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Abstract. The paper serves as a response to the recent challenge problem published by the
NAFEMS Stochastic Working Group titled: “Uncertain Knowledge: A Challenge Problem”
whereby the participants are to implement current practices and ‘state-of-the-art’ stochastic
methods to address numerous uncertainty quantification problems presented in the challenge.

In total, two different challenge problems on increasing complexity levels are addressed
through the use of the following techniques: 1) Bayesian model updating for the calibration of
the distribution models and model selection for the aleatory variables of interest; 2) Adaptive-
pinching method for the sensitivity analysis; and 3) Probability Bounds Analysis to quantify the
uncertainty over the failure probabilities.

For the reproducibility of the results and to provide a better understanding of the numerical
techniques discussed in the paper, the MATLAB and R codes implemented to address the chal-
lenge problems are made available via: https://github.com/Institute-for-Risk-and-Uncertainty/
NAFEMS-UQ-Challenge-2022
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1 Introduction

Currently, one of the biggest challenge faced in the design of critical engineering systems
is the lack of available data. As such, this introduces a significant degree of uncertainty in this
aspect and therefore the need to employ uncertainty quantification tools which are robust under
little information. In general, such uncertainties can be group into two distinct categories:
1) Aleatory uncertainty; and 2) Epistemic uncertainty [1, 2]. The aleatory uncertainty stems
from the inherent variability of the system and is/are usually modelled as random variable(s)
following a distribution function. Such uncertainty is irreducible. The epistemic uncertainty,
on the other hand, stems from the lack of knowledge over the system and is represented by a
fixed value within a bounded set which reflects the level of knowledge over the parameter(s) of
interest. Unlike aleatory uncertainties, epistemic uncertainties are reducible through the process
of improving knowledge such as data-collection [3].

To provide such settings where both of such uncertainties exist and need to be quantified,
the NAFEMS Stochastic Workings Group (SWG) has recently published a challenge titled:
“Uncertain Knowledge: A Challenge Problem” [4] which will be tackled in this paper. Details
to the challenge problems are also provided in Sections 3 and 4 of the paper. For each of the
challenge problems presented, the objectives are the following:

1. To quantify the uncertainty over the failure probability Pf due to limited data;

2. To determine the variable which contributes most to the uncertainty in the prediction of
Pf ; and

3. To determine a value of Pf used to make a decision on the engineering system of interest.

The structure of the paper follows as such: Section 2 provides descriptions of the UQ meth-
ods that will be employed to address the challenge problems, Section 3 provides the approach
towards addressing Challenge problem 1, Section 4 provides the approach towards addressing
Challenge problem 2, and Section 5 summarises the content presented and drawing the paper to
a close.

2 Research Methodologies

This section presents detailed descriptions to the various methodologies that are implemented
to address the problems presented in the NAFEMS challenge. Detailed explanations to the
approaches can be found in the respective references.

2.1 Bayesian Model Updating

A well-known stochastic model calibration approach is the Bayesian model updating tech-
nique which is based upon Bayes’ inference [5, 6]:

P (θ|D,M) =
P (D|θ,M) · P (θ|M)

P (D|M)
(1)

whereby θ represents the vector of inferred parameter(s), D represents the vector of observed
data, M represents the model that is being considered for updating, P (θ|M) represents the
prior, P (D|θ,M) represents the likelihood function, P (θ|D,M) represents the posterior, and
P (D|M) is the model evidence term or the normalising constant to ensure that P (θ|D,M)
integrates to 1. Detailed explanations to each of the above terms are found in [6].
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In the context of the challenge questions, θ is used to represent the inferred shape parameters
of the distribution model M (i.e. Normal, Exponential, Beta, etc.) associated with the aleatory
variable based on the limited data D provided.

2.1.1 Transitional Ensemble Markov Chain Monte Carlo

In general, P (θ|D,M) is not normalised due to the complexity in computing P (D|M). To
sample from the un-normalised P (θ|D,M), numerous Markov chain based advanced sampling
techniques have been developed [6]. For this work, the recently-developed Transitional Ensem-
ble Markov Chain Monte Carlo (TEMCMC) sampler is implemented given it is the “state-of-
the-art” technique used for Bayesian model updating. It needs to be highlighted, that one can
also implement relatively simpler MCMC techniques such as Gibbs sampling and Metropolis-
Hastings sampling. Based on the Transitional Markov Chain Monte Carlo concept, it samples
from P (θ|D,M) through a series of “transitional” distributions P j [7]:

P j ∝ P (D|θ,M)βj · P (θ|M) (2)

where j is the iteration number taking integers from 0 to m, and βj is the tempering parameter
such that β0 = 0 < β1 < · · · < βm−1 < βm = 1. Full details to the TEMCMC sampler and its
algorithm are found in [8].

There are two key reasons for implementing TEMCMC sampler in this set of challenge
problems: 1) it is robust in sampling from complex-shaped posteriors indirectly though the use
of P j; and 2) it is able to compute P (D|M) which is a metric used to rank different models
M based on the observed data D. The TEMCMC sampler computes the evidence P (D|M) by
evaluating the mean of the sample nominal weights across iterations and then multiplying them
together [7, 6]. This makes the TEMCMC sampler applicable in performing Bayesian model
selection under model uncertainty (i.e. see Challenge problem 2 in Section 4).

2.1.2 Approximate Bayesian Computation

To perform Bayesian inference on θ, the Approximate Bayesian Computation (ABC) ap-
proach is employed [9]. To do so, an approximate Gaussian likelihood function is used [10]:

P (D|θ,M) ∝ exp

(
−d

ϵ

)2

(3)

where d is the stochastic distance metric, which in this case quantifies the degree of similarity
between the Empirical Cumulative Distribution Function (ECDF) of the given data D and the
chosen distribution model of the aleatory variable, while ϵ is the width factor of the approximate
Gaussian function. In this case, the stochastic area metric is chosen as the stochastic distance
metric defined as:

d =

∫ ∞

−∞
|FD(x)− FM(x)|dx (4)

where FD denotes the CDF of the empirical data D, while FM denotes the CDF of the distribu-
tion model M , e.g. Normal distribution, that is to be updated. Further mathematical details can
be found in [11]. To allow for an acceptable degree of precision on the computation of d whilst
ensuring computational efficiency, 100 samples are drawn from FM to construct its ECDF.
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There are two key reasons to justify the use of the stochastic area metric: 1) it is a non-
parametric metric as there is no need for the user to define a tuning parameter such as the
bin-width in the case of the Bhattacharyya distance [10]; and 2) it can be implemented along
ECDFs which is particularly useful especially if the data-size is small and its true distribution
profile cannot be simply determined from its histogram.

2.2 Adaptive-pinching Method

Part of the analysis in this challenge involves determining the aleatory variable which con-
tributes most to the uncertainty on the failure probability Pf . To achieve this, a sensitivity
analysis is performed on the inferred parameters defined by θ to quantify and rank these param-
eters according to their sensitivity on the Pf interval denoted as ∆. Such analysis will be done
using the Adaptive-pinching method which provides a non-empirical approach to determine the
pinched bounds of a chosen inferred parameter which yields the greatest reduction in ∆ [12].

The procedure to the method is as follows: For a chosen variable θnd , for nd = 1, . . . , Nd is
the component index of θ, its given interval is divided into 10 equally-spaced sub-intervals. At
iteration j = 1, the first sub-interval is isolated and serves the the “pinched” space. This is done
whilst keeping the remaining interval of the Nd − 1 component(s) unchanged. From which,
the computation of Pf is performed accounting for the “pinched” interval of θnd . Denoting the
resulting reduced interval of Pf as ∆p, the sensitivity index Ω for the chosen θnd is defined [13]:

Ω = 1− ∆p

∆0

(5)

whereby ∆0 is the initial interval on Pf before the adaptive-pinching procedure. After this is
done, the analysis and computation of Ω is repeated for iterations j = 2 to j = 10 from which,
the maximum value of Ω is determined among the 10 iterations. This maximum value of Ω
achieved by θnd will be its sensitivity score. The procedure is then repeated for the remaining
Nd − 1 variable(s). An illustrative description to the above procedure is provided in Figure 1.

From the analysis, aleatory variable whose inferred distribution shape parameter has the
highest value of Ω will be reflected as the variable which contributes the most to the uncertainty
on Pf .

Figure 1: Illustration to the Adaptive-pinching approach for the Sensitivity analysis.

3 Challenge Problem 1

3.1 Problem Description

In this problem, two aleatory variables are presented: R and S whose respective data are pre-
sented in Table 1. It is stated that both R and S follow a Normal distribution which is assigned
as the model M to be updated for both aleatory variables. From there the corresponding limit
state function g is defined as:
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g = R− S (6)

while the failure probability Pf is defined as:

Pf = P (g < 0) (7)

Based on the available information and data on R and S, the uncertainty on Pf needs to be
quantified.

To address the problem, Probability Bounds Analysis (PBA) is implemented [14]. In doing
so, it will not be assumed that R and S are independent and that the uncertainty over the depen-
dency between the two aleatory variables will be accounted for in the uncertainty quantification
of Pf .

R [MPa] 503.252 460.005 485.503 466.061 475.449 − − − − −
S [MPa] 376.594 278.222 331.535 330.774 395.173 394.203 387.309 361.754 300.191 381.090

Table 1: Table of data for R and S.

3.2 Results and Discussions

3.2.1 Model Calibration
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Figure 2: ECDF of R and S based on the numerical data in Table 1.

Figure 2 presents the respective ECDF plots for R and S from which, the Bayesian model
updating approach is implemented to infer the following Normal distribution shape parameters
for R and S: θR = {µR, σR} and θS = {µS, σS} respectively. Details to the respective inferred
parameters are found in Table 2.

For each inferred parameter, a Uniform prior is assigned whose corresponding bounds are
defined in Table 2. The likelihood function used is the approximate Gaussian function defined
in Eq. (3).
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To infer θR, the width parameter of the likelihood function is set at ϵ = 5.0. The same
setting is used when inferring θS This is to ensure: 1) a sufficient degree of convergence on the
posterior P (θ|D,M); and 2) to ensure an acceptable number of iterations (i.e. between 5 to 6)
by the TEMCMC sampler so as to keep computational costs relatively low.

θ Description Prior bounds Units
µR Mean of R [300, 600] [MPa]
σR Standard deviation of R [5, 100] [MPa]
µS Mean of S [200, 500] [MPa]
σS Standard deviation of S [5, 100] [MPa]

Table 2: Details to the respective inferred parameters and the corresponding prior bounds.

The resulting sample histogram obtained from P (θ|D,M) for the respective inferred param-
eters are presented in Figure 3. From which, credible intervals at different levels Lc ∈ [0, 100]
% could be obtained. The choice of Lc for the respective inferred parameters is presented in Ta-
ble 3 along with their resulting interval bounds. The justification behind the the corresponding
values of Lc used is to ensure the tightest possible resulting P-box for R and S whilst ensuring
they enclose the ECDFs shown in Figure 2. The resulting P-boxes for R and S are presented in
Figure 4.

Figure 3: Histogram of the posterior samples for θ = {µR, σR, µS , σS}.

θ Lc [%] Interval Units
µR 5.0 [471.7296, 482.5105] [MPa]
σR 5.0 [8.0288, 23.0162] [MPa]
µS 0.0 [342.1467, 368.6816] [MPa]
σS 0.0 [23.6986, 56.7473] [MPa]

Table 3: Results to the Lc and the resulting interval for the respective inferred parameters.
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Figure 4: Resulting P-box obtained for R and S (in blue) along with their respective ECDFs of the observed data
(in red).

From the resulting P-boxes obtained for R and S, the P-box for g is obtained based on Eq.
(6) and presented in Figure 5. As such, based on Eq. (7), we obtain the following results
for Pf summarised in Table 4. As seen in the results in Table 4, the upper-bound on Pf is
higher when considering the uncertainty over the dependency between R and S. To provide a
conservative yet robust decision by accounting for such uncertainty, the reference value will be
set at Pf = 0.1760 which will be used for decision-making over the system in question.

-200 -100 0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

C
D

F
 v

a
lu

e

Uncertain dependency

Independence assumption

Figure 5: Resulting P-box obtained for the limit state function g. Note: The red dotted line denotes where g = 0.
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Uncertain dependency Independence assumption
Pf [0, 0.1760] [0, 0.0520]

Table 4: Results to the uncertain Pf for the respective assumptions.

3.2.2 Sensitivity Analysis

The results of the sensitivity analysis via the Adaptive-pinching approach are summarised in
Table 5. Based on the results, under both uncertain dependency and independence assumptions,
the inferred parameter σS has consistently the highest value of sensitivity index. This implies
that the aleatory variable S, particularly its standard deviation, contributes the most to the un-
certainty on Pf which is consistent with the fact that there is less data on S. As such, there is a
larger uncertainty on S compared to R.

In addition, it needs to be acknowledged that the uncertainty over the dependency between
R and S also has significant contribution towards the uncertainty over Pf . As seen from the
results in Table 4, there is a 70.45 % difference on the bounds on Pf between the consideration
of uncertain dependencies and independence between the two aleatory variables.

θ Uncertain dependency Independence assumption
Ω Pinched Pf Rank Ω Pinched Pf Rank

µR 0.1932 [0, 0.1420] 4 0.2692 [0, 0.0380] 3
σR 0.5000 [0, 0.0880] 2 0.2308 [0, 0.0400] 4
µS 0.4318 [0, 0.1000] 3 0.5769 [0, 0.0220] 2
σS 0.7727 [0, 0.0400] 1 0.9615 [0, 0.0020] 1

Table 5: Results to sensitivity index Ω and the ranking of the respective inferred parameters under the respective
assumptions.
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4 Challenge Problem 2

4.1 Problem Description

Figure 6: Schematic diagram of the reactor column set-up adopted from [4].

In this problem, a model reactor column is presented whose schematic diagram is illustrated
in Figure 6. Without the consideration of mass and heat transfer, the pressure drop ∆P of the
air flowing through the region of porous material is defined [4]:

∆P =
150µL

Dp
2 · (1− ε)2

ε3
· νs +

1.75Lρ

Dp

· (1− ε)

ε3
· νs2 (8)

where Dp is the diameter of the porous media particles, ε is the porosity of the porous media,
L is the length of the porous media, ρ is the density of fluid air set at 1.225 kg/m3, mu is the
dynamic viscosity of fluid air set at 1.81 × 10−5 kg/m · s, and νs is the superficial velocity
of fluid set at 0.35 m/s. The variables Dp, ε, and L are treated as aleatory variables whose
respective data and corresponding ECDFs are presented in Table 6 and Figure 7 respectively.
The failure probability Pf is defined as:

Pf = P (∆P > 15250Pa) (9)

Based on the available information and data on Dp, ε, and L, the uncertainty on Pf needs to be
quantified.

However, unlike in Challenge Problem 1 (i.e. see Section 3), there is no assumption on the
form of distribution the aleatory variables follow, thereby introducing the element of model
uncertainty to the problem. As such, this presents the need to perform a model selection on Dp,
ε, and L. From there, PBA is implemented whilst also accounting for the uncertainty over the
dependencies between Dp, ε, and L in the uncertainty quantification of Pf .
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Dp [m] 0.0032 0.00395 0.0037 0.0035 0.0031 0.0040 0.0038 0.0038 0.0040 0.0037
ε [−] 0.375 0.347 0.329 0.352 0.388 0.419 0.404 0.394 0.352 0.370
L [m] 2.86 3.13 3.08 3.12 2.94 2.90 2.80 3.05 3.02 3.04

Table 6: Table of data for Dp, ε, and L.
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Figure 7: ECDF of Dp, ε, and L based on the numerical data in Table 6.

4.2 Results and Discussions

4.2.1 Model Calibration and Selection

Figure 7 presents the respective ECDF plots for the aleatory variables Dp, ε, and L. For each
of the aleatory variables, two candidate distribution models M are considered: 1) Scaled Beta
distribution; and 2) Normal distribution. The scaled Beta distribution is considered due to the
flexibility in modelling the distribution shape to a certain degree of complexity using two shape
parameters and it is defined as:

fBeta(x) = Beta
(
x

γ
;α, β

)
(10)

where γ is the scale factor corresponding to the maximum possible value of a given aleatory
variable, while α and β are the shape parameters of the Beta distribution. To ensure a sufficiently
finite support on each of the aleatory variables, the values of γ assigned to each of these variables
are: 1) γ = 0.005 m for Dp; 2) γ = 0.500 for ε; and 3) γ = 5.000 m for L. The Normal
distribution, on the other hand, is considered due to the physics-based assumption that it best
describes the random errors in reality [15].

To determine the most probable distribution model M for each of the aleatory variable, the
log model evidence log [P (D|M)] is used as the metric. For each distribution model M , the
Bayesian model updating approach is implemented to infer the corresponding shape parameters
for Dp, ε, L:

• For the case of M being assigned a Scaled Beta distribution:

θDp = {αDp , βDp}; θε = {αε, βε}; and θL = {αL, βL}.
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• For the case of M being assigned a Normal distribution:

θDp = {µDp , σDp}; θε = {µε, σε}; and θL = {µL, σL}.

Details to the respective inferred parameters are found in Tables 7 and 8.
For the likelihood function, the width parameter is set at ϵ = 5.0 × 10−5 m for Dp, ϵ =

5.0×10−3 for ε, and ϵ = 0.05m for L. The justification for this is as per presented in Section 3

θ Description Prior bounds Units
αDp Shape parameter 1 of Dp [0.01, 200] [−]
βDp Shape parameter 2 of Dp [0.01, 200] [−]
αε Shape parameter 1 of ε [0.01, 200] [−]
βε Shape parameter 2 of ε [0.01, 200] [−]
αL Shape parameter 1 of L [0.01, 200] [−]
βL Shape parameter 2 of L [0.01, 100] [−]

Table 7: Details to the respective inferred parameters and the corresponding prior bounds given M assigned as the
Scaled Beta distribution model.

θ Description Prior bounds Units
µDp Mean of Dp [0.001, 0.005] [m]
σDp Standard deviation of Dp [0.0001, 0.0008] [m]
µε Mean of ε [0.01, 0.50] [−]
σε Standard deviation of ε [0.001, 0.080] [−]
µL Mean of L [1.00, 5.00] [m]
σL Standard deviation of L [0.010, 0.500] [m]

Table 8: Details to the respective inferred parameters and the corresponding prior bounds given M assigned as the
Normal distribution model.

Due to the stochastic nature in the computation of log [P (D|M)] by the TEMCMC sampling
algorithm, 100 runs of computation is done for each of the aleatory variables for the correspond-
ing choice of M . The resulting statistics of log [P (D|M)] for each of the aleatory variable given
each choice of M are presented in Table 9. Based on the results, it can be concluded that the
most probable distribution model M for the respective aleatory variables are the following: 1)
Normal distribution for Dp; 2) Normal distribution for ε; and 3) Scaled Beta distribution for L.

log [P (D|M)] Dp ε L
Beta Normal Beta Normal Beta Normal

Mean −8.6268 −8.5844 −7.2679 −7.1504 −5.0708 −5.4810
Standard deviation 0.4808 0.4011 0.4195 0.4707 0.2526 0.3116

Table 9: Resulting statistics of the log model evidence values for the corresponding aleatory variables given each
choice of distribution model.

The resulting sample histogram obtained from P (θ|D,M) for the respective inferred pa-
rameters of the distribution model M for the corresponding aleatory parameters are presented
in Figure 9. From which, credible intervals at different levels Lc could be obtained. The choice
of Lc for the respective inferred parameters is presented in Table 10 to which the justification
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Figure 8: Resulting plots of the log model evidence results. The error-bars denote the 1-sigma bounds.

Figure 9: Histogram of the posterior samples for θ = {µDp , σDp , µε, σε, αL, βL}.

θ Lc [%] Interval Units
µDp 0.0 [3.5, 3.8]× 10−3 [m]
σDp 0.0 [1.184, 4.634]× 10−4 [m]
µε 0.5 [0.3604, 0.3866] [−]
σε 0.5 [0.0169, 0.0424] [−]
αL 41.0 [112.1297, 124.9070] [−]
βL 41.0 [75.1162, 83.7704] [−]

Table 10: Results to the Lc and the resulting interval for the respective inferred parameters.

is as per presented in Section 3. The resulting P-boxes for Dp, ε, and L are presented in Figure
10.
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Figure 10: Resulting P-box obtained for Dp, ε, and L (in blue) along with their respective ECDFs of the observed
data (in red).

From the resulting P-boxes obtained for Dp, ε, and L, the P-box for ∆P is obtained based
on Eq. (8). Under different assumptions, the failure probability Pf is computed using Eq. (9)
to which the results are presented in Table 11. From the table, it can be seen that there is a
significant reduction in the Pf interval when independence between the aleatory variables is
assumed. To provide a conservative yet robust decision on Pf , the resulting Pf interval under
uncertain dependency between the aleatory variables and accounting for monotonicity of the
variables is considered for this problem. Hence, the reference value will be set at Pf = 0.1680
which will be used for decision-making over the system in question. Figure 11 presents the
resulting P-box plot for ∆P .

Assumption Pf intervals
Independence [0, 0.0351]
Uncertain dependency (Plain PBA) [0, 0.2860]
Uncertain dependency (Considering monotonicity) [0, 0.1680]

Table 11: Results to the uncertain Pf for the respective assumptions.

4.2.2 Sensitivity Analysis

The results of the sensitivity analysis via the Adaptive-pinching approach, accounting for the
uncertainty over the dependency between the aleatory variables, are summarised in Table 12.
Based on the results, the inferred parameter σε has consistently the highest value of sensitivity
index. This implies that the aleatory variable ε, particularly its standard deviation, contributes
the most to the uncertainty on Pf . This is consistent with the fact that ε has the highest repetition
in the formula for ∆P as seen in Eq. (8), therefore, making Pf more sensitive to the uncertainty
of ε.
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Figure 11: Resulting P-box obtained for the pressure drop ∆P . Note: The red dotted line denotes where ∆P =
15250 Pa.

θ Uncertain dependency
Ω Pinched Pf Rank

µDp 0.3095 [0, 0.1160] 4
σDp 0.5952 [0, 0.0680] 2
µε 0.5000 [0, 0.0840] 3
σε 0.7619 [0, 0.0400] 1
µL 0.0595 [0, 0.1580] 6
σL 0.0714 [0, 0.1560] 5

Table 12: Results to sensitivity index Ω and the ranking of the respective inferred parameters under uncertain
dependencies between the aleatory parameters.

5 Conclusion

The paper has presented numerous techniques which have been implemented to tackle the
NAFEMS SWG Challenge. The Bayesian model updating technique is employed to: 1) per-
form probabilistic model updating on the distribution model used to characterise the distribution
of the corresponding aleatory parameters under limited data; and 2) to infer the most probable
distribution model on the available data under model uncertainty through the use of the Transi-
tional Ensemble Markov Chain Monte Carlo sampler [8].

To quantify the uncertainty over the failure probability, Probability Bounds Analysis is used
to construct a P-box on a performance function given the P-box constructed for the aleatory
variables using Bayesian model updating. The robust computation of the interval bounds on the
failure probability does not assume independence on the aleatory variables, but rather accounts
for the uncertainty over the dependencies between these variables.

To perform the Sensitivity analysis on the distribution parameters and from there, determine
the aleatory variable whose uncertainty contributes the most to the uncertainty of the failure
probability, the adaptive pinching method is employed [12]. Such method serves to provide
a non-empirical method for pinching and to indirectly quantify the sensitivity of the aleatory
variable by pinching the interval of its distribution parameters. From which, the maximum sen-
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sitivity index is computed and used to rank and determine the most sensitive aleatory variable.
To provide the readers with a greater understanding of the numerical methods implemented

as well as to reproduce the results presented in the paper, the MATLAB codes used to perform
Bayesian model updating as well as the R codes used to perform the Probabilistic Bounds Anal-
ysis are made accessible via: https://github.com/Institute-for-Risk-and-Uncertainty/
NAFEMS-UQ-Challenge-2022
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