feature is stable in Fig.
5(b). Therefore, RTS extraction is a method to eliminate the
difference of PRACH signal under different eNB setups.

IV. RFF IDENTIFICATION

As shown in Fig. 6, the proposed LTE RFF identification
scheme includes signal preprocessing, RFF extraction, CNN

TABLE I
ABBREVIATION OF EACH RFF

Abbreviation RFF Feature

ON Transient-on Segment

OFF Transient-off Segment

RON Transient-on RTS

ROFF Transient-off RTS

RS Residual Steady Segment (Without RTS)

RC Residual Complete Signal (Including all RTS and RS)
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Fig. 6. Process of LTE RFF identification.

classification and ensemble learning with multiple features.
The process of RFF extraction has been introduced in Sec-
tion III.

A. Preprocessing of PRACH Preamble

As shown in Fig. 6, the preprocessing process invovles time
synchronization, carrier frequency offset (CFO) and phase
offset (PHO) estimation and compensation, and power nor-
malization.

1) Time Synchronization: The CP of PRACH preamble can
be used for time synchronization, given as:

D = argmax
i

( LCP−1∑
n=0

y (i+ n) · y∗(i+ n+ LZC)
)
, (2)

where D refers to the position of the synchronization point
in the signal, y(n) represents the received signal, (·)∗ is the
conjugate operation, LZC and LCP are the length of the ZC
sequence and the CP in the time domain, respectively.

2) Carrier Frequency Offset Estimation: CFO is caused by
different oscillator frequencies at the transmitter and receiver.
It is also estimated based on the CP of PRACH preamble. The
CFO is calculated as follows:

∆f =

∑LCP

n=1 angle (y(n) · y∗ (n+ LZC))

2π · LCP · LZC
·RS , (3)

where RS is the sampling frequency of received signal. The
angle operation refers to the calculation of an angle. The
compensated signal is given as:

y′ (n) = y (n) e
−j2π∆fn 1

RS , (4)
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3) Phase Offset Estimation: PHO can be estimated as:

φ = angle

(
1

LCP + LZC

LCP+LZC∑
n=1

y′ (n) · s∗ (n)

)
, (5)

where s(n) represents the corresponding standard PRACH
preamble. The PHO compensated signal becomes:

y′′ (n) = y′ (n) e−jφ, (6)

4) Power Normalization: Finally, the signal is normalized
as:

ỹ (n) =
y′′ (n)

1
LCP+LZC

∑LCP+LZC

n=1 (|y′′ (n) |)
. (7)

The bandwidth of PRACH signal is only 1.08 MHz, which
is relatively narrow. Thus, flat fading can be assumed and the
channel effect can be compensated by power normalization.

B. CNN Design

For each RFF feature, a specific CNN model is trained,
though the same CNN structure is used. The training dataset
consists of the real and imaginary parts of the RFF feature
whose length is L. Fig. 7 illustrates the structure of the adopted
CNN model, which consists of six 2D convolutional layers
and a fully connected (FC) layer. The convolutional layer is
used to extract local features of input data and the kernel
size is set to [1 × 4]. Channel numbers were chosen to 16,
24, 32, 48, 64 and 96 to accommodate higher level features.
The batch normalization (BN) layer is added to accelerate
the convergence rate of the network. The rectified linear unit
(ReLU) is employed to increase the nonlinear relation between
layers of neural network and alleviates overfitting. Five [1×2]
max pooling layers are applied after the first five convolutional
layers and a 1 × ⌊L/32⌋ average pooling layer after the last
convolutional layer to reduce the size of parameter matrix and
speed up the calculation. In the classification stage, the feature
is mapped to the label space through the FC layer. Then the
softmax layer calculates confidence level of each class, given
as a list of probabilities, q.

C. Ensemble Learning with Multiple Features

Multiple features of the same terminal can be arbitrarily
combined according to respective classification effects to im-
prove the accuracy based on the idea of ensemble learning.
Multiple RFFs extracted from the same training set of PRACH
signals trains models separately. When an RFF extracted
from a test sample is put into the corresponding model, a
set of classification probability scores q can be obtained,

PCI 397
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PCI 120PCI 260

PCI 121

PCI 460
500m

Real  eNB

PRACH Signal
 Collection

LTE  Device USRP

PC

Fig. 8. Location of real eNBs and experimental setup under each eNB.

representing the similarity between the sample and each label
under this RFF feature. A merged prediction score set q′ can
be derived by summing up score sets of N RFF features
obtained under the same test sample, mathematically expressed
as:

q′ =

N∑
n=1

qn, (8)

where qn is the prediction score set of the nth RFF. Then the
predicted label can be derived by selecting the index with the
highest probability, formulated as:

label = argmax
k

(q′). (9)

V. EXPERIMENTAL EVALUATION

A. Data Collection and Training Setup

As shown in Fig. 8, our experiments involved six real
operator eNBs. Five mobile phones including Google Nexus
5, XIAOMI MCT3B, HUAWEI P9, Google Nexus 6P and
HONOR 30 Lite were employed. Since the PRACH preamble
is transmitted when the mobile phone is initially connected
to the core network, we switched the flight mode manually
to trigger the PRACH signal. A B205 USRP was used to
capture the PRACH signal. When collecting under each eNB,
the straight-line distance between USRP and UE was 1 to 2
meters and the placement of each UE was randomly selected.
The sampling frequency was 16 MHz. Table II shows the
specific information of data collected. The same amount of
training PRACH preambles are collected for each UE to ensure
fairness. Fig. 9 shows PRACH preambles collected under
different eNB PCI setups.

Training set and verification set are divided with a ratio of
7:3. The training learning rate is 2× 10−2. The training time
is 100 epochs and the batch size is 64.

B. Experimental Results and Analysis

1) Performance of Classification under the Same eNB:
When the UE moves in a small range, it will be served by
the same eNB, i.e., the PRACH preambles will be generated
with the same root sequence. The classification accuracy of
5 terminals is given in Table III when training and testing



TABLE II
INFORMATION OF DATA COLLECTED

Function PCI Quantity
(per phone)

Acquisition
Time

Initial
SNR (dB)

Training set

397

200

Sept. 2021 44.48
439

Jan. 2022
39.83

120 39.72
260 44.53

Test set

397

60

Sept. 2021

44.39
439 43.94
120 38.04
260 42.92
460 Nov. 2021 37.7
397

Jan. 2022
39.31

121 39.63
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(b) PCI=439, j=9

Fig. 9. PRACH signals under different eNBs (where j is the index number
among the 64 standard ZC preambles).

PRACH preambles are collected under the same eNB. Totally
4 different eNBs cases are presented to show the universality
of the experimental results. As shown in Table III, feature
ROFF performs better than other single RFF feature, nearly
with an accuracy of over 95% under each eNB. The accuracy
with ensemble learning could be significantly higher than that
with single RFF feature, which could achieve nearly 100%.

2) Performance of Classification under Different eNBs:
In the UE moving state, cell switching causes the change
of PRACH root sequence due to the different PCI setups.
The classification accuracy of 5 terminals is compared in
Table IV when training and testing PRACH preambles are
collected under different eNBs. The ROFF feature also has
better classification performance than other single features
with an accuracy of over 70%. With the help of ensemble
learning, the multi-feature of “RON + ROFF + OFF ”
can reach the accuracy at 89% and average accuracy around
85%, which has a significant improvement compared with a
single feature. Summarily, the RTS feature owns the benefits
of signal-independent and provides better performance than
classical transient and steady features.

3) Performance of Identification Stability Over Time: In
practical applications, UE can register the RFF feature when
they access the network for the first time. The eNB needs
to continuously identify the UE in different days. Therefore,
the training and testing data of PRACH will probably be
collected in different days. We collected PRACH signals in

TABLE III
IDENTIFICATION ACCURACY UNDER THE SAME ENB

Dataset PCI
Training Set 397 439 120 260

Test Set 397 439 120 260

Feature Test Accuracy (%)
ON 75.00 77.33 71.67 72.33

RON 81.67 85.00 78.33 86.00
OFF 89.67 93.00 92.00 97.67

ROFF 96.00 96.33 93.67 98.00
RS 89.00 78.67 55.67 60.33
RC 95.33 80.67 66.33 67.67

ON+OFF 93.33 98.00 93.00 98.00
RON+ROFF 98.33 98.00 96.67 99.00

RS+RC 93.33 80.33 63.67 64.33
ON+RON+ROFF 96.33 97.67 95.67 98.67

RON+ROFF+OFF 96.67 98.33 97.33 99.33
ON+RON+OFF+ROFF 96.67 99.33 97.33 99.00

ON+RON+OFF
+ROFF+RS+RC

99.33 100 96.33 98.67

TABLE IV
IDENTIFICATION ACCURACY UNDER DIFFERENT ENBS

Dataset PCI
Training Set 397 397 397 397

Test Set 439 120 260 460

Feature Test Accuracy (%)
ON 41.67 50.00 35.67 49.00

RON 69.33 56.00 60.00 70.67
OFF 59.00 57.33 59.67 54.33

ROFF 73.67 79.67 75.33 70.67
RS 48.33 38.00 39.67 37.67
RC 46.00 41.00 44.00 46.67

ON+OFF 64.33 63.00 51.33 59.67
RON+ROFF 80.33 76.00 74.67 84.00

RS+RC 49.00 41.67 41.67 43.33
ON+RON+ROFF 76.67 71.33 74.00 80.33

RON+ROFF+OFF 81.00 83.33 89.00 79.33
ON+RON+OFF+ROFF 82.33 76.33 79.33 81.33

ON+RON+OFF
+ROFF+RS+RC

89.00 72.67 74.33 72.33

the campus of Southeast University with an interval of three
months. Table V illustrates identification results by the multi-
feature of “RON +ROFF +OFF ”. Accuracy was 98.67%
and 85% under the same eNB and different eNBs, respectively,
indicating that the RFF feature extraction and identification
scheme is robust over time.

4) Performance With Different SNR: The initial SNR of
collected signals is measured around 40 dB, as shown in
Table II. In order to evaluate performance under low SNR
scenarios, additive white Gaussian noise (AWGN) is added
to the original data samples from 0 to 40 dB. As shown in
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Fig. 10. Classification accuracy under different SNR levels.

TABLE V
IDENTIFICATION STABILITY OVER TIME

Training Set Test Set Accuracy (%)

PCI=397:
Sept. 2021

PCI=397: Sept. 2021 99.33
PCI=397: Jan. 2022 98.67
PCI=260: Sept. 2021 89.00
PCI=121: Jan. 2022 85.67

Fig. 10, when SNR is higher than 20 dB, accuracy rates only
decrease slightly, while in extremely low SNR scenarios, the
classification accuracy reduces significantly.

VI. CONCLUSION

In this paper, a signal-independent RFF extraction method
for LTE PRACH preamble is proposed. The RTS feature
could be extracted by subtracting the synchronized PRACH
preamble from the standard PRACH preamble. The semi-
steady differences among different PRACH preambles from
the same UE due to the eNB PCI changes can be eliminated
in RTS feature. An ensemble deep learning scheme combining
multiple RFF features is proposed to enhance the RFF identifi-
cation accuracy. We collect the UE PRACH preambles under
real operator eNBs among three months. The experimental
results show that the proposed method can effectively distin-
guish real mobile phones. The highest classification accuracy
under the same eNB can reach more than 95% among 5
UEs, which is better than that under different eNBs with
the best accuracy around 85%. The RTS feature performs
better than classical transient and steady features. Furthermore,
multi-feature ensemble learning can effectively improve the
classification accuracy, and the proposed scheme has strong
time and noise robustness. In general, the ROFF performs
better than other single feature, while the combination of
“RON + ROFF + OFF ” is the best multi-feature. Future
work includes the detection of unknown UE PRACH pream-
bles via RTS features.

ACKNOWLEDGMENT

This work was supported in part by the National
Key Research and Development Program of China

(2020YFE0200600, 2021YFE0110500), National Natural
Science Foundation of China under Grant 62171120,
62001106 and 61971029, Jiangsu Natural Science Foundation
under Grant BK20200350, Jiangsu Provincial Key Laboratory
of Network and Information Security No. BM2003201,
Guangdong Key Research and Development Program under
Grant 2020B0303010001, and Purple Mountain Laboratories
for Network and Communication Security.

REFERENCES

[1] G. Shen, J. Zhang, A. Marshall, L. Peng, and X. Wang, “Radio frequency
fingerprint identification for LoRa using deep learning,” IEEE Journal
on Selected Areas in Communications, vol. 39, no. 8, pp. 2604–2616,
2021.

[2] N. Xie, Z. Li, and H. Tan, “A survey of physical-layer authentication in
wireless communications,” IEEE Commun. Surveys Tuts., vol. 23, no. 1,
pp. 282–310, 2020.

[3] M. Lichtman, R. P. Jover, M. Labib, R. Rao, V. Marojevic, and J. H.
Reed, “LTE/LTE-A jamming, spoofing, and sniffing: Threat assessment
and mitigation,” IEEE Commun. Mag., vol. 54, no. 4, pp. 54–61, 2016.

[4] E. Karami, O. A. Dobre, and N. Adnani, “Identification of GSM and LTE
signals using their second-order cyclostationarity,” in Proc. International
Instrumentation and Measurement Technology Conference (I2MTC),
2015, pp. 1108–1112.

[5] J. Hasse, T. Gloe, and M. Beck, “Forensic identification of GSM mobile
phones,” in Proc. first ACM workshop on Information Hiding and
Multimedia Security, 2013, pp. 131–140.

[6] D. Zanetti, V. Lenders, and S. Capkun, “Exploring the physical-layer
identification of GSM devices,” Technical report, vol. 763, 2012.
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