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Abstract 

Smartphone has long been considered as one excellent platform for disease screening and 

diagnosis, especially when combined with microfluidic paper-based analytical devices 

(μPADs) that feature low cost, ease of use, and pump-free operations. In this paper, we report 

a deep learning-assisted smartphone platform for ultra-accurate testing of paper-based 

microfluidic colorimetric enzyme-linked immunosorbent assay (c-ELISA). Different from 

existing smartphone-based μPAD platforms, whose sensing reliability is suffered from 

uncontrolled ambient lighting conditions, our platform is able to eliminate those random 

lighting influences for enhanced sensing accuracy. We first constructed a dataset that 

contains c-ELISA results (n = 2048) of rabbit IgG as the model target on μPADs under eight 

controlled lighting conditions. Those images are then used to train four different mainstream 

deep learning algorithms. By training with these images, the deep learning algorithms can 

well eliminate the influences of lighting conditions. Among them, the GoogLeNet algorithm 

gives the highest accuracy (>97%) in quantitative rabbit IgG concentration 

classification/prediction, which also provides 4% higher area under curve (AUC) value than 

that of the traditional curve fitting results analysis method. In addition, we fully automate the 

whole sensing process and achieve the “image in, answer out” to maximize the convenience 

of the smartphone. A simple and user-friendly smartphone application has been developed 

that controls the whole process. This newly developed platform further enhances the sensing 

performance of μPADs for use by laypersons in low-resource areas and can be facilely 

adapted to the real disease protein biomarkers detection by c-ELISA on μPADs. 

1. Introduction 

Microfluidic paper-based analytical devices (μPADs) have been demonstrated as a promising 

tool for detecting disease-relevant biomarkers at point-of-care testing (POCT), thanks to their 

low-cost, ease of operation, and self-driven capillary fluidic flow [[1], [2], [3], [4], [5]]. In the 

last decade, many biosensing mechanisms, such as electrochemistry, chemiluminescence, 

fluorescence immunoassay, and colorimetric enzyme-linked immunosorbent assay (c-ELISA) 

have been developed and realized on μPADs [[6], [7], [8], [9], [10]]. Among them, 

colorimetric μPADs are particularly suitable for being used in low resources settings, 

especially when using smartphones as colorimetric reading and analyzing tools, and no 

further complicated equipment is needed [11,12]. The smartphones feature the broadest user 



community, a friendly operator interface, and excellent data transfer capability. It is a 

powerful computation platform capable of fully automating the colorimetric results 

collection, analysis, and displaying process, using its camera, processor, and screen, 

respectively [[13], [14], [15]]. Meanwhile, it is usually cheaper than the dedicated medical-

grade colorimetric reader [16]. Hence, the smartphone-based colorimetric μPADs well meet 

all the criteria outlined by the World Health Organization (WHO) for POCT devices in low-

resource settings, abbreviated as “ASSURED”; affordable, sensitive, specific, user-friendly, 

rapid and robust, equipment-free, and delivered [17]. And it can significantly improve 

healthcare worldwide by providing low-cost, timely, accurate disease screening. 

Recently, smartphone-based colorimetric μPADs have been extensively studied and 

developed to detect various disease biomarkers such as glucose, cholesterol, and uric acid 

[15,[18], [19], [20]]. The c-ELISA is the most widely used analytical assay as it is the gold 

standard for detecting protein biomarkers in disease-related clinical samples 

[10,[21], [22], [23]]. The c-ELISA produces color signals that are quantitatively correlated 

with the different concentrations of the sensing target molecules, and those signals can be 

easily picked up by smartphones; however, smartphone cameras are subject to various 

camera settings and, more severely, to different environmental lighting conditions 

[[24], [25], [26], [27]]. Therefore, the accuracy (the ratio between the number of true 

positives and negatives to the total number of experimental results) and sensitivity (the ratio 

between the number of true positives to the number of true positives and false negatives) of 

the smartphone-based colorimetric μPADs are greatly jeopardized, and the smartphone has 

shown the lowest sensing performance when compared with the standard colorimetric μPADs 

analysis methods: the RGB sensor and RGB scanner, with or without the use of ambient 

lighting prevention tools [23,28]. Thus, effectively minimizing the influence of internal 

camera optics/settings and external ambient light conditions is still highly desired to improve 

the analytical performance of smartphone-based colorimetric μPADs, thereby facilitating the 

development of POCT in resource-limited areas. 

Most recently, machine learning has been demonstrated as one of the most potent image data 

processing tools [29,30], and it can be readily implemented on smartphone platforms. 

However, the smartphone is not powerful enough to run the machine learning algorithms to 

process the data, which can be wirelessly uploaded to/downloaded from the cloud server 

before and after the processing [14,31,32]. Several works have applied machine learning 

algorithms to analyze the colorimetric signal for the lateral flow assays (LFA), and highly 

reliable qualitative and quantitative results were obtained [[33], [34], [35], [36], [37]]. 

However, LFA is much simpler than c-ELISA μPADs and usually cannot enable high 

sensitivity and high specificity biosensing [38]. Machine learning has also been used on 

smartphone-based colorimetric μPADs and provides higher accuracy [14,[39], [40], [41]]. 

But they all used conventional machine learning algorithm that requires human feature 

extraction, further increasing human intervention and hindering its usage by laypersons. 

Subsequently, two works have combined deep learning algorithms with smartphone paper 

devices for disease diagnosis, which can automatically extract features and achieve high 

accuracy, thanks to its higher computation power than conventional machine learning. But in 

these works, an additional homemade cassette is needed to prevent the ambient light [32,42], 

which increases the device complexity. Most recently, Ning et al. employed a deep learning 

algorithm for the colorimetric detection of C-reactive protein (CRP) and provided good 

accuracy of 96% [43]. However, this work relied on the manual image and data transfer 

between the smartphone and deep learning servers, which hinders the wide accessibility of 

the POCT devices. Therefore, a fully automated smartphone-based colorimetric μPAD that is 

free of the influences of human inventions and ambient lighting conditions is still highly 

desired and yet to develop. 



In this work, we present a deep learning-assisted smartphone colorimetric μPADs platform 

for rapid, sensitive, and accurate detection of protein markers using c-ELISA. Unlike the 

previous work, there is no need to manually copy the resultant images extracted from the 

smartphone to the local computer, and the data transfer can be performed directly from the 

smartphone. In addition, a deep learning model is used to further avoid manual screening of 

features. Furthermore, an Android application with a friendly user interface is developed to 

interact with the whole process, and it enables the fully automated, streamlined manner of 

“image in, answer out” colorimetric sensing. Here, the complete automation is contributed by 

the deep learning algorithms. Specifically, we first constructed a comprehensive dataset 

(number = 2048) using Rabbit IgG as the c-ELISA sensing target on μPADs. Then, the three 

light sources and two different smartphones were used to enrich the complexity of the dataset 

for training the algorithm, with the objective of increasing the robustness and adaptability of 

the algorithm. By training all the images of experimental results under different lighting 

conditions, the deep learning algorithm can learn itself and eliminate the effect of 

illumination on the experimental results. In this work, we compared the performance of the 

four mainstream deep learning algorithms (AlexNet, GoogLeNet, ResNet34, and 

MobileNet_V2). Among them, GoogLeNet provides the highest accuracy (>97%), which also 

provides a 4% higher area under curve (AUC) value than that of the conventional smartphone 

sensing results analysis method that uses curve fitting. The overview of deep learning-

assisted ultra-accurate smartphone testing of paper-based c-ELISA is shown in Fig. 1. In this 

work, we validated the feasibility of our platform by using rabbit IgG protein as a sensing 

target for c-ELISA, which is the most common sensing target protein and has been widely 

used for validation experiments in many works [10,23]. In future work, we will apply this 

approach to clinically relevant biomarkers. To sum up, the unique capabilities of our platform 

further enhance the advantages of μPAD for general use in resource-poor settings and hold 

great promise for real-world use. 

2. Materials and methods 

2.1. Reagents and materials 

Potassium periodate (>99.5%, 80,106,916) was purchased from Sinopharm Chemical 

Reagent Co., Ltd (Shanghai, China). Rabbit IgG (I5006) was purchased from Sigma-Aldrich 

(Shanghai, China). Alkaline phosphatase (ALP) conjugated anti-rabbit IgG (A0239), 5-

bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium (BCIP/NBT) alkaline phosphatase 

color development kit (C3206) was purchased from the Beyotime Institute of Biotechnology 

(Haimen, China). 10 × phosphate-buffered salines (PBS, G4207), Tween-20 (G5058), and 

bovine serum albumin (BSA, G5001) were purchased from Servicebio (Wuhan, China). The 

10 × PBS was diluted using deionized (DI) water to 1 × PBS. 

2.2. c-ELISA for detection of rabbit IgG in PBS on μPAD 

We first used an aldehyde functionalization step to treat the pristine paper substrate before 

making it into the functional μPAD, in order to enhance the immobilize proteins' 

immobilization efficiency. Briefly, the 100 mm ✕ 100 mm piece of Whatman No. 1 

chromatography paper was placed in a 150 mm ✕ 150 mm glass Petri dish, after which 

100 ml of 0.031 M KIO4 was added and put on a hot plate (CS-15956-31, Cole-Parmer) at 

65 °C for 2 h with stirring [44]. Subsequently, the modified papers were stored in a humidity-

proof cabinet (temperature: 24 °C, humidity: 30%) before use. We then designed the μPAD 



with the multi-well format (diameter of the well = 5.6 mm) in AutoCAD software and printed 

solid wax patterns on the above pre-treated paper by a wax printer (8580DN, Xerox). It was 

then placed on a hot plate at 120 °C for 30 s to melt the printed wax and form a multi-well 

μPAD. 

The schematic diagram of the protocol for a direct c-ELISA performed on our multi-well 

μPAD is shown in Fig. 2 [10]. The rabbit IgG was the most common model sensing target for 

the c-ELISA assay and was also used in this study. A polymethyl methacrylate (PMMA) 

holder was used to support the paper-based multi-well microplates and allow complete 

suspension and isolation of the test wells (avoiding the contamination caused by direct 

contact with the lab bench surface). Briefly, 3 μl of different concentrations (in 10-fold 

dilutions, 6.7 pM to 6.7 μM) of rabbit IgG antigen was first immobilized in the test wells. 

After 10 min of incubation under ambient conditions, the test well was blocked with 3 μl of 

blocking buffer (1% w/v BSA and 0.05% w/v Tween-20 in PBS) and allowed to dry for 

10 min under ambient conditions. Then, 3 μl of ALP-conjugated anti-rabbit IgG antibody 

(1:100 dilutions of the stock antibody produced in goat in 0.05% w/v Tween-20 in PBS) was 

added to the test well and incubated for 1 min on the hot plate at 37 °C. Immediately, the test 

wells were washed twice with 10 μl of 1 × PBS. Finally, 3 μL of BCIP/NBT substrate 

solution (pH 9.5) was added to each well for color initiation (30 min). 

2.3. Comprehensive dataset under different lighting conditions and 

smartphones 

Different ambient lights and camera optics can significantly influence the accuracy of paper-

based c-ELISA testing results when the smartphone is used as the reader [34]. Deep learning 

algorithms can mitigate those influences and achieve high accuracy for quantitative 

prediction of c-ELISA testing results by training with a comprehensive dataset that consists 

of colorimetric images (labeled with known sensing target concentration) under different 

lighting conditions [14]. To compensate for the influence posed by different smartphones, we 

also used two mainstream smartphones to take the colorimetric images. Firstly, we used a 

3D-printed black box with a height of 130 mm to block the outside light and captured the 

images of the paper-based multi-well microplates under the automated flash of a smartphone. 

The smartphone flash was then replaced with three light sources: fluorescent light (F), table 

lamp (L), and natural light (N), which were used individually or in combination to form 

seven different lighting groups (F, L, N, FL, FN, LN, FLN) to mimic the different light 

conditions (as shown in Fig. 3). The fluorescent light (Philips 30 W) emits white colors 

(6500 K), the table lamp bulb (Midea 3 W) provides daylight colors (5700 K), and the 

experiments were conducted during summer in Suzhou (China), which provides around 2000 

lx light intensity [45]. The image of the paper-based multi-well microplate was captured in a 

vertical position at a constant distance of 130 mm between the smartphone and the 

microplate. 

As image quantification is affected by the smartphone camera resolution and optics 

[46]. Table S1 shows two mainstream smartphones (Android and iOS) used in this work. The 

smartphone was kept at the same height (130 mm) in capturing each concentration image for 

all light conditions. The smartphone was set to the default mode, further reducing user 

intervention. Eight concentrations (N = 16) for eight lighting conditions lead to having 1024 

images per smartphone, resulting in 2048 images of 128 pixels ✕ 128 pixels size in the entire 

dataset. The details of the comprehensive dataset under different lighting conditions and 

smartphones are shown in Table S2. 

2.4. Image processing 



We also applied the image processing open library (OpenCV) to automatically extract the 

microwell area (region of interest (ROI)) from the multi-well paper chip (as shown in Fig. 

4a). The region of interest (ROI) consists of the circular detection well that produces the 

colorimetric signal and its outer rectangle. In the process of extracting ROI, the RGB values 

of the input image can be directly converted to the grayscale values according to the 

equation: 

 

(1)  
 

R, G, and B correspond to the pixel's color, respectively. The parameters of this equation are 

mainly assigned based on the ratio of the light-sensitive intensity of three different 

photoreceptor cells in the human eye, which is commonly used for this purpose 

[[47], [48], [49]]. Then, the image is Gaussian filtered to remove noise and facilitate the 

extraction of circular detection well contours. Otsu's method will be used to further convert 

the grayscale image into a binarized (black and white) image. Otsu's method will first assume 

the circular detection well and the background parts of the image, and then automatically 

fine-tune and determine a final optimal threshold to preferably distinguish the circular 

detection well from the background by a statistical method (maximum between-class 

variance). Subsequently, the circular detection well is set to 255 (white), and the background 

part is set to 0 (black). Then, we use the morphological operation function to remove the 

noise around the circular detection wells to make their boundaries smoother. It is convenient 

for canny edge detection and finding the contours of circular detection wells. The final ROI 

contours will be extracted and saved to the specified folder. The whole process of image 

processing is shown in Fig. 4. The final generated image containing an image of 128 × 128 

pixel size will be transferred to a deep learning algorithm for further processing. The details 

of the image functions we used can be found in the supplementary materials. 

2.5. Comparison of different deep learning algorithms 

To identify the correlation relationship between different protein concentrations and the 

colors of the assay results, we randomly selected 80% of the images from the dataset 

(n = 2048) to train four mainstream deep learning algorithms (AlexNet [50], GoogLeNet 

[51], ResNet34 [52], MobileNet_V2 [53]) and evaluated the ability of these algorithms to 

predict rabbit IgG protein concentration accurately. The algorithm with the highest prediction 

accuracy was selected and integrated into the final smartphone-based platform among the 

tested algorithms. 

The input layer of the general deep learning algorithms contains the image dataset, consisting 

of two basic parts: feature extraction and classification. Feature extraction consists of several 

convolutions and rectified linear unit (ReLU) followed by a pooling function. Moreover, the 

classification part usually involves the fully connected layers. The architecture of the 

generalmodel is shown in Fig. 5. In this work, the AlexNet algorithm consists of five 

convolutional layers and three fully connected layers, and it improves the speed of training by 

employing an activation function (ReLU) [50]. After ReLU, the local response normalization 

(LRN) layer is used to enhance the generalization ability of the model and further improve its 

prediction accuracy. The response-normalized activity ( ) equation is 

 



(2)  

 

Where  is the output value after the ReLU. N is the total number of kernels. K =2, n=5, α 

10−4 and β=0.75 are hyper-parameters [50]. And the GoogleNet algorithm uses night 

inception modular structures with 22 layers to reduce the computation and improve the 

convergence speed. The main feature of the model structure of the GoogLeNet algorithm is 

the enhanced utilization of computational resources inside the network. Average pooling is 

used instead of fully connected layers to minimize the model parameters and improve the 

accuracy of classification [51]. Similarly, the Resnet34 consists of 5 convolutional clusters 

and uses a residual network approach to deepen the network and better learn the features of 

the data. The residual mapping to be learned can be expressed as so the 

relationship between input (x) and output (y) vectors of the layers can be represented using 

Eq (3) [52]. 

 

(3)  

 

In the end, the Mobilenet_V2 is a lightweight neural network model with 17 layers. The core 

of its implementation of model lightweight is depth wise separable convolution, which can be 

expressed mathematically as: 

 

(4)  

 

Where  is the depthwise convolutional kernel,  is the input feature map, 

which will produce a feature map . T is smaller and faster while ensuring the accuracy 

of the model [53]. 

Thanks to the advantage of the deep learning algorithms, it can automatically extract features 

from the original images for the training dataset [54], which will further reduce human 

intervention. Moreover, we use all the deep learning algorithms pre-trained on a large 

ImageNet dataset with 1000 categories. Therefore, four fully connected layers are added after 

the algorithm to accommodate the eight categories of our dataset to make the algorithm more 

suitable for the present dataset. 

2.6. Smartphone application 

Android system has the advantages of low development cost and high versatility [33]. 

Therefore, we developed an Android application with simple and user-friendly interfaces 

capable of automatic image processing and result analysis, further providing a more 

convenient data analysis platform. In addition, this application can satisfy the needs of 

different users in various scenarios. This work utilized Vue. js (JavaScript framework) [55] to 

create the user interface and Flask python to implement the application's primary functions 

[56]. Subsequently, this application can be applied to both smartphones and web pages. 



Fig. S1 shows the screenshots of the application at different stages. Users can enter a new test 

by logging into the application (as shown in Fig. S1a) and clicking the “ADD test” button (as 

shown In Fig. S1b). Next, the user enters information about the test, such as name, test type, 

etc. The application will allow the user to capture a new image using the smartphone's 

camera or load the image from an album (as shown in Fig. S1c). Then, after tapping the 

“submit” button, the application will send the captured image to the cloud server. The ROI in 

the captured image will be automatically obtained and transferred to the deep learning 

algorithms, which will provide the final results. The result will be sent back to the application 

and displayed on the smartphone screen (as shown in Fig. S1d), which concludes the fully 

automated “image in, answer out” sensing process. 

3. Results and discussion 

3.1. Lighting conditions disturb c-ELISA results 

In this work, a direct c-ELISA was used to detect the concentration of Rabbit IgG in PBS. 

We prepared seven different concentrations (N = 16 for each concentration) in 10-fold 

dilutions (6.7 pM–6.7 μM) ofrabbit IgG as the sensing target for c-ELISA, and PBS buffer (0 

pM) was used as a negative control. After each test, we captured images of the same 

microwells detection zones under different lighting conditions with two different 

smartphones (iPhone 11 and Huawei P40 Pro), respectively. The surface of the microwell 

detection zone is purple, and the higher the rabbit IgG concentration, the darker the color of 

the detection zone. Fig. 6a shows the resulting photographs of different rabbit IgG 

concentrations captured by iPhone 11 under eight lighting conditions (No light, F, L, N, 

F + L, F + N, F + L + N, and L + N). We measured the average grayscale intensity of all test 

areas using ImageJ first. Then, the intensity data were fitted using the Hill equation (Fig. 6b) 

for the sigmoidal curve (s-curve), and the limit of detection (LOD) and coefficient of 

determination (COD, denoted as R2) corresponding to each s-curve were calculated. Where 

the LOD is determined by using the 3σ of the lowest concentration sample [23], and the COD 

represents the strength of a curve fitting, and the better the curve fit, the closer the value of 

COD is to 1. We also verified the results of direct c-ELISA of rabbit IgG in PBS under No 

light conditions with two different smartphones (as shown in Fig. S2). 

The example photos of the paper microwell shown in Fig. 6a confirmed that light conditions 

greatly affect the colorimetric signals, and the different calibration curves for the same c-

ELSA assays are generated, as shown in Fig. 6b. From those calibration curves, different 

quantitative results can be obtained even for the same c-ELSA assays, which greatly disturbs 

the accuracy of the results reading. Moreover, the variations of LOD are as large as 50.24% 

(No light: LOD = 550 pM, COD = 0.945; under fluorescent light: LOD = 780 pM, 

COD = 0.978; under table lamp: LOD = 840 pM, COD = 0.989; under natural light: 

LOD = 418 pM, COD = 0.913.). These further demonstrated the urgency of removing the 

influences of light conditions. 

3.2. Construction of the image dataset 

In this work, we prepared eight experimental groups with different concentrations of Rabbit 

IgG. It contains a control group with a concentration of 0 (PBS buffer) and seven groups with 

different concentrations from 6.7 pM to 6.7 μM in 10-fold dilutions. Subsequently, each 

concentration will be repeated sixteen times of testing. Here, we will get 8×16=128 c-ELISA 

experimental results. In addition, we set eight different light conditions (No light, F, L, N, 



F + L, F + N, F + L + N, and L + N) to simulate the illumination conditions that may be 

encountered in the experiment. Therefore, considering these eight different lighting 

conditions, a total of 128×8=1024 experimental results will be obtained. Then, two commonly 

used smartphones (iPhone 11 and Huawei P40 Pro) will be applied to capture all the 

experimental results, resulting in 1024×2=2048 images. 

3.3. Different deep learning algorithms show varied performance 

In recent works, deep learning has shown excellent signal predictive capability by efficiently 

removing the noise, especially in image recognitions and classifications [50,57]. We applied 

four current mainstream deep learning algorithms (AlexNet, GoogLeNet, ResNet34, 

MobileNet_V2) to quantify rabbit IgG concentrations on μPADs. First, we collected eight 

images of μPADs, and each μPADs image contained 16 replicate experiments of the same 

concentration. In addition, each μPAD image was collected by two different phones under 

eight different illumination conditions, resulting in a final dataset of 2048 images 

(2✕8✕8✕16 = 2048 images). Before training the deep learning algorithm using this dataset, 

the collected images are automatically processed. Since the reaction area is light in color that 

shares good contrast with the dark surrounding area, the image processing algorithm can 

recognize the reaction area of μPADs easily by setting the appropriate threshold. Then, image 

processing is employed to obtain ROI, and after receiving the contours of the test well, the 

final data set of the same size is obtained by cropping along the contours. Next, we randomly 

selected 80% of the dataset images to train the model, and the remaining 20% was used as the 

test dataset. Finally, the deep learning algorithms will classify the test dataset to determine 

the concentration classes corresponding to the images. 

First, the performance of a deep learning algorithm is evaluated in terms of accuracy and f1 

score. Accuracy is defined as the sum up of true positive and negative rates in biosensor 

terminology (Eq. (5)). In biosensor communities and in this study, the true positives (TP) 

means that the sensors correctly give the positive classification of the samples (the class of 

non-zero IgG concentration in our study), and the false positives are defined that sensor 

incorrectly determine the negative samples to be the positive ones. The true negatives and 

false negatives follow the same. As shown in Eq. (6), the F1 score is the harmonic mean of 

precision (the precision for the positive class) and recall (known as the sensitivity, which is 

the ratio between true positive samples and samples classified positive). Also, a higher F1 

score means that the deep learning algorithm has low false positives and false negatives [58]. 

As the accuracy and f1 score increase, it indicates better deep learning performance. 

 

(5)  

 

(6)  

 

The performance comparison of AlexNet, GoogLeNet, ResNet34, and MobileNet_V2 

algorithms is shown in Table 2. Then, to further evaluate the performance of the deep 

learning algorithm, we also provide the processing time and efficiency time in Table 2. Here, 

the processing time is the time required to compute one epoch, and the efficiency time is the 

training time required for the model to converge. Among them, GoogleNet provides the 

highest accuracy (>97%) and F1 score (>0.9713) due to its use of the inception module, 

which widens the network structure and thus increases the depth and width of the model, 



allowing for a higher dimensionality of the learned features and more feature parameters to 

be extracted [59]. However, GoogLeNet takes the highest processing time and efficiency 

time. In this work, we pay more attention to the accuracy of the model. Because the accuracy 

reflects the sensitivity of the analytical method, and the high sensitivity is more important in 

immunoassays. In addition, once the deep learning model is trained, the subsequent 

experimental results can be tested. And this detection process can be completed in about 1 s. 

Therefore, the processing time and the efficiency time of the deep learning algorithm do not 

affect the detection time. 

 
Table 2. Comparison of algorithms' performance. 

Classification method Accuracy F1 score Processing time Efficiency time 

MobileNet_V2 95.05% 0.95060 12s 5 m 49s 

AlexNet 96.32% 0.96321 11s 4 m 31s 

ResNet34 96.88% 0.96879 13s 18 m 54s 

GoogLeNet 97.14% 0.97131 16s 49 m 31s 

 

 

However, the accuracy of the different deep learning algorithms for predicting different 

Rabbit IgG concentrations varies. To show the algorithms' accuracy at different 

concentrations, the confusion matrix for each algorithm is given in Fig. 7, showing the 

correlation between the actual and predicted labels (concentration class) of the test dataset. 

And the confusion matrix is used in this paper to compare the predicted (calculated) and 

actual values of Rabbit IgG concentration for the four algorithms. Where, for the test dataset 

(around 20% ✕ 2048, here we take 384 samples as test dataset), each concentration class has 

48 (384/8) samples. Fig. 7 represents the confusion matrix of AlexNet (Fig. 7a), GoogLeNet 

(Fig. 7b), ResNet34 (Fig. 7c), and MobileNet_V2 (Fig. 7d) respectively. Here, the darker the 

color in the confusion matrix, the higher the number of correct predictions. 

 

Then, we take the GoogLeNet algorithm as an example. The GoogLeNet algorithm provides 

ultra-high accuracy (100%) for classifying 6.7 μM, 670 nM, and 67 nM concentrations. It 

should be emphasized that although AlexNet, GoogLeNet, ResNet34, and MobileNet_V2 all 

show high performance (>95% accuracy) in image classification, the results are inconsistent 

for the same dataset due to their different model structures [60,61]. In addition, the number of 

correct predictions of the same deep learning algorithm for the test dataset categories is 

randomized, so the accuracy of GoogLeNet algorithm predictions for different concentrations 

is also different. Therefore, we provide the repeatability validation results of the GoogLeNet 

model. From Table 3, we can see that the GoogLeNet model provides an average accuracy of 

97.582%, further demonstrating the reproducibility of the model. 

 

 
Table 3. Repeatability validation results of the GoogLeNet model. 

Number of times Accuracy 

1 97.13% 

2 97.92% 

3 97.40% 



Number of times Accuracy 

4 97.66% 

5 97.92% 

6 97.40% 

7 97.79% 

8 97.66% 

9 97.13% 

10 97.79% 

Average 97.58% 

SD 0.299% 

3.4. GoogLeNet outperformed the conventional c-ELISA analysis method 

In addition, for a more intuitive comparison with traditional analysis methods, as shown 

in Fig. 8, we compared the ROC curves of the GoogLeNet algorithm model with that of the 

standard analysis method (OriginPro analysis software). The x-axis of the ROC curve 

represents 1-specificity, the y-axis represents sensitivity, and the area under curve (AUC) is 

defined as the area enclosed by the ROC curve and the coordinate axis. Further, the ROC and 

AUC are valid methods to assess the performance of diagnostic tests [62,63]. Moreover, it is 

worth noting that the sensitivity and specificity in ROC curves are not the parameters for 

evaluating the biosensor itself. Otherwise, they indicate the true positive and true negative 

rates of the sensing experiments, respectively. Here, for the standard analysis method, the 

PBS control experiment was used as a negative control, and other non-zero concentration 

samples were used as the positive samples. It can be seen that the ROC curve differs under 

different lighting conditions, further demonstrating the necessity of removing the influences 

of lighting. For a ROC curve, the closer the curve is to the upper left corner, the higher the 

sensitivity, specificity, and AUC value are. The closer the AUC is to 1, the better the 

diagnostic performance [63]. As shown in Fig. 8a, the GoogLeNet algorithm offers an AUC 

value of 0.99 (Micro-AVG). The standard analysis method provides the largest AUC value 

(0.95) under fluorescent lighting conditions, as shown in Fig. 8b. This further proves that the 

deep learning algorithm is one suitable and excellent analytical method for colorimetric 

detection. The ROC curve of AlexNet, ResNet34, and MobileNet_V2 algorithms are shown 

in Fig. S3. 

After testing four deep learning algorithms, the GoogLeNet algorithm was integrated into our 

custom-designed Android application for c-ELISA concentration testing because of its good 

prediction results (the predicted accuracy >97%). Further, the AUC value of the GoogLeNet 

algorithm also provided 4% higher than standard analysis methods. Since the deep learning 

algorithm still provided ultra-high accuracy under different illumination, this indicates that 

the deep learning-assisted smartphone platform could accurately predict the results of the 

μPADs c-ELISA assay and eliminate the effect of light on the experimental results. 

4. Conclusion 

This paper reports a deep learning-assisted smartphone platform for ultra-accurate detection 

of protein markers by μPAD c-ELISA. The platform uses a deep learning algorithm trained 



from images acquired using two different smartphones under eight lighting conditions to 

improve the platform's robustness to lighting variations and camera optics. Unlike existing 

platforms, our platform can fully automatically extract c-ELISA features from the original 

images regardless of smartphone brand, time, and location with ultra-high accuracy (>97%) 

for quantitative classification/prediction of c-ELISA results. In addition, a custom Android 

application allowing image processing has been developed. The image processing tools 

embedded in the application automatically find ROI and reduce human error, making the 

platform more user-friendly and accurate. Our platform's unique features further enhance the 

advantages of μPAD for general use in low-resource areas and offer great promise for real-

world use. In this work, we select commonly used convolutional neural network (CNN) 

models (AlexNet, GoogLeNet, ResNet34, and MobileNet_V2), and these four algorithms 

have different model structures and reflect the development of CNN models. In our future 

work, we will continue to explore the new algorithms and apply them to our future 

experiments. 
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Figures 



 
Fig. 1. Overview of deep learning assisted ultra-accurate smartphone testing of paper-based 

c-ELISA. 

 

 



 
 

Fig. 2. Schematic diagram of a direct c-ELISA performed in a paper-based multi-well 

microplate. The protocol of a direct c-ELISA is carried out in six steps: (1) Modify the paper 

surface using periodate potassium; (2) Immobilize antigens; (3) Block each well with 

blocking buffer; (4) Immobilize enzyme-conjugated antibodies; (5) Add washing buffer; (6) 

Add enzyme substrate. 

 

 
Fig. 3. Schematic illustration of an image captured with a smartphone camera under no-light 

conditions and different combinations of fluorescent light (F), table lamp (L), and natural 

light (N) conditions. 

 



 
Fig. 4. Fully automated image processing. (a) An image with 10 nM IgG concentration and 

negative control is used as an example to illustrate the relevant image processing algorithm. 

(b) Flow chart of the image processing. 

 

 
Fig. 5. The schematic of the deep learning architecture. 

 



 
 

Fig. 6. Results of direct c-ELISA of rabbit IgG in PBS under different lighting conditions. (a) 

Photographs of the direct c-ELISA of rabbit IgG under four light conditions. (b) Calibration 

curve of the mean grayscale intensity versus the rabbit IgG concentration (N = 16). 

 



 
Fig. 7. Confusion matrices of (a) AlexNet, (b) GoogLeNet, (c) ResNet34, and (d) 

MobileNet_V2 algorithms. The horizontal coordinate of the confusion matrix represents the 

predicted Rabbit IgG concentration. The vertical coordinate represents the actual Rabbit IgG 

concentration. The darker the color in the confusion matrix, the higher the number of correct 

predictions (shown inside the square).  

 



 
Fig. 8. Receiver operating characteristic (ROC) curve obtained by (a) GoogLeNet algorithm 

and (b) OriginPro. 
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[33] A.Y. Mutlu, V. Kılıç, G.K.  Özdemir, A. Bayram, N. Horzum, M.E. Solmaz, 

Smartphone-based colorimetric detection via machine learning, Analysis 142 

(2017) 2434–2441. 

[34] M.H. Tania, K.T. Lwin, A.M. Shabut, M. Najlah, J. Chin, M.A. Hossain, Intelligent 

image-based colourimetric tests using machine learning framework for lateral flow 

assays, Expert Syst. Appl. 139 (2020), 112843. 

[35] H.J. Min, H.A. Mina, A.J. Deering, E. Bae, Development of a smartphone-based 

lateral-flow imaging system using machine-learning classifiers for detection of 

Salmonella spp, J. Microbiol. Methods 188 (2021), 106288. 

[36] M.E. Solmaz, A.Y. Mutlu, G. Alankus, V. Kılıç, A. Bayram, N. Horzum, Quantifying 

colorimetric tests using a smartphone app based on machine learning classifiers, 

Sensor. Actuator. B Chem. 255 (2018) 1967–1973. 

[37] H. Kim, O. Awofeso, S. Choi, Y. Jung, E. Bae, Colorimetric analysis of 

saliva–alcohol test strips by smartphone-based instruments using machine-learning 

algorithms, J. Appl. Opt. 56 (2017) 84–92. 

[38] Y. Liu, L. Zhan, Z. Qin, J. Sackrison, J.C. Bischof, Ultrasensitive and highly specific 

lateral flow assays for point-of-care diagnosis, ACS Nano 15 (2021) 3593–3611. 
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