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Abstract 

The internal conversion (IC) process from S1 to S0 and the intersystem crossing (ISC) transition from 

T1 to S0 are two essential processes in functional molecular material design. Despite their importance, 

it is currently impossible to evaluate the rate of these processes for a large set of molecules and, 

therefore, perform high throughput virtual screening in large-scale data to gain more physical insight. 

In this work, we explore possible approaches to accelerate the calculations of IC and ISC rates based 

on a systematic reduction of the number of modes included in the computation and the study of the 

importance of the different parameters and the influence of their accuracy on the final result. The 

results reproduce the experimental trends with systematic errors that are ultimately due to the 

approximations of the theory. We noted that plausible results for ISC in planar molecules are only 

obtained by including the effect of Hertzberg-Teller coupling. Our method establishes the feasibility 

and expected accuracy of the computation of nonradiative rates in the virtual screening of molecular 

materials. 
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Introduction 

The nonradiative internal conversion (IC) process from the first singlet excited state S1 to the ground 

state S0 and the intersystem crossing (ISC) process from the first triplet excited state T1 to S0 are two 

of the most widely studied processes in organic photochemistry with a large set of experimental data 

available, which can be used to validate the theory and understand its limitation.1-6 A molecule in the 

S1 state can generally be de-excited via fluorescence (S1 → S0 + ℎν), undergo ISC processes (e.g., 

S1 → T1), or the IC process (S1 → S0). The molecule in the T1 state can also relax to the ground state 

via the ISC process (T1 → S0). The rates of these processes play crucial roles in understanding and 

designing functional molecular materials with desirable optical properties. For example, thermally 

activated delayed fluorescence (TADF) materials with delayed fluorescence can be designed by 

decreasing the IC rate.7 Strong fluorescence quantum yield of organic light-emitting diode (OLED) 

requires a small singlet-triplet gap and a weak IC rate.8 Feng et al.9 raised a strategy to achieve 

solution-phase organic room-temperature phosphorescence by suppressing the ISC between the T1 

state and S0 state through spatial separation. Nonradiative relaxation channels are detrimental for all 

devices converting solar radiation to chemical fuels (photocatalysis10) or electrical power 

(photovoltaic11). 

 

A promising way to design and develop functional organic materials is high-throughput virtual 

screening (HTVS)12-15, where properties of interest are computed for large sets (currently 104-105) of 

candidate molecules. For example, thousands of novel TADF OLED molecules across the visible 

spectrum were successfully identified through a large-scale computer-driven search.16, 17 Hundreds of 

singlet fission materials outside the previous design principles were discovered by screening a 

database of experimentally known molecules.18 New insights to design rules were found from 

statistical study and machine learning of organic acceptors for photovoltaic devices.19-21 An important 

observation that can be made on the basis of recent literature is that, while nonradiative transitions 

play essential roles in most of the relevant applications, they are generally excluded from the 

screening process. There are clearly many theoretical works22-35 in this area spanning many decades, 

but they tend to focus on fewer examples or families of the related compound and have not yet been 

employed to determine the photophysical rate of large datasets. Different considerations become 

important in the applications to HTVS, such as the relative costs of the various components of the 

calculation, the sensitivity and robustness of the results to the detail of the electronic structure 

calculations (density functional, basis set, number of modes included). A study of these aspects is a 

prerequisite for incorporating the computation of nonradiative rates in HTVS. 

 

An approach that is potentially amenable to be used in conjunction with HTVS is that based on time-

dependent perturbation theory (Fermi's golden rules), where the transitions are seen as population 

transfer between initial and final vibronic states, assuming that the potential energy surfaces of the 

relevant electronic states can be considered harmonic. This framework is routinely used to interpret 

phenomena like TADF36 or quantitatively predict the light-emitting efficiency37. There are two 

general approaches to performing the calculation of the Franck-Condon terms. One is the time-

independent sum-over-states method, which considers all possible transitions between the initial and 

final vibronic state.38-41 This approach is straightforward and easy to implement. Another is the time-

dependent method, where the delta functions in Fermi's golden rules can be treated as the Fourier 



3 

 

transform of autocorrelation functions.30, 42-44 Unlike the original time-independent approach, the 

correlation function approach does not suffer from the problem of the huge number of transitions in 

large-size systems. However, general and robust code may need to avoid numerical instability of time 

integral. In any case, this component of the methodology is not the rate-determining step of the 

calculation. It is also typically used for a few systems at the time, where it is possible to control all 

the model parameters. To expand similar methods to larger data sets, one needs to automatize the 

construction of the vibronic model and the computation of nonadiabatic coupling for IC or spin-orbit 

coupling for the ISC process, respectively, possibly studying the effect of reducing the accuracy of 

the quantum chemical calculations on the resulting rate. As usual, when the data set of interest 

increases, it becomes possible to introduce an empirical correction to the systematic errors of the 

methodology.18 In the case of IC and ISC, a well-known limitation is the anharmonicity, which can 

enhance rates significantly, especially for systems with a large energy gap between the initial and 

final electronic states (e.g., above 20000 cm-1).33, 45 Finally, there will be aspects that are likely outside 

the scope of HTVS, such as relaxation mechanism involving large amplitude motions or conical 

intersection.46-50 Some of these channels, like isomerization, are suppressed in larger rigid molecules 

in the condensed phase but are still possible. In the context of materials discovery, they should be 

studied with conventional approaches after the range of candidates to be included is reduced by larger-

scale HTVS. 

 

In this work, the IC and ISC rates are calculated using Fermi's golden rule, coupled with electronic 

structure calculations of realistic molecules and the harmonic assumption. Several approximations 

are introduced to systematically reduce the number of vibrational modes (and vibronic states) to make 

it possible to evaluate nonradiative rates rapidly for a potentially large number of molecules. This 

work focuses on validating the methodology and correcting systematic errors by comparison to a 

dataset of a few tens of experimentally determined nonradiative rates. 

 

Methodology and computational details 

Nonradiative rate 

The theoretical background is outlined briefly to provide the notation required to describe the 

approximations and the results.30, 32, 34 The transition rate from one initial state to several final states 

can be calculated using Fermi's golden rule51, 

𝑘𝑖→{𝑓} =
2𝜋

ℏ
∑|⟨𝑓|�̂�|𝑖⟩|

2
𝛿(𝐸𝑓 − 𝐸𝑖)

𝑓

, (1) 

where ℏ is the Planck constant, 𝑉𝑓𝑖 = ⟨𝑓|�̂�|𝑖⟩ is the interaction between a final state |𝑓⟩ and the initial 

state |𝑖⟩, and 𝛿(𝐸) is the Dirac delta function. 

 

For the IC process, the nuclear kinetic energy operator �̂�𝑁 is regarded as the interaction �̂� in equation 

(1). Within the harmonic approximation, it can be expressed as 

�̂�𝑁 = − ∑
ℏ𝜔𝑗

2

∂2

∂𝑄𝑗
2

𝑗

, (2) 

here 𝜔𝑗 and 𝑄𝑗 is the frequency and the dimensionless coordinate of the normal mode 𝑗, respectively. 
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By using the vibronic state representation under the Born-Oppenheimer approximation, the 

interaction between a final state and the initial state can be rewritten as 

𝑉𝑓𝑖 = − ⟨𝜙(𝑓)(𝒒, {𝑄𝑗}) ∏ 𝛬
𝑤𝑗

𝑓

(𝑓)
(𝑄𝑗)

3𝑁−6

𝑗=1

|∑
ℏ𝜔𝑗

2

𝜕2

𝜕𝑄𝑗
2

𝑗

| 𝜙(𝑖)(𝒒, {𝑄𝑗}) ∏ 𝛬
𝑤𝑗

𝑖

(𝑖)
(𝑄𝑗)

3𝑁−6

𝑗=1

⟩ , (3) 

where 𝜙(𝑖/𝑓)(𝒒, {𝑄𝑗}) is the electronic part of the initial/final vibronic state with 𝒒 being coordinates 

of electrons, and ∏ 𝛬
𝑤𝑗

𝑖/𝑓

(𝑖/𝑓)
(𝑄𝑗)3𝑁−6

𝑗=1   is the vibrational part as a product of 3𝑁 − 6  (or 3𝑁 − 5  for 

linear systems) vibrational states 𝛬
𝑤𝑗

𝑖/𝑓

(𝑖/𝑓)
(𝑄𝑗). For vibrational states, the harmonic approximation is 

applied based on the potential energy surface of the electronic state 𝜙(𝑖/𝑓), and 𝑤𝑗
𝑖/𝑓

 is the occupation 

number of the normal mode 𝑗. For convenience, a vibronic state |𝜙(𝑎)(𝒒, {𝑄𝑗}) ∏ 𝛬
𝑤𝑗

𝑎
(𝑎)

(𝑄𝑗)3𝑁−6
𝑗=1 ⟩ is 

labelled as |𝑎{𝑤𝑗
𝑎}⟩. 

 

By ignoring high-order terms of the operator �̂�𝑁, the interaction in equation (3) can be approximated 

as 

𝑉𝑓𝑖 ≈ − ∑ ℏ𝜔𝑗 ⟨𝜙(𝑓) |
𝜕

𝜕𝑄𝑗
| 𝜙(𝑖)⟩ ⟨𝛬

𝑤𝑗
𝑓

(𝑓)
(𝑄𝑗) |

𝜕

𝜕𝑄𝑗
| 𝛬

𝑤𝑗
𝑖

(𝑖)
(𝑄𝑗)⟩ ∏ ⟨𝛬

𝑤𝑘
𝑓

(𝑓)
(𝑄𝑘)|𝛬

𝑤𝑘
𝑖

(𝑖)
(𝑄𝑘)⟩

3𝑁−6

𝑘=1
𝑘≠𝑗

𝑗

. (4) 

 

In this work, we focused on the IC process from S1 to S0. The index 𝑎 of vibronic states |𝑎{𝑤𝑗
𝑎}⟩ can 

be set as S1 and S0 for the initial and final states, respectively. It is also reasonable to assume that the 

vibrational wavefunctions of the initial state are all ground states at low temperature (i.e., 𝑤𝑗
𝑖 = 0 for 

all 𝑗), while the occupation number set of vibration modes could be arbitrary for final states and is 

indicated as {𝑤𝑗} (in the Table S1, we show that the activation energy is very large, and this is a 

reasonable approximation). The initial state and a final state are labelled as |S1{0}⟩  and |S0{𝑤𝑗}⟩ 

individually, and equation (4) can then be expressed as 

𝑉𝑓𝑖 ≈ − ∑ ℏ𝜔𝑗 ⟨𝜙(S0) |
𝜕

𝜕𝑄𝑗
| 𝜙(S1)⟩ ⟨𝛬𝑤𝑗

(S0)
(𝑄𝑗) |

𝜕

𝜕𝑄𝑗
| 𝛬0

(S1)
(𝑄𝑗)⟩ ∏ ⟨𝛬𝑤𝑘

(S0)
(𝑄𝑘)|𝛬0

(S1)
(𝑄𝑘)⟩

3𝑁−6

𝑘=1
𝑘≠𝑗

𝑗

, (5) 

here, ℏ𝜔𝑗 ⟨𝜙(S0) |
𝜕

𝜕𝑄𝑗
| 𝜙(S1)⟩  is the nonadiabatic coupling 𝑉NA,𝑗  between S0 and S1 for the normal 

mode 𝑗 . Squares of vibrational integrals ⟨𝛬𝑤𝑗

(S0)
(𝑄𝑗) |

𝜕

𝜕𝑄𝑗
| 𝛬0

(S1)
(𝑄𝑗)⟩  and ⟨𝛬𝑤𝑗

(S0)
(𝑄𝑗)|𝛬0

(S1)
(𝑄𝑗)⟩  can 

be computed analytically under the harmonic approximation, 

|⟨𝛬𝑤𝑗

(S0)
(𝑄𝑗) |

𝜕

𝜕𝑄𝑗
| 𝛬0

(S1)
(𝑄𝑗)⟩|

2

=
1

2𝑤𝑗!
(𝑤𝑗 − 𝑦𝑗)

2
𝑦

𝑗

𝑤𝑗−1
𝑒−𝑦𝑗 , (6) 

|⟨𝛬𝑤𝑗

(S0)
(𝑄𝑗)|𝛬0

(S1)
(𝑄𝑗)⟩|

2

=
𝑦

𝑗

𝑤𝑗𝑒−𝑦𝑗

𝑤𝑗!
. (7) 

Here, 𝑦𝑗 is the Huang-Rhys (HR) factor of the normal mode 𝑗 for the transition from S1 to S0. It could 

be computed by projecting the total structure difference between S1 and S0 equilibrium geometries 
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onto the displacement vector of the normal mode 𝑗.52, 53 

 

For the Delta function in equation (1), the energy gap between two states 𝐸𝑓 − 𝐸𝑖 can be calculated 

as the sum of the electronic energy gap 𝐸S0
− 𝐸S1

 and the nuclear energy difference ∑ ℏ𝑤𝑗𝜔𝑗𝑗  under 

the harmonic approximation. The overall expression of the IC rate can thus be 

𝑘IC =
2𝜋

ℏ
∑|⟨S0{𝑤𝑗}|�̂�|S1{0}⟩|

2
𝛿(𝐸𝑓 − 𝐸𝑖)

{𝑤𝑗}

 

=
2𝜋

ℏ
∑ ||∑ 𝑉NA,𝑗 ⟨𝛬𝑤𝑗

(S0)
|

𝜕

𝜕𝑄𝑗
| 𝛬0

(S1)
⟩ ∏ ⟨𝛬𝑤𝑘

(S0)
|𝛬0

(S1)
⟩

3𝑁−6

𝑘=1
𝑘≠𝑗

𝑗

||

2

𝛿 (𝐸S0
− 𝐸S1

+ ∑ ℏ𝑤𝑗𝜔𝑗

𝑗

)

{𝑤𝑗}

. (8) 

 

It is commonly assumed that modes inducing the transition (with nonzero nonadiabatic couplings) 

and accepting the electronic energy (with nonzero HR factors) are distinct.54 If 𝑉NA,𝑗 is nonzero we 

therefore assume 𝑦𝑗 = 0  for a mode 𝑗 , and the only value of 𝑤𝑗  contributing to the summation in 

equation (8) is 𝑤𝑗 = 1 for which  |⟨𝛬𝑤𝑗

(S0)
|

𝜕

𝜕𝑄𝑗
| 𝛬0

(S1)
⟩|

2

 does not vanish (1/2). By discarding the zero 

values of the nuclear integrals in equations (6, 7) for some particular set of occupation numbers (e.g., 

𝑤𝑗 ≠ 1 with 𝑉NA,𝑗 ≠ 0 for equation (6), 𝑤𝑗 ≠ 0 with 𝑦 𝑗 ≠ 0 for equation (7)), the rate in equation (8) 

can be simplified as, 

𝑘IC =
𝜋

ℏ
∑ 𝑉NA,𝑗

2 ∑ | ∏ ⟨𝛬𝑤𝑘

(S0)
|𝛬0

(S1)
⟩

3𝑁−6

𝑘=1
𝑦𝑘≠0

|

2

{𝑤𝑘}

𝛿 (𝐸S0
− 𝐸S1

+ ∑ ℏ𝑤𝑘𝜔𝑘

𝑘,𝑦𝑘≠0

+ ℏ𝜔𝑗)

𝑗,𝑉NA,𝑗≠0

. (9) 

 

This equation can be further simplified by replacing ℏ𝜔𝑗  with an average ℏ𝜔𝑁𝐴  weighted by the 

nonzero nonadiabatic couplings, 

𝑘IC ≈
𝜋

ℏ
( ∑ 𝑉NA,𝑗

2

𝑗,𝑉NA,𝑗≠0

) ∑ | ∏ ⟨𝛬𝑤𝑘

(S0)
|𝛬0

(S1)
⟩

3𝑁−6

𝑘=1
𝑦𝑘≠0

|

2

{𝑤𝑘}

𝛿 (𝐸S0
− 𝐸S1

+ ∑ ℏ𝑤𝑘𝜔𝑘

𝑘,𝑦𝑘≠0

+ ℏ𝜔𝑁𝐴) 

=
𝜋

ℏ
𝑉NA

eff2
∑ | ∏ ⟨𝛬𝑤𝑘

(S0)
|𝛬0

(S1)
⟩

3𝑁−6

𝑘=1
𝑦𝑘≠0

|

2

{𝑤𝑘}

𝛿 (𝐸S0
− 𝐸S1

+ ∑ ℏ𝑤𝑘𝜔𝑘

𝑘,𝑦𝑘≠0

+ ℏ𝜔𝑁𝐴) , (10) 

with the effective nonadiabatic coupling 𝑉NA
eff being 

𝑉NA
eff2

= ∑ 𝑉NA,𝑗
2

𝑗,𝑉NA,𝑗≠0

, (11)
 

and 

ℏ𝜔NA =
∑ ℏ𝜔𝑗𝑉NA,𝑗

2
𝑗,𝑉NA,𝑗≠0

𝑉NA
eff2 . (12) 

In equation (10), the last term is an energy-shifted Franck-Condon weighted density (FCWD), which 

can be defined as, 
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𝐹𝐶𝑊𝐷S0,S1
(𝐸) = ∑ | ∏ ⟨𝛬𝑤𝑘

(S0)
|𝛬0

(S1)
⟩

3𝑁−6

𝑘=1
𝑦𝑘≠0

|

2

{𝑤𝑘}

𝛿 ( ∑ ℏ𝑤𝑘𝜔𝑘

𝑘,𝑦𝑘≠0

− 𝐸) . (13) 

Then, equation (10) can be expressed compactly as a product of the effective nonadiabatic coupling 

and an independent Franck-Condon term. i.e., 

𝑘IC =
𝜋

ℏ
𝑉NA

eff2
𝐹𝐶𝑊𝐷S0,S1

(𝐸S1
− 𝐸S0

− ℏ𝜔NA). (14) 

 

The ISC rate from T1 to S0 can be calculated similarly by replacing the interaction operator with spin-

orbit coupling (SOC) operator �̂�SOC. The final formula is 

𝑘ISC =
2𝜋

ℏ
|⟨𝜙(S0)|�̂�SOC|𝜙(T1)⟩|

2
𝐹𝐶𝑊𝐷S0,T1

(𝐸T1
− 𝐸S0

) 

=
2𝜋

ℏ
𝑉SOC

2 𝐹𝐶𝑊𝐷S0,T1
(𝐸T1

− 𝐸S0
). (15) 

 

Experimental Data 

To determine the validity of the methodology, we considered several experimental datasets for IC and 

ISC rates. Experimental energy gaps are used as the electronic energy gap terms 𝐸S1
− 𝐸S0

 and 𝐸T1
−

𝐸S0
 for IC and ISC rates in equations (14) and (15), respectively, as we only focus on the accuracy of 

coupling terms and the Franck-Condon factors in this work. For the calculation of hypothetical 

molecules, one should clearly also compute this energy term either using modern range separated 

functionals55-57 or a calibration procedure against experimental data18. Experimental data of 12 

molecules (shown in Figure 1) for the IC process are obtained from references58-60 that focused on 

the discussion of the energy gap law.25 The experimental IC rates were calculated using experimental 

fluorescence lifetime and quantum yield for naphthalene, anthracene, tetracene, and coronene.58 The 

experimental IC rates for azulene, azulene-d8, guaiazulene, trimethyl-azulene, phenylbenzoxalene, 

dibenzoxalene, bromodibenzoxalene and chlorodibenzoxalene were calculated by using the 

experimental fluorescence lifetime.59, 60 The dataset for ISC processes contains 17 molecules (shown 

in Figure 1), including naphthalene, biphenylene, biphenyl, fluorene, anthracene, phenanthrene, 

pyrene, fluoranthene, tetracene, chrysene, 3,4-benzphenanthrene, 1,2-benzanthracene, p-terphenyl, 

m-terphenyl, 1,2,5,6-dibenzanthracene, 1,3,5-triphenyl-benzene  and hexahelicene.22 Their ISC rates 

were computed using experimental T1 lifetime. It is worth noticing that existing collections of 

nonradiative rates from literature (e.g., in ref.61) proved to be not immediately useful for this work 

because of several inconsistencies (mismatch with cited sources, quantum yields summing to values 

greater than 1) that impose the need for manual verification of each entry. The current dataset can be 

considered a validation data set (it spans the relevant range of excitation energy), and the results 

presented here can be regarded as a prerequisite for the application of a similar methodology to a 

larger data set. 
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Figure 1. (top) 12 molecules for the IC rate calculation in our work and their corresponding labels 

(bottom) 17 molecules for the ISC rate calculation in our work and their corresponding label. 

 

Computational details 

To obtain FCWD terms in equations (14, 15), HF factors are calculated by projecting the geometry 

difference for corresponding processes onto the displacement vectors of the normal modes of the final 

electronic state (i.e., S0 for both cases) under the curvilinear coordinate.53 In practice, restricted DFT, 

unrestricted DFT, and TDDFT calculations are carried out using Gaussian 16 software (Revision 

A.03)62 to obtain the optimized S0, T1 and S1 molecular structures, respectively. Normal modes 

information is also calculated by DFT in Gaussian 16 using the S0 geometry. The results are presented 

for calculations in a vacuum with the supporting information (Table S2) reporting the modest effect 



8 

 

of the solvent treated within the polarizable continuum model63, 64 on these results. After stable 

numerical tests (Figure S2a), the delta function in FCWD is simulated by a normalized Gaussian 

broadening function with a standard deviation of 200 cm-1.  

 

For the IC process, nonadiabatic couplings are computed by projecting the nonadiabatic coupling 

matrix elements onto the normal modes of S0. This procedure is preferable to various diabatization 

schemes65 for possible applications in HTVS, where the quality of the diabatization cannot be verified 

automatically. The NAC matrix elements between S1 and S0 are calculated in Gaussian 16 package 

using the TDDFT approach proposed by Send and Furche66, which is the most common 

implementation of NAC matrix elements computations within the DFT framework and has been used 

to study the internal conversions between low-lying electronic excited states in organic systems.32, 67-

71 For the ISC process, the SOC between S0 and T1 is obtained using TDDFT without the Tamm-

Dancoff approximation in the ORCA package72, 73. S0 geometry is used for both coupling terms.  

 

Since the B3LYP functional74-76 provides good energies and vibronic spectral shapes77, 78, it is adopted 

as the default functional for calculations above. 6-31G(d)79 basis set is performed as default for all 

DFT/TDDFT calculations except the SOC calculation, for which a larger basis set def2-TZVP basis 

set80 is adopted. To balance the accuracy and efficiency of our approaches for HTVS, different basis 

sets (3-21G81, 6-31G(d) and def2-TZVP) and the alternative M06-2X functional82 are also used to 

compute parameters for IC/ISC rates calculations. 

 

Reduction of modes set for the FCWD 

Given that the size of vibronic modes set {𝑤𝑘}  in equation (13) increases exponentially with the 

increasing number of vibration modes, evaluating the FCWD explicitly could be too expansive if the 

complete set of vibrational modes is used. At the same time, the evaluation of the nonradiative rates 

should be independent from the size of the molecule for the intended application in HTVS. We define 

a reduced effective set of normal modes and HR factors in the following way. We define the 

reorganization energy 𝜆𝑗, the contribution to the total reorganization energy due to mode 𝑗, in terms 

of the mode frequency and HR factor, 

𝜆𝑗 = ℏ𝜔𝑗𝑦𝑗 . (16) 

We then define a spectral density 𝐽(𝜔) introducing a finite broadening 𝜎 for each mode, 

𝐽(𝜔) = ∑
𝜆𝑗

𝜎√2𝜋
exp (−

(𝜔 − 𝜔𝑗)
2

2𝜎2
)

𝑗

. (17) 

Figure 2a illustrates the relationship between the discrete values of {𝜔𝑗, 𝜆𝑗}   and the continuous 

function 𝐽(𝜔) for a particular molecule using 𝜎 = 160 cm-1. (See Figures 4a, 4b and S1 for other IC 

and ISC molecules) 

 

This function can be fitted quite reasonably for molecular systems as the sum of a limited number of 

Gaussian functions (e.g., four functions) of varying widths, 

𝐽(𝜔) ≈ ∑
𝜆𝑘

′

𝜎𝑘√2𝜋
exp (−

(𝜔 − 𝜔𝑘
′ )2

2𝜎𝑘
2

)

4

𝑘=1

. (18) 

Figure 1b shows the fitting results using one to four Gaussian functions. The effective mode set with 
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four modes reproduces an acceptable fitting curve compared to the original spectral density. Besides 

the residual sum of squares of the fitting (Table S3), the total effective reorganization energy 𝜆eff can 

also be computed using the parameter set {𝜔𝑘
′ , 𝜆𝑘

′ } to evaluate the fitting quality (Table S4 for both 

IC and ISC molecules) compared to the original total reorganization energy 𝜆. 

 

Important modes that promote nonradiative processes are those with strong HR factors (significant 

FC overlaps) and high energy (easy to overcome the energy gap). It is, therefore, vital to include in 

the reduced modes the weakly coupled modes in the region of the C-H stretching (~ 3000 cm-1). To 

capture the information at high frequency, one effective mode is initialized at a high-frequency region 

(> 2000 cm-1), while the other three modes are set arbitrarily (larger than 0) as an initial guess for the 

fitting process. 

 

 

Figure 2. a. The broadened spectral density plot (black line) and reorganization energy plot (orange 

points) for bromodibenzoxalene. b. Fitting results with different effective mode numbers (1, 2, 3 and 

4 modes) compared to the original spectra density (black line). The spectral density results around 

3000 cm-1 are multiplied by 30 for clarity. 

 

After the fitting procedure, parameters set {𝜔𝑘
′ , 𝜆𝑘

′ }  would be used to obtain frequencies and HR 

factors (𝑦𝑘
′ = λ𝑘

′ /ℏ𝜔𝑘
′ ) of effective modes to estimate the FCWD in equation (13) (see Table S4). By 

comparing the FCWD using different effective sets to the benchmark result of the 6-mode complete 

set, the results for naphthalene (IC process) in Figure S2b suggest the validity of the reduction 

approach (also see Figure S3 and Table S5 for tetracene and azulene). 

 

 

Results and discussion 

Internal conversion 

With the B3LYP/6-31G(d) calculation level, the IC rates of 12 molecules are computed using our 

approach, as displayed in Table 1 and Figure 3. The results show qualitative agreement with 

experimental data (e.g., the correct order of rates) and the energy gap law, except for coronene, 

molecule 12a in Table 1. The considerable underestimation of the rate for molecules with larger 

energy gaps is generally attributed to the anharmonicity effect.33, 45 
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According to equation (14), the IC rate is decided by the total reorganization energy 𝜆  and the 

nonadiabatic coupling 𝑉NA
eff, which are also listed in Table 1 (and Figure S4). The most significant 

deviation of coronene is probably due to the computed reorganization energy which is underestimated 

using DFT while, experimentally83, it is closer to the other molecules. One can observe from Table 1 

and Figure S4 an approximate decrease of the nonadiabatic coupling with the increase of the energy 

gap (which could be anticipated from the Helmann-Feynman formulation of the nonadiabatic 

coupling84) of one order of magnitude for the dataset considered. The computation of 𝑉NA
eff for each 

molecule is therefore essential, although clearly less crucial than the evaluation of the HR factors. As 

shown in Figure S6, the level of theory does not affect the results of the predicted rate too significantly. 

 
Figure 3. The comparison of experimental (black squares) and calculated (red circles) IC rates for 

the 12 molecules. B3LYP/6-31G(d) is used for all quantum calculations. 

 

Table 1. Calculated IC rates and related parameters at the B3LYP/6-31G(d) calculation level. 

 𝐸S1
− 𝐸S0

 (cm-1) exp. log(𝑘IC/s−1) cal. log(𝑘IC/s−1) 𝜆 (cm-1) 𝑉NA
eff (cm-1) 𝜔NA (cm-1) 

1a 14660 11.85 9.52 3397 185 1188 

2a 14620 11.85 10.07 4040 202 1545 

3a 13900 12.36 10.13 3496 210 1521 

4a 15900 11.25 8.91 3452 178 1192 

5a 15000 12.31 10.43 5328 123 1559 

6a 16300 11.89 9.66 4784 108 1543 

7a 15900 12.02 9.66 4717 105 1351 

8a 16000 12 9.72 4710 109 1521 

9a 32200 5.3 -4.21 2413 27 1807 

10a 26700 5.95 -2.34 1803 28 1821 

11a 21200 7.48 0.37 1364 32 1716 

12a 23800 5.78 -6.88 552 151 1348 

 

 

A possible method to further accelerate the calculation derives from the observation that the spectral 

densities of organic molecules have similar shapes across a diverse set of molecules (this is illustrated 

in Figures 4 and S1). It is, therefore, possible to define a single reference effective set of frequencies 

and HR factors {𝜔𝑘
eff, 𝑦𝑘

eff} of a typical molecule with total reorganization energy 𝜆ref. Then, for any 
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arbitrary molecule, one can define the set of effective frequencies and HR factors as 

{𝜔𝑘 = 𝜔𝑘
eff, 𝑦𝑘 = 𝑦𝑘

eff𝜆/𝜆ref} which only requires the calculation of the total reorganization energy 𝜆 

of this molecule (saving the calculation of the frequency). This approximation consists in assuming 

that a common spectral density can capture the phenomenology of organic conjugated molecules. 

Figure 4c shows that the rates computed with this approximation are similar to the original results in 

Table 1, having chosen randomly as a reference spectral density that of guaiazulene (the results are 

similar if one performs calculation with an average spectral density among those computed). These 

suggest that, in the context of high-throughput virtual screening, one can avoid the computation of 

the individual spectral density and, therefore the calculation of the normal modes, which 

computationally costs as much as the optimization of the excited state (see Figure 5). 

 

Despite the qualitative agreement, there is a substantial deviation from the experimental rate that 

increases with the increasing energy gap, which is normally attributed to the anharmonic effect not 

captured by the model. Empirical corrections are possible, but they would require a large experimental 

data set to become more robust. For example, a constant multiplicative correction would align very 

well with the experimental and computed data for molecules with an energy gap below 18000 cm-1. 

Still, a different correction is required for molecules with a higher energy gap suggesting that a three-

parameter empirical correction is probably needed. 

 

Figure 4. a. and b. Normalized spectral densities of the reorganization energy of 12 molecules for 

the IC process (normalized by total reorganization energy 𝜆). c. The plot of IC rate versus energy gap 

for 12 molecules computed with molecule-specific spectral densities (red circles) and with a single 

rescaled spectral density (blue triangles). d. The reference spectral density (guaiazulene molecule). 
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Figure 5. The average computation cost and IC calculation using (a) B3LYP/3-21G level, (c) 

B3LYP/6-31G(d) level and (e) B3LYP/def2-TZVP level. The average computation cost of the ISC 

calculation in (b) B3LYP/3-21G level, (d) B3LYP/6-31 G(d) level and (f) B3LYP/def2-TZVP level. 

The inner pie charts are the percentage of computation time of each step. 

 

Finally, as mentioned in the computational detail part, different calculation levels are performed to 

balance the accuracy and efficiency of our approach. Figure 5 shows the computation cost for each 

component by using four effective modes. The cost of optimization is the highest, and the percentage 

of the optimization is over 50%. In contrast, the average cost for calculating the FC term for the IC 

and ISC rates using four modes is only several seconds, and the percentage of FC calculation cost is 

much less than 1%. Besides, the NAC and SOC calculation cost is generally low, less than 16%. The 

cost of the frequency calculation increased from around 10% to 20 % as the calculation level increased. 
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At the same time, the rate results in Figure S6 suggest that the calculated IC rate is less sensitive to 

the basis set. Therefore, the 3-21G basis set could be acceptable for virtual screening approaches 6-

31G(d) would be a better choice if an accuracy comparison is needed in a narrow energy gap region 

(e.g., molecules around 15000 cm-1 in our case) since the total reorganization energy can be computed 

well using 6-31G(d) (Figure S5) instead of 3-21G. Similar results are seen with the functional M06-

2X with a slightly larger deviation from the experimental trend. 

 

 

Intersystem crossing 

ISC rates of 17 molecules are calculated using equation (15), and a summary of quantum calculations 

results and experimental data are listed in Table 2. However, the results of the ISC rate ('cal.  

log(𝑘ISC/s−1) ' in Table 2) are entirely unsatisfactory, which is not in agreement with either the 

experimental rates or the energy gap law (also see Figure S7a). As shown in Table 2, SOCs 

significantly vary from 0.1 cm-1 to 10-5 cm-1 (also see Figure S7b), which is the origin of the poor 

results. 

 

Table 2. Calculated ISC rates and related parameters at the B3LYP/6-31G(d) calculation level. 

 𝐸𝑇1
− 𝐸S0

 (cm-1) 
exp. 

log(𝑘ISC/s−1) 

cal. 

log(𝑘ISC/s−1) 

cal. 

log (𝑘ISC
(HT)

/s−1) 
𝜆 (cm-1) 𝑉SOC (cm-1)* 𝑉SOC

eff  (cm-1)* 𝜔SOC (cm-1) 

1b 21300 -0.41 -7.40 1.54 3655 1.9E-05 0.39 763 

2b 19000 -0.17 1.96 - 4952 6.4E-02 - - 

3b 22900 -0.70 0.77 - 4606 2.2E-01 - - 

4b 23800 -0.77 -3.58 0.43 3920 5.9E-03 0.36 813 

5b 14900 1.34 -3.43 3.18 2633 2.1E-04 0.34 677 

6b 21600 -0.60 -1.79 1.99 3993 7.4E-03 0.35 796 

7b 16900 0.30 -3.74 2.31 2715 4.1E-04 0.27 749 

8b 18500 0.08 -5.64 1.94 3144 7.8E-05 0.31 741 

9b 10300 2.85 -1.32 4.66 2087 3.3E-04 0.32 645 

10b 20000 -0.44 -4.60 1.24 3196 5.4E-04 0.30 734 

11b 20000 -0.43 -0.75 - 2773 2.5E-01 - - 

12b 16500 0.52 -1.90 2.35 2625 3.7E-03 0.33 690 

13b 20600 -0.44 1.71 - 4255 3.5E-01 - - 

14b 22700 -0.68 0.98 - 4433 3.2E-01 - - 

15b 18300 -0.17 -4.76 1.38 2605 4.2E-04 0.31 714 

16b 22600 -0.77 0.63 - 4408 2.2E-01 - - 

17b 19000 -0.37 -1.33 1.54 3542 1.9E-02 - - 

* 𝑉SOC and 𝑉SOC
eff  are computed at the B3LYP/def2-TZVP and B3LYP/3-21G calculation level, respectively. 

 

It is easy to find that molecules with nearly vanishing SOC are all planar hydrocarbons molecules 

(e.g., naphthalene, pyrene) due to the predominant 𝜋 − 𝜋* excitation character of T1 states for these 

molecules. In other words, near-zero SOC is the natural property of planar organic molecules. Instead, 

high-order spin-orbit interaction coupled with nuclear motion (i.e., Herzberg-Teller coupling and 

nonadiabatic coupling) should be included for ISC rate calculations of these molecules.85-87 

 

Here, we propose an approximated way of SOC correction to improve our approach for predicting 
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the ISC rate for planar molecules with negligible SOC, starting by introducing the geometry (𝑄)  

dependence of the SOC, 

𝑉ISC = ⟨𝜙(S0)𝛬(S0)|�̂�SOC|𝜙(T1)𝛬(T1)⟩ = ⟨𝛬(S0)|𝑉SOC(𝑄)|𝛬(T1)⟩. (19) 

 

Considering out-of-plane vibration modes in the original vibrational set consisting of all normal 

modes which introduce 𝜎 − 𝜋* excitation to T1 states, the SOC 𝑉SOC(𝑄) can be expressed as 

𝑉SOC(𝑄) = 𝑉SOC + ∑
𝜕𝑉SOC

𝜕𝑄𝑖
𝑄𝑖

𝑖

≈ ∑
𝜕𝑉SOC

𝜕𝑄𝑖
𝑄𝑖

𝑖

. (20) 

Since out-of-plane modes have zero HR factor, the final equation of the ISC rate 𝑘ISC
(HT)

, corrected by 

Herzberg-Teller (HT) coupling, has a similar approximation to the one for IC rate calculation 

(equation (10)), 

𝑘ISC
(HT)

=
2𝜋

ℏ
𝑉SOC

eff 2
𝐹𝐶𝑊𝐷S0,T1

(𝐸T1 − 𝐸S0 − ℏ�̅�SOC). (21) 

Here, the effective SOC 𝑉SOC
eff  is written as 

𝑉SOC
eff 2

= 𝑉SOC
2 (0) +

1

2
∑ (

𝜕𝑉SOC

𝜕𝑄𝑖
)

2

𝑖

≈
1

2
∑ (

𝜕𝑉SOC

𝜕𝑄𝑖
)

2

𝑖

, (22) 

and ℏ�̅�SOC is the SOC-weighted energy shift, 

ℏ𝜔SOC =
∑ ℏ𝜔𝑖 (

𝜕𝑉SOC

𝜕𝑄𝑖
)

2

𝑖

2𝑉SOC
eff 2 . (23) 

 

After the correction for planar molecules with negligible SOC, the results show good improvement 

for rate predictions and follow the energy gap law well, as shown in Figure 6. More importantly, the 

rates in Figure 6 are corrected by including the effective SOC 𝑉SOC
eff  calculated using a much smaller 

basis set (3-21G), which suggests that small basis sets are acceptable to capture 𝑉SOC
eff  (also see Table 

S6). i.e., this correction for planar molecules can still be acceptable for HTVS. Furthermore, all planar 

molecules in our calculation have similar 𝑉SOC
eff   (~0.32 cm-1) and ℏ�̅�SOC  (~750 cm-1), as shown in 

Table 2 and Figure S8. This may suggest a further approximation in the ISC evaluation for planar 

organic molecules, consisting in using a fixed average 𝑉SOC
eff  and ℏ�̅�SOC in equation (21). 

 

For the molecules that we don't perform the correction (nonplanar molecules or molecules with 

considerable SOC), the ISC rates via equation (15) show consistency with the trend of corrected rates, 

except for two nonplanar acenes (11b and 17b). The underestimation of these two molecules would 

result from the small dihedral angles among rings (e.g., below 10º), making high-order vibronic 

coupling terms still contribute to the ISC process. We also note that, for four nonplanar molecules 

(biphenyl, m/p-terphenyl, and triphenylbenzene), low-frequency modes associated with the 

planarization of the molecule contribute significantly to geometry change during the molecular 

relaxation of the ISC process (Figure S9). Within our framework, the vibronic manifold of this 

molecule will contain a low-frequency effective mode (below 200 cm-1) with a large HR factor. This 

slows down the FCWD calculation without contributing much to the rate while suffering from large 

anharmonic effects. We have verified (Figure S10) that this mode can be removed with marginal 

effect on the final results and, for practical application, one can set a lower boundary for the frequency 
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of the normal modes to be included in the fitting process. 

 

 

Figure 6. Results of calculated ISC rate compared to experimental data (black circles). Blue squares 

(open and solid) refer to the computed results via equation (15), and red stars show the corrected ISC 

rates via equation (21). Here solid squares represent molecules to which the HT correction is not 

introduced: biphenyl, m/p-terphenyl, triphenylbenzene, nonplanar acene (e.g., hexahelicene) and 

biphenylene. 

 

Conclusion 

In this work, a rapid calculation approach for IC and ISC rates is proposed to make it possible for the 

evaluation of such rates in conjunction with high-throughput virtual screening and contribute to 

organic materials discovery. The method is based on the standard time-dependent perturbation theory 

(Fermi's golden rule), where the rate equation of rate is expressed as a product of a squared coupling 

(nonadiabatic and spin-orbit for IC and ISC, respectively) and a Franck-Condon term. We noticed 

however that for ISC in planar molecules, where the spin-orbit coupling is very small, it is essential 

to incorporate a Herzberg-Teller correction. The work presented here can be considered a necessary 

stepping stone to establishing the feasibility and expected accuracy of nonradiative rate on molecules 

that are hypothetical or for which there are no experimental data available. 

 

We observed that the Franck-Condon term could be approximated quite effectively with a limited 

number of effective modes, which can be determined through a fitting of the spectral density. We 

have also observed that the spectral densities displayed by organic molecules tend to be similar, and 

it is even possible to ignore the difference between them and assume a common reference spectral 

density which would avoid the need to evaluate normal modes for each molecule. All terms entering 

the evaluation of the rates (except the energy gap, not considered in this work) are not very sensitive 

to the basis set size and the functional used, suggesting that they can be evaluated within a few CPU 

hours for molecules of typical sizes and that they can be incorporated into virtual screening protocols. 

 

While the experimental trends are well reproduced, there are important quantitative discrepancies 

when computed and experimental rates are compared. These are ultimately due to the limitation of 

the harmonic approximation. In the context of virtual screening, it is not reasonable to introduce 

individual corrections for each molecule, but it may be possible to introduce corrections to the main 
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systematic error based on a large dataset of experimental observations. As this requires a large set of 

homogenous and validated data, one can anticipate that the incorporation of nonradiative rate 

prediction in materials discovery is likely to become a joint effort involving high-throughput 

experimentation and theory. 

 

Supplementary Material 

There is a support information (SI) file, containing results of parameters for IC/ISC rate calculations, 

validation of our approach, and testing of different calculation levels. 
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