
Abstract

Cross-domain machinery fault diagnosis aims to transfer enriched diagnosis knowledge from a labeled source

domain to a new unlabeled target domain. Most existing methods assume that the prior information on the fault

modes of the target domain is known in advance. However, in engineering practice, prior knowledge of fault

modes is rare in a new domain, in which there may be only partial source fault modes or some new fault modes.

Furthermore, up to the present, almost all existing cross-domain fault diagnosis methods require the labeled source

data during the model training process, which restricts their deployment on certain devices with limited computing

resources. To this end, we propose a universal source-free domain adaptation method that can handle cross-domain

fault diagnosis scenarios without access to the source data and is free of explicit assumptions about the target

fault modes. More specifically, we develop a convolutional network with a Transformer as the attention module to

extract discriminative feature information from the source data and then send the model and parameters to the target

domain. In target domain training, we first propose a supervised contrastive learning strategy based on source class

prototypes, which utilizes high-confident predictions to achieve source-free domain alignment and class alignment.

Then, we also introduce a threshold-based entropy max-min loss to further align known class samples in the target

domain or reject target outlier samples as an unknown class. Furthermore, we introduce self-supervised learning

to further learn feature representations of the target domain to reduce the previous misclassification. A series of

experiments on two rotating machine datasets demonstrate the effectiveness and practicability of the proposed

method.

Keywords: Fault diagnosis, machinery, source-free, domain adaptation, supervised contrastive learning

1. Introduction

The fourth industrial revolution requires more automated, complex, and computerized industrial infrastructures

to meet the growing manufacturing requirements, which brings higher requirements to the fault diagnosis and

structural health monitoring of industrial systems and their sub-components [1, 2, 3]. Rotating machinery, as a key

component of industrial systems, usually operates under a non-stationary and harsh working environment during

its lifespan, which makes it easily subject to various faults [4, 5]. Unexpected failures may affect the productivity

and product quality of the manufacturing process and even cause production accidents. Therefore, effective fault

diagnosis solutions for these machines in modern industrial processes are essential, which can guarantee operating
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safety, reduce downtime, and boost economic profits [6, 7, 8].

In the past years, deep learning technology has played a predominant role in the field of machinery fault

diagnosis due to its strong ability to extract features from large-scale data [9, 10, 11, 12]. However, effective deep

learning-based models need two essential prerequisites: 1) a large amount of labeled training data and 2) training

data and test data follow the same or similar distribution [13]. These two prerequisites are generally difficult to

satisfy in practical industrial applications. The reason for this situation is that the various operating conditions

of the machine, such as rotating speed and operating load, may cause the distribution discrepancy between the

test and training data [14, 15, 16]. Also, annotating data in all operating conditions is time-consuming, costly,

or challenging. Consequently, there is a strong incentive to transfer the diagnosis knowledge from a well-labeled

operating condition (i.e., source domain) to a different unlabeled operating condition (i.e., target domain), which

is referred to as the domain shift issue.

Domain adaptation (DA) techniques have been proposed to deal with the domain shift issue. The DA aims

to transfer knowledge from a label-rich source domain to the label-scarce target domain. Recently, numerous DA

methods have been developed to boost model performances in various cross-domain recognition tasks such as

fault diagnosis and structural health monitoring [17]. Their goals are to reduce the distribution discrepancy in the

task-specific layer to mitigate the impact of the domain shift, such as different operating conditions or different

structures [18]. However, existing cross-domain fault diagnosis methods are performed under strict assumptions,

limiting their applicability to many practical industrial scenarios.

Most of the existing methods assume that the target domain’s label set (i.e., the number of fault modes) is

known in advance [19]. Suppose that, Cs and Ct define the label sets of the source domain and target domain,

respectively. Recently, three common DA settings have been extended to various fault diagnosis scenarios, e.g.,

closed-set DA (Cs = Ct), partial DA (Ct ⊂ Cs), and open-set DA (Cs ⊂ Ct). Although some good results have

been achieved in the setting with overlapped fault modes, it is hard to generalize them to practical industrial

scenarios [20]. More specifically, the prior knowledge of the target label set is untrustworthy since we may not

know which fault mode will occur during the real-world diagnosis process in advance. Unexpected fault modes

shift generally impairs diagnostic model performance. This scenario is defined as universal DA, which is a quite

challenging cross-domain fault diagnosis problem. The other strict assumption is that traditional DA methods

require the source domain data during the training process. However, the scale of the source domain dataset is

usually large, and training a diagnostic model jointly with source and target domain data usually requires large

computing resources, limiting their deployment on certain platforms, especially portable devices in real-world

applications.

To address the issues discussed above, we propose a universal source-free domain adaptation method for cross-

domain fault diagnosis. The highlights and contributions of our work are summarized as follows.

• The proposed method can deal with the challenging cross-domain fault diagnosis scenarios where the source

data are unavailable, and target fault modes are unknown. The model trained on the pre-collected dataset

can be deployed at resource-limited devices to monitor their real-time operating condition by utilizing the

proposed method.

• We develop a convolutional network with a Transformer as the attention module to conduct cross-domain
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fault diagnosis. A high-confident supervised contrastive learning strategy based on source class prototypes

is developed in the proposed network to achieve domain-invariant learning. A threshold-based entropy max-

min loss is built to align samples of known classes or reject target outlier samples as an unknown class.

Moreover, a self-supervised learning loss is introduced to further improve the fault diagnosis performance

of the model.

• Massive experiments on two laboratory datasets are conducted to show that the proposed method stably

crosses various domain adaptation settings and achieves higher performance than the advanced domain adap-

tation methods.

This work shows that the proposed method is a promising tool to address cross-domain fault diagnosis in

real-world industrial applications.

The remainder of this paper starts with the related work in Section 2. The proposed framework is illustrated in

Section 3. The experimental verification is in Section 4. The conclusions are drawn in Section 5.

2. Related work

In recent years, various deep learning approaches have been successfully applied to monitor mechanical sys-

tems [21]. Thanks to its robust feature extraction ability and impressive recognition performance, the convolutional

neural network (CNN) has been studied extensively in various fault diagnosis tasks [22, 23]. For example, Wen

et al. [24] proposed a deep learning model based on CNN for end-to-end fault diagnosis, in which the raw signal

was converted into the two-dimensional image signal directly as the input of the deep learning model. Li et al.

[25] proposed a convolutional residual network for bearing fault diagnosis, in which the augmented data in the

time domain was adopted to improve the generalization of the model. Wang et al. [26] proposed a conditional

variational neural network for fault diagnosis of planetary gearbox, and the Fourier domain data of the recorded vi-

bration signal was also used as input to the network. Jiang et al. [27] proposed an intelligent diagnosis method for

gearboxes based on a multi-scale CNN, in which a multi-layer convolution-pooling combination and a multi-scale

learning mechanism were utilized to obtain complementary and rich diagnostic knowledge directly from the raw

signal. Guo et al. [28] proposed a multi-task convolutional neural network based on information fusion, in which

a multi-task CNN with a dynamic training rate was established. The two-dimensional time-frequency information

of the vibration signal is used as the multi-dimensional input feature of the convolutional neural network, to realize

the two tasks of fault diagnosis and localization at the same time. Guan et al. [29] proposed a multi-sensor and

multi-scale CNN model for bearing fault diagnosis, and the correlation and complementarity among multi-level

information were used to improve diagnostic performance. The experimental results in the existing literature show

that CNN-based methods are well suited for fault diagnosis tasks in industrial big data scenarios. However, an

essential hypothesis of these methods is that the feature distribution of training data and test data are the same or

similar; once they have feature distribution discrepancies, the performance of the model will be seriously impaired

[30].

For the industrial domain shift issue, DA methods have been developed to train a high generalization model

that can transfer knowledge from a label-rich source domain to a label-unknown target domain. Domain adaptation

has been applied to several engineering contents such as structural health monitoring (SHM) and fault diagnosis.
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For example, Gardner et al. [18] applied transfer learning for diagnosing the unseen structure, in which the damage

information learned from other structures in the population was utilized to improve the classification performance.

Ritto et al. [31] proposed a new digital-twin framework for detecting localized torsional friction, in which a

physics-based torsional model was used to obtain training data, and the domain adaptation method was introduced

to reduce feature distribution discrepancy under structural changes. Gardner et al. [2] proposed a kernelized

Bayesian transfer learning method for population-based SHM, in which two classification tasks were investigated

to demonstrate that the proposed method can handle the inconsistent feature space scenario. The above-discussed

research promoted the development of structural health monitoring, such as the aircraft wing and the drill-string.

However, these studies were developed to solve the domain adaptation problem where the source domain data is

available. While this paper focuses on source-free domain adaptation and the research object is rotating machinery.

Therefore, the methodologies of cross-domain machinery fault diagnosis will be reviewed and discussed in the

following.

More broadly in the field of fault diagnosis, existing DA methods mainly include three kinds of scenario set-

tings: 1) Closed-set DA problem. For example, Lu et al. [32] proposed a deep domain adaptation network based on

a deep neural network for cross-domain fault diagnosis of rolling bearing and gearbox, and introduced the maxi-

mum mean discrepancy (MMD) loss to achieve domain-invariant learning of source and target domains. Yang et al.

[33] proposed a multi-kernel DA network based on CNN for cross-domain fault diagnosis, in which a multi-kernel

MMD loss was established to minimize the marginal distribution discrepancy between the two domains. Wang et

al. [34] proposed a subdomain adaptive method to reduce both marginal and conditional distribution discrepancy

in cross-domain fault diagnosis. Han et al. [35] proposed a deep adversarial CNN network for mechanical fault di-

agnosis, in which a domain discriminator was introduced to identify whether the sample is from the source domain

or the target domain. The goal of the training was to fool the domain discriminator to achieve domain alignment.

Zhang et al. [36] proposed a joint domain alignment and class alignment approach for cross-machine fault diagno-

sis, in which the classifier discrepancy loss and contrastive loss were integrated to reduce the intra-class distance

and increase the inter-class distance in the feature space. Jiao et al. [37] developed a domain adaptation method for

cross-domain fault diagnosis with the one-dimensional residual network, which simultaneously reduces the joint

distribution and marginal distribution discrepancy by jointing MMD and adversarial learning. 2) Partial DA prob-

lem. For example, Jiao et al. [38] constructed a classifier inconsistency-based partial DA network for machinery

intelligent diagnosis, in which two different classifiers were designed to select the source samples belonging to the

target class and emphasize the network to train these samples. Li et al. [39] proposed a class-weighted adversarial

neural network based on partial DA for cross-domain fault diagnosis, in which the samples of shared classes were

positively transferred, and the samples of source outliers were ignored. Jia et al. [40] proposed a weighted sub-

domain adaptation network for partial cross-domain fault diagnosis and used a weighted local MMD loss for the

fine-grained transferable information. Li et al. [41] developed a weighting adversarial DA network to adaptively

identify and filter source samples that were not related to the target classes by implementing a weighting learning

strategy. Deng et al. [42] presented a double-layer attention-based adversarial network, in which two attention

matrices were used to guide the network to know which samples should be trained or ignored. 3) Open-set DA

problem. For example, Zhang et al. [43] developed an open-set DA method based on adversarial learning for

the bearing diagnosis in the scenario where new fault modes occur in the target domain. An instance weighting
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mechanism was introduced to calculate the similarity of the known classes of source and target and to identify

unknown classes of the target domain. Zhu et al. [44] presented a cross-domain open-set diagnosis method, in

which adversarial learning was used to achieve domain alignment, and multiple auxiliary classifiers were designed

to identify known class samples and unknown class samples from target instances. Feng et al. [45] proposed a

globally localized multisource DA method to address cross-domain fault diagnosis in case of class shift, in which

the Wasserstein discrepancy and accumulative higher order were introduced into model training to reduce the shift

on domain-level and class-level synchronously. Zhao et al. [46] showed a dual adversarial learning-based open-set

DA network, in which the separated adversarial learning was used as a decision hyperplane to separate known and

unknown classes.

The good results achieved by the aforementioned methods are based on the assumption that the target domain’s

label set is known in advance. However, it is usually unknown which fault modes have occurred in the unlabeled

target domain in the real-world industry. This indicates that the testing target domain may have some known source

fault modes and unknown fault modes. Unexpected fault mode shift causes the negative transfer, which reduces

the model’s performance. To our best knowledge, investigations on this practical universal DA cross-domain fault

diagnosis problem are rare. A pioneer work is that a hybrid weighting mechanism method based on adversarial

learning was proposed by Zhang et al. [20] to achieve cross-domain fault diagnosis in universal DA settings.

However, this researcher has not considered DA fault diagnosis in the absence of source data due to computing

resource problems.

In industry, with the rapid development of the industrial internet of things (IIoT), rapidly growing data volumes

put pressure on servers with limited storage and computing resources. Edge computing is an emerging computing

paradigm that relieves the pressure of centralized computing by distributing computing to each edge. Therefore,

performing cross-domain fault diagnosis on the device side is the development trend of modern condition moni-

toring. However, the source domain datasets are usually large, and training a diagnostic model jointly with source

and target domain data usually consumes large computing resources, which limits their deployment on certain

platforms, especially portable devices.

In the computer vision field, some source-free domain adaptation methods were proposed to deal with the prob-

lem that the source data are not available during target adaptation. Source-free DA method means the adaptation

step is source-free. The process of source-free DA is similar to that of the fine-tuning-based DA method, but they

are different. In the fine-tuning-based DA method, a small amount of target data is used to update the pre-trained

source model, thereby improving the performance of the model to the target domain [47]. In this training process,

the target domain data with labels is required. Different from the fine-tuning-based DA method, the source-free

DA method does not need to obtain the target domain label in advance during the target domain training pro-

cess. For instance, Kim et al. [48] adopted the pre-trained model from the source domain to identify the target

domain by further pseudo-labeling training in the target domain, which achieved higher performance than the tra-

ditional DA methods even if source domain data is unavailable. Liang et al. [49] proposed a Source HypOthesis

Transfer approach, which updated the source feature extraction module by maximizing mutual information and

self-supervised pseudo-labeling to achieve source data-absent DA. Ahmed et al. [50] proposed a novel source-free

DA method, which can learn different weights for multiple source models to get the best target model. Recently,

few initial attempts have been made on the universal source-free DA problem in computer vision scenarios. Kundu
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et al. [51] proposed a universal source-free DA method based on a two-stage learning process, in which a novel

instance-level weighting mechanism was defined to obtain an effective source-free adaptation objective. In the

machine fault diagnosis field, source-free DA scenario, especially universal source-free DA scenario, widely exists

in real-world industries. However, limited studies on machine fault diagnosis based on universal source-free DA

can be found in the current literature. This study seeks to fill this gap for practical industrial applications.

Hence, we propose a universal source-free domain adaptation method, which can solve not only the universal

DA problem but also the source-free DA problem. The proposed method can provide a promising perspective on a

real-world industrial diagnosis.

3. Methodology

This section will introduce the proposed universal source-free domain adaptation method, including problem

definition, proposed network structure, details of the training process, and the diagnosis procedure.

3.1. Problem definition

As a domain adaptation problem, let Ds = {xsi , ysi }
ns

i=1 denotes the labeled source domain consisting of ns

samples, where xs and ys represent the source domain samples and corresponding labels, respectively. Let

Dt = {xti}
nt

i=1 denotes the target domain consisting of nt samples, where xt represents target domain samples.

The label sets of the source and target domains are defined as Cs and Ct, respectively. This work mainly focuses

on a more practical diagnostic scenario, i.e., Ct = Ct\Cs ̸= ∅, where Ct represents target-private classes. The

C = Cs ∩ Ct represents the classes existing in both domains. In this work, the Ds and the Dt are used to train a

model to classify the Dt into C + 1 classes, where private samples are classified as “unknown” class. As a source-

free domain adaptation method, the labeled Ds is only used to train a source model, and then the unlabeled Dt is

used to train the well-trained source model to achieve domain alignment without any source instances.

3.2. Model architecture

In the proposed universal source-free DA method, we develop a convolution-based backbone network in which

a Transformer is embedded as an attention module. The architecture and training steps of the proposed model are

shown in Fig. 1. The model architecture consists of a feature extractor G for extracting high-level feature vectors

and a fully connected classifier C for predicting labels. The training process of the proposed model consists of two

steps, namely source domain training and target domain training. The model and parameters trained in the source

domain are used as initialization for training in the target domain.

The network details of feature extractor G are shown in Fig. 2, which includes four one-dimensional convolu-

tions (CNN) modules, a Transformer (T) module, and a fully connected (FC) module. Each convolution module

includes a convolutional layer, a leaky rectified linear units activation function (LReLU) layer, a batch normal-

ization (BN) layer, and a maximum pooling layer. The first convolution module receives one-dimensional raw

vibration signal x ∈ RL as model input, and the output after four convolution modules is expressed as x ∈ RC×M ,

where C is the number of channels and M is the feature dimension of each channel. The local characteristics

of the vibration signal are acquired using the CNN module. After the fourth convolution module, we embed a

Transformer as an attention module to make the model focus on the global correlation information of the vibration
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Figure 1: The architecture and training steps of the proposed model.

signal. Transformers with remarkable global representation capacities achieve competitive results for classification

tasks [52]. By combining global and local feature representations, the generalization performance of the model for

diagnosis under variable operation conditions is improved.
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Figure 2: The network structure of the feature extractor.

The proposed Transformer module follows the original structure of Vision Transformer (ViT) [52]. ViT is

the first example where the Transformer-based method outperforms CNN on image classification tasks. In our

network, the feature x ∈ RC×M extracted by the convolution module is first converted to a sequence of patches

xp ∈ RC×M , where C is the number of patches, M is the resolution of each patch. Similar to the class (CLS)

token in BERT [52], a randomly trainable embedding CLS token is added to the sequence. In addition, since the

position of self-attention in Transformer encoders is uncertain and classification tasks generally require position

information, ViT embeds the position into each token, including CLS token. All tokens are passed through stacked

Transformer encoders, and finally CLS tokens are used for feature representation. The output of ViT can be

represented as:
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z0 =
[
xCLS;x

1
pE;x

2
pE; · · · ;xCp E

]
+ Epos

z′l = MSA (LayerNorm (zl−1)) + zl−1

zl = FFN (LayerNorm (z′l)) + z′l

h = z0L

(1)

where xCLS ∈ R1×M , E ∈ RC×M , Epos ∈ R(C+1)×M is the position embedding, ℓ = 1, 2, . . . , L denotes the

i-th Transformer block, MSA denotes the multi-head self-attention mechanism, FFN denotes the feed-forward

network. And then, one fully connected layer is introduced to obtain high-dimensional feature representations,

which is expressed as: x ∈ RM → RD, where D represents the high-level feature dimension. In the fully

connected layer, the dropout operation is adopted to avoid over-fitting and improve the network’s generalization

ability.

Finally, classifier C consists of two fully connected layers to output prediction result ŷ = C(G(x)), which is

expressed as: x ∈ RD → RK , where K represents the number of health conditions of the source domain.

3.3. Model training in the source domain

The overall training process of the model is shown in Fig. 1. First, the cross-entropy loss is used on the source

domain samples to learn a diagnostic model. The cross-entropy loss in the source domain can be expressed as:

LC = −E(xs,ys)∈Ds

[
K∑

k=1

1[k=ys] log (ŷ
s)

]
(2)

where ŷs denotes the class predictions, K denotes the number of health conditions of the source domain.

The LC is minimized to seek optimal θG and θC in the training process, and this process can be described as:

(
θ̂G, θ̂C

)
= argmin

θG,θC

LC (3)

where θG and θC represent the parameters of G and C, respectively.

3.4. Model training in the target domain

In the target domain, we further train the pre-trained source model by using the unlabeled target domain data.

The model is parameterized by a neural network with two modules: feature extractor G: x ∈ RL → RD and

classifier C: x ∈ RD → RK , i.e., ŷ = C(G(x)). Most previous domain adaptation approaches use statistical

moment matching or adversarial training to confuse the feature distribution in the shared feature space x ∈ RD

of two domains. However, those approaches are not applicable under source-free domain adaptation scenarios.

Therefore, we design a unique strategy that not only reduces domain discrepancy but also identifies unknown class

samples in the target domain.

3.4.1. High-confident source-free supervised contrastive loss

In the training stage of the target domain, we can get a pre-trained source model and the unlabeled tar-

get data. In the source classifier, the features before the classifier are multiplied by a weight matrix W S ∈

RD×K ,W S =
[
wS

1 ,w
S
2 , . . . ,w

S
K

]
to get the output of the model. For an input feature G(xi), the predicted prob-

ability can be expressed as a cosine similarity score [si,1, si,2, · · · , si,K ] for the G(xi) and each weight vector, the
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si,j = σ(G(xi)wj/ ∥G(xi∥ ∥wj∥) where σ is softmax function. For a well-trained model, the classifier can obtain

predicted results by the cosine distance of the input features to the weight vector representing each class. There-

fore, the well-trained weight vectors
[
wS

1 ,w
S
2 , . . . ,w

S
K

]
in source domain can be used as the class prototypes. To

learn domain-invariant feature representations of source and target domains, we establish a supervised source-free

contrastive loss based on class prototypes. For cross-domain fault diagnosis tasks, the sample features of the same

class are generally close to each other while the sample features of the different classes are generally far away no

matter which domain they come from. Based on this hypothesis, pulling together the same-label examples in the

shared feature space and pushing apart the different-label examples can reduce domain differences.

For source-free domain adaptation scenarios, source sample instances are not available. We replace the source

domain instances with the source class prototypes. We aim to pull the target predicted class and the corresponding

source class prototype together and separate the target predicted class from other different class prototypes. Based

on InfoNCE loss [53], we propose a supervised source-free contrastive loss by using source class prototypes and

target instances. We freeze the C’s parameters and only train the G to maintain the source class prototypes while

training in the target domain. The proposed source-free supervised contrastive (SSC) loss can be described as:

LSSC(g) = −
∑
i∈I

log
exp (gi ·wj/τ)∑

k∈K exp (gi ·wk/τ)
(4)

where the · symbol indicates the inner dot product, index i is called the anchor and i ∈ I ≡ {1, 2, . . . ,Batchsize},wj

is the positive class prototype for the anchor, wk includes wj and all negative class prototypes, and τ is a temper-

ature hyper-parameter.

The SSC loss utilizes labeled information of the target domain. The incorrect target pseudo-labels may damage

the performance of the SSC loss. The correctness of pseudo-labels in universal domain adaptation scenarios is

impacted by two factors: domain distribution discrepancy and label shift. To mitigate the impact of false pseudo-

labels, a predictive output probability threshold ε is defined into the source-free supervised contrastive loss, which

utilizes the high-confident prediction samples to achieve domain alignment and known class alignment. We define

the maximum probability value in the prediction output vector as γ, that is, γ = max
[
ŷ(1), ŷ(2), . . . , ŷ(K)

]
. Thus,

a larger γ indicates higher confidence in the prediction. Our idea is presented visually as Fig. 3. It can be seen

from Fig. 3 (a) that using the source model directly to identify the target domain will generate many misclassified

samples at the decision boundary. Once these misclassified samples are used for source-free supervised contrastive

learning, the performance of the model will seriously deteriorate. Thus, we establish a high-confident source-free

supervised contrastive learning process as shown in Fig. 3 (b), in which high-confident target prediction samples

are selected for contrastive learning to prevent model performance from being negatively impacted by false pseudo-

labels. In this way, source-free domain adaptation based on class alignment as shown in Fig. 3 (c) is achieved. The

formulation of the proposed high-confident source-free supervised contrastive loss can be expressed as:

LHSSC =
∑
i∈I

LHSSC (gi) ,

LHSSC (gi) =

 − log
exp(gi·wj/τ)∑

k∈K exp(gi·wk/τ)
γ > ε,

0 otherwise.

(5)

where ε indicates the threshold. In this way, the training process of the source-free supervised contrastive loss can
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be expressed as:

(
θ̂G

)
= argmin

θG

LHSSC (6)

Anchor
 

Positive Negative

(b) Supervised contrastive training(a) Initial state (c) Training completed 

 Class prototypes of 

the source domain

Samples of the 

target domain

 Decision boundary

Figure 3: chematic diagram of the proposed high-confident source-free supervised contrastive learning.

3.4.2. Threshold-based entropy max-min loss

Source-free supervised contrastive loss encourages the high-confident prediction samples to be close to the

same class prototypes, but there are low-confidence prediction samples or unknown class samples in the target

domain, these samples are usually distributed in the decision-boundary and affect the diagnostic performance of

the model. Thus, we need an explicit objective function to encourage alignment or reject these samples. Since the

target samples of the unknown classes have no common features with the known source samples, the uncertainty

of the predicted output of these unknown class samples is greater, that is, the predicted output has a larger entropy

value than the known class samples.

Inspired by this, we introduce threshold-based entropy max-min loss. For a given threshold δ in advance, when

the prediction entropy of the target sample is less than the δ, the sample is regarded as a known class sample.

At this time, minimizing the prediction entropy can further reduce the feature distribution discrepancy between

the source and target domains. Besides, when the prediction entropy of the target sample is greater than the δ,

the sample is regarded as an unknown class sample. At this time, maximizing the prediction entropy can keep

the unknown class samples away from the decision boundary and improve the recognition accuracy of unknown

class samples. Since the maximum value of H (ŷi) is log(K), δ is empirically defined as δ = log(K)
2 , where K

denotes the number of source health conditions [54]. The threshold may be ambiguous due to domain shift or

sample label space shift. To improve the threshold confidence, a confidence threshold u is introduced. This idea

is presented visually as Fig. 4. It can be seen from Fig. 4 (a) that a large number of unknown class samples of the

target domain are distributed at the decision boundary, resulting in the low diagnostic performance of the model.

The source-free supervised contrastive loss proposed above cannot effectively identify unknown class samples of

the target domain. Thus, we establish a threshold-based entropy max-min loss as shown in Fig. 4 (b) to further

train the proposed model. As shown in Fig. 4 (b) and Fig. 4 (c), optimizing this loss allows the classifier to reject

samples of unknown classes in the target domain and reduce the feature distance between samples of the same

class. In this way, the cross-domain diagnostic performance of the model is further improved under the source-free

scenario. The threshold-based entropy max-min loss can be expressed as:
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LEMM =
∑
i∈I

LEMM (ŷi) ,

LEMM (ŷi) =

 − |H (ŷi)− δ| |H (ŷi)− δ| > u,

0 otherwise.

(7)

where H (ŷi) indicates the prediction entropy. By maximizing |H (ŷi)− δ|, we can simultaneously maximize and

minimize entropy with the threshold as the boundary. Therefore, in the process of model training, minimizing

LEMM can increase the decision-making confidence of the network about known class samples and unknown

class samples. During model testing, samples whose predicted entropy satisfies |H (ŷi)− δ| > u are regarded as

unknown class samples. Thus, the training process of entropy max-min loss can be described as:

(
θ̂G

)
= argmin

θG

LEMM (8)

Known class samples of 

the target domain

 Decision boundary

Unknown class samples 

of the target domain

Confidence 

threshold u

Minimize entropy Minimize entropy

Maximize entropy

 ˆiH y u 

 ˆiH y u  ˆiH y u 

(b) Entropy max-min training(a) Initial state (c) Training completed 

Figure 4: Schematic diagram of the proposed entropy max-min learning.

3.4.3. Self-supervised pseudo-labeling learning

Although the source-free supervised contrastive loss and entropy max-min loss can reduce domain discrepancy

and make target prediction results more confident and globally diverse, it is unavoidable that some target samples

are matched to non-corresponding class prototypes due to wrong pseudo-labels. These mismatched samples have

harmful effects on the training of the model. To alleviate this problem, one solution is to implement a self-labeling

strategy of the target domain by learning the semantic representations. In this work, we introduce self-supervised

pseudo-labeling learning [49] to further constrain the model. Specifically, we first compute the class prototypes

for the target domain by weighted k-means clustering:

c
(0)
k =

∑
xt∈Dt σk (C (G (xt)))G (xt)∑

xt∈Dt σk (C (G (xt)))
(9)

where σk(·) indicates the k-th element of the predicted softmax output.

Then, we generate initial pseudo-labels by the nearest centroid classifier:

ŷt = argmin
k

1−
G (xt) c

(0)
k

∥G (xt)∥2
∥∥∥c(0)k

∥∥∥
2

(10)

where ∥ ∗ ∥2 indicates the L2-norm. Finally, we update the class centroids and pseudo labels:

11



c
(1)
k =

∑
xt∈Dt 1 (ŷt = k)G (xt)∑

xt∈Dt 1 (ŷt = k)
,

ŷt = argmin
k

1−
G (xt) c

(1)
k

∥G (xt)∥2
∥∥∥c(1)k

∥∥∥
2

.
(11)

Since the above process is trained in an unsupervised manner, the ŷt is called self-supervised pseudo-labeling.

Although the centroids and pseudo-labels can be trained multiple times, we find that good enough pseudo-labels

can be obtained with just one round of training. The cross-entropy loss is used to calculate the pseudo-labeling

loss. Thus, the self-supervised pseudo-labeling loss can be expressed as:

LSPL = −E(xt)∈Dt

[
K∑

k=1

1[k=yt] log σk
(
ŷt
)]

(12)

The training process of the self-supervised pseudo-labeling loss can be described as:

(
θ̂G

)
= argmin

θG

LSPL (13)

3.4.4. Total loss in the target domain training

The total loss of model training in the target domain is expressed as:

Ltotal = LHSSC + λLEMM + βLSPL (14)

where λ and β indicate tradeoff parameters.

3.5. Cross-domain diagnosis framework based on the proposed method.

In this work, a universal source-free cross-domain fault diagnosis framework, as shown in Fig 5, is established,

and its detailed procedures are as follows.

• Data sampling. Collect vibration signals of faults under various operating conditions on the experimental

platform.

• Data preprocessing. Set the fault classes of the source and target domains to simulate different domain

adaptation scenarios. And divide the samples according to the input data requirements of the model.

• Model initialization. Perform random parameter initialization for the proposed network structure.

• Model training in the source domain. Train the model using source domain labeled data to achieve model

diagnostic performance. The objective function is expressed as Eq. 2.

• Model training in the target domain. The well-trained source model is further trained by using target domain

unlabeled data to achieve domain-invariant of features and identify unknown class samples. The objective

function is expressed as Eq. 14.
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• Performance evaluation. Use test data to comprehensively evaluate the cross-domain fault diagnosis perfor-

mance of the model. During model testing, samples whose predicted entropy satisfies |H (ŷi)− δ| > u are

regarded as unknown class samples. The target diagnosis accuracy is used as an evaluation metric, which is

defined as: accuracy =
∑N

i=1 ψ (yti , ŷ
t
i) /N

CNN T

 Feature extractor G

F

C
C

Classifier C

HSSC

EMM SPL

Model training in source domain

C

Model training in target domain

Model test in target domain

Source training 

Samples
Class 1

Class n

CNN T
F

C
C

Target training 

samples
Class 1

CNN T
F

C
C

Known 

classes

Unknown 

classes

Target test samples

Class 1

ˆ( )iH y u 

Domain 1

class 2

Domain 2

class 1 class 4class 3

class 2class 1 class 4class 3

Data sampling

Data preprocessing

Target test 

samples 

Source training 

samples 

Target training 

samples 

Data Sampling & Data Preprocessing Universal Source-free Domain Adaptation Training & Test Results & Analysis

Figure 5: Universal source-free cross-domain fault diagnosis framework based on the proposed method.

4. Experiments

4.1. Experimental design and setting

4.1.1. Dataset description

As an important and failure-prone mechanical component in the industry, the gear and bearing systems are

selected to evaluate the performance of the proposed method.

Computer Drive motor Planetary gearbox Accelerometer Brake
Brake

controller

Data acquisition 

system
1

st
 encode 2

nd
 encode

Torque 

transducer

Parallel shaft 

gearbox

Figure 6: The DDS test rig.

1) The DDS test rig dataset. To demonstrate the effectiveness of the proposed method, the first experimental

case is implemented on a gearbox platform, namely Dynamic Drivetrain Simulator (DDS) test rig. As shown in

Fig. 6, the DDS test rig mainly includes a drive motor, a one-stage planetary gearbox, a parallel shaft gearbox, and

a magnetic brake. In this work, various faults of the planetary gearbox are simulated. Specifically, the planetary
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gearbox is composed of a 28-tooth sun gear, four 36-tooth planet gears, and a 100-tooth ring gear. An accelerometer

was vertically mounted on the housing to collect the vibration signal with a sampling frequency of 30720 Hz. Eight

different health conditions are studied, namely sun gear tooth missing (STM), sun gear tooth broken (STB), sun

gear wearing (SW), sun gear crack (SC), planet gear tooth missing (PTM), planet gear tooth broken (PTB), planet

gear crack (PC), and healthy (H). The actual health condition pictures are presented in Fig. 7. Three rotating speeds

are conducted as 1800, 2400, and 3000 r/min to simulate three different domains. In summary, this DDS dataset

consists of condition monitoring data collected in three domains for eight health conditions.

Tooth missing Tooth broken Crack Health

Tooth missing Tooth broken Wearing Crack Health

 Sun gear 

health 

conditions

  Planet gear

health 

conditions

Figure 7: The different health conditions of the sun gear and planet gear.

2) The bearing test rig dataset. A practical rolling bearing test rig is used to further verify the performance of

the proposed method. The test rig is supported by two rolling bearings, and the right bearing is used as the test

bearing, which is shown in Fig. 8. The accelerometers attached to the bearing house collect the vibration signal

with a sampling frequency of 20 kHz. The inner-race fault (IF), ball fault (BF), outer-race fault (OF), compound

fault (OF-BF), and healthy (H) are manually customized. Similarly, three rotating speeds are conducted as 600,

1200, and 1800 r/min to simulate three different domains. Thus, this dataset consists of five health conditions data

collected in three domains.

The detailed label information of the DDS test rig dataset and the bearing test rig dataset is shown in Table 1.

Drive motor Support bearing Test bearing

Accelerometer

Belt

GearboxRotor

Figure 8: The bearing test rig.

Table 1: The health conditions and corresponding labels of the two datasets.

Dataset Label 1 2 3 4 5 6 7 8

Gearbox Health condition STM STB SW SC PTM PTB PC H

Bearing Health condition IF BF OF OF-BF H
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4.1.2. Experimental settings

1) Domain adaptation tasks. In this work, universal source-free DA tasks are investigated using the two datasets.

At the same time, the closed-set DA task, the partial DA task, and the open-set DA task are also designed to evaluate

the general performance of the proposed method. In the source domain and the target domain, we randomly

selected different health conditions to form different DA tasks, in which the outliers of the target domain are

regarded as an unknown class. In the DDS test rig dataset, the vibration signal of each health condition is divided

into 500 samples. And the number of training samples, test samples, and verification samples for each health

condition are 200, 150, and 150 respectively. In the bearing test rig dataset, the vibration signal of each health

condition is divided into 700 samples. And the number of training samples, test samples, and verification samples

for each health condition are 400, 150, and 150 respectively. The information of the DA tasks on the two datasets

is shown in Table 2 and Table 3, respectively.

Table 2: The information of the DA tasks on the DDS test rig dataset.

Task
Source

(r/min)

Target

(r/min)

Source condition

labels

Source training

samples

Target condition

labels

Target training

samples

Target verification

samples

Target test

samples
DA problem

Source outlier

conditions

Target outlier

conditions

A1 2400 3000 1,2,3,4,5,6,7,8 1600 1,2,3,4,5,6,7,8 1600 1200 1200 Closed set 0 0

A2 1800 3000 1,2,3,4,5,6,7,8 1600 1,2,3,4,5,6,7,8 1600 1200 1200 Closed set 0 0

A3 3000 1800 1,2,3,4,5,6,7,8 1600 1,2,3,4,5,6,8 1400 1050 1050 Partial 1 0

A4 3000 2400 1,2,3,4,5,6,7,8 1600 1,2,3,4,6,8 1200 900 900 Partial 2 0

A5 3000 2400 1,2,3,4,5,6,8 1400 1,2,3,4,5,6,7,8 1600 1200 1200 Open set 0 1

A6 3000 1800 1,2,3,4,6,8 1200 1,2,3,4,5,6,7,8 1600 1200 1200 Open set 0 2

A7 2400 3000 1,2,3,4,5,7,8 1400 1,2,4,5,6,7,8 1400 1050 1050 Universal 1 1

A8 1800 3000 1,2,4,5,6,7,8 1400 1,2,3,4,6,7,8 1400 1050 1050 Universal 1 1

A9 3000 2400 1,2,4,5,7,8 1200 1,2,3,5,6,7,8 1400 1050 1050 Universal 1 2

A10 3000 1800 2,3,4,6,7,8 1200 1,2,3,4,5,7,8 1400 1050 1050 Universal 1 2

A11 2400 3000 1,2,3,6,8 1000 1,3,4,5,6,7,8 1400 1050 1050 Universal 1 3

A12 3000 1800 1,3,4,7,8 1000 1,2,3,4,5,6,8 1400 1050 1050 Universal 1 3

Table 3: The information of the DA tasks on the bearing test rig dataset.

Task
Source

(r/min)

Target

(r/min)

Source condition

labels

Source training

samples

Target condition

labels

Target training

samples

Target verification

samples

Target test

samples
DA problem

Source outlier

conditions

Target outlier

conditions

B1 600 1200 1,2,3,4,5 2000 1,2,3,4,5 2000 750 750 Closed set 0 0

B2 600 1800 1,2,3,4,5 2000 1,2,3,4,5 2000 750 750 Closed set 0 0

B3 1800 600 1,2,3,4,5 2000 1,2,3,5 1600 600 600 Partial 1 0

B4 1800 1200 1,2,3,4,5 2000 2,3,5 1200 450 450 Partial 2 0

B5 1800 1200 1,2,3,5 1600 1,2,3,4,5 2000 750 750 Open set 0 1

B6 1800 600 1,3,5 1200 1,2,3,4,5 2000 750 750 Open set 0 2

B7 600 1200 1,2,3,5 1600 1,3,4,5 1600 600 600 Universal 1 1

B8 1200 600 2,3,4,5 1600 1,2,3,5 1600 600 600 Universal 1 1

B9 600 1800 1,2,3,5 1600 1,3,4,5 1600 600 600 Universal 1 1

B10 600 1200 1,2,5 1200 2,3,4,5 1600 600 600 Universal 1 2

B11 1800 1200 2,3,5 1200 1,3,4,5 1600 600 600 Universal 1 2

B12 1800 600 1,3,5 1200 2,3,4,5 1600 600 600 Universal 1 2

2) Parameter settings. In this work, the network architecture and parameters are mostly determined by experi-

ments on the task A7 of the DDS test rig dataset. During the process of model training, one-dimensional vibration

signal samples are directly fed into the model, and the size of each sample is 1 × 2048. The network architecture

consists of four convolutional modules, a Transformer, a fully connected module, and a fully connected classifier.

In the four convolutional layers, the kernel sizes are 9, the output channels are 4, 16, 64, and 128, respectively.

The kernel sizes and strides for all maximum pooling layers are 2, and 2, respectively. For the Transformer mod-
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ule, the number of Transformer blocks is 4, the number of attention heads is 5, and the hidden dimension is 122.

The output channels for the fully connected module are 50. For the classifier, the output channels for two fully

connected layers are 20 and K, where K is the number of health conditions of the source domain. Each method is

performed 8 times, and its average value is taken as the final diagnosis result. After 200 epochs, the initial learning

rate values of source training and target training are reduced to 10% of their initial values, respectively. The other

related parameters are provided in Table 4.

Table 4: Main parameter settings.

Parameter Value Parameter Value

Batch size 64 Optimizer SGD

Source initial learning rate 0.01 λ 0.5

Target initial learning rate 0.001 β 0.5

Dropout 0.1 ε 0.99

Epochs 400 u 0.2

3) Comparative methods. In this work, we perform six comparative methods to demonstrate the superiority of

the proposed method. The application details of the these methods are described as follows. To fairly highlight

the advantages of the proposed method, the network structures and experimental configurations of all compara-

tive methods are consistent with those of the proposed method. Also, the parameter optimization process of all

comparative methods were performed on task A7 to obtain high-performance model parameters.

• OSM. A baseline deep neural network based on source label data is performed for comparison, which is

named only source model (OSM). Specifically, the source model trained by Eq. 2 is directly used for target

domain diagnosis.

• MK-MMD. The state-of-the-art source-available DA methods are evaluated in this work. First, a multi-

kernel MMD method (MK-MMD) [55] is introduced for comparison. In this method, MMD loss is added in

the last three fully connected layers for domain-invariant learning.

• ALGR. According to the literature [35], [56], an adversarial learning method based on gradient reversal

(ALGR) is introduced as the second source-available method for comparison, in which a domain discrimi-

nator is integrated into the shared fully connected layer after the Transformer module for domain-invariant

learning. This domain discriminator consists of two fully connected layers whose output channels are 10

and 1, respectively.

• SAN. The selective adversarial network (SAN) [57] is introduced as the third source-available method for

comparison. SAN can handle partial DA problems by introducing different domain discriminators. The

domain discriminator structure and parameters of SAN are consistent with those of the ALGR.

• SHOT. Then, we compare the proposed method with a source-free DA method, namely source-free hypoth-

esis transfer and labeling transfer method (SHOT) [49]. The SHOT is a popular source-free DA method

for closed-set DA and open-set DA, in which information maximization and self-supervised learning are

introduced into network training to achieve domain-invariant learning.
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• USF. Finally, we compare the proposed method with a universal source-free domain adaptation method

(USF) [51]. The USF is a state-of-the-art universal source-Free DA method, in which a novel instance-level

weighting mechanism is defined into the target training process to achieve domain-invariant learning.

4.2. Experimental results and visualization analysis

4.2.1. Experimental results

Table 5: The statistic of the accuracy and standard deviation for the DDS test rig dataset (%).

Task OSM MK-MMD ALGR SAN SHOT USF Proposed

A1 66.38±3.021 96.12±0.369 97.05±0.459 95.70±0.687 80.24±2.231 81.44±1.860 95.32±0.353

A2 61.85±3.440 92.47±0.513 91.78±0.733 91.74±0.956 70.05±3.247 74.96±2.429 90.77±0.780

A3 62.05±3.376 87.96±0.993 88.73±1.055 94.14±0.783 72.95±3.014 80.53±1.661 91.56±0.742

A4 68.83±2.745 92.45±0.732 93.01±1.121 97.23±0.784 82.59±2.206 85.10±2.068 95.92±0.579

A5 63.56±3.587 74.33±1.951 73.57±2.325 78.26±2.058 76.35±2.893 77.73±2.215 92.35±0.898

A6 59.37±3.444 70.19±2.346 69.78±2.597 73.34±2.219 72.07±3.221 73.86±2.344 88.76±0.993

A7 60.32±2.598 71.52±2.136 68.51±2.692 70.36±2.367 73.56±3.156 80.21±1.874 90.06±0.845

A8 57.48±2.884 65.02±2.340 63.33±2.779 67.44±2.657 67.03±3.446 74.96±2.377 85.51±1.240

A9 52.61±3.985 53.32±2.256 51.26±2.894 50.26±3.024 58.36±3.256 70.51±2.661 84.23±1.059

A10 46.34±4.133 50.24±2.447 51.67±3.330 50.37±3.115 54.01±3.241 63.32±3.657 78.55±1.557

A11 48.25±3.856 47.59±2.563 45.53±3.013 40.43±3.125 50.27±3.450 62.14±3.848 79.04±1.456

A12 40.67±4.787 41.34±3.211 40.29±3.883 42.12±3.578 44.33±4.446 53.23±4.152 70.24±1.956

Average 57.31±3.488 70.21±1.821 69.54±2.240 70.95±2.113 66.82±3.151 73.17±2.596 86.86±1.038

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
Task

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

OSM MK-MMD ALGR SAN SHOT USF Proposed

Figure 9: Diagnosis performance comparisons on the DDS test rig dataset.

The cross-domain fault diagnosis results in different tasks on the DDS test rig dataset are reported in Table 5

and Fig 9, whereas the results in different tasks on the bearing test rig dataset are reported in Table 6 and Fig 10.

From the comparison results, it can be seen that the proposed method achieves the best average test accuracy in

two cases, i.e., 86.86% on the DDS test rig dataset and 84.48% on the bearing test rig dataset.

For the non-domain adaptation method OSM, the diagnostic accuracy in all tasks is poor, which shows that

there is a significant discrepancy in feature distribution between the source and target domains. In the closed-set
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DA tasks A1, A2, B1, and B2, the MK-MMD method and ALGR method achieve slightly higher cross-domain

diagnostic accuracy than the proposed method. In the partial DA tasks A3, A4, B3, and B4, the SAN method

achieves slightly higher cross-domain diagnostic accuracy than the proposed method. The closed-set DA and

partial DA tasks are designed to solve task-specific fault diagnosis problems, which are not practical in real-world

industrial scenarios. However, the diagnostic performance obtained by the proposed source-free domain adaptation

method is still competitive in the two extreme task scenarios. For the open-set DA task, the diagnostic accuracy

obtained by the proposed method is higher than that of those source-available domain adaptation methods in tasks

A5, A6, B5, and B6. There are two reasons for this phenomenon: 1) the samples of unknown classes are prone

to negative transfer; 2) the samples of unknown classes are wrongly identified as known classes because those

methods cannot have the ability to identify samples of unknown classes.

Table 6: The statistic of the accuracy and standard deviation for the bearing test rig dataset (%).

Task OSM MK-MMD ALGR SAN SHOT USF Proposed

B1 65.43±2.612 94.89±0.724 95.15±0.824 93.88±0.964 82.04±1.892 82.49±1.676 94.03±0.505

B2 60.33±2.944 89.76±0.964 90.16±0.996 89.75±1.147 72.45±1.247 76.88±2.440 89.46±0.867

B3 60.15±3.208 84.44±1.024 83.59±1.242 91.73±0.943 75.82±2.019 80.14±1.720 90.19±0.774

B4 63.27±2.945 85.79±1.167 84.81±1.305 93.49±0.876 77.56±2.210 83.78±1.557 92.05±0.687

B5 59.96±3.121 70.34±1.246 69.44±1.624 72.96±1.445 71.49±2.224 76.41±2.313 90.16±0.615

B6 53.89±3.440 65.05±1.807 64.23±2.404 70.96±1.882 66.43±2.480 72.86±2.467 85.76±1.131

B7 53.89±3.158 63.38±2.112 59.37±2.944 59.84±2.034 58.77±3.011 79.36±2.044 88.19±0.950

B8 52.19±2.946 58.86±2.445 59.08±2.519 54.67±2.554 56.47±3.113 75.46±2.119 86.74±1.006

B9 43.77±3.484 45.53±2.323 47.36±2.880 48.82±2.915 51.69±3.006 63.33±2.664 80.22±1.331

B10 40.87±3.504 38.29±2.845 40.34±2.958 35.24±3.412 43.33±3.801 58.19±3.887 76.60±1.801

B11 38.79±3.882 38.97±3.045 41.09±2.876 31.57±3.884 43.03±3.928 56.77±3.992 74.49±1.969

B12 30.14±4.553 34.09±3.445 35.77±3.681 26.89±4.458 35.70±4.203 48.15±4.225 65.83±2.234

Average 51.89±3.316 64.12±1.929 64.20±2.188 64.15±2.210 61.23±2.761 71.15±2.592 84.48±1.156
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Figure 10: Diagnosis performance comparisons on the bearing test rig dataset.

In the universal DA tasks close to real-world industrial scenarios, the diagnostic accuracies obtained by the

proposed method are significantly higher than that of the other 6 methods. It can be observed from Fig 9 and
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Fig 10 that the diagnostic performance of three source-available methods degrades severely, which can be attributed

to the serious negative transfer caused by the simultaneous existence of source outliers and target outliers. As

a popular source-free domain adaptation method, the diagnostic results of the SHOT have similar performance

under the closed-set DA and partial DA scenarios and are significantly lower than those of the source-available

methods. The diagnostic performance of the SHOT is somewhat better than the source-available methods in

the universal DA scenario. Furthermore, as a state-of-the-art universal source-free DA method, USF achieves

significant improvements in diagnostic accuracy in all universal DA tasks compared to other comparative methods.

This is due to this method can classify outlier classes in the target domain into unknown classes, thereby improving

the recognition performance of unknown classes. However, it can be seen from the diagnosis results that the current

diagnostic accuracy obtained by USF is relatively low, especially with the increase of outlier classes, the diagnosis

performance of the model degrades severely. Therefore, it can be seen that the existing methods can not well

solve the source-free domain adaptation problem when the fault modes of the target are unknown. It is noteworthy

that the proposed method achieves higher source-free cross-domain diagnostic accuracy on all universal DA tasks.

Besides, it can be seen that with the increasing number of unknown classes, the diagnosis performance of the

proposed method is stable. That is, it can be seen that the proposed method can effectively solve the source-

free cross-domain fault diagnosis problem when there is a large label space biased between the source and target

domains. In addition, the proposed method obtains the minimum standard deviation value in most tasks, which

illustrates that the proposed method is more stable than the compared methods. Therefore, the effectiveness and

superiority of the proposed method have been demonstrated in this section.

4.2.2. Visualization analysis

In this section, we consider task A7 of the DDS test rig dataset and task B7 of the bearing test rig dataset as

two cases to perform feature visualization to better understand the advantages of the proposed method. Firstly, the

t-SNE [58] algorithm is selected to visualize the target test features learned by the feature extractor. The t-SNE

visualization results of all methods for the two tasks are shown in Fig. 11 and Fig. 12, respectively. As can be

seen from Fig. 11 (a) and Fig. 12 (a), the features of the different classes obtained by OSM are mixed together,

which indicates that there are a large number of misclassification samples when the source model is directly used

for the target domain test. In addition, many features overlap in the different health conditions for MK-MMD,

ALGR, SAN, SHOT, and USF. In contrast, the feature distribution map obtained by the proposed method is more

discriminative. That is, the features of the same classes are gathered together, while the features of the different

classes are well separated. At the same time, most unknown samples are clustered and separated from other classes.

Besides, the confusion matrix results of all methods for the two tasks are shown in Fig. 13 and Fig. 14, re-

spectively. It can be seen from the confusion matrices of OSM, MK-MMD, ALGR, SAN, and SHOT that the

target outlier classes are all misclassified, thus significantly affecting the overall recognition performance. USF

can identify new failure modes in the target domain as an unknown class, thereby improving the performance of

the model. It is worth noting that the proposed method can effectively identify both known and unknown classes

in the target domain, achieving the highest diagnostic performance.

Further, we present the feature visualization result of the proposed method for the source domain training

samples and target domain test samples under task A7 and task B7, and the results are shown in Fig. 15. It can
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Figure 11: The t-SNE visualization of all methods on the task A7.
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Figure 12: The t-SNE visualization of all methods on the task B7.
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Figure 13: The confusion matrix of all methods on the task A7.
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Figure 14: The confusion matrix of all methods on the task B7.
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be seen that the proposed method achieves both promising domain alignment and class-level alignment, in which

the same condition samples across domains are projected into similar regions in the new sub-space, and source

and target outliers are well separated. Thus, this result demonstrates that the proposed method can achieve high-

performance class-level alignment despite the inconsistency in the class spaces of the source and target domains.

Therefore, these visualization results further illustrate the effectiveness of the proposed method.

Source  private class

Target  private class

(unknown class)

Source class

Target class

Same class

(a) Task A7

Source  private class

Target  private class

(unknown class)

Source class

Target class
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Figure 15: The t-SNE visualization of source training samples and target test samples on the task A7 and B7.

4.3. Experimental analysis

4.3.1. Ablation study of the Transformer module

In the proposed network model, a Transformer module is embedded into the convolutional neural network. To

analyze the advantages of the Transformer module, we design a common convolutional network model without the

Transformer module for comparison. The diagnostic results of the proposed method and the method without the

Transformer module (non-Transformer) on the DDS test rig dataset are presented in Table 7, in which the average

diagnostic accuracies are 84.24% and 86.86%, respectively. And the diagnostic performance of the proposed

method is better than that of the non-Transformer method on all tasks. Therefore, this result demonstrates that the

Transformer module can improve the diagnostic performance of the model.

Table 7: The statistic of the accuracy for the non-Transformer method and proposed method (%).

Method A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 Average

Non-Transformer 94.56 88.96 90.04 94.89 90.66 86.03 86.79 83.17 80.28 75.31 75.01 65.22 84.24

Proposed 95.32 90.77 91.56 95.92 92.35 88.76 90.06 85.51 84.23 78.55 79.04 70.24 86.86

4.3.2. Ablation study of target loss terms

In the proposed method, the objective of model training in the target domain contains three terms, namely

high-confident source-free supervised contrastive loss (LHSSC), threshold-based entropy max-min loss (LEMM), and

self-supervised pseudo-labeling loss (LSPL). LHSSC is used to achieve domain-invariant learning with known classes

in the target domain. LEMM is used to align samples of known classes or reject target outlier samples as an unknown
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class. Since both LHSSC and LEMM need to use the target domain pseudo labels, we use LSPL to further reduce the

number of false pseudo-labels. Thus, LHSSC and LEMM play a major role in our proposed method. To illustrate the

advantages of the proposed loss functions, five variants are considered for ablation study: 1) HSSC, only LHSSC

is used during target training, 2) EMM, only LEMM is used during target training, 3) HSSC SPL, LHSSC and LSPL

are used during target training, 4) EMM SPL, LEMM and LSPL are used during target training, and 5) HSSC EEM,

LHSSC and LEMM are used during target training. The comparison results of the proposed method and the five

variants on task A7 are given in Fig. 16, their average diagnostic accuracy is 85.15%, 80.02%, 86.67%, 83.06%,

88.11%, and 90.06%, respectively. And it can be seen that the diagnostic results of the proposed method are better

than the five variants methods in almost all trials. Therefore, this experiment demonstrates the effectiveness of the

proposed loss term.
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Figure 16: A comparison of the diagnostic results using different loss terms in task A7.

4.3.3. Hyper-parameter selection

In this study, the grid search technique is used to experimentally validate the hyper-parameters. The proposed

method’s major hyper-parameters, including dropout, target initial learning rate, tradeoff parameter λ of LEMM,

tradeoff parameter β of LSPL, threshold parameter ε of LHSSL, and confidence threshold u of LEMM were chosen

based on task A7. To reduce the number of hyper-parameters, λ and β are equal in our experiment. In the parameter

selection process, we first set the corresponding parameter range based on experience, and then perform a grid

search on the pre-set parameter range by automatically training the proposed model. Fig. 17 presents the accuracy

curve of the proposed model during parameter selection processes. It can be seen that the optimal diagnostic

accuracy of the model is obtained under the parameters set in this paper. In addition, it can be observed that the

diagnostic accuracy obtained around the parameters given in this work does not change significantly. Therefore, it

illustrates that the hyper-parameters of the proposed method are not sensitive within a reasonable range.

4.3.4. Parameter freezing position analysis

During training in the target domain, we freeze the classifier’s parameters and only train the feature extractor to

maintain the source class prototypes. In this section, the effect of the parameter freezing position on the diagnostic

performance of the model is investigated. Our model consists of a feature extractor and a classifier, and the

feature extractor consists of a CNN module, a Transformer module, and a fully connected module. Therefore, in
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Figure 17: Test accuracy curves for hyper-parameters.

addition to the parameter freezing position proposed in this paper, two other freezing methods can be considered. A

schematic diagram of the three parameter freezing positions is shown in Fig. 18, where (a) freezing the Transformer

module, the fully connected module, and the classifier; (b) freezing the fully connected module and classifier; (b)

freezing the classifier (proposed method). The diagnostic results of the three different parameter freezing methods

on the DDS test rig dataset are shown in Table 8, in which the average diagnostic accuracies are 84.77%, 86.33%,

and 86.86%, respectively. The diagnostic performance of the proposed method is better than that of the other two

freezing methods on all tasks. Therefore, this result shows that the freeze position proposed in this paper is optimal.

CNN T
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Figure 18: A schematic diagram of the three parameter freezing positions.

Table 8: The statistic of the accuracy for the three different parameter freezing methods (%).

Method A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 Average

Freeze position A 93.24 88.80 89.47 93.64 90.20 86.91 87.13 83.65 82.37 76.63 77.09 68.07 84.77

Freeze position B 94.58 90.14 91.18 95.33 91.96 88.29 89.57 85.42 83.79 78.01 78.43 69.20 86.33

Proposed 95.32 90.77 91.56 95.92 92.35 88.76 90.06 85.51 84.23 78.55 79.04 70.24 86.86
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5. Conclusion

This work developed a novel solution for the universal source-free domain adaptation problem in the field of

machinery fault diagnosis. To the best of our knowledge, no existing research has been reported on the univer-

sal source-free cross-domain machinery fault diagnosis. Thus, this paper provided a novel perspective for fault

diagnosis in real-world industrial scenarios. The proposed method merely requires a well-trained source model

and offers the feasibility of cross-domain fault diagnosis without access to source data. Specifically, a convolu-

tional network with a Transformer module was developed to pay more attention to the discriminative feature. To

achieve source-free domain adaptation, a supervised contrastive learning strategy based on source class prototypes

was designed by using high-confident prediction samples. In absence of prior information on the target label set,

a threshold-based entropy max-min loss was built to further align samples of known classes or reject target out-

lier samples as an unknown class. Self-supervised learning technique was further used to provide more accurate

pseudo labels. Experiments under diverse domain adaptation settings were performed on two rotating machinery

datasets. The experimental results demonstrated the effectiveness and superiority of the proposed method. Thus,

the proposed method can bring a powerful tool to overcome diagnostic difficulties when the source domain data

are unavailable and target domain fault modes are unknown. This would ensure the safe and efficient operation of

complicated industrial systems, which would bring significant economic benefits to industry practices by reducing

maintenance costs and unnecessary shutdowns.
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