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Abstract

We introduce a risk-sensitive generalisation of the mixed H2/H∞ control
problem for linear stochastic systems with additive noise. Two criteria of
exponential-quadratic form are used to generalise the usual quadratic crite-
ria. The solutions are found in a linear state-feedback form for both the finite
and the infinite horizon formulations in terms of coupled Riccati differential
and algebraic equations. A change of measures for both criteria and comple-
tion of squares method is used to derive the solutions, and explicit sufficient
conditions for the admissibility of controls are derived. An application to
the problem of robust portfolio control in a market with random interest rate
subject to a disturbance is also given.

Keywords: Stochastic mixed H2/H∞ control; Risk-sensitive control;
Robust portfolio control.

1. Introduction

Let (Ω,F , (F(t), t ≥ 0),P) be a given complete probability space on
which a d-dimensional standard Brownian motion (W (t), t ≥ 0) is defined.
We assume that F(t) is the augmentation of σ{W (s)|0 ≤ s ≤ t} by all the
P-null sets of F . Consider the following linear stochastic control system:
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

dx(t) = [A(t)x(t) +B2(t)u(t) +B1(t)v(t)]dt+ A1(t)dW (t), t ≥ 0,

z(t) =

C(t)x(t)

D(t)u(t)

 , ∀t ≥ 0,

x(0) = x0 ∈ Rn is given.

(1.1)

Here x(·) is the state of the system, u(·) is the control process, v(·) is the
disturbance, and z(·) is the output of the system. We assume that:

A(·) ∈ L∞(0, T ;Rn×n), B2(·) ∈ L∞(0, T ;Rn×nu), B1(·) ∈ L∞(0, T ;Rn×nv),

A1(·) ∈ L∞(0, T ;Rn×d), C(·) ∈ L∞(0, T ;Rmc×n), D(·) ∈ L∞(0, T ;Rmd×nu),

where L∞(0, T ;E) denotes the set of all E-valued uniformly bounded func-
tions. The control process u(·) and the disturbance v(·) are assumed to
be adapted square-integrable processes, and that ensures (1.1) has a unique
strong solution. Further consider the following two quadratic criteria:

I1(u(·), v(·)) := E
[∫ T

0

z′(t)z(t)dt

]
, (1.2)

I2(u(·), v(·)) := E

[∫ T

0

(θ2v′(t)v(t)− z′(t)z(t))dt

]
, (1.3)

for some positive θ. The linear state-feedback stochastic mixed H2/H∞ con-
trol problem is to find the optimal pair (u∗(·), v∗(·)) of the optimal control
u∗(·) and of the worst case disturbance v∗(·) that are a Nash equilibrium, i.e.
that satisfy the following two inequalities:

I1(u
∗(·), v∗(·)) ≤ I1(u(·), v∗(·)), (1.4)

I2(u
∗(·), v∗(·)) ≤ I2(u

∗(·), v(·)). (1.5)

Inequality (1.4) indicates that u∗(·) minimizes the quadratic cost of the out-
put (i.e. the output energy) under the worst-case disturbance, and this cor-
responds to the “H2” part of the problem. Inequality (1.5) ensures that
under the worst-case disturbance the effect of the disturbance on the output,
as measured by the quadratic cost I2, is bounded, and this corresponds to
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the “H∞” part of the problem. This problem was considered in [31] where
initially the case of a deterministic system was solved, i.e. the case when
A1(t) = 0 for all t ≥ 0. Such a case admits an explicit linear state-feedback
solution in terms of a pair of coupled Riccati differential equations. In [31] it
was further shown that such a solution is also the solution to the stochastic
case, which in particular means that the Nash equilibrium (u∗(·), v∗(·)) does
not depend on the stochastic noise intensity A1(·).

There have been many further developments on the stochastic mixed
H2/H∞ control problem. The emphasis has been on the nonlinear systems
and systems with multiplicative noise (see, e.g., [8, 32, 50, 51, 48, 49, 25])
as well as applications (see, e.g., [24, 23, 22]). However, the criteria in these
further developments have remained quadratic. On the other hand, another
well-known branch of control theory is the risk-sensitive control. Here the
optimality criterion is of exponential-quadratic form. The risk-sensitive con-
trol problem for linear stochastic systems with additive noise was introduced
by Jacobson [26] who found an explicit closed-form solution in a linear state-
feedback in the case of full observations. For risk-sensitive control with partial
observations see, e.g., [3, 7, 40], for discrete-time systems see, e.g., [46, 47], for
connections with robust control see, e.g., [20, 44, 14, 40], for the risk-sensitive
maximum principle see, e.g., [30, 27, 35], for the risk-sensitive control of
mean-filed systems see, e.g. [35, 36, 33], for the Hamilton-Jacobi-Bellman
equation of risk-sensitive control see [37], for the risk-sensitive differential
games see, e.g., [2, 13, 21, 34, 38, 42, 43], and for more general exponential
criteria that admit explicit closed-form solutions see [9, 10, 16, 19]. The risk-
sensitive control is particularly suitable for optimal investment problems, see,
e.g., [15, 4, 11, 9, 16, 12, 19].

In this paper, we generalise the linear state-feedback stochastic mixed
H2/H∞ control problem by replacing the quadratic criteria (1.2) and (1.3)
with the following two exponential-quadratic criteria:

J1(u(·), v(·)) :=
1

γ1
E
{
exp

[
γ1
2

∫ T

0

z′(t)M1(t)z(t)dt

]}
, (1.6)

J2(u(·), v(·)) :=
1

γ2
E
{
exp

[
γ2
2

∫ T

0

(θ2v(t)′N(t)v(t)− z′(t)M2(t)z(t))dt

]}
,

where γ1, γ2 ∈ R and

M1(·),M2(·) ∈ L∞(0, T ;R(mc+md)×(mc+md)), N(·) ∈ L∞(0, T ;Rnv×nv),
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are given symmetric matrices. The aim now is to find a Nash equilibrium
(u∗(·), v∗(·)) that satisfies the following inequalities:

J1(u
∗(·), v∗(·)) ≤ J1(u(·), v∗(·)), ∀u(·) ∈ Au (1.7)

J2(u
∗(·), v∗(·)) ≤ J2(u

∗(·), v(·)), ∀v(·) ∈ Av. (1.8)

for some suitably defined admissible sets of linear state-feedback controls
and disturbances Au and Av, respectively. This is clearly a risk-sensitive
generalisation of the stochastic mixed H2/H∞ control problem of [31] which
now appears as the special case corresponding to γ1 → 0, γ2 → 0, and the cost
matricesM1, M2, N , being identity matrices. The motivation for introducing
this generalisation is that we obtain an explicit solution to the problem, and
different from [31], the corresponding coupled Riccati equations depend on
intensity A1(·) of random noise. Moreover, there are applications, such as
vehicle active suspensions [6], and optimal investment [15, 5, 4, 11, 9, 16, 12,
19], where the exponential-quadratic cost functional appears. If systems in
such applications are subject to disturbances, then our results can be used
for their control.

The problem of finding the linear state-feedback Nash equilibrium (u∗, v∗)
that satisfies (1.7) and (1.8) subject to (1.1, and its solution method, appear
to be new and most closely related to existing results on risk-sensitive differ-
ential games as follows. In [2], a risk-sensitive differential game was consid-
ered where two exponential criteria are used for a general nonlinear system
with a state-multiplicative noise. Certain limiting cases of such a problem are
considered which are equivalent to the risk-sensitive control problem or sev-
eral independent risk-sensitive control problems. In [21], an existence result
for a class of risk-sensitive differential game is given in terms of backward
stochastic differential equations, whereas in [13] and [38] a single criterion
risk-sensitive differential game is considered.In [42], [43], a risk-sensitive dif-
ferential game of several players where each uses the same criterion is con-
sidered. In [34] a maximum-principle for a risk-sensitive differential games
of a general nonlinear system with a control and state multiplicative noise
was considered which gives necessary and sufficient conditions for an open-
loop controls to be optimal. The risk-sensitive differential games in infinite
horizon have not been considered in the above mentioned papers.

The main contributions of the present paper are as follows.
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• We solve the finite-horizon risk-sensitive H2/H∞ control problem, which
is the problem of finding a Nash equilibrium (u∗, v∗) that satisfies (1.7) and
(1.8) subject to (1.1). The solution is of a linear-state feedback form and
depends on solutions to two coupled Riccati differential equations that are
more general than those in [31]. The change of measure for both criteria
and the completion of squares method is used to derive the solution under
two Novikov integrability conditions. Thus, this represents an expansion of
the approach used in risk-sensitive control problems that require a single cri-
terion to the current two criteria setting. We also give a general result on
the uniqueness of solution to the resulting coupled Riccati differential equa-
tions. The solution is found on the assumption of admissibility of the Nash
equilibrium, and sufficient conditions for this to hold are also derived. These
contributions are the subject of section 2.

• We solve the infinite-horizon risk-sensitive H2/H∞ control which instead
of the criteria J1 and J2 uses certain infinite horizon versions of average type
with a general weigh. Our solution method is similar to the finite horizon,
but with the additional difficulty of dealing with the stability requirements,
which are of exponential type under two different probability measures. The
solution method is an expansion to a two risk-sensitive criteria setting of the
approach used in [16] and [19] for the infinite-horizon risk-sensitive control
problems. The explicit state-feedback solution is obtained in terms of certain
coupled Riccati algebraic equations, and under the assumption of admissi-
bility of the Nash equilibrium. We further give sufficient conditions for the
admissibility of the Nash equilibrium which also ensure the stability of the
system. These contributions are the subject of section 3.

• We formulate an investment problem in a market with a random interest
rate that is subject to a disturbance, and an investor that uses the power util-
ity from terminal wealth as a criterion of optimal investment and requires a
robustness of expected growth. This is an expansion of an optimal investment
problem with stochastic interest rate as considered in, e.g. [16, 18, 17, 19], by
taking into the consideration the effect of disturbances on the interest rate
model. Although the stochastic control system in this problem is with mul-
tiplicative noise and non-exponential-quadratic criteria, we show that this
problem can be reformulated as an example of control problem considered in
section 2, and is solved as an application of our results. We further give two
numerical examples for both the finite and infinite horizon formulations of
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this application, which in particular illustrate that our assumptions are rea-
sonable and can be satisfied. These contributions are the subject of section 4.

Finally, note that throughout the paper we have suppressed argument t
where convenient for notational simplicity.

2. Finite horizon risk-sensitive H2/H∞ control problem

We confine ourselves to linear state feedback controls and disturbances
(as in [31]). The sets of all such controls and disturbances are defined as:

U := {u(·) : u(t) = Ku(t)x(t) where Ku(·) ∈ L∞(0, T ;Rnu×n)},

V := {v(·) : v(t) = Kv(t)x(t) where Kv(·) ∈ L∞(0, T ;Rnv×n)}.

Let the matrices M1 and M2 have the following partition:

M1(t) =

[
M11(t) M12(t)
M ′

12(t) M13(t)

]
, M2(t) =

[
M21(t) M22(t)
M ′

22(t) M23(t)

]
, t ∈ [0, T ],

whereM11(·),M21(·) ∈ L∞(0, T ;Rmc×mc),M12(·),M22(·) ∈ L∞(0, T ;Rmc×md),
M13(·),M23(·) ∈ L∞(0, T ;Rmd×md). We make the following positivity as-
sumption.

Asssumption 1. D′(t)M13(t)D(t) > 0 and N(t) > 0 for a.e. t ∈ [0, T ].

In the special case of M13(t) = I and N(t) = I, this assumption is the same
as in [31]. We also make the following assumption on a pair of coupled Riccati
differential equations that appear in our solution.

Asssumption 2. There exists a solution pair (P1(·), P2(·)) to the following
coupled Riccati differential equations:

Ṗ1 + P1[A−B2(D
′M13D)−1D′M ′

12C]
+[A−B2(D

′M13D)−1D′M ′
12C]′P1

−θ−2(P1B1N
−1B′

1P2 + P2B1N
−1B′

1P1)
+P1[γ1A1A

′
1 −B2(D

′M13D)−1B′
2]P1

+C ′[M11 −M12D(D′M13D)−1D′M12]C = 0, t ∈ [0, T ],
P1(T ) = 0,

(2.1)
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

Ṗ2 − P2(θ
−2B1N

−1B′
1 − γ2A1A

′
1)P2

+P2[A−B2(D
′M13D)−1D′M ′

12C]
+(A−B2(D

′M13D)−1D′M ′
12C)′P2 − P2B2(D

′M13D)−1B′
2P1

−P1B2(D
′M13D)−1B′

2P2

+[C ′M22D(D′M13D)−1B′
2

−C ′M12D(D′M13D)−1D′M23D(D′M13D)−1B′
2]P1

+P1[C
′M22D(D′M13D)−1B′

2

−C ′M12D(D′M13D)−1D′M23D(D′M13D)−1B′
2]

′

−P1B2(D
′M13D)−1D′M23D(D′M13D)−1B′

2P1 − C ′M21C
+C ′M22D(D′M13D)−1D′M ′

12C + C ′M12D(D′M13D)−1D′M ′
22C

−C ′M12D(D′M13D)−1D′M23D(D′M13D)−1D′M ′
12C = 0, t ∈ [0, T ],

P2(T ) = 0.

(2.2)

Theorem 1. If a solution pair (P1(·), P2(·)) to the coupled Riccati backward
differential equations (2.1) and (2.2) exists, then it must be unique.

Proof. For notational simplicity, by defining the matrices

Â := A−B2(D
′M13D)−1D′M ′

12C,

Â1 := γ1A1A
′
1 −B2(D

′M13D)−1B′
2,

N̂ := θ−2B1N
−1B′

1,

Ĉ := C ′[M11 −M12D(D′M13D)−1D′M12]C,

A := C ′M22D(D′M13D)−1B′
2

− C ′M12D(D′M13D)−1D′M23D(D′M13D)−1B′
2,

C := −C ′M21C + C ′M22D(D′M13D)−1D′M ′
12C

+ C ′M12D(D′M13D)−1D′M ′
22C,

− C ′M12D(D′M13D)−1D′M23D(D′M13D)−1D′M ′
12C,

B2 := B2(D
′M13D)−1D′M23D(D′M13D)−1B′

2,

N := B2(D
′M13D)−1B′

2,

A1 := θ−2B1N
−1B′

1 − γ2A1A
′
1.

we can write equations (2.1) and (2.2) as:{
Ṗ1 + P1Â+ Â′P1 − P1N̂P2 − P2N̂P1 + P1Â1P1 + Ĉ = 0, t ∈ [0, T ],
P1(T ) = 0,
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 Ṗ2 − P2A1P2 + P2Â+ Â′P2 − P2NP1

−P1NP2 − P1B2P1 + P1A
′ + AP1 + C = 0, t ∈ [0, T ],

P2(T ) = 0.

These two equations can be further be written as: Ṗ1 + P1Â+ Â′P1 +
[
P1 P2

]
M̂

[
P1

P2

]
+ Ĉ = 0, t ∈ [0, T ],

P1(T ) = 0,
(2.3)


Ṗ2 + P2Â+ Â′P2 + P1A

′ + AP1

+
[
P1 P2

]
M

[
P1

P2

]
+ C = 0, t ∈ [0, T ],

P2(T ) = 0,

(2.4)

where

M̂ :=

[
Â1 −N̂

−N̂ 0

]
, M :=

[
−B2 −N
−N −A1

]
.

We first assume that there are two solution pairs to the equations (2.3) and
(2.4), and then we prove that those are actually the same. Thus, let there
exist two solution pairs (X1, X2) and (Y1, Y2) to the equations (2.3) and (2.4).
This means that the following hold: Ẋ1 +X1Â+ Â′X1 +

[
X1 X2

]
M̂

[
X1

X2

]
+ Ĉ = 0, t ∈ [0, T ],

X1(T ) = 0,
(2.5)

 Ẏ1 + Y1Â+ Â′Y1 +
[
Y1 Y2

]
M̂

[
Y1

Y2

]
+ Ĉ = 0, t ∈ [0, T ],

Y1(T ) = 0,
(2.6)


Ẋ2 +X2Â+ Â′X2 +X1A

′ + AX1

+
[
X1 X2

]
M

[
X1

X2

]
+ C = 0, t ∈ [0, T ],

X2(T ) = 0,

(2.7)
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
Ẏ2 + Y2Â+ Â′Y2 + Y1A

′ + AY1

+
[
Y1 Y2

]
M

[
Y1

Y2

]
+ C = 0, t ∈ [0, T ],

Y2(T ) = 0,

(2.8)

By defining ∆1 := X1 −X2 and ∆2 := Y1 − Y2, and taking the difference of
(2.5) with (2.6) and the difference of (2.7) with (2.8) we obtain, respectively: ∆̇1 +∆1Â+ Â′∆1 +

[
∆1 ∆2

]
M̂

[
X1 + Y1

X2 + Y2

]
= 0, t ∈ [0, T ],

∆1(T ) = 0,
(2.9)


∆̇2 +∆2Â+ Â′∆2 +∆1A

′ + A∆1

+
[
∆1 ∆2

]
M

[
X1 + Y1

X2 + Y2

]
= 0, t ∈ [0, T ],

∆2(T ) = 0.

(2.10)

As X1, Y1, X2, Y2 are assumed to be known, equations (2.9) and (2.10) are a
linear system of differential equations in ∆1 and ∆2 with the unique solution
∆1(t) = ∆2(t) = 0 for all t ∈ [0, T ]. This implies that X1(t) = X2(t) and
Y1(t) = Y2(t) for all t ∈ [0, T ].

□

The main aim of this section is to show that there exists a unique Nash
equilibrium (u∗(·), v∗(·)) such that inequalities (1.7) and (1.8) hold, and it is
given by:

u∗(t) := −(D′M13D)−1(C ′M12D + P1B2)
′x(t), t ∈ [0, T ], (2.11)

v∗(t) := −θ−2N−1B′
1P2x(t), t ∈ [0, T ]. (2.12)
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If the noise v∗(·) is applied to system (1.1), then for any u(·) ∈ U we define:

θ′u(t) := −γ1x
′(t)P1(t)A1(t), t ∈ [0, T ],

Zu(t) := exp

[
−
∫ t

0

θ′u(τ)dW (τ)− 1

2

∫ t

0

θ′u(τ)θu(τ)dτ

]
, t ∈ [0, T ],

Zu := Zu(T ),

P̃u(α) :=

∫
α

Zu(ω)dP(ω), ∀α ∈ F .

A sufficient condition for P̃u to be a probability measure is the following
Novikov condition:

E

{
exp

[
βu

2

∫ T

0

θ′u(t)θu(t)dt

]}
< ∞, (2.13)

for some βu > 0. We now define the admissible set of controls as:

Au := {u(·) ∈ U that satisfy (2.13)}.

Similarly, if control u∗(·) is applied to system (1.1), then for any v(·) ∈ V we
define:

θ′v(t) := −γ2x
′(t)P2(t)A1, t ∈ [0, T ],

Zv(t) := exp

[
−
∫ t

0

θ′v(τ)dW (τ)− 1

2

∫ t

0

θ′v(τ)θv(τ)dτ

]
, t ∈ [0, T ],

Zv := Zv(T ),

P̃v(α) :=

∫
α

Zv(ω)dP(ω), ∀α ∈ F .

The sufficient Novikov condition for P̃v to be a probability measure is:

E

{
exp

[
βv

2

∫ T

0

θ′v(t)θv(t)dt

]}
< ∞, (2.14)

for some βv > 0. The set of admissible disturbances is defined as:

Av := {v(·) ∈ V that satisfy (2.14)}.
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Asssumption 3. (u∗(·), v∗(·)) ∈ Au ×Av.

Theorem 2. There exists a unique pair (u(·), v(·)) ∈ Au ×Av that satisfies
inequalities (1.7) and (1.8), and that pair is (u∗(·), v∗(·)). In this case we
have:

J1(u
∗(·), v∗(·)) =

1

γ1
exp

[
γ1
2
x′(0)P1(0)x(0) +

γ1
2

∫ T

0

tr(A′
1P1A1)dt

]
,

J2(u
∗(·), v∗(·)) =

1

γ2
exp

[
γ2
2
x′(0)P2(0)x(0) +

γ2
2

∫ T

0

tr(A′
1P2A1)dt

]
.

Proof. We first consider J1(u(·), v∗(·)) with u(·) ∈ Au. Since

0 = x′(0)P1(0)x(0) +

∫ T

0

[x′Ṗ1x+ 2x′P1(Ax+B2u+B1v
∗)

+ tr(A′
1P1A1)]dt+

∫ T

0

2x′P1A1dW,

we can write J1(u(·), v∗(·)) as:

J1(u(·), v∗(·)) =
1

γ1
E exp

[
γ1
2
x′(0)P1(0)x(0) +

γ1
2

∫ T

0

tr(A′
1P1A1)dt

+
γ1
2

∫ T

0

x′(Ṗ1 + C ′M11C + P1A+ A′P1 − θ−2P1B1N
−1B′

1P2

−θ−2P2B1N
−1B′

1P1)xdt

+
γ1
2

∫ T

0

(u′D′M13Du+ 2x′(C ′M12D + P1B2)u)dt

+
γ1
2

∫ T

0

2x′P1A1dW (t)

]
.

Let Ẽu denote the expectation under the probability measure P̃u. Due to
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Assumption 2, for any u(·) ∈ Au we can write J1(u(·), v∗(·)) as:

J1(u(·), v∗(·)) =
1

γ1
Ẽu exp

[
γ1
2
x′(0)P1(0)x(0) +

γ1
2

∫ T

0

tr(A′
1P1A1)dt

+
γ1
2

∫ T

0

x′(Ṗ1+C ′M11C+P1A+A′P1−θ−2P1B1N
−1B′

1P2

−θ−2P2B1N
−1B′

1P1)xdt

+
γ1
2

∫ T

0

(x′γ1P1A1A
′
1P1x+ u′D′M13Du+ 2x′(C ′M12D + P1B2)u)dt

]
.

The completion of squares gives:

u′D′M13Du+ 2x′(C ′M12D + P1B2)u

= [u+ (D′M13D)−1(C ′M12D + P1B2)
′x]′

×D′M13D[u+ (D′M13D)−1(C ′M12D + P1B2)
′x]

−x′(C ′M12D + P1B2)(D
′M13D)−1(C ′M12D + P1B2)

′x.

Due to Assumption 1, for all u(·) ∈ Au we have:

J1(u(·), v∗(·)) =
1

γ1
Ẽu exp

[
γ1
2
x′(0)P1(0)x(0) +

γ1
2

∫ T

0

tr(A′
1P1A1)dt

+
γ1
2

∫ T

0

[u+(D′M13D)−1(C ′M12D+P1B2)
′x]

×′D′M13D[u+(D′M13D)−1(C ′M12D+P1B2)
′x]dt

]
,

≥ 1

γ1
exp

[
γ1
2
x′(0)P1(0)x(0) +

γ1
2

∫ T

0

tr(A′
1P1A1)dt

]
,

with equality if and only if u(t) = u∗(t) for a.e. t ∈ [0, T ] a.s..

We now consider J2(u
∗(·), v(·)) for all v(·) ∈ Av. For notational conve-

nience we define the matrix K∗ as:

K∗(t) := −(D′(t)M13(t)D(t))−1(C ′(t)M12(t)D(t) + P1(t)B2(t))
′, t ∈ [0, T ].
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Since

0 = x′(0)P2(0)x(0) +

∫ T

0

[x′Ṗ2x+ 2x′P2(Ax+B2K
∗x+B1v)

+ tr(A′
1P2A1)]dt+

∫ T

0

2x′P2A1dW (t),

we can write J2(u
∗(·), v(·)) as:

J2(u
∗(·), v(·)) = 1

γ2
E exp

[
γ2
2
x′(0)P2(0)x(0) +

γ2
2

∫ T

0

tr(A′
1P2A1)dt

+
γ2
2

∫ T

0

x′(Ṗ2 + P2A+ A′P2 + P2B2K
∗ + (K∗)′B′

2P2

−C ′M21C − C ′M22DK∗ − (K∗)′D′M ′
22C − (K∗)′D′M23DK∗)xdt

+
γ2
2

∫ T

0

(θ2v′Nv + 2x′P2B1v)dt+
γ2
2

∫ T

0

2x′P2A1dW (t)

]
.

If we denote by Ẽv the expectation under the probability measure P̃v, then
for any v(·) ∈ Av we have:

J2(u
∗(·), v(·)) = 1

γ2
Ẽv exp

[
γ2
2
x′(0)P2(0)x(0) +

γ2
2

∫ T

0

tr(A′
1P2A1)dt

+
γ2
2

∫ T

0

x′(Ṗ2 + P2A+ A′P2 + P2B2K
∗ + (K∗)′B′

2P2

−C ′M21C − C ′M22DK∗ − (K∗)′D′M ′
22C

−(K∗)′D′M23DK∗ + γ2P2A1A
′
1P2)xdt

+
γ2
2

∫ T

0

(θ2v′Nv + 2x′P2B1v)dt+
γ2
2

∫ T

0

2x′P2A1dW (t)

]
.

The completion of squares gives:

θ2v′Nv + 2x′P2B1v = (v + θ−2N−1B′
1P2x)

′θ2N(v + θ−2N−1B′
1P2x)

− θ−2x′P2B1N
−1B′

1P2x(t).

13



Due to our assumption on P2(·), for any v(·) ∈ Av we have:

J2(u
∗(·), v(·)) =

1

γ2
Ẽv exp

[
γ2
2
x′(0)P2(0)x(0) +

γ2
2

∫ T

0

tr(A′
1P2A1)dt

+
γ2
2

∫ T

0

(v + θ−2N−1B′
1P2x)

′θ2N(v + θ−2N−1B′
1P2x)dt

]
.

≥ 1

γ2
exp

[
γ2
2
x′(0)P2(0)x(0) +

γ2
2

∫ T

0

tr(A′
1P2A1)dt

]
,

with equality if and only if v(t) = v∗(t) for a.e. t ∈ [0, T ] a.s.. □

We now give some sufficient conditions for Assumption 3 to hold, which
means sufficient conditions for (2.13) and (2.14) to hold under the pair
(u∗(·), v∗(·)). We define the matrix A∗ as:

A∗ := A−B2(D
′M13D)−1(C ′M12D + P1B2)

′ − θ−2B1N
−1B′

1P2, t ∈ [0, T ].
(2.15)

Consider the following Lyapunov and Riccati differential equations, respec-
tively: 

dΣ = [A∗Σ + Σ(A∗)′ + A1A
′
1] dt, t ∈ [0, T ],

Σ(0) = 0,

(2.16)

dQ1 = − [Q1A
∗ + (A∗)′Q1 + 2α1Q1A1A

′
1Q1

+ βuγ
2
1P1A1A

′
1P1/2

]
dt, (2.17)

dQ2 = − [Q2A
∗ + (A∗)′Q2 + 2β1Q2A1A

′
1Q2

+ βvγ
2
2P2A1A

′
1P2/2

]
dt, (2.18)

for t ∈ [0, T ], where α1 and β1 are positive constants.

Theorem 3. Let Σ(t) > 0 for all t ∈ (0, T ], and let α1, α2, β1, β2, be positive
constants such that: α−1

1 + α−1
2 = 1 and β−1

1 + β−1
2 = 1. If there exist Q1(0),

Q2(0) ∈ Rn×n for which equations (2.17) and (2.18) have solutions Q1 and
Q2 satisfying:

Q1(T ) + Σ−1(T )/2α2 > 0, Q2(T ) + Σ−1(T )/2β2 > 0,

then (u∗(·), v∗(·)) ∈ Au ×Av.
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Proof. Here we show that condition (2.13) holds, and similarly it can be
shown that condition (2.14) also holds. Under the pair (u∗(·), v∗(·)) the state
equation of (1.1) becomes:

dx = [A−B2(D
′M13D)−1(C ′M12D + P1B2)

′ − θ−2B1N
−1B′

1P2]xdt

+ A1dW = A∗xdt+ A1dW, t ∈ [0, T ].

Thus, the system state x(T ) under the pair (u∗(·), v∗(·)) has the distribution
x(T ) ∼ N(µ(T ),Σ(T )), where the mean µ(t) := E[x(t)], t ∈ [0, T ], is the
solution to the linear differential equation dµ = A∗µdt, µ(0) = x0. From
the differential of quadratic form x′(t)Q1(t)x(t) we obtain the following (by
integrating from 0 to T ):

0 = −x′(T )Q1(T )x(T ) + x′(0)Q1(0)x(0) +

∫ T

0

tr(A′
1Q1A1)dt

+
1

α1

[
− 1

2

∫ T

0

(−2α1x
′Q1A1)(−2α1x

′Q1A1)
′dt−

∫ T

0

(−2α1x
′Q1A1)dW

]
+

∫ T

0

x′[Q̇1 +Q1A
∗ + (A∗)′Q1 + 2α1Q1A1A

′
1Q1

]
xdt.

We now have:

βu

2

∫ T

0

θ′uθudt =

∫ T

0

βuγ
2
1

2
x′P1A1A

′
1P1xdt

= −x′(T )Q1(T )x(T ) + x′(0)Q1(0)x(0) +

∫ T

0

tr(A′
1Q1A1)dt

+
1

α1

[
− 1

2

∫ T

0

(−2α1x
′Q1A1)(−2α1x

′Q1A1)
′dt−

∫ T

0

(−2α1x
′Q1A1)dW

]
.
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Using the Hölder’s inequality, we have the following for condition (2.13):

E
[
exp

{
βu

2

∫ T

0

θ′uθudt

}]
≤ exp

{
x′(0)Q1(0)x(0) +

∫ T

0

tr(A′
1Q1A1)dt

}

×
(
E
[
exp

{
−1

2

∫ T

0

(−2α1x
′Q1A1)(−2α1x

′Q1A1)
′dt

−
∫ T

0

(−2α1x
′Q1A1)dW

}]) 1
α1

× (E [exp {−α2x
′(T )Q1(T )x(T )}])

1
α2

≤ exp

{
x′(0)Q1(0)x(0) +

∫ T

0

tr(A′
1Q1A1)dt

}
× (E [exp {−α2x

′(T )Q1(T )x(T )}])
1
α2

= exp

{
x′(0)Q1(0)x(0) +

∫ T

0

tr(A′
1Q1A1)dt

}

×
(∣∣2α1Q1(T ) + Σ−1(T )

∣∣ 12 ∣∣Σ(T )∣∣− 1
2

) 1
α2

×
(
exp

{
1

2
µ′(T )Σ−1(T )

[
2α2Q1(T ) + Σ−1(T )

]−1
Σ−1(T )µ(T )

− 1

2
µ′(T )Σ−1(T )µ(T )

}) 1
α2

< ∞.

□

3. Infinite horizon risk-sensitive H2/H∞ control problem

Here we consider an infinite horizon version of our problem. The deriva-
tion is similar to the finite horizon, but it is more involved due to certain
stability requirements, which are absent in the finite horizon case.
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Asssumption 4. The matrices A, A1, B1, B2, C, D, M1, M2, N , are con-
stant, D′M13D > 0 and N > 0.

We consider the following two functionals, which are the infinite horizon
versions of J1(u(·), v(·)) and J2(u(·), v(·)):

J∞
1 (u(·), v(·)) = lim

T→∞

1

f1(T )γ1
lnE

{
exp

[
γ1
2

∫ T

0

z′(t)M1z(t)dt

]}
,

J∞
2 (u(·), v(·)) = lim

T→∞

1

f2(T )γ2
lnE

{
exp

[
γ2
2

∫ T

0

(θ2v′(t)Nv(t)

− z′(t)M2z(t))dt
]}

.

where f1(T ) and f2(T ) are given positive functions. Our aim is to find a
Nash equilibrium (u∗(·), v∗(·)) such that the following inequalities hold:

J∞
1 (u∗(·), v∗(·)) ≤ J∞

1 (u(·), v∗(·)), ∀u(·) ∈ A∞
u (3.1)

J∞
2 (u∗(·), v∗(·)) ≤ J∞

2 (u∗(·), v(·)), ∀v(·) ∈ A∞
v . (3.2)

for some suitably defined sets A∞
u and A∞

v . We confine ourselves only to
linear constant state feedback controls and disturbances. The sets of all such
controls and disturbances are defined as:

U∞ := {u(·) : u(t) = Kux(t) where Ku ∈ Rnu×n},

V∞ := {v(·) : v(t) = Kvx(t) where Kv ∈ Rnv×n}.

Asssumption 5. There exists a real solution pair (P1, P2) to the following
coupled Riccati algebraic equations:

P1[A−B2(D
′M13D)−1D′M ′

12C] + [A−B2(D
′M13D)−1D′M ′

12C]′P1

−θ−2(P1B1N
−1B′

1P2 + P2B1N
−1B′

1P1)
+P1[γ1A1A

′
1 −B2(D

′M13D)−1B′
2]P1

+C ′[M11 −M12D(D′M13D)−1D′M12]C = 0,

(3.3)
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

−P2(θ
−2B1N

−1B′
1 − γ2A1A

′
1)P2 + P2[A−B2(D

′M13D)−1D′M ′
12C]

+(A−B2(D
′M13D)−1D′M ′

12C)′P2 − P2B2(D
′M13D)−1B′

2P1

−P1B2(D
′M13D)−1B′

2P2

+[C ′M22D(D′M13D)−1B′
2

−C ′M12D(D′M13D)−1D′M23D(D′M13D)−1B′
2]P1

+P1[C
′M22D(D′M13D)−1B′

2

−C ′M12D(D′M13D)−1D′M23D(D′M13D)−1B′
2]

′

−P1B2(D
′M13D)−1D′M23D(D′M13D)−1B′

2P1 − C ′M21C
+C ′M22D(D′M13D)−1D′M ′

12C + C ′M12D(D′M13D)−1D′M ′
22C

−C ′M12D(D′M13D)−1D′M23D(D′M13D)−1D′M ′
12C = 0.

(3.4)

Asssumption 6. The functions f1(T ) and f2(T ) are such that:

lim
T→∞

tr(A′
1P1A1)T + x′(0)P1x(0)

2f1(T )
= g1 ∈ R,

lim
T→∞

tr(A′
1P2A1)T + x′(0)P2x(0)

2f2(T )
= g2 ∈ R.

We show later in this section that there exists a unique pair (u∗
∞(·), v∗∞(·))

that satisfies the inequalities (3.1) and (3.2), and is given by:

u∗
∞(t) := −(D′M13D)−1(C ′M12D + P1B2)

′x(t), t ∈ [0,∞), (3.5)

v∗∞(t) := −θ−2N−1B′
1P2x(t), t ∈ [0,∞). (3.6)

If the noise v∗∞(·) is applied to the system (1.1), then for any u(·) ∈ U∞ we
define:

θ′u(t) := −γ1x
′(t)P1A1, t ∈ [0, T ]

Zu(t) := exp

[
−

∫ t

0

θ′u(τ)dW (τ)− 1

2

∫ t

0

θ′u(τ)θu(τ)dτ

]
, t ∈ [0, T ],

Zu := Zu(T ),

P̃u(α) :=

∫
α

Zu(ω)dP(ω), ∀α ∈ F .
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A sufficient condition for P̃u to be a probability measure is the following
Novikov condition:

E

{
exp

[
βu

2

∫ T

0

θ′u(t)θu(t)dt

]}
< ∞, (3.7)

for some βu > 0. The controls u(·) are restricted further, so that the following
stability condition holds:

lim
T→∞

1

f1(T )γ1
ln Ẽu

{
exp

[
−γ1

2
x(T )′P1x(T )

]}
= h1 ∈ R. (3.8)

We can now formulate the admissible set of controls as:

A∞
u := {u(·) ∈ U such that (3.7) holds for all T ∈ (0,∞), and (3.8) holds}.

Similarly, if the control u∗
∞(·) is applied to the system (1.1), then for any

v(·) ∈ V∞ we define:

θ′v(t) := −γ2x
′(t)P2A1, t ∈ [0, T ],

Zv(t) := exp

[
−

∫ t

0

θ′v(τ)dW (τ)− 1

2

∫ t

0

θ′v(τ)θv(τ)dτ

]
, t ∈ [0, T ],

Zv := Zv(T ),

P̃v(α) :=

∫
α

Zv(ω)dP(ω), ∀α ∈ F .

The sufficient Novikov condition for P̃v to be a probability measure is:

E

{
exp

[
βv

2

∫ T

0

θ′v(t)θv(t)dt

]}
< ∞, (3.9)

for some βv > 0. We further restrict the set of permitted disturbances, so
that the following holds:

lim
T→∞

1

f2(T )γ2
ln Ẽv

{
exp

[
−γ2

2
x(T )′P2x(T )

]}
= h2 ∈ R. (3.10)

The set of disturbances that we consider can now be defined as:

Av := {v(·) ∈ V such that (3.9) holds for all T ∈ (0,∞), and (3.10) holds}.
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Asssumption 7. (u∗
∞(·), v∗∞(·)) ∈ A∞

u ×A∞
v .

Theorem 4. There exists a unique pair (u∗
∞(·), v∗∞(·)) that satisfies the in-

equalities (3.1) and (3.2), and is given by (3.5) and (3.6). In this case we
have:

J∞
1 (u∗(·), v∗(·)) = g1 + h1,

J∞
2 (u∗(·), v∗(·)) = g2 + h2.

Proof. Let us first consider J∞
1 (u(·), v∗∞(·)) with u(·) ∈ A∞

u . Since

0 = −x′(T )P1x(T ) + x′(0)P1x(0) +

∫ T

0

[2x′P1(Ax+B2u+B1v
∗
∞)

+ tr(A′
1P1A1)]dt+

∫ T

0

2x′P1A1dW,

we can write J∞
1 (u(·), v∗∞(·)) as:

J∞
1 (u(·), v∗∞(·)) = lim

T→∞

1

f1(T )γ1
lnE exp

[
γ1
2
x′(0)P1x(0) +

γ1
2
tr(A′

1P1A1)T

+
γ1
2

∫ T

0

x′(C ′M11C + P1A+ A′P1

−θ−2P1B1N
−1B′

1P2 − θ−2P2B1N
−1B′

1P1)xdt

−γ1
2
x′(T )P1x(T ) +

γ1
2

∫ T

0

(u′D′M13Du+ 2x′(C ′M12D + P1B2)u)dt

+
γ1
2

∫ T

0

2x′P1A1dW (t)

]
.
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For any u(·) ∈ A∞
u we can write J∞

1 (u(·), v∗∞(·)) as:

J∞
1 (u(·), v∗∞(·)) = lim

T→∞

1

f1(T )γ1
ln Ẽu exp

[
γ1
2
x′(0)P1x(0) +

γ1
2
tr(A′

1P1A1)T

+
γ1
2

∫ T

0

x′(C ′M11C + P1A+ A′P1 − θ−2P1B1N
−1B′

1P2

−θ−2P2B1N
−1B′

1P1)xdt

+
γ1
2

∫ T

0

(γ1x
′P1A1A

′
1P1x+ u′D′M13Du+ 2x′(C ′M12D + P1B2)u)dt

−γ1
2
x′(T )P1x(T )

]
.

The completion of squares gives:

u′D′M13Du+ 2x′(C ′M12D + P1B2)u

= [u+ (D′M13D)−1(C ′M12D + P1B2)
′x]′

×D′M13D[u+ (D′M13D)−1(C ′M12D + P1B2)
′x]

−x′(C ′M12D + P1B2)(D
′M13D)−1(C ′M12D + P1B2)

′x.

For all u(·) ∈ A∞
u we have:

J∞
1 (u(·), v∗∞(·)) = lim

T→∞

1

f1(T )γ1
ln Ẽu exp

[
γ1
2
x′(0)P1x(0) +

γ1
2
tr(A′

1P1A1)T

− γ1
2
x′(T )P1x(T ) +

γ1
2

∫ T

0

(u− u∗
∞)′D′M13D(u− u∗

∞)dt

]
,

≥ g1 + h1,

with equality if and only if u(t) = u∗
∞(t) for a.e. t ∈ [0,∞).

We now consider J∞
2 (u∗

∞(·), v(·)) for all v(·) ∈ A∞
v . For notational con-

venience we define the matrix K∗ as:

K∗
∞(t) := −(D′M13D)−1(C ′M12D + P1B2)

′, t ∈ [0,∞).
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Since

0 = −x′(T )P2x(T ) + x′(0)P2x(0) +

∫ T

0

[2x′P2(Ax+B2K
∗x+B1v)

+ tr(A′
1P2A1)]dt+

∫ T

0

2x′P2A1dW (t),

we can write J∞
2 (u∗

∞(·), v(·)) as:

J∞
2 (u∗

∞(·), v(·)) = lim
T→∞

1

f2(T )γ2
lnE exp

[
γ2
2
x′(0)P2x(0)

+
γ2
2

∫ T

0

tr(A′
1P2A1)dt

+
γ2
2

∫ T

0

x′(P2A+ A′P2 + P2B2K
∗
∞ + (K∗

∞)′B′
2P2

−C ′M21C − C ′M22DK∗
∞ − (K∗

∞)′D′M ′
22C − (K∗

∞)′D′M23DK∗
∞)xdt

−γ2
2
x′(T )P2x(T ) +

γ2
2

∫ T

0

(θ2v′Nv + 2x′P2B1v)dt+
γ2
2

∫ T

0

2x′P2A1dW (t)

]
.

If we denote by Ẽv the expectation under the probability measure P̃v, then
for any v(·) ∈ Av we have:

J∞
2 (u∗

∞(·), v(·)) = lim
T→∞

1

f2(T )γ2
ln Ẽv exp

[
γ2
2
x′(0)P2x(0)

+
γ2
2

∫ T

0

tr(A′
1P2A1)dt+

γ2
2

∫ T

0

x′(P2A+ A′P2 + P2B2K
∗ + (K∗

∞)′B′
2P2

−C ′M21C − C ′M22DK∗
∞ − (K∗

∞)′D′M ′
22C

−(K∗
∞)′D′M23DK∗

∞ + γ2P2A1A
′
1P2)xdt

−γ2
2
x′(T )P2x(T ) +

γ2
2

∫ T

0

(θ2v′Nv + 2x′P2B1v)dt+
γ2
2

∫ T

0

2x′P2A1dW (t)

]
.
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The completion of squares gives:

θ2v′Nv + 2x′P2B1v = (v + θ−2N−1B′
1P2x)

′θ2N(v + θ−2N−1B′
1P2x)

− θ−2x′P2B1N
−1B′

1P2x(t).

Due to our assumption on P2, for any v(·) ∈ A∞
v we have:

J∞
2 (u∗(·), v(·)) = lim

T→∞

1

f2(T )γ2
ln Ẽv exp

[
γ2
2
x′(0)P2x(0)

+
γ2
2

∫ T

0

tr(A′
1P2A1)dt−

γ2
2
x′(T )P2x(T )

+
γ2
2

∫ T

0

(v + θ−2N−1B′
1P2x)

′θ2N(v + θ−2N−1B′
1P2x)dt

]
.

≥ g2 + h2,

with equality if and only if v(t) = v∗∞(t) for a.e. t ∈ [0,∞) a.s.. □

We now give sufficient conditions for Assumption 5 to hold, i.e. to have
(u∗

∞(·), v∗∞(·)) ∈ A∞
u ×A∞

v . If conditions of Theorem 3 hold for all T ∈ (0,∞)
in the current case of constant coefficients and Nash equilibrium (u∗

∞, v∗∞),
then the requirements (3.7) and (3.9) are satisfied for all T ∈ (0,∞). In
remains to find (sufficient) conditions under which the stability requirements
(3.8) and (3.10) are satisfied under the pair (u∗

∞, v∗∞). Note first that by the

Girsanov theorem processes W̃u and W̃v defined as:

W̃u(t) := W (t)−
∫ t

0

γ1A
′
1P1x(s)ds, t ≥ 0,

W̃v(t) := W (t)−
∫ t

0

γ1A
′
1P2x(s)ds, t ≥ 0,

are Brownian motions under the probability measures P̃u and P̃v, respectively,
where x is the solution of the state equation in (1.1) under the pair (u∗

∞, v∗∞).
By substituting (u∗

∞, v∗∞) in the state equation of (1.1) we obtain the following
two forms of that equation:

dx(t) = Aux(t)dt+ A1dW̃u(t), t ≥ 0,

dx(t) = Avx(t)dt+ A1dW̃v(t), t ≥ 0,
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where

Au := A−B2(D
′M13D)−1(C ′M12D + P1B2)

′

− θ−2B1N
−1B′

1P2 + γ1A1A
′
1P1,

Av := A−B2(D
′M13D)−1(C ′M12D + P1B2)

′

− θ−2B1N
−1B′

1P2 + γ2A1A
′
1P2.

Let the mean and covariance of x(t) under the probability measures P̃u and

P̃v be defined as, respectively:

µu(t) := Ẽu[x(t)], Σu(t) := Ẽu[(x(t)− µu(t))(x(t)− µu(t))
′],

µv(t) := Ẽv[x(t)], Σv(t) := Ẽv[(x(t)− µu(t))(x(t)− µv(t))
′],

These are solutions to the following linear differential equations (for t ≥ 0):

dµu = Auµudt, dΣu = [AuΣu + ΣuA
′
u + A1A

′
1] dt, (3.11)

dµv = Avµvdt, dΣv = [AvΣv + ΣvA
′
v + A1A

′
1] dt, (3.12)

with µu(0) = µv(0) = x0, Σu(0) = Σv(0) = 0. For any T > 0 we define:

Hu(T ) := [γ1Σ
1/2
u (T )P1Σ

1/2
u (T )+I]−1, Hv(T ) := [γ2Σ

1/2
v (T )P2Σ

1/2
v (T )+I]−1.

Theorem 5. Let Σu(t) > 0, Σv(t) > 0, Hu(t) > 0, and Hv(t) > 0, for all
t > 0. The stability conditions (3.8) and (3.10) hold under (u∗

∞, v∗∞) if:

lim
T→∞

ln |Hu(T )|+ µ′
u(T )Σ

−1
u (T )[Hu(T )− I]Σ−1

u (T )µu(T )

2f1(T )γ1
= h1,(3.13)

lim
T→∞

ln |Hv(T )|+ µ′
v(T )Σ

−1
v (T )[Hv(T )− I]Σ−1

v (T )µv(T )

2f2(T )γ2
= h2.(3.14)

Proof. We only derive condition (3.13) as the derivation of condition (3.14)
proceeds similarly. Under the probability measure Pu it holds that x(t) ∼
N(µu(t),Σu(t)). Therefore:

Ẽu

[
e−γ1x′(T )P1x(T )/2

]
=

∫
Rn

e−γ1x′P1x/2
e(x−µu(T ))′Σ−1

u (T )(x−µu(T ))/2

(2π)−n/2|Σ(T )|−1/2
dx

=
|[γ1P1 + Σ−1

u (T )]−1|1/2

|Σu(T )|1/2

× exp

{
1

2
µ′
u(T )

[
Σ−1

u (T )(γ1P1 + Σ−1
u (T ))−1Σ−1

u (T )− Σ−1
u (T )

]
µu(T )

}
,
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Taking the limit as T → ∞ of logarithm of this expression divided by γ1f1(T ),
gives (3.13). However, this is just the stability condition (3.8). □

4. Robust portfolio control

Here we illustrate the application of our results to the problem of robust
investment or robust portfolio control in a market with a stochastic interest
rate that is subject to a disturbance. For background on the optimal invest-
ment problem see, for example, [29], [28]. Thus, consider a market of a bank
account with price S0(t) and l stocks with prices Si(t), i = 1, ..., l. We assume
that:

dS0(t) = S0(t)r(t)dt, t ∈ [0, T ],

dSi(t) = Si(t)[µi(t)dt+ σ′
i(t)dW (t)], i = 1, ...l, t ∈ [0, T ]

Si(0) > 0, i = 0, 1, ..., l, are given.

(4.1)

Here r is the interest rate, µi is the appreciation rate, whereas the d-dimensional
vector process σi is the volatility of stock, and must be such that equations
(4.1) have unique strong solutions. We make further assumptions on these
coefficients below.

In this market consider an investor with an initial wealth of y0 > 0. Let
ni(t), i = 0, ..., l, denote the number of shares the investor holds in asset i at
time t. The value of investor’s portfolio of assets is thus:

y(t) :=
l∑

i=0

ni(t)Si(t), t ∈ [0, T ].

This portfolio is called self-financing if (see, e.g. [29], [28]):
dy(t) =

l∑
i=0

ni(t)dSi(t), t ∈ [0, T ],

y(0) = y0.

(4.2)
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After substituting the differentials of Si(t) into this equation, and defining
ũi(t) = ni(t)Si(t), t ∈ [0, T ], i = 1, ..., l, we obtain:

dy(t) = [r(t)y(t) +H(t)ũ(t)]dt+ ũ′(t)σ(t)dW (t), t ∈ [0, T ], (4.3)

where ũ(t) := [ũ1(t), ..., ũl(t)]
′, σ′(t) := [σ1(t), ..., σl(t)], and H(t) := [µ1(t)−

r(t), ..., µl(t)−r(t)]. It is clear that portfolio (4.3) is an example of a stochas-
tic control system with state y being investor’s wealth.

A typical optimal portfolio control problem is the following maximization
of expected power utility from terminal wealth problem:

max
ũ(·)∈Ap

E
[
yλ(T )

]
,

s.t. (4.3) and y(t) > 0 for all t ∈ [0, T ] a.s.,

, (4.4)

for some λ ∈ (0, 1) and a suitable admissible set of controls Ap. This problem
is well studied when the coefficients are bounded processes (see, for exam-
ple, [29], [28]), and it admits a linear state-feedback solution. For the case
of unbounded coefficients see, e.g., [18], and for other optimality criteria see,
e.g, [9], [16].

We consider a market with σ(·) ∈ L∞(0, T ;Rl×d). The n-dimensional
factor process x̃ is the solution to the following linear stochastic differential
equation with the added disturbance ṽ:

dx̃(t) =
[
Ã(t)x̃(t) + B̃(t)ṽ(t)

]
dt+ Ã1(t)dW (t), t ∈ [0, T ],

x̃(0) ∈ Rn,

(4.5)

Here Ã(·) ∈ L∞(0, T ;Rn×n), B̃(·) ∈ L∞(0, T ;Rn×nv), Ã1(·) ∈ L∞(0, T ;Rn×d),
whereas the disturbance ṽ(·) is assumed to be an adapted and square-integrable
process. The interest rate is defined as:

r(t) := x̃′(t)Q̃(t)x̃(t), t ∈ [0, T ],

for some non-negative Q̃(·) ∈ L∞(0, T ;Rn×n). Moreover, similarly to [4], [5],
we assume that:

H ′(t) := L̃′(t)x̃(t), t ∈ [0, T ],
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where L̃(·) ∈ L∞(0, T ;Rl×n). Our interest rate model without the distur-
bance is the so-called quadratic-affine term-structure model (QATSM) (see,
e.g., [9]). The inclusion of disturbance ṽ in our model is a generalization of
QATSM that enables taking into consideration uncertainties in the model.

We are thus faced with the problem of controlling investor’s wealth in
a market with random interest rate subject to a disturbance. This prob-
lem has not been considered before. Note that the wealth equation (4.3) is a
stochastic control system with multiplicative noise and unbounded coefficients
(due to r and H), there is a positivity constraint on the state (the wealth is
required to be positive), and the typical optimality criterion in (4.4) is not
quadratic. This means that existing methods, such as those in [8] and [51],
that consider systems with multiplicative noise and disturbances, cannot be
applied. On the other hand, although this appears to be a different problem
from our finite-horizon risk-sensitive H2/H∞ control problem of section 2, it
can be reformulated as an example of such a problem, as shown below.

As the control process ũ is confined to ensure y(t) > 0 for all t ≥ 0 a.s.,
the logarithm of y(t) is well-defined, and its differential is:

d log y(t) =
1

y(t)
[r(t)y(t) +H(t)ũ(t)] dt− 1

2

1

y2(t)
ũ′(t)σ(t)σ′(t)ũ(t)dt

+
1

y(t)
ũ′(t)σ(t)dW (t).

By defining c(t) := ũ(t)/y(t) for t ∈ [0, T ] as a new control process, we have:

d log y(t) = [r(t) +H(t)c(t)− c′(t)σ(t)σ′(t)c(t)/2]dt+ c′(t)σ(t)dW (t).

Integration of both sides from 0 to T gives:

y(T ) = exp

[∫ T

0

[r(t) +H(t)c(t)− c′(t)σ(t)σ′(t)c(t)/2]dt

+

∫ T

0

c′(t)σ(t)dW (t)

]
, (4.6)

where we have taken y0 = 1 for simplicity. The expected power utility from
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terminal wealth can thus be written as:

E
[
yλ(T )

]
= E

{
exp

[∫ T

0

λ[x̃′(t)Q̃(t)x̃(t) + x̃′(t)L̃(t)c(t)

− c′(t)σ(t)σ′(t)c(t)/2]dt+

∫ T

0

λc′(t)σ(t)dW (t)

]}
. (4.7)

In order to write (4.7) in the form of criterion (1.6), we introduce the following
change of measure:

θc := −λσ′(t)c(t), t ∈ [0, T ],

Zc(t) := exp

[
−
∫ t

0

θ′c(τ)dW (τ)− 1

2

∫ t

0

θ′c(τ)θc(τ)dτ

]
, t ∈ [0, T ],

Zc := Zc(T ),

P̃c(α) :=

∫
α

Zc(ω)dP(ω), ∀α ∈ F .

The expected power utility from terminal wealth (4.7) can now be written
as:

E
[
yλ(T )

]
= Ẽc

{
exp

[∫ T

0

[x̃′(t)λQ̃(t)x̃′(t) + λx̃′(t)L̃(t)c(t)

− λ(1− λ)c′(t)σ(t)σ′(t)c(t)/2]dt
]}

.

= Ẽc

{
exp

[
−1

2

∫ T

0

z̃′(t)M̃(t)z̃(t)dt

]}
,

where Ẽc is the expectation under probability measure P̃c and

z̃(t) :=

 x̃(t)

c(t)

 , M̃(t) :=

[
−λQ̃(t)/2 −λL̃(t)

−λL̃′(t) λ(1− λ)σ(t)σ′(t)

]
, t ∈ [0, T ].

The process Wc defined as:

Wc(t) :=

∫ t

0

θc(s)ds+W (t), t ∈ [0, T ],
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is a standard Brownian motion under P̃c by Grisanov theorem. The equation
of factor process (4.5) can be written as:

dx̃(t) =
[
Ã(t)x̃(t) + λσ′(t)c(t) + B̃(t)ṽ(t)

]
dt

+Ã1(t)dWc(t), t ∈ [0, T ],

x̃(0) ∈ Rn,

(4.8)

For the purpose of robust portfolio control, we introduce the following two
criteria:

J̃1(c(·), ṽ(·)) := −Ẽc

{
exp

[
−1

2

∫ T

0

z̃′(t)M̃1(t)z̃(t)dt

]}
,

J̃2(c(·), ṽ(·)) :=
1

γ̃
Ẽc

{
exp

[
γ̃

2

∫ T

0

[
θ̃2ṽ′(t)Ñ ṽ(t)− z̃′(t)M̃2(t)z̃(t)

]
dt

]}
,

for given symmetric matrices

M̃1(·), M̃2(·) ∈ L∞(0, T ;R(n+l)×(n+l)), Ñ(·) ∈ L∞(0, T ;Rnv×nv).

If M̃1(t) = M̃(t) for t ∈ [0, T ], then the minimization of J̃1(c(·), ṽ(·)) is
equivalent to the maximization of the power utility from terminal wealth.
The interpretation of J̃2(c(·), ṽ(·)) depends on the particular choice of its
coefficients. Once such a choice is the following. The solution of the wealth
equation (4.6) under the probability measure P̃c is:

y(T ) = exp

[∫ T

0

[x̃′(t)Q̃(t)x̃(t) + x̃′(t)L̃(t)c(t)

+ (2λ− 1)c′(t)σ(t)σ′(t)c(t)/2]dt+

∫ T

0

c′(t)σ(t)dWc(t)

]
.

The expected growth rate of investor’s wealth is thus:

G(c(·), ṽ(·)) := Ẽc

{∫ T

0

[x̃′(t)Q̃(t)x̃(t) + x̃′(t)L̃(t)c(t)

+ (2λ− 1)c′(t)σ(t)σ′(t)c(t)/2]dt
}

= Ẽc

[∫ T

0

z̃′(t)M̄(t)z̃(t)dt

]
,
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where

M̄(t) :=

[
Q̃(t) L̃(t)/2

L̃′(t)/2 (2λ− 1)σ(t)σ′(t)/2

]
, t ∈ [0, T ].

As investor’s wealth y is subjected to disturbance ṽ (through the factor pro-
cess x̃), we can require that the ratio of expected growth rate and expected
energy of disturbance be greater than some pre-specified value η2 for all pos-
sible disturbances. This suggests the consideration of criterion:

Ẽc

[∫ T

0

η2ṽ′(t)ṽ(t)dt

]
+G(c(·), ṽ(·))

= Ẽc

{∫ T

0

[
η2ṽ′(t)ṽ(t) + z̃′(t)M̄(t)z̃(t)

]
dt

}
,

which is to be minimized. This corresponds to the criterion J̃2(c(·), ṽ(·)) with
the following coefficients:

γ̃ → 0+, θ̃2 = η2, Ñ(t) = Inv×nv , M̃2(t) = −M̄(t), t ∈ [0, T ].

The aim now to find the linear state-feedback pair (c∗(·), ṽ∗(·)) such that
the following two inequalities hold:

J̃1(c
∗(·), ṽ∗(·)) ≤ J̃1(c(·), ṽ∗(·)),

J̃2(c
∗(·), ṽ∗(·)) ≤ J̃2(c

∗(·), ṽ(·)).

However, this is an example of the control problem considered in section 2
with the following coefficients (for all t ∈ [0, T ]):

A(t) = Ã(t), B2(t) = λσ′(t), B1(t) = B̃(t),

A1(t) = Ã1(t), C(t) = In×n, D(t) = Il×l

M1(t) = M̃1(t), M2(t) = M̃2(t), N(t) = Ñ(t) = Inv×nv ,

γ1 = −1, γ2 = γ̃ → 0+, θ2 = η2.

(4.9)

If assumptions of section 2 hold for the above coefficients with M̃1(t) = M̃(t)
and M̃2(t) = −M̄(t) for all t ∈ [0, T ], which implies that we must have
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σ(t)σ′(t) > 0 for all t ∈ [0, T ], then the required pair (c∗(·), ṽ∗(·)) is given by
Theorem 2 as:

c∗(t) := − 1

1− λ
(σσ′)−1(λσP1 − λL̃′)x̃(t), t ∈ [0, T ],

ṽ∗(t) := −θ̃−2ÑB̃′P2x̃(t), t ∈ [0, T ],

where P1(t) and P2(t) are solutions to Riccati equations in Assumption 2
corresponding to the coefficients (4.9). This implies that investor’s trading
strategy, i.e. the number of shares held on each asset at time t should be:

n∗
i (t) = ũ∗

i (t)/Si(t) = c∗i (t)y(t)/Si(t), t ∈ [0, T ], i = 1, ..., l,

n∗
0(t) = y(t)−

l∑
i=1

n∗
i (t)Si(t), t ∈ [0, T ].

As the trading strategy is of a linear-feedback form with respect to investors
wealth y, the solution to equation (4.3) under such a trading strategy is
strictly positive, as required.

4.1. Numerical example in finite horizon

Here we give a numerical example illustrating that all assumption of sec-
tion 2 are satisfied in the the case of the robust portfolio control problem.
We assume the following numerical values:

ℓ = 1, d = 1, n = 1, nv = 1, λ = 0.5,

σ(t) = 1, Ã(t) = 0, B̃(t) = 1, Ã1(t) =
√
2,

L̃(t) = 0, Q̃(t) = 0.02, Ñ(t) = 1,

γ̃ ∈ (0, 0.1), η−2 = 0.25(1− 8γ̃), T = 1.

This gives:

M̃1(t) = M̃(t) =

[
−0.02

4
0

0 0.25

]
, M̃2(t) = −M̄(t) =

[
−0.02 0

0 0

]
.
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In the notation of section 2, we thus have: A(t) = 0, B2(t) = 0.5, B1(t) = 1,
A1(t) =

√
2, C(t) = 1, D(t) = 1, γ1 = −1, γ2 ∈ (0, 0.1), θ−2 = 0.25(1− 8γ2),

T = 1,

M1(t) =

[
−0.02

4
0

0 0.25

]
, M2(t) =

[
−0.02 0

0 0

]
.

It is clear that Assumption 1 holds. We now show that Assumption 2 also
holds by finding the explicit solutions to the coupled Riccati differential equa-
tions (2.1) and (2.2), which in this case are:

Ṗ1(t)− 2η−2P2(t)P1(t)− 3P 2
1 (t)− 0.005 = 0, P1(1) = 0, (4.10)

Ṗ2(t)− (η−2 − 2γ̃)P 2
2 (t)− 2P2(t)P1(t) + 0.02 = 0, P2(1) = 0. (4.11)

If we define Z(t) := P2(t)/4, t ∈ [0, 1], then these two equations can be
written as:

Ṗ1(t)− 8η−2Z(t)P1(t)− 3P 2
1 (t)− 0.005 = 0, P1(1) = 0,

Ż(t)− 4(η−2 − 2γ̃)Z2(t)− 2Z(t)P1(t) + 0.005 = 0, P2(1) = 0.

Let V (t) := P1(t) + Z(t), t ∈ [0, 1]. By adding the above two equations, we
obtain the equation of V as:

V̇ (t)− V (t)[3P1(t) + 4(η−2 − 2γ̃)Z(t)] = 0 V (1) = 0.

As this is a linear equation in V , its unique solution is V (t) = 0, t ∈ [0, 1].
This implies that it is necessary to have:

P1(t) = −Z(t) = −1

4
P2(t), t ∈ [0, 1].

By substituting P2(t) = −4P1(t) in (4.10), we obtain the following uncoupled
Riccati differential equation:

Ṗ1 − (1 + 16γ̃)P 2
1 − 0.005 = 0, P1(1) = 0.

The explicit solution to this equation is:

P1(t) =

√
0.005

1 + 16γ̃
tan

[
−(1− t)

√
0.005(1 + 16γ̃)

]
, t ∈ [0, 1],
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from which we obtain the solution to equation (4.11) as

P2(t) = −4

√
0.005

1 + 16γ̃
tan

[
−(1− t)

√
0.005(1 + 16γ̃)

]
, t ∈ [0, 1].

The graphs of these two solutions for γ̃ = 1/15 are given in Figure 1.
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Figure 1. Solutions P1 and P2.

We now focus on the corresponding Lyapunov differential equation (2.16)
and the Riccati differential equations (2.17) and (2.18) and show that the
sufficient conditions of Theorem 3 hold. For the matrix A∗ in (2.15), which
in this example is a scalar, we have:

A∗(t) = −8γ̃P1(t).

The Lyapunov differential equation (2.16) in this case becomes:

dΣ(t) = [−16γ̃P1(t)Σ(t) + 2] dt, Σ(0) = 0.

From the explicit solution to this equation

Σ(t) = 2

∫ t

0

e
∫ t
τ −16γ̃P1(s)dsdτ, t ∈ [0, 1],

it is clear that Σ(1) > 0. The Riccati differential equations (2.17) and (2.18)
in this case are:

dQ1 = −[2Q1A
∗(t) + 4α1Q

2
1 + βu(P1(t))

2]dt, (4.12)

dQ2 = −[2Q2A
∗(t) + 4β1Q

2
2 + βvγ̃16(P1(t))

2]dt. (4.13)
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By choosing β1 = α1 and βv = βu/16γ̃, which is possible, we see that equation
(4.13) becomes the same as equation (4.12. Thus, we only focus in showing
that there exists a Q1(0) such that Q1(1) = 0, which will imply that there
exists a Q2(0) such that Q2(1) = 0, and these, together with the fact that
Σ(t) > 0, are sufficient for the requirements of Theorem 3 to hold. We seek
the solution to equation (4.12) in the form:

Q1(t) = e−Xt − Y (t), (4.14)

for some positive constant X and a differentiable function Y with Y (1) =
e−X , yet to be determined. By substituting (4.14) in (4.12), we obtain:

Ẏ +
[
2A∗(t) + 8α1e

−Xt
]
Y − 4α1Y

2 + e−XtQY (t) = 0 (4.15)

where

QY (t) := X − 2A∗(t)− 4α1e
−2Xt − βue

2Xt(P1(t))
2, t ∈ [0, 1].

As we are considering only positive X, the following holds (for any γ̃ ∈
(0, 0.1)):

X − 2A∗(t)− 4α1e
−2Xt ≥ X − 2A∗(t)− 4α1

= X + 16γ̃P1(t)− 4α1

≥ X + 16P ∗
1 − 4α1,

where

P ∗
1 =

√
0.005

1 + 16γ̃
tan

[
−
√

0.005(1 + 16γ̃)
]
.

As P ∗
1 < 0, we choose X such that (for some α1 > 1)):

X > −16P ∗
1 + 4α1.

By also choosing βu such that:

0 < βu <
X + 16P ∗

1 − 4α1

eX(P ∗
1 )

2
≤ X − 2A∗(t)− 4α1e

−2Xt

eXt(P1(t))2
(4.16)

we ensure that QY (t) ≥ 0 for all t ∈ [0, 1]. The Riccati backward differential
equation:

Ẏ +
[
2A∗(t) + 8α1e

−Xt
]
Y − 4α1Y

2 + e−XtQY (t) = 0, Y (1) = e−X ,
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has a unique solution Y (t) ≥ 0 for all t ∈ [0, 1] (see, for example, [1]). Thus,
by choosing Q1(0) = 1 − Y (0), we conclude that there exists a solution to
equation (4.12) such that Q1(1) = 0. As this implies the existence of Q2(0)
such that Q2(1) = 0, we conclude that the conditions

Q1(1) + Σ−1(1)/2α2 > 0, Q2(1) + Σ−1(1)/2β2 > 0,

of Theorem 3 hold. By Theorem 2 and Theorem 3 it now follows that c∗ and
ṽ∗ are:

c∗(t) = −
√

0.005

1 + 16γ̃
tan

[
−(1− t)

√
0.005(1 + 16γ̃)

]
x̃∗(t), t ∈ [0, 1]

ṽ∗(t) = (1− 8γ̃)

√
0.005

1 + 16γ̃
tan

[
−(1− t)

√
0.005(1 + 16γ̃)

]
x̃∗(t), t ∈ [0, 1].

Here x̃∗ is the solution to the stochastic differential equation

dx̃∗(t) = ṽ∗(t)dt+
√
2dW (t), x̃∗(0) ∈ R,

which corresponds to the factor process (4.5) under the worst-case-distrbance
(WCD) ṽ(t) = ṽ∗(t). The robust trading strategy n∗

0 and n∗
1 is thus:

n∗
1(t) = c∗(t)y∗(t)/S∗

1(t), n∗
0(t) = y∗(t)− n∗

1(t)S1(t), t ∈ [0, 1],

where the equations for the stock price S∗
1 and investor’s wealth y∗ under the

WCD are:

dS∗
1(t) = S∗

1(t)[0.02(x̃
∗(t))2dt+ dW (t)], S∗

1(0) > 0, t ∈ [0, 1],

dy∗(t) = 0.02(x̃∗(t))2y∗(t)dt+ c∗(t)y∗(t)dW (t), y∗(0) = y0, t ∈ [0, 1].

We choose γ̃ = 1/15, y0 = 1, S(0) = 1, and x̃∗(0) = 1 for illustration. We
also consider the investor’s wealth under an example of the not the worst
case disturbance (NWCD) ṽ(t) = 2x̃⋆(t) with x̃⋆(t) being the solution to the
equation

dx̃⋆(t) = ṽ⋆(t)dt+
√
2dW (t), x̃⋆(0) = 1.

The stock price under NWCD and the wealth of the investor who applies the
control designed for the WCD in the case of a NWCD, i.e.

c⋆(t) = −
√

0.005

1 + 16γ̃
tan

[
−(1− t)

√
0.005(1 + 16γ̃)

]
x̃⋆(t), t ∈ [0, 1]
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are:

dS⋆
1(t) = S⋆

1(t)[0.02(x̃
⋆(t))2dt+ dW (t)], S⋆

1(0) = 1, t ∈ [0, 1],

dy⋆(t) = 0.02(x̃⋆(t))2y⋆(t)dt+ c⋆(t)y⋆(t)dW (t), y⋆(0) = 1, t ∈ [0, 1].

In the graphs below we have given one realisation of the above processes
under the WCD and NWCD as follows: in Figure 2 the factor process, in
Figure 3 the logarithm of the stock price, and in Figure 4 the logarithm of
the investor’s wealth. As can be expected, the investor’s wealth under the
NWCD is larger then under WCD.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

0.5

1

1.5

WCD

NWCD

Figure 2. The factor process under WCD (x∗) and under NWCD (x⋆).
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Figure 3. The logarithm of the stock price under WCD (S∗
1) and under

NWCD (S⋆
1).
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Figure 4. The logarithm of the investor’s wealth under WCD (y∗) and
under NWCD (y⋆).

4.2. Numerical example in infinite horizon

Here we consider an infinite horizon version of the robust portfolio control
problem, where we assume that all coefficients are constant and instead of
J̃1 and J̃2 we use their infinite horizon versions:

J̃∞
1 (c(·), ṽ(·)) := lim

T→∞
− 1

f1(T )
log Ẽc

{
exp

[
−1

2

∫ T

0

z̃′(t)M̃1z̃(t)dt

]}
,

J̃∞
2 (c(·), ṽ(·)) := lim

T→∞

1

f2(T ) log γ̃
Ẽc

{
exp

[
γ̃

2

∫ T

0

[
θ̃2ṽ′(t)Ñ ṽ(t)

− z̃′(t)M̃2z̃(t)]dt
]}

,

We assume f1(T ) = f2(T ) = T and the following numerical values: ℓ = 1,

d = 1, n = 1, λ = 11/12, σ = 3/11, Ã = 0, B̃ = 1, Ã1 =
√
16.5, L̃ = 0,

Q̃ = 1, Ñ = 1, η =
√
22, γ̃ = 1. This gives:

M̃1 = M̃ =

[
−11

24
0

0 1
176

]
, M̃2 = −M̄ =

[
−1 0
0 − 15

484

]
.
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In the notation of section 3, we thus have: A = 0, B2 = 1/4, B1 = 1,
A1 =

√
16.5, C = 1, D = 1, θ =

√
22, γ1 = −1, γ2 = 1, N = 1,

M1 =

[
−11

24
0

0 1
176

]
, M2 =

[
−1 0
0 − 15

484

]
.

The Assumption 4 clearly holds. We now show that Assumption 5 also holds
by finding real solutions to the Riccati algebraic equations (3.3) and (3.4),
which in the current case are, respectively:

−44P1P2 − 27.5P 2
1 − 11

24
= 0, (4.17)

−5.5P 2
2 − 22P1P2 + 60P 2

1 + 1 = 0. (4.18)

By multiplying both sides of equation (4.18) with −11/24 and defining Z :=
−11P2/24, we can rewrite the above two equations as:

96P1Z − 27.5P 2
1 − 11

24
= 0, (4.19)

12Z2 − 121

12
P1Z − 27.5P 2

1 − 11

24
= 0.

The difference of these two equations is:

12Z2 −
(
121

12
+ 96

)
P1Z = 0. (4.20)

The two possible solutions in Z of this equation are:

Z1 = 0, Z2 =
697

72
P1.

Substituting Z1 in (4.19) gives:

−27.5P 2
1 − 11

24
= 0,

which has no real solutions. Substituting Z2 in (4.19) gives:(
96

697

72
− 27.5

)
P 2
1 − 11

24
= 0.

Its two possible solutions, denoted P+
1 and P−

1 , are:

P±
1 = ±0.006797.
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Through Z2, this gives the following two values for P2:

P∓
2 = ∓0.14411.

In summary, the real solutions to the coupled Riccati algebraic equations
(4.17) and (4.18) are:

(0.006797,−0.14411), (−0.006797, 0.14411),

and thus Assumption 5 holds. Due to our choice of functions f1 and f2, the
Assumption 6 clearly holds.

Next we show that the conditions of Theorem 3 can be satisfied for
(P1, P2) = (−0.006797, 0.14411) and all T ∈ (0,∞). The corresponding
matrix A∗, which in this case is a scalar, is A∗ = −3.16419. The Lyapunov
differential equation (2.16) becomes:

dΣ(t) = [−6.3284Σ(t) + 16.5] dt, t ∈ [0,∞),

Σ(0) = 0,

Its explicit solution is:

Σ(t) = 16.5

∫ t

0

e−6.3284(t−τ)dτ, t ∈ [0,∞),

form which it follows that Σ(T ) > 0 for all T ∈ (0,∞). The corresponding
Riccati differential equations (2.17) and (2.18), respectively, are:

dQ1(t) = −
[
−6.3284Q1(t) + 33α1Q

2
1(t) + 8.25βuP

2
1

]
dt, (4.21)

dQ2(t) = −
[
−6.3284Q2(t) + 33β1Q

2
2(t) + 8.25βvP

2
2

]
dt, (4.22)

for t ∈ [0,∞), where α1 and β1 are positive constants. It is sufficient to seek
constant solutions to these two equations. Thus, by assuming that Q1 and
Q2 are constant, equations (4.21) and (4.22) become the following algebraic
equations, respectively:

0 = −6.3284Q1 + 33α1Q
2
1 + 8.25βuP

2
1 , (4.23)

0 = −6.3284Q2 + 33β1Q
2
2 + 8.25βvP

2
2 . (4.24)
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If we choose α1 = 2, β1 = 2, βu = 398.0113, βv = 0.8854, then the solutions
to equations (4.23) and (4.24) are:

Q1 = Q2 = 0.0479.

As these are both positive, by choosing α2 = 2 and β2 = 2, it follows that
conditions of Theorem 3

Q1(T ) + Σ−1(T )/2α2 > 0, Q2(T ) + Σ−1(T )/2β2 > 0,

hold for all T ∈ (0,∞).
It remains to show that the stability conditions of Theorem 5 hold. In the

current example we have Au = −3.052 and Av = −0.786375. The solutions
to the corresponding equations (3.11) are:

µu(t) = eAutx̃(0), Σu(t) =
A2

1

−2Au

(
1− e2Aut

)
, t > 0.

Since Au is negative, it follows that:

lim
T→∞

ln |Hu(T )|+ µ2
u(T )Σ

−2
u (T )[Hu(T )− I]

−2T

= lim
T→∞

ln |[−P1Σu(T ) + 1]−1|+ µ2
u(T )Σ

−2
u (T )[[−P1Σu(T ) + 1]−1 − I]

−2T
= 0,

and thus the asymptotic relation (3.13) holds with h1 = 0. As Av is also
negative, the proof that the asymptotic relation (3.14) also holds with h2 = 0
proceeds very similarly to the above.

It now follows from Theorem 4 that the solution to our infinite horizon
robust portfolio control problem is given by:

c∗∞(t) = 0.299068x̃(t), ṽ∗∞(t) = −3.17042x̃(t), t ≥ 0,

where x̃ is the solution to the following stochastic differential equation dx̃(t) = ṽ∗∞(t)dt+
√
16.5dW (t), t ≥ 0,

x̃(0) ∈ R.

The optimal trading strategy n∗
0 and n∗

1 is thus:

n∗
1(t) = c∗∞(t)y(t)/S1(t), n∗

0(t) = y(t)− n∗
1(t)S1(t), t ≥ 0.
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5. Conclusions

We introduced a risk-sensitive generalisation to the mixed H2/H∞ control
problem for linear stochastic systems with additive noise. Both the finite
and infinite horizon cases are considered, and explicit solutions in terms of
coupled differential and algebraic equations of Riccati type are obtained.
An application to a robust portfolio control problem is given. There are
many possibilities for further research in this direction, and these include
the consideration of nonlinear systems (as in [9], [17]), more general risk-
sensitive criteria (as in [9], [10], [19]), or systems with multiplicative noise
and random coefficients. This case appears to be particularly challenging
as the current solution method breaks down (note that after the change of
measure in this case one ends up with x4 terms rather than x2 terms, and
thus the completion of squares method does not apply). Another approach
would be the use of other criteria as in [16]), where non-quadratic terms
appear is the cost functional.
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