
 1 

MOSAIC+: A cross-linguistic model of verb-marking error in typically-developing children 

and children with Developmental Language Disorder 

 

Daniel Freudenthal1,3 

Fernand Gobet2,3 

Julian M. Pine1,3 

 

1University of Liverpool 

2London School of Economics and Political Science 

3ESRC International Centre for Language and  

Communicative Development (LuCiD) 

 
 
 

Declaration of Interest: None 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 



 2 

Abstract 

This study extends an existing cross-linguistic model of verb-marking error in children’s 

early multi-word speech (MOSAIC) by adding a novel mechanism that defaults to the most 

frequent form of the verb where this accounts for a high proportion of forms in the input. Our 

simulations show that the resulting model not only provides a better explanation of the data 

on typically developing children, but also captures the cross-linguistic pattern of verb-

marking error in children with Developmental Language Disorder (DLD), including the 

tendency of English-speaking children to show higher rates of Optional Infinitive errors and 

the tendency of Dutch-, German- and Spanish-speaking children to show higher rates of 

agreement errors. The new version of MOSAIC thus provides a unified cross-linguistic 

model of the pattern of verb-marking error in typically developing children and children with 

DLD. 

  



 3 

Introduction 

Explaining the pattern of verb-marking error in typically-developing (TD) children and the 

pattern of verb-marking deficit in children with Developmental Language Disorder (DLD) is 

a key challenge for theories of language acquisition. Verb-marking errors are a characteristic 

feature of the speech of TD children. For example, in many languages, young children make 

errors (often referred to as Optional-Infinitive [OI] errors) in which they use infinitives and 

other non-finite verb forms in contexts in which a finite verb form is required. Deficits in 

verb-marking are a characteristic feature of DLD. For example, English-speaking children 

with DLD tend to produce OI errors for longer than TD children and at higher rates than 

controls matched for mean length of utterance (MLU). However, both the pattern of verb-

marking error in TD children and the pattern of verb-marking deficit in children with DLD 

vary across languages. 

MOSAIC (Model of Syntax Acquisition in Children) is a computational model of 

language learning that simulates the developmental patterning of verb-marking errors across 

several different languages in terms of the interaction between edge-based biases in learning 

and the distributional properties of the input language. MOSAIC simulates differences in the 

rate of OI errors in Dutch, French, German, and Spanish. However, in its current form, it 

cannot simulate either the very high rates of OI errors in English-speaking children or the 

cross-linguistic pattern of verb-marking deficit in children with DLD. 

In this study, we supplement MOSAIC’s basic learning mechanism with a mechanism that 

defaults to the most frequent form of the verb when the relative frequency of that form in the 

input is above a certain threshold. We investigate whether this new version of the model 

(MOSAIC+) provides both a better explanation of the cross-linguistic data on TD children 

and a means of simulating the cross-linguistic pattern of deficit in children with DLD. Our 

simulations show that MOSAIC+ can simulate both the very high rates of OI error in early 
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child English and the fact that English-speaking children with DLD tend to show 

significantly higher rates of OI errors than MLU-matched controls, whereas Dutch- and 

German-speaking children do not, tending instead to show elevated, though still relatively 

low, rates of agreement and positioning errors. 

Background Literature 

The OI Phenomenon 

Verb-marking errors are a characteristic feature of children’s early language. For example, 

between the ages of 2 and 4 years, English-speaking children often make errors like (1) and 

(2) in which they use a zero-marked form in a context that requires a third-person singular 

(3sg) present-tense form (examples taken from the Manchester corpus; Theakston et al., 

2001). 

 

(1) *This go there   (Anne, 2;6.4) 

(2) *And the lorry go on top  (Warren, 2;7.05) 

 

Early analyses of these kinds of errors assumed that they reflect incomplete knowledge of the 

target inflection (e.g., Brown, 1973), or the dropping of the inflection due to performance 

limitations in production (e.g., Bloom, 1990). However, cross-linguistic analyses (e.g., 

Wexler, 1994) have shown that, in languages other than English, the equivalent errors tend to 

include verb forms marked with an infinitival morpheme like those in (3) and (4). 

 

  Dutch 

(3) *Mama radio aan doen.  (Peter, 2;0.7; Bol, 1996) 

     Mummy radio on put-INF 

         Mummy put radio on 
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German 

(4) *Oma Brücke bauen.  (Leo, 2;2.1; Behrens, 2006) 

   Grandma bridge build-INF 

    Grandma build bridge 

 

Since these errors do not involve the use of a bare stem, they cannot be explained in terms of 

inflection drop, and this has led to the view that the pattern of verb-marking errors across 

languages (including the incorrect use of zero-marked forms in English) reflects the use of 

infinitives and other non-finite forms in finite contexts. These kinds of errors are typically 

referred to as Optional-Infinitive (OI) errors (Wexler, 1994), and the period during which 

they occur as the OI stage. 

Most research on the OI stage has been conducted within a linguistic nativist framework. 

However, in a series of papers, we have used a computational model of language 

development (MOSAIC) to show that the cross-linguistic patterning of OI errors can be 

understood in terms of input-driven learning (see Pine et al., 2020, for a review). Below we 

outline the key features of MOSAIC. A more extended description of the model (including 

model architecture and learning mechanisms) is provided in Appendix S1 in the supporting 

materials. 

 
MOSAIC 

MOSAIC is an unsupervised learning model that learns from input in the form of 

orthographically-transcribed child-directed speech. MOSAIC gradually builds a network of 

words and strings of words from the input to which it has been exposed and produces output 

in the form of ‘utterances’ that become progressively longer as learning proceeds. Some of 

these utterances are produced by rote (i.e., have occurred as utterances or parts of utterances 

in the input). Others are produced generatively (i.e., by substituting distributionally similar 
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words into frames that have occurred as utterances or parts of utterances in the input). Since 

the average length of MOSAIC’s output increases with learning, MOSAIC can be used to 

simulate developmental changes in children’s speech as a function of increasing MLU. 

A key feature of MOSAIC is that it is subject to a strong utterance-final bias in learning. 

Early versions of MOSAIC (Freudenthal et al., 2006, 2007, 2009) learned entirely from the 

right edge of the utterance. That is, the model could only encode a word or phrase when 

everything that followed that word or phrase in the utterance had already been encoded in the 

network. MOSAIC thus built up its representation of an utterance by starting at the end of the 

utterance and slowly working its way to the beginning. This mechanism, which implements a 

recency effect in learning, can be likened to a moving window or buffer. Whenever an 

unknown word or word transition is encountered, the contents of the buffer are emptied, and 

only the most recently encountered word is left as a target for encoding. For example, when 

first exposed to the utterance He goes home, the model is only able to encode the word home. 

The word goes only becomes a target for encoding if the model has already encoded the word 

home, and the phrase goes home only becomes a target for encoding if the model has already 

encoded the words goes and home.  

This utterance-final bias had the effect of restricting the strings that MOSAIC was able to 

produce to utterance-final sequences that had occurred in the input (or generative utterances 

based on such sequences). The current version of the model (Freudenthal et al., 2015) 

supplements MOSAIC’s utterance-final bias with a (smaller) utterance-initial bias or left-

edge learning mechanism. Left-edge learning works in a similar way to right-edge learning, 

except that it is anchored at the left edge of the utterance and restricted to a single word. 

MOSAIC now builds up its representation from both edges of the utterance, and is subject to 

a (small) primacy and a (larger) recency effect in learning. MOSAIC also combines the 

products of right- and left-edge learning by associating utterance-initial and utterance-final 
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elements based on their co-occurrence in utterances in the input. For example, MOSAIC now 

represents strings such as He go home by learning to associate utterance-initial words such as 

He and utterance-final phrases such as go home based on their co-occurrence in utterances 

such as He can go home. 

The addition of left-edge learning and a mechanism for associating the products of right- 

and left-edge learning has the effect of expanding the range of strings that the model can 

produce to include strings with missing utterance-internal elements. This mechanism has the 

potential to result in concatenations of elements with implausibly long intervening sequences 

such as Jason (the boy you met at playgroup) plays football. These are avoided by making the 

probability of associating utterance-initial and utterance-final elements dependent on the 

distance between the elements. It also has the potential to generate non-child-like 

concatenations such as The (girl is going) to play football. These are avoided by restricting 

concatenations to utterance-initial and utterance-final elements that are anchored at both 

edges of utterances in the input. That is, utterance-initial words can only be concatenated if 

they have also occurred in utterance-final position, and utterance-final elements can only be 

concatenated if the first word in the element has occurred in utterance-initial position.  

MOSAIC simulates OI errors because of the way it learns from the edges of the utterance 

and associates the products of right- and left-edge learning. This results in the production of 

partial utterances that were present as utterance-final phrases in the input and concatenations 

of utterance-initial words and utterance-final strings. The structures in the input that give rise 

to OI errors are compound-finite structures: utterances that contain a finite modal or other 

auxiliary and an infinitive, such as the English utterance This could go there or the German 

utterance Oma kann die Brücke bauen (Grandma can the bridge build-INF). The truncation of 

utterances like these results in subjectless OI errors such as go there and Brücke bauen. The 

concatenation of utterance-initial words and utterance-final phrases from such utterances 
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results in OI errors with subjects such as This go there or Oma Brücke bauen (Grandma 

bridge build-INF). 

MOSAIC simulates the developmental patterning of OI errors because it learns to produce 

progressively longer utterances as a function of the amount of input to which it has been 

exposed. Children produce OI errors at high rates early in development and produce fewer OI 

errors as the length of their utterances increases. MOSAIC simulates this pattern because of 

the way that compound finites pattern in the relevant languages. In compound finites, the 

finite auxiliary precedes the infinitive. Since MOSAIC produces increasingly long utterance-

final phrases, the short phrases it produces early on are likely to contain only non-finite verb 

forms. As the phrases MOSAIC produces become longer, finite auxiliaries start to appear, 

and OI errors are gradually replaced by the compound finites from which they have been 

learnt. 

It is worth emphasising at this point that MOSAIC is a relatively simple distributional 

analyzer with no access to semantic information, which is clearly not powerful enough to 

acquire many aspects of adult syntax. MOSAIC is therefore best viewed as a simplified 

model of grammatical development that does not incorporate several factors that are known 

to affect children’s language learning. Nevertheless, because of its ability to produce child-

like utterances across a range of different languages, MOSAIC provides a powerful means of 

testing hypotheses about the relation between cross-linguistic variation in children’s early 

language and cross-linguistic differences in the language to which they are exposed.  

In an early paper, Freudenthal et al. (2007) showed that a right-edge learning model that 

learned OI errors from both questions and declaratives could simulate variation in the 

developmental patterning of OI errors across Dutch, German, and Spanish and the 

developmental patterning of OI errors with third-person singular (3sg) subjects in English. 

They also showed that the key factor was the way that MOSAIC’s utterance-final bias 
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interacted with the relative frequency of non-finite and finite verbs in utterance-final position 

(high in Dutch, moderately high in German, and low in Spanish, as are children’s rates of OI 

errors in the respective languages). In a later paper, Freudenthal et al. (2009) showed that the 

same version of MOSAIC could simulate semantic-conditioning effects including the Modal 

Reference Effect and the Eventivity Constraint (the fact that in many languages OI errors 

tend to have a modal meaning and to be restricted to eventive rather than stative verbs), and 

the absence or reduced size of these effects in English. In a more recent paper, Freudenthal et 

al. (2015) showed that a version of the model that distinguished between declaratives and 

questions in the input and learned from both edges of the utterance could simulate the cross-

linguistic patterning of OI errors in declaratives and Wh-questions in English, Dutch, 

German, and Spanish. 

However, Freudenthal et al. (2010) have also shown that MOSAIC suffers from one 

important weakness as an account of the cross-linguistic data: it is unable to explain the very 

high rate of OI errors in English at low MLUs. Freudenthal et al. (2010) compare MOSAIC 

with Legate and Yang’s (2007) Variational Learning Model (VLM) — a probabilistic 

parameter setting model which also has the potential to explain differences in the rate of OI 

errors across languages. More specifically, they investigate how well the two models predict 

the rate and lexical patterning of OI errors at an MLU of approximately 2 in English, Dutch, 

German, French, and Spanish. Their results provide support for MOSAIC’s account of OI 

errors in the form of significant correlations between the rate at which children produce OI 

errors on particular verbs and the rate at which those verbs occur in compound-finite as 

opposed to simple-finite structures in child-directed speech in all 5 languages studied. 

However, they also show that, although both MOSAIC and the VLM are good at predicting 

differences in the rate of OI errors in Dutch, German, French, and Spanish, neither is able to 

predict the very high rate of OI errors in English. Freudenthal et al. therefore argue for a 
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model of verb-marking error in which some errors reflect the use of infinitives learned from 

compound-finite structures in the input and others reflect a process of defaulting to the most 

frequent form of the verb when the target form is only weakly represented in the child’s 

system. Such a model would predict particularly high rates of OI errors in English, where the 

most frequent form of the verb is usually the bare stem, and where bare-stem errors are 

indistinguishable from OI errors. 

 
Supplementing MOSAIC with a Frequency-Sensitive Defaulting Mechanism 

An extended version of MOSAIC that supplements the model’s basic learning mechanisms 

with a frequency-sensitive defaulting mechanism has several potential advantages as an 

account of the cross-linguistic pattern of verb-marking error. First, adding some degree of 

frequency-sensitivity to the model’s output has the potential to explain a wider range of 

errors, and is consistent with a wealth of evidence that frequency at a variety of levels not 

only increases fluency and protects items from error, but can also result in errors in which 

low-frequency items are replaced by higher-frequency words and sequences (see Divjak & 

Caldwell-Harris, 2015, and Ambridge et al., 2015, for reviews). Thus, although in many 

languages the most common type of verb-marking error is the use of a non-finite form in a 

finite context, there is evidence from more highly inflected languages that young children 

also make verb-marking errors in which they use the most frequent finite form of the verb in 

the wrong person/number context (Rubino & Pine, 1998; Aguado-Orea & Pine, 2015; 

Räsänen et al., 2016; Engelmann et al., 2019). A frequency-sensitive defaulting mechanism 

would provide a straightforward explanation of these kinds of errors.  

Second, such a model has the potential to provide a better explanation of the rate of 

OI/bare-stem errors in early child English. Thus, because the bare stem covers 5 of the 6 cells 

in the English present-tense paradigm, defaulting errors in English are particularly likely to 

involve the use of the bare stem and, since the bare stem is indistinguishable from the 
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infinitive, these errors will increase the rate of OI errors. In fact, there is already evidence that 

at least some apparent OI errors in English reflect frequency-sensitive defaulting. For 

example, in an elicited production study, Räsänen et al. (2014) found a significant relation 

between children’s tendency to use bare forms of particular verbs in 3sg present-tense 

contexts and the relative frequency with which these verbs occur as bare forms versus third-

person singular forms in finite present-tense contexts in English child-directed speech. 

Moreover, this result has since been replicated by Kueser et al. (2018) in a group of English-

speaking children with DLD and a group of MLU-matched controls.  

Third, such a model has the potential to explain the cross-linguistic pattern of verb-

marking deficit in children with DLD. DLD, also referred to in the literature as specific 

language impairment (SLI), refers to a significant deficit in language ability that cannot be 

attributed to hearing loss or neurological damage (see Leonard, 2014, for a review). Although 

children with DLD are not a homogeneous population, deficits in verb-marking are a 

characteristic feature of the disorder. However, the pattern of verb-marking deficit in DLD 

varies across languages. Thus, English-speaking children with DLD tend to produce OI/bare-

stem errors at higher rates than MLU-matched controls, even at high MLUs (Kueser et al., 

2018; Rice et al., 1995). However, this effect appears to be specific to English. For example, 

Wexler et al. (2004), found no such differences in the rate of OI errors in their Dutch-

speaking sample at MLU=3 and MLU=4, and, although Rice et al. (1997) did find an MLU-

matching effect at MLU=2.66 in their German sample, this effect had disappeared by 

MLU=3.77.  

In contrast, several researchers have found higher rates of subject-verb agreement and 

verb-positioning errors in Dutch and German. For example, both de Jong (1999) and Wexler 

et al. (2004) report elevated (though still relatively low) rates of agreement error in Dutch-

speaking children with DLD; Clahsen et al. (1997) report higher rates of agreement error in 
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German-speaking children with DLD; and a number of researchers have reported verb-

positioning errors in both Dutch (de Jong, 1999; Wexler et al., 2004) and German (Clahsen et 

al. 1997; Hamman et al., 1998; see Leonard, 2014, for a review). These positioning errors 

typically involve the incorrect use of finite forms (which are restricted to second position in 

Dutch and German) in utterance-final position, though the incorrect use of infinitives in 

second position has also been reported.  

Taken together, these findings suggest that it might be possible to simulate the cross-

linguistic pattern of verb-marking deficit in DLD by changing the defaulting threshold in an 

extended version of MOSAIC. Increasing the rate of defaulting by reducing the threshold at 

which defaulting errors occur is likely to increase the rate of OI/bare-stem errors in English. 

However, it is likely to increase the rates of agreement and verb-positioning errors in Dutch 

and German, where the most frequent form of the verb is likely to be a finite form that is 

readily distinguishable from the infinitive, and restricted to second position in main clauses.  

 
The Current Study 

The aim of the current study is to investigate whether an extended version of MOSAIC which 

supplements MOSAIC’s basic learning mechanism with a novel defaulting mechanism 

provides both (a) a better explanation of the cross-linguistic data on TD children and (b) a 

means of simulating the cross-linguistic pattern of verb-marking deficit in children with 

DLD. In a first set of simulations, we investigate the extent to which adding a defaulting 

mechanism to MOSAIC improves the model’s ability to simulate differences in the rate of OI 

errors in English, Dutch, German, and Spanish at MLU=2. In a second set of analyses, we 

investigate how this defaulting mechanism interacts with the frequency statistics of child-

directed speech in the four languages to result in different levels of defaulting and different 

types of defaulting error. In a final set of simulations, we investigate whether increasing the 

rate of defaulting errors by reducing the defaulting threshold in the model allows us to 
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simulate the cross-linguistic pattern of differences in the rate of OI, agreement, and verb-

positioning errors in children with DLD relative to MLU-matched controls. 

 
Method 

In the current paper, MOSAIC+ was implemented by combining the version of MOSAIC 

described above and in Appendix S1 with a novel defaulting mechanism that was applied to 

the model’s output. In this section, we first describe the way simulations are run in MOSAIC, 

and then the novel defaulting mechanism and the way in which defaulting rates were 

manipulated in the simulations that follow.  

 
Running MOSAIC Models 

MOSAIC is trained by feeding an input corpus through the model multiple times. This is 

necessary because the child-directed speech samples available in the languages modelled are 

typically not large enough to support gradual learning. Learning in MOSAIC is slow and 

MOSAIC initially represents just a few short utterance-final phrases. As learning proceeds, 

MOSAIC represents more phrases that extend further to the left of the utterance, as well as 

utterance-initial words, some of which have been associated with utterance-final phrases to 

form concatenations. Output is generated from MOSAIC by producing all the utterance-final 

phrases and concatenations of utterance-initial words and utterance-final phrases that it 

represents. Output from MOSAIC thus consists of a corpus of utterances that can be directly 

compared to corpora of child-directed speech. Since the average length of MOSAIC’s output 

increases with increased training, it can also be matched to children in different stages of 

development based on their MLU in words. 

For the current simulations, MOSAIC was trained on the child-directed speech from Anne 

and Becky’s transcripts from the English Manchester corpus (Theakston et al., 2001), the 

child-directed speech from Matthijs and Peter’s transcripts from the Dutch Groningen Corpus 
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(Bol, 1996), the child-directed speech from the German Leo Corpus (Behrens, 2006), and the 

child-directed speech from Juan’s transcripts from the Spanish OreaPine corpus (Aguado-

Orea & Pine, 2015).  These are the same corpora as Freudenthal et al. (2010) used in their 

comparison of MOSAIC and the VLM. As in Freudenthal et al. (2010), we used versions of 

the English input corpora that were coded for the occurrence of verbs in 3sg contexts (e.g., 

That goes-3SG there; She can go-3SG home; He is going-3SG out). This feature allows for 

the identification of verbs that are learned from/produced in 3sg contexts even when no 

subject is present, and thus for a meaningful comparison of OI error rates in English and in 

the other languages, where OI errors can be readily identified even when the subject is 

absent.  

 

The Novel Defaulting Mechanism 

Defaulting was implemented in the model by identifying the most frequent form of each verb 

in a large corpus of child-directed speech in each language, and substituting this form for 

lower-frequency forms of the same verb in MOSAIC’s output if its proportional frequency 

exceeded a certain threshold. Defaulting was implemented deterministically rather than 

probabilistically. That is, changes were always made when the proportional frequency of the 

relevant form exceeded the threshold, and never made when it did not. Implementing 

defaulting in this way does not reflect a theoretical commitment to deterministic defaulting, 

but rather an attempt to keep the defaulting mechanism as simple as possible to make it easier 

to understand the effects of manipulating the model’s tendency to default across the different 

languages. The setting of the defaulting threshold is inevitably somewhat arbitrary. In the 

simulations of children’s speech at MLU=2, we explore the use of values of .60, .65 and .70. 

These values were chosen to restrict defaulting to verb forms that made up a relatively large 

proportion of the relevant instances of that verb in the input while at the same time leaving 
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scope for increasing the defaulting threshold as a function of increasing MLU in the later 

simulations. In our simulations of the speech of TD children and children with DLD at 

MLU=3 and MLU=4, we use values of .85 and .95 for the TD models and .65 and .75 for the 

DLD models. These values were chosen to allow us to distinguish clearly between the TD 

and DLD models while at the same time increasing the thresholds used in both sets of models 

as a function of increasing MLU.  

Verb counts were collected from both declarative and interrogative input utterances. 

However, since MOSAIC assumes that children represent progressively longer utterance-

final strings, the defaulting counts used at different MLUs were based not on corpus-wide 

statistics, but on utterance-final strings matched to the model’s MLU. Thus, defaulting counts 

for models at MLU=3 were based on utterance-final strings of up to 3 words and defaulting 

counts at MLU=4 were based on utterance-final strings of up to 4 words. Corpus-wide 

statistics were also computed for purpose of comparison. This allowed us to investigate the 

extent to which defaulting is affected by imposing a similar utterance-final bias on the 

defaulting mechanism to MOSAIC’s utterance-final bias in learning. To maximise the 

reliability of our defaulting counts, we used corpora larger than the child-specific corpora 

used in the actual simulations. These were, for English, the combined input for the 12 

children of the Manchester corpus (Theakston et al., 2001: ~350,000 utterances); for Dutch, 

the combined input for the 8 children of the Groningen corpus (Bol, 1996: ~80,000 

utterances); for German, the child-directed speech of the dense Leo corpus (Behrens, 2006: 

~240,000 utterances) and for Spanish, the input for the two children from the OreaPine 

corpus (Aguado-Orea & Pine, 2015) and the 50 children from the Fern-Aguado corpus 

(~120,000 utterances combined). These corpora are all available in the CHILDES database 

(MacWhinney, 2000). 

Defaulting Counts 
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Since defaulting is assumed to reflect competition between finite forms of the verb, 

defaulting counts were restricted to finite lexical verbs and, for the sake of simplicity, to 

present-tense verb forms. However, since in English, Dutch, and German, the infinitive is 

homophonous with one of the present-tense forms, infinitives were also included in the 

counts when they occurred in a finite utterance (e.g., He can go there, Does he like that?) and 

the finite auxiliary was not part of the relevant utterance-final string. This allowed us to 

investigate how defaulting interacts with MOSAIC’s utterance-final bias in learning. In 

English, Dutch, and German, finite utterances were identified by searching the input for 

subject pronouns and a relevant verb form in an appropriate position. For Spanish, which 

allows null subjects, the Mor (morphology) tier of the transcript was used. This procedure 

allowed for the exclusion of verbs in imperative contexts.  

In order to facilitate the collection of defaulting counts for utterance-final strings of 

different lengths, present-tense verbs in simple-finite contexts were marked as tensed (e.g., 

He goes-tensed to school, They go-tensed home), while forms in imperative contexts were left 

unmarked (e.g., Go home). This made it possible to distinguish the two forms of go when 

analysing two-word utterance-final strings – go-tensed home contributed to the counts for go, 

while go home was ignored. Infinitives that occurred in a compound-finite context (e.g., He 

can go there, Does he go home?) were marked as modal, while the finite auxiliary was 

marked as tensed (e.g., He can-tensed go-modal there, Does-tensed he go-modal home?). 

Forms marked as modal contributed to the counts for the relevant verb, provided the tensed 

auxiliary was not part of the relevant utterance-final string. That is, the infinitive form of go 

in Does-tensed he go-modal home? contributed to the counts for go in two- and three-word 

utterance-final strings, but not in four-word utterance-final strings. This procedure is 

designed to simulate the child’s increasing sensitivity to the fact that, in compound-finite 

contexts, tense is marked on the auxiliary rather than on the lexical verb.  
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Table 1 illustrates the present-tense verb paradigm in English, Dutch, German, and 

Spanish using the verb run, which is regular in all four languages. Pronouns are not included 

for Spanish as Spanish is a pro-drop language. It can be seen from Table 1 that the English 

present-tense paradigm comprises 2 forms, one of which matches the infinitive, the Dutch 

paradigm comprises 3 forms, one of which matches the infinitive, the German paradigm 

comprises 4 forms, one of which matches the infinitive, and the Spanish paradigm comprises 

6 forms, none of which matches the infinitive. Since the defaulting counts collapse across 

matching forms, this means that, all other things being equal, defaulting is likely to be most 

pervasive in English and least pervasive in Spanish, with Dutch and German falling 

somewhere in between. However, since defaulting is applied on a verb-by-verb basis, it is 

also possible that different verbs will default to different forms. For example, English verbs 

that tend to occur in 3sg contexts (e.g., fits) may default to the 3sg form.  

Table 1  

Present-tense paradigm for the verb run in English, Dutch, German, and Spanish. 

 English Dutch German Spanish 

Infinitive Run Rennen Rennen Correr 

1st singular I run Ik ren Ich renne Corro 

2nd singular You run Jij renti Du rennst Corres 

3rd singular She runs Zij rent Sie rennt Corre 

1st plural We run Wij rennen Wir rennen Corremos 

2nd plural You run Jullie rennen Ihr rennt Corréis 

3rd plural They run Zij rennen Sie rennen Corren 

 

Table 2 illustrates the basic word-order patterns of the four different languages. It can be seen 

that finite lexical verbs usually occur before their complements in all four languages. 
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However, the infinitive in compound-finite structures occurs before its complements in 

English and Spanish, and after its complements in Dutch and German, where it is tied to 

utterance-final position. This results in infinitives being more common than finite forms in 

utterance-final position in Dutch and German, which means that, in these languages, 

defaulting is likely to interact with MOSAIC’s utterance-final bias in learning such that the 

model is more likely to default to the infinitive at low MLUs (when verb counts are drawn 

from short utterance-final strings) and more likely to default to a finite form at high MLUs. It 

also means that defaulting has the potential to result in verb-positioning errors in these 

languages, since defaulting from a finite form to an infinitive will result in an infinitive that 

precedes its complement and defaulting from an infinitive to a finite form will result in a 

finite form that follows its complement. 

 
Table 2  

Examples of simple-finite and compound-finite constructions in English, Dutch, German, and 

Spanish. 

 Simple-finite 

English I drink coffee 

Dutch Ik drink koffie (I drink-FIN coffee) 

German Ich trinke Kaffee (I drink-FIN coffee) 

Spanish Bebo café ((I) drink-FIN coffee) 

  

 Compound-finite 

English I want to drink coffee 

Dutch Ik wil koffie drinken (I want-FIN coffee drink-INF) 

German Ich moechte Kaffee trinken (I want-FIN coffee drink-INF) 
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Spanish Quiero beber café ((I) want-FIN drink-INF coffee) 

 

Defaulting in MOSAIC’s Output 

Defaulting counts were applied to MOSAIC’s output by searching the relevant output file for 

the occurrence of verb forms considered in the child-directed speech analysis and substituting 

default forms (e.g., forms that made up more than 65% of the relevant forms in the input) for 

non-default forms. Thus, the output utterance he eats-3SG was changed to he eat-3SG if eat 

had been identified as the default form of the verb eat. Likewise, the utterance they fit there 

was changed to they fits there if fits had been identified as the default form of the verb fit. The 

only exceptions to this rule were instances where an infinitive verb form occurred in an 

utterance with a tensed auxiliary (e.g., can fit there). These utterances were left unchanged 

even if fits had been identified as the default form, because they already contain a tensed 

form. That is, in line with the input analysis (where the phrase can-tensed go-modal away did 

not contribute to the counts for go if the modal verb can was included in the relevant 

utterance-final string), it was assumed that, as utterance-length increases, the child becomes 

increasingly sensitive to the fact that, in compound-finite contexts, tense is marked on the 

auxiliary rather than on the lexical verb and so does not substitute tensed verb forms for 

untensed verb forms in compound-finite constructions. Note that this mechanism prevents the 

model from producing errors such as kann rent and can runs but still allows the model to 

produce positioning errors in Dutch and German by substituting tensed verb forms (e.g., 

drink, drinkt) for infinitives (e.g., drinken) in utterances from which the tensed auxiliary is 

absent (e.g., koffie drinken à *koffie drinktii).  

Results 
 

The present paper reports three sets of simulations and analyses. The first set of simulations 

(Study 1) focuses on the extent to which adding a defaulting mechanism to MOSAIC 
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improves the model’s ability to simulate differences in the rate of OI errors in English, Dutch, 

German, and Spanish at MLU=2. The second set of analyses (Study 2) focuses on how the 

novel defaulting mechanism interacts with the frequency statistics of child-directed speech in 

the four languages to result in different levels of defaulting and different types of defaulting 

error. The third set of simulations (Study 3) focuses on whether it is possible to capture the 

cross-linguistic pattern of differences in the rate of OI, agreement, and verb-positioning errors 

in children with DLD relative to MLU-matched controls by changing the model’s defaulting 

threshold. All statistical analyses were conducted in R version 4.1.0 (R Core Team, 2021).  

 
Study 1. Simulating Cross-Linguistic Variation in the Rate of OI Errors at MLU=2  

In these simulations, we investigated the extent to which adding a defaulting mechanism to 

MOSAIC improved the model’s ability to simulate the rate of OI errors in English, Dutch, 

German, and Spanish at MLU=2. This was done by comparing the output of models in the 

absence of defaulting with the output of models after defaulting had been applied with the 

defaulting threshold set to .60, .65, and .70 in each of the four languages. Output was 

analysed in the same way as in Freudenthal et al. (2010) by distinguishing between utterances 

that contained only a non-finite verb form (e.g., rennen in Dutch and run-3SG, running-3SG 

in English) and utterances that contained at least one finite verb form (e.g., rent and kan 

rennen in Dutch and runs-3SG, can run-3SG and is running-3SG in English). The dependent 

variable (proportion of OI errors) was the number of utterances in the first category divided 

by the sum of the utterances in the first and second category. Further details of the coding 

scheme are provided in Appendix S2 in the supporting materials. 

 
Rates of OI errors in MOSAIC in the absence of defaulting 

Table 3 shows the rate of OI errors in MOSAIC’s output in the absence of defaulting 

(together with the corresponding rates for the children on whose input the models were 
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trained, as reported in Freudenthal et al., 2010). It is clear from Table 3 that MOSAIC 

substantially underestimates the proportion of OI errors in early child English (by 30% for 

Anne and 38% for Becky). These results replicate those of Freudenthal et al. (2010) and show 

that, while MOSAIC’s edge-based learning mechanism is sufficient to capture differences in 

the rate of OI errors across Dutch, German, and Spanish, it cannot capture the very high level 

of OI errors in early child English. 

 
Table 3  

Proportion of OI errors in MOSAIC’s output at MLU=2 for models trained on English (Anne, 

Becky), Dutch (Matthijs, Peter), German (Leo), and Spanish (Juan) together with the 

proportions for the corresponding children. 

 

Child 

MLU 

 

Proportion OI 

errors Child 

Proportion OI 

errors Model 

No. of utterances with 

verbs in model’s output 

Anne 2.04 .87 .57 99 

Becky 2.00 .97 .59 60 

Matthijs 2.10 .77 .65 719 

Peter 2.06 .74 .65 680 

Leo 1.97 .58 .57 1236 

Juan 2.01 .20 .12 824 

 

 
Rates of OI errors in MOSAIC with defaulting based on utterance-final statistics 

Table 4 shows the rate of OI errors in MOSAIC’s output after defaulting at thresholds of .60, 

.65, and .70 based on utterance-final words and two-word strings. These data suggest that 

defaulting using utterance-final statistics results in a better fit to the child data than was 



 22 

obtained using the previous version of the model, with differences in the defaulting threshold 

having little effect on the overall pattern of results.  

This was confirmed by running arcsine transformations on the child and model rates 

reported in Tables 3 and 4 and computing Pearson correlations (with Bayes Factors). This 

analysis revealed a marginally significant correlation between the child and model rates for 

the old version of the model (r = .808, p = .052, BF = 1.84, indicating inconclusive support 

for the hypothesised relation), and significant correlations for each of the new versions of the 

model (r = .948, p = .004, r = .950, p = .004, and r = .962, p = .002) with Bayes Factors of 

3.76, 3.81 and 4.23, respectively, all indicating moderate support for the hypothesised 

relation. A comparison of the data in Tables 3 and 4 reveals that the improvement in fit is 

mainly due to a substantial increase in the proportion of OI errors in English (of 34% for 

Anne’s model and 26% for Becky’s model). However, it also reflects a smaller increase in 

the proportion of OI errors in Dutch (of 5% for Matthijs’s model and 7% for Peter’s model), 

with the proportion of OI errors in German and Spanish being largely unaffected. These 

results show that combining MOSAIC’s utterance-final bias with a mechanism that defaults 

to the most frequent form of the verb provides a better explanation of the cross-linguistic 

data. 

 
Table 4  

Proportion of OI errors in MOSAIC’s output at MLU=2 for models trained on English (Anne, 

Becky), Dutch (Matthijs, Peter), German (Leo), and Spanish (Juan) input with defaulting at 

thresholds of .60, .65, and .70 based on utterance-final words and two-word strings. 

(Proportion of affected utterances in parentheses.) 
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Child 

 

MLU 

 

Proportion 

OI errors 

Child 

Proportion OI 

errors Model 

Threshold=.60 

Proportion OI 

errors Model 

Threshold=.65 

Proportion OI 

errors Model 

Threshold=.70 

Anne 2.04 .87 .91 (.34) .91 (.34) .80 (.23) 

Becky 2.00 .97 .85 (.28) .85 (.28) .83 (.27) 

Matthijs 2.10 .77 .70 (.08) .70 (.08) .70 (.08) 

Peter 2.06 .74 .72 (.09) .72 (.09) .71 (.08) 

Leo 1.97 .58 .60 (.08) .59 (.06) .59 (.05) 

Juan 2.01 .20 .12 (.04) .12 (.03) .12 (.02) 

 

 
Rates of OI errors in MOSAIC with defaulting based on corpus-wide statistics 

Table 5 shows the rate of OI errors in MOSAIC’s output after defaulting at thresholds of .60, 

.65, and .70 based on utterance-final strings of up to 10 words in length (effectively based on 

a corpus-wide analysis). These data are interesting because they suggest that defaulting using 

corpus-wide statistics results in a poorer fit to the child data than defaulting using utterance-

final statistics. This is partly because it results in a much less pronounced increase in the 

proportion of OI errors in English (of 11% for both Anne and Becky’s models compared to 

34% and 26%, respectively, for the previous models). However, it is also because it results in 

a decrease in the proportion of OI errors in Dutch and German (of 16% for Matthijs’s model, 

13% for Peter’s model and 6% for Leo’s model). This reduction in the fit to the Dutch and 

German data is not particularly surprising since, in both languages, although the infinitive is 

the most common form of the verb in utterance-final position, it is not the most common 

form of the verb in the input as a whole. However, it does underline the need to link 

defaulting to the model’s utterance-final bias in learning to explain the cross-linguistic data. 

That is, it suggests that it is necessary to assume that the same utterance-final bias that shapes 
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the development of the model’s representations also affects its sensitivity to the relative 

frequency of different verb forms in the input.  

Table 5  

Proportion of OI errors in MOSAIC’s output at MLU=2 for models trained on English (Anne, 

Becky), Dutch (Matthijs, Peter), German (Leo), and Spanish (Juan) with defaulting at 

thresholds of .60, .65, and .70 based on utterance-final strings of up to 10 words in length. 

(Proportion of affected utterances in parentheses). 

Child 

 

MLU 

 

Proportion 

OIs Child 

Proportion 

OIs Model 

Threshold=.60 

Proportion 

OIs Model 

Threshold=.65 

Proportion OIs 

Model 

Threshold=.70 

Anne 2.04 .87 .69 (.27) .68 (.26) .67 (.24) 

Becky 2.00 .97 .67 (.33) .70 (.30) .70 (.30) 

Matthijs 2.10 .77 .49 (.22) .49 (.21) .52 (.15) 

Pet 2.06 .74 .52 (.17) .52 (.18) .54 (.12) 

Leo 1.97 .58 .51 (.08) .51 (.06) .52 (.06) 

Juan 2.01 .20 .12 (.04) .12 (.03) .12 (.02) 

 

In summary, the simulations presented above show that adding a defaulting mechanism to 

MOSAIC allows the model to simulate the very high rate of OI errors in early child English 

without affecting the model’s previously good fit to the data on Dutch, German and Spanish. 

However, they also show that this is only the case when the defaulting counts are based on 

utterance-final phrases matched to the model’s MLU. They therefore underline the important 

role played by MOSAIC’s utterance-final bias in explaining the developmental data. 

 
Study 2. Defaulting as a Function of the Statistics of Child-Directed Speech in the Four 
Languages 
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In these analyses, we investigated how the defaulting mechanism interacted with the 

frequency statistics of child-directed speech in the four languages. This was done by setting 

the defaulting parameter to .65 and exploring the pattern of defaulting and the proportion of 

affected verbs for defaulting counts based on utterance-final strings of different lengths in the 

child-directed speech corpora.  

Tables 6 to 9 show the results of these analyses for each of the four languages. Results are 

expressed as the proportion of verbs that would be subject to defaulting, based on a threshold 

of .65. Results are shown for utterance-final words and utterance-final strings of 2, 3, 5, and 

10 words. Complete utterances are included in string sets that exceed their length. Since 

utterances of more than 10 words in length are rare in child-directed speech, the analysis of 

10-word utterance-final strings is, in effect, a corpus-wide analysis. 

Results for the English input analysis are presented in Table 6. It is clear from these data 

that most English verbs would default to the bare form (i.e., occur as a bare form in over 65% 

of tensed contexts). Fewer verbs would default to the bare form in longer strings. This is 

because untensed forms in compound structures contribute to the counts for short, but not for 

longer strings, which are more likely to include both a tensed auxiliary and an untensed 

lexical verb (e.g., That might-tensed go-modal there).  

 
Table 6:  

Proportion of verbs that would default to a particular form of the verb in English at different 

maximum string-lengths.  

String-

length 

Bare 

Form 

3rd Sg. No 

default 

N 

1 .94 .01 .06 108 

2 .96 .01 .03 181 
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3 .94 .02 .04 215 

5 .89 .05 .07 213 

10 .82 .06 .12 195 

 

Nevertheless, even in the 10-word string analysis, more than 80% of verbs would default to 

the bare form. This reflects the fact that, in English, zero-marked forms like I go and you go 

are far more frequent than overtly-tensed forms like he goes, and explains why adding a 

defaulting mechanism to the model has such a profound effect on the rate of OI errors in 

English. It also suggests that allowing the model to default at high MLUs (based on statistics 

from longer utterance-final strings) may be an effective way of simulating the higher rate of 

OI errors in English-speaking children with DLD relative to MLU-matched controls. This is 

because defaulting based on statistics from longer utterance-final strings will increase the rate 

of OI errors in the model’s output without affecting the model’s MLU. 

Results for the Dutch and German analyses are presented in Tables 7 and 8. It is clear 

from these data that fewer verbs would default to the infinitive in Dutch and German than 

would default to the bare form in English, regardless of string-length. However, it is also 

clear that the most common default form in Dutch and German changes as string-length 

increases. The infinitive (stem+en) form is the most common default for utterance-final 

words and two- and three-word strings, but for longer strings the 1st and 2nd singular (stem) in 

Dutch and the 3rd singular (stem+t) in German are the most common defaults.  

 
Table 7  

Proportion of verbs that would default to a particular form of the verb in Dutch at different 

maximum string-lengths.  
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String-

length 

Infinitive 

(Stem+en) 

1st/2nd SG 

(Stem) 

2nd/3rd SG 

(Stem+t) 

No default N 

1 .82 .05 .04 .09 78 

2 .57 .14 .09 .20 93 

3 .39 .20 .09 .31 99 

5 .12 .26 .14 .49 101 

10 .00 .36 .19 .46 101 

 

Table 8 

Proportion of verbs that would default to a particular form of the verb in German at different 

maximum string-lengths.  

 
String-

length 

Infinitive 

(Stem+en) 

1st SG 

(Stem+e) 

2nd SG 

(Stem+st) 

3rd SG 

(Stem+t) 

No 

default 

N 

1 .79 .00 .02 .08 .12 168 

2 .63 .03 .02 .12 .21 196 

3 .49 .02 .01 .16 .31 229 

5 .21 .03 .03 .21 .53 265 

10 .10 .04 .04 .28 .55 283 

 

This pattern reflects the SOV/V2 nature of Dutch and German, where non-finite forms 

(including the infinitive) take utterance-final position, whereas finite forms take second 

position and precede their complements. Non-finite forms are therefore more likely to occur 

in short utterance-final strings, while finite forms are more likely to occur in longer strings.  

The fact that fewer Dutch and German verbs show a strong preference for the infinitive 

explains why the model’s defaulting mechanism has less effect on the rate of OI errors in 
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Dutch and German than it does in English; and the fact that the pattern of preference changes 

as a function of string-length explains why it is necessary to link defaulting to the model’s 

utterance-final bias in learning in order to explain the Dutch and German data. However, 

these differences between Dutch and German and English also suggest that allowing the 

model to default at high MLUs (based on statistics from longer utterance-final strings) is 

likely to have a different effect in Dutch and German than it does in English. This is because, 

in Dutch and German, it is likely to result in the replacement of low-frequency finite forms 

with high-frequency finite forms rather than the replacement of finite forms with infinitives 

(as is the case in English). It may therefore provide a way of simulating the fact that, in 

contrast to English-speaking children with DLD, Dutch- and German-speaking children with 

DLD tend to produce agreement and verb-positioning errors rather than OI errors at high 

MLUs. 

Results for the Spanish input analysis are presented in Table 9. Plural forms are not 

included in the table because there were no verbs that would default to a plural verb form at 

any string-length. Compared to Dutch and German, the pattern in Spanish is relatively stable. 

Most verbs would not be subject to defaulting, regardless of string-length. However, 15 to 

25% would default to the 3sg form.  

This pattern of defaulting is likely to result in the replacement of low-frequency finite 

forms with high-frequency 3sg forms rather than the replacement of finite forms with 

infinitives, and explains why the model’s defaulting mechanism has so little effect on the rate 

of OI errors in Spanish. It is also consistent with the pattern of verb-marking error reported in 

early child Spanish, in which children tend to make agreement errors at relatively low rates, 

most of which involve the inappropriate use of 3sg forms. 

 
Table 9:  
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Proportion of verbs that would default to a particular form of the verb in Spanish at different 

maximum string-lengths.  

String-

length 

Infinitive 1st SG 2nd SG. 3rd SG No 

default 

N 

1 .15 .02 .03 .17 .63 147 

2 .10 .01 .02 .15 .71 163 

3 .07 .01 .02 .21 .70 179 

5 .04 .01 .02 .21 .72 189 

10 .04 .01 .02 .25 .68 193 

 

Finally, this pattern of defaulting suggests that allowing the model to default at high MLUs 

(based on statistics from longer utterance-final strings) would simply prolong the period 

during which agreement errors were made, which is broadly consistent with the data on verb-

marking error in Spanish-speaking children with DLD, who tend to show slightly higher rates 

of agreement error relative to age-matched, but not MLU-matched controls (Bedore & 

Leonard, 2001). 

In summary, the input analyses presented above reveal that English verbs show an 

overwhelming preference for the bare form, which is consistent across different string-

lengths. Fewer verbs show a strong preference in Dutch and German, and the preferred form 

changes as a function of string-length. In short strings, there tends to be a preference for the 

infinitive, which occurs in utterance-final position; in longer strings there tends to be a 

preference for finite forms, which occur in V2. Even fewer verbs show a strong preference in 

Spanish, but where they do, this tends to be a preference for the 3sg form. These input 

analyses therefore explain why defaulting has a large effect on the rate of OI errors in 

English, a smaller effect in Dutch and German and virtually no effect in Spanish. They also 
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suggest that defaulting at higher MLUs will tend to increase the rate of OI errors in English, 

but not in Dutch, German, or Spanish, where it is likely to result in defaulting to the highest 

frequency finite form and hence to agreement and positioning rather than OI errors. 

 
Study 3. Simulating the Cross-Linguistic Pattern of Verb-Marking Error in Children with 
DLD 

In these simulations, we investigated the model’s ability to capture the cross-linguistic pattern 

of verb-marking error in typically-developing children and children with DLD. This was 

done by applying different defaulting thresholds to the output from each of the children’s 

models at MLU=3 (based on utterance-final strings of up to 3 words) and MLU=4 (based on 

utterance-final strings of up to 4 words). The thresholds for the models with DLD were .65 

and .75, respectively. The thresholds for the typically-developing models were .85 and .95, 

respectively. Since a lower defaulting threshold will result in higher levels of defaulting error, 

these values were chosen to result in higher levels of defaulting in the DLD than the TD 

models and decreasing levels of defaulting as a function of MLU. Rates of OI errors were 

calculated in the same way as in the first set of analyses. Rates of agreement error were 

calculated by identifying cases in which defaulting led to the substitution of one finite form 

for another (e.g., rent for ren in Dutch and runs for run in English) and dividing the number 

of such cases by the total number of simple-finite contexts. Rates of verb-positioning errors 

in Dutch and German were calculated by identifying cases in which defaulting led to the 

substitution of an infinitive into a finite context and cases in which defaulting led to the 

substitution of a finite form into an infinitival context. In each case, the denominator was the 

sum of the number of such cases and the number of correctly placed infinitives or finite 

forms. 
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                           (Panel a)                     (Panel b) 

 

Figure 1. Rates of OI errors (Panel a) and Agreement errors (Panel b) for each TD model and 

the equivalent model with a lower defaulting threshold (DLD). Raw data are provided in 

Appendix S3, Table 1.   
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Figure 1 shows the rates of OI errors (panel a) and agreement errors (panel b) in each TD 

model and the equivalent model with a lower defaulting threshold (DLD). Figure 1 suggests 

that reducing the defaulting threshold at higher MLUs does have an effect on the rate of OI 

errors in the English models, resulting in increases of 6% at MLU=3 and 11 and 14% at 

MLU=4, but has little or no effect on the rate of OI errors in the Dutch, German and Spanish 

models.  

These data were analysed by running a mixed-effects Poisson regression model with a 

random effect of modelled-child on the intercept, and fixed effects of Error (OI error, 

Correct), Model-Type (TD, DLD), Language (English, Non-English) and MLU (3, 4), plus 

all two-way interactions between Error, Model-Type and Language, and the critical three-

way interaction between, Error, Model-Type and Language. All binary variables were coded 

as -0.5 and 0.5. All fixed effects were significant (see Table 2 in Appendix S3), including the 

critical three-way interaction between Error, Model-Type and Language (β = 0.457, SE = 

0.037, z = 12.20, p < .001), which indicates that the difference in the relative frequency of OI 

errors versus correct utterances was greater in the English DLD vs. TD models than in the 

non-English DLD vs. TD models (where it was essentially zero). Importantly, a model 

including the three-way interaction gave a better fit than any sub-model (delta-AIC = 146.52 

for the next best model)iii.   

These results confirm that reducing the defaulting threshold at high MLUs allows the 

model to simulate the increased rate of OI errors relative to MLU-matched controls that is 

seen in English-speaking children with DLD, but not seen in Dutch-, German-, and Spanish-

speaking children. In the Spanish models, this is a straightforward consequence of the fact 

that defaulting to the infinitive is extremely rare. In Dutch and German, it reflects the fact 

that, although some verbs do still default from a finite to the infinitive form at high MLUs, 

other verbs default in the opposite direction, cancelling out any potential increase.  
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Figure 1 also suggests that, in contrast to the increase in OI rates in the English models, 

reducing the defaulting threshold at higher MLUs in the Dutch, German, and Spanish models 

results in increased rates of agreement error. These increases can be seen in all 3 languages at 

both MLU points. However, they result in relatively low overall error rates (never greater 

than 10%). This pattern is also consistent with the cross-linguistic literature on DLD, which 

reports elevated, but still relatively low, rates of agreement error in Dutch-, German-, and 

Spanish-speaking children. 

These data were analysed by running a mixed-effects Poisson regression model on the 

non-English data, with a random effect of modelled-child on the intercept, and fixed effects 

of Error (Agreement error, Correct), Model-Type (TD, DLD), and MLU (3, 4), and the 

critical two-way interaction between, Error and Model-Type. All binary variables were coded 

as -0.5 and 0.5. All fixed effects were significant (see Table 3 in Appendix S3), including the 

critical two-way interaction between Error and Model-Type (β = 1.600, SE = 0.065, z = 

24.39, p < .001), which indicates that the difference in the relative frequency of Agreement 

errors versus correct utterances was greater in the DLD than the TD models. Importantly, a 

model including the two-way interaction gave a better fit than any sub-model (delta-AIC = 

778.58 for the next best model).   

Finally, as noted earlier, defaulting in Dutch and German has the potential to result in 

positioning errors in which infinitives occur in V2 and finite forms occur in inappropriate 

utterance-final contexts. The rates at which such errors occur in the Dutch and German 

models are reported in Table 10. It can be seen from these data, that although positioning 

errors are relatively rare (ranging from 0 to 2.1% in the TD models and 2.0 to 6.4% in the 

DLD models), they are more common in the DLD than the TD models at both MLU points.  

These results were analysed by running separate mixed-effects Poisson regression models 

with random effects of modelled-child on the intercept, and fixed effects of Error (Positioning 
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error, Correct), Model-Type (TD, DLD), and MLU (3, 4), plus the critical two-way 

interaction between, Error, and Model-Type. In both models, all fixed effects were significant 

(see Tables 4a and 4b in Appendix S3), including the critical two-way interactions between 

Error and Model-Type (β = 1.816, SE = 0.125, z = 14.50, p < .001 and β = 1.707, SE = 0.133, 

z = 12.87, p < .001), indicating that the difference in the relative frequency of Positioning 

errors and correct utterances was greater in the DLD models. Importantly, models including 

these two-way interactions gave a better fit than any sub-models (delta-AICs = 294.91 and 

28.63, for the next best models).   

These results are consistent with the literature on child Dutch and German, where 

positioning errors are rare in TD children, particularly at high MLUs, but occur at elevated, 

though still relatively low, rates in children with DLD. They thus provide further support for 

the idea that a model in which defaulting occurs at different rates in impaired and unimpaired 

children provides a plausible account of the cross-linguistic pattern of verb-marking error in 

TD children and children with DLD.  

 
 

Table 10  

Rates of Positioning Errors in the Dutch (Matthijs and Peter) and German (Leo) models and 

the equivalent models with a lower defaulting threshold (DLD)   

Model Finites in 

Final 

Position 

Finites 

in V2 

%Error Infinitives 

in V2 

Infinitives 

in Final 

Position 

%Error 

Mathijs MLU=3 10 817 1.2 15 1396 0.1 

Mathijs-DLD MLU=3 46 761 5.7 46 1381 3.2 

Mathijs MLU=4 4 2164 0.2 0 1571 0 
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Mathijs-DLD MLU=4 54 2105 2.5 32 1550 2.0 

Peter MLU=3 8 1306 0.6 33 1536 2.1 

Peter-DLD MLU=3 82 1209 6.4 74 1497 4.7 

Peter MLU=4 18 2983 0.6 0 1304 0 

Peter-DLD MLU=4 58 2897 2.0 76 1268 5.7 

Leo MLU=3 17 2881 0.6 17 2871 0.6 

Leo-DLD MLU=3 79 2776 2.8 72 2850 2.5 

Leo MLU=4 18 6081 0.3 3 3463 0.1 

Leo-DLD MLU=4 130 6059 2.1 67 3342 2.0 

 

In summary, modelling the verb-marking deficit in DLD in terms of an increased tendency to 

default to the most common form of the verb captures both the tendency of English-speaking 

children with DLD to produce OI errors at higher rates than MLU-matched controls and the 

tendency of Dutch-, German-, and Spanish-speaking children with DLD to show problems 

with subject-verb agreement, and Dutch- and German-speaking children to show problems 

with verb placement. It thus suggests that MOSAIC+ has the potential to explain both the 

cross-linguistic pattern of verb-marking error in TD children and the cross-linguistic pattern 

of verb-marking deficit in children with DLD. 

Discussion 
 
The aim of the present study was to investigate whether a model which supplements 

MOSAIC’s basic learning mechanism with a mechanism that defaults to the most frequent 

form of the verb provides both a better explanation of the cross-linguistic data on TD children 

and a means of simulating the cross-linguistic pattern of verb-marking deficit in children with 

DLD. In a first set of analyses, we investigated the extent to which adding a defaulting 

mechanism to MOSAIC improved the model’s ability to explain the cross-linguistic pattern 
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of OI errors in TD children at MLU=2. Our results show that the addition of a defaulting 

mechanism allows MOSAIC to simulate the very high rate of OI errors in early child English 

without affecting the model’s previously good fit to the data on Dutch, German, and Spanish. 

These findings are consistent with the idea that at least some apparent OI errors in English 

reflect a process of defaulting to the most frequent form of the verb (Räsänen et al., 2014; 

Kueser et al., 2018), and suggest that the very high rate of OI errors in English reflects the 

fact that, in English, but not in the other languages, defaulting tends to result in the same kind 

of errors as the learning of infinitives directly from the input.  

In a second set of analyses, we investigated how the novel defaulting mechanism 

interacted with the frequency statistics of child-directed speech in the 4 languages across 

utterance-final strings of different lengths. The results of these analyses show that defaulting 

is likely to result in bare-stem errors in English and 3sg errors in Spanish regardless of string-

length. However, they also show that defaulting is likely to result in different kinds of errors 

in Dutch and German, depending on the length of the utterance-final strings on which 

defaulting counts are based. Thus, defaulting based on short utterance-final strings is likely to 

result in OI errors and infinitives in V2, whereas defaulting based on longer utterance-final 

strings is likely to result in agreement errors and finite forms in utterance-final position. 

These findings show that defaulting can explain why English-speaking children tend to make 

bare-stem errors in their speech, whereas Spanish children tend to make 3sg errors. They also 

show why it is necessary to allow defaulting to interact with MOSAIC’s utterance-final bias 

in learning to explain the Dutch and German data at MLU=2. The reason is that defaulting 

based on corpus-wide statistics would reduce the rate of OI errors in the model’s output by 

reducing the number of infinitives and increasing the number of finite forms. Finally, they 

suggest that defaulting based on the statistics of longer utterance-final strings will tend to 

result in different patterns of error in English than in Spanish, Dutch, and German, with bare-
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stem errors being the most common type of error in English and agreement errors being the 

most common type of error in Spanish, Dutch, and German.  

In a final set of analyses, we manipulated the defaulting parameter in the model in order to 

simulate the cross-linguistic pattern of differences in the rate of OI, agreement and verb-

positioning errors in typically-developing children and children with DLD. As is clear from 

our results, increasing the amount of defaulting at high MLUs by lowering the defaulting 

threshold allows the model to simulate the higher rate of OI errors in English-speaking 

children with DLD and the absence of this effect in Dutch-, German-, and Spanish-speaking 

children.  It also allows the model to simulate the increased rate of agreement errors in 

Dutch-, German-, and Spanish-speaking children with DLD and the increased rate of verb-

positioning errors in Dutch- and German-speaking children. An important feature of these 

simulations is that, although significantly higher in the DLD than the TD models, the rates of 

agreement and positioning errors are never unrealistically high (i.e., never greater than 10%). 

Note that this feature of the data is a straightforward consequence of the use of a frequency-

sensitive defaulting mechanism which, by its very nature, only results in defaulting errors 

when the target is a relatively low-frequency form of the verb. This tends to result in low 

overall error rates which hide higher error rates in low-frequency parts of the system. 

Interestingly, this is exactly the pattern of error reported in detailed analyses of the speech of 

children learning more highly inflected languages (e.g., Aguado-Orea & Pine, 2015; 

Engelmann et al. 2019).   

Overall, these findings suggest that a model in which defaulting occurs at different rates in 

impaired and unimpaired children provides a plausible account of the cross-linguistic pattern 

of verb-marking error in TD children and the cross-linguistic pattern of verb-marking deficit 

in children with DLD. They are also consistent with a wealth of evidence that, while 

frequency at both the word and sequence level can increase fluency and protect items from 
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error, it can also result in errors in which low-frequency items are replaced by higher-

frequency items (see Ambridge et al., 2015, for a review). The implication is that the verb-

marking deficit in DLD reflects a system that is particularly susceptible to intrusions from 

high-frequency items. 

Limitations and Future Research Directions 

It is worth noting at this point that, since different levels of defaulting are implemented in 

the current model by directly manipulating the defaulting parameter, our findings still leave 

unanswered the question of what underlying mechanism is responsible for the different levels 

of defaulting seen in TD children and children with DLD. One possibility that maps more or 

less directly onto the way defaulting is implemented in the current version of the model is 

that greater defaulting in DLD reflects a deficit in the ability to inhibit competition from 

higher-frequency forms (see McMurray et al., 2019, for an explanation of lexical deficits in 

DLD in terms of reduced lexical inhibition). A second possibility is that greater defaulting 

reflects a deficit in word-learning and paradigm-building. According to this view, greater 

defaulting reflects an underlying deficit in the ability to learn low-frequency forms and 

morphological patterns that leaves the child with DLD more susceptible to competition from 

high-frequency forms of the verb (see Harmon et al., in press, for an account of deficits in 

past-tense marking along these lines). And a third possibility is that greater defaulting reflects 

a deficit in the ability to process long-distance dependencies that differentiate between 

contexts that require lower- and higher-frequency forms. According to this view, children 

with DLD use the most frequent form of the verb because they have yet to distinguish 

between contexts that require a lower-frequency form of the verb (e.g., Dolly sits there) and 

contexts that require a higher-frequency form of the verb (e.g., Does Dolly sit there? or We 

let Dolly sit there). This leaves children with DLD susceptible to competition from higher-

frequency forms of the verb for longer than TD children (see Leonard et al., 2015, for a more 
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detailed description of this Competing Sources of Input account, and Freudenthal et al., 2021, 

for a model of the verb-marking deficit in DLD which shows how a deficit in the ability to 

take account of information in the preceding context interacts with the distributional 

properties of English and Spanish to result in a greater verb-marking deficit in English than in 

Spanish). Determining which of these mechanisms provides the most plausible account of the 

increased level of defaulting in DLD is clearly beyond the scope of the present study — and, 

given the multi-faceted nature of DLD, it is possible that all of them may have some role to 

play. However, it opens up a number of avenues for future research which have the potential 

to further increase our understanding of the factors that underlie the verb-marking deficit in 

children with DLD. 

Conclusion 

This study shows that a new version of MOSAIC that defaults to the highest-frequency form 

of the verb can explain both the cross-linguistic pattern of OI errors in TD children and the 

cross-linguistic pattern of verb-marking deficit in children with DLD. This model has several 

advantages over previous models of verb-marking error. First, it can explain the very high 

rate of OI errors in early child English. Second, it can explain why children learning 

languages other than English tend to make both OI and agreement errors in their speech. 

Third, it can explain why English-speaking children with DLD produce OI errors at higher 

rates than MLU-matched controls, whereas children learning other languages tend to make 

more agreement and positioning errors.  
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Appendix S1: Extended description of MOSAIC 

Appendix S2: Further details of OI coding scheme 

Appendix S3: Mixed-effects model results tables 

 

 
i In Dutch (but not German), the 2nd person singular suffix (-t) is omitted in questions and the resultant form is a 

bare stem, which is homophonous with the 1st person singular form and therefore boosts the frequency of this 

form in the input. 

ii In fact, MOSAIC can also simulate errors like *koffie drinkt and *Kaffee trinkt through right-edge learning. 

This is because, although ungrammatical in main clauses in Dutch and German, such sequences are 

grammatical at the ends of utterances in subordinate clauses. 

iii Note that, at the suggestion of a reviewer, we also ran Bayesian alternatives to all the frequentist mixed-

effects Poisson regression models in the current paper using the brms package in R employing default priors. 

In all cases the 95% Confidence Intervals for the critical interaction terms did not cross zero (see Tables 5 to 7B 

in Appendix S3) 


