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Abstract: The effects of intravenous gefitinib (10 mg/kg), an anilinoquinazoline thymidylate kinase
inhibitor (TKI), selective for the epidermal growth factor receptor (EGFR), on the urinary metabotypes
of mice were studied. We hypothesized that, in response to the administration of gefitinib, there might
be significant changes in the excretion of many endogenous metabolites in the urine, which could be
correlated with the plasma pharmacokinetics (PK) of the drug. In order to investigate this conjecture,
urine from male C57 BL6 mice was collected before IV dosing (10 mg/kg) and at 0–3, 3–8, and 8–24 h
post-dose. The samples were profiled by UPLC/IM/MS and compared with the profiles obtained
from undosed control mice with the data analyzed using multivariate statistical analysis (MVA). This
process identified changes in endogenous metabolites over time and these were compared with drug
and drug metabolite PK and excretion. While the MVA of these UPLC/IM/MS data did indeed reveal
time-related changes for endogenous metabolites that appeared to be linked to drug administration,
this analysis did not highlight the presence of either the drug or its metabolites in urine. Endogenous
metabolites affected by gefitinib administration were identified by comparison of mass spectral,
retention time and ion mobility-derived collision cross section data (compared to authentic standards
wherever possible). The changes in endogenous metabolites resulting from gefitinib administration
showed both increases (e.g., tryptophan, taurocholic acid, and the dipeptide lysyl-arginine) and
decreases (e.g., deoxyguanosine, 8-hydroxydeoxyguanosine, and asparaginyl-histidine) relative to
the control animals. By 8–24 h, the post-dose concentrations of most metabolites had returned to
near control values. From these studies, we conclude that changes in the amounts of endogenous
metabolites excreted in the urine mirrored, to some extent, the plasma pharmacokinetics of the drug.
This phenomenon is similar to pharmacodynamics, where the pharmacological effects are related to
the drug concentrations, and by analogy, we have termed this effect “pharmacometabodynamics”.

Keywords: gefitinib metabolomics; pharmacometabonomics; pharmacometabodynamics; rapid
profiling; metabolite identification

1. Introduction

Metabolic phenotyping (metabonomics/metabolomics) has previously been shown
to have utility in predicting likely drug response based on pre-dose metabolite profiles.
This property of an organism’s metabotype was first demonstrated by Clayton et al. for
acetaminophen (paracetamol) in both rats [1] and humans [2]. This phenomenon, originally
termed phamacometabonomics by its’ discovers (reviewed in e.g., [3,4]), and subsequently
as pharmacometabolomics by others [5], has stimulated much research in this area [3–5].
The ability to predict a response, or a lack thereof, based on pre-dose metabotypes has led
to the advocacy of the use of pharmacometabonomic/pharmacometabolomic approaches
in personalized medicine. In addition, metabolic profiling has obvious applications in
examining the effects of drugs and toxins to seek mechanistic insights into modes of action.
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Similarly, given the general nature of metabolic phenotyping, it is also clearly possible
to use untargeted metabolic profiling to look for the “off target” pharmacological effects of
drugs. Studying the global effects of drugs in this way may, in addition to supporting mode
of action investigations and helping to understand adverse effects, also suggest alternative
uses for them, and such drug repurposing represents a very active area of research [6].
One obvious area for development is not simply to link pre-dose profiles with likely efficacy,
or even the effects of the drug on the metabolome following dosing, but to link the phar-
macokinetics of the drug and its metabolites with the time-related changes in the metabolic
phenotype of those to whom it has been administered. This is clearly similar in concept to
pharmacodynamics and, to distinguish it from “conventional” pharmacometabonomics, a
term such as “pharmacometabodynamics” might be appropriate.

Here, we report some preliminary results on the effects on the urinary metabolic
profiles of mice following the IV administration of the anticancer drug gefitinib (Iressa®),
an anilinoquinazoline thymidylate kinase inhibitor (TKI) (structure in Figure S1). Gefitinib,
which is selective for the epidermal growth factor receptor (EGFR), was developed as an
oral cancer treatment directed against non-small cell lung cancer (NSCLC), and is effective
in patients with specific mutations of EGFR [7–9].

Gefitinib has been shown to be well absorbed with a good bioavailability, but it is
subject to extensive biotransformation in both preclinical species [10–15] and humans
(e.g., [11,15–19]) to a large number of metabolites. As a result of these in vivo studies, and
a number of in vitro [20–23] investigations, it is known that gefitinib metabolism involves
a wide combination of biotransformations. These include O-demethylation, oxidative
metabolism of the morpholine ring, and oxidative defluorination (e.g., [11,20–23]), much
of which is mediated via CYP3A4 and 3A5, as well as contributions from CYP2D6 [21,22].
More recently, the further biotransformation of some of these oxidative metabolites to
sulfate and glucuronide conjugates has been observed [14–16,19].

While, as will be clear from the above, the pharmacokinetics (PK) and metabolic
fate of the drug have been well studied, the consequences of gefitinib administration to
the metabolome have not. However, as has long been known in toxicity studies where
metabolic phenotyping has been performed, there are often significant, time-dependent
changes in the profiles of endogenous metabolites in response to the administration of a
toxin. So, in an acute toxicity study, early changes in the metabolic phenotype can indicate
the onset of metabolic dysregulation and the development of tissue damage [24,25]. If the
insult is such that the organism is able to recover and repair the damage caused by the toxin,
metabolite profiles will begin to normalize as repair and homeostasis occurs. Similarly,
as discussed above, the administration of a therapeutic drug may also be associated with
changes that will be regulated by the pharmacokinetics of its actions, and this can also be
expected to result in time-dependent changes in the metabolome.

Here, similarly to pharmacodynamic studies, we investigated the effects of gefitinib
dosed intravenously to mice on the urinary profiles of endogenous metabolites in order to
see whether there were pharmacometabodynamic effects of the drug on the metabolomes
of these animals. This was undertaken using both UHPLC/MS and UHPLC/IM/HRMS,
following the intravenous administration of the drug at 10 mg/kg. We also examined
the potential of metabolic phenotyping combined with unbiased multivariate statistical
analysis (MVA) to highlight the presence of drugs and metabolites in the urine as part of
an unbiased approach to drug metabolite detection.

2. Results and Discussion

Since the earliest days of modern untargeted metabolic phenotyping, the potential
for providing a means of rapidly and efficiently detecting both xenobiotic and endoge-
nous metabolites in biological fluids has been apparent, e.g., see [26–29]. However, these
early studies were often associated with relatively high dose drugs (e.g., paracetamol
(acetaminophen) [26,27] or oxpentifylline [28]) or toxicological investigations, where high
doses were employed to achieve a toxic effect [29]. Developments in chromatographic
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analysis and mass spectrometry, together with the application of IM spectrometry, have
provided new and efficient methods to investigate the effect of drugs on the endogenous
metabolome, and to correlate these with drug/metabolite exposure (e.g., see [30–34]).

In particular, the increasing sensitivity of LC/MS offers the opportunity of using
microsampling to investigate the pharmacokinetics and metabolic fate of drug candidates in
early drug discovery very efficiently. However, in addition, these advances also enable the
samples gathered in DMPK studies to be used to investigate drug effects on the metabolome
at low, essentially pharmacological, doses, rather than those associated with toxicity. This
strategy was employed here with conventional DMPK profiling performed initially [14],
followed by the metabolic phenotyping of the same samples, as described below.

2.1. Plasma Pharmacokinetics of Gefitinib and Metabolites

In the initial phase of our study on gefitinib in mice, the pharmacokinetics of the
drug and some of its metabolites were determined [14]. This analysis showed that IV
administration at 10 mg/kg was associated with a mean maximum observed plasma
concentrations of gefitinib of 4.4 µg/mL. These plasma concentrations were detected 6 min
post-dose (the first time point measured) and the concentrations of the drug then declined
with a half-life (T1/2) of 2.6 h. Gefitinib was no longer detectable in the samples collected
24 h post-dose (see Figure S1).

Metabolites of the drug were also detected at the earliest time points studied, with high
concentrations for the morpholino carbonyl compound (M605211) and the O-desmethyl
metabolite (M523595) at 6 min post-dose, with maximum observed concentrations noted
1 h post-dose (see Figure S1). The concentrations of these metabolites then declined in
parallel with those of gefitinib, and were also undetectable in the 24 h samples [14]. These
results showed, in line with previous studies in rodents [10–15], that the drug was rapidly
metabolized, producing a large number of metabolites, which were detected in both the
circulation and urine [14].

2.2. Untargeted Analysis of Urine Including Gefitinib and Metabolites

In determining the metabolism of gefitinib in these mice [14], we performed “conven-
tional” metabolic profiling to detect and characterize the metabolites of the drug excreted
in the urine. The same analyses also provided the data necessary to look at the changes in
the profile of endogenous metabolites. The urine samples analyzed were obtained from
mice housed in groups of five animals/metabowl, and thus represent pooled collections
from each of these groups.

Given the obvious need to exclude gefitinib and its metabolites from the untargeted
endogenous metabolic profiling data, we also took the opportunity to investigate the
approach (originally shown for LC/MS by Plumb et al. [30]) of using MVA to detect drug-
related features in an unbiased way. When the untargeted LC/MS data obtained for each
of the time period collections (pre-dose, and 0–3, 3–8, and 8–24 h post-dose) were analyzed
in this way, differences were readily observed between control and IV dosed samples by
PCA (Figure 1 for positive ESI and Figure S2 for negative ESI). However, despite the clear
detection of gefitinib and its metabolites in the urine obtained previously [14], and unlike
the situation reported for a number of other compounds, e.g., [30–34], none of the ions
associated with them contributed to the observed PCA separation. Thus, as shown in
Figure 1A and B for the positive ion data, the removal of all of the previously identified
ions associated with gefitinib and its metabolites [14] had no effect on the observed PCA
score plot. A similar result was also seen for the negative ion data (not shown), and no
signals for either the drug or its metabolites were found to be significant through PCA.
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as rats and dogs, was excreted in the feces [11] with under ca. 10% eliminated via the 
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kinetic data for gefitinib and the major circulating O-demethylated and morpholino-car-
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compounds declined rapidly from their peak observed concentrations and, as noted 
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Figure 1. PCA of positive ESI LC–IM–MS data for urine obtained from male C57Bl6 mice dosed intravenously with
10 mg/kg gefitinib for the periods of pre-dose (light blue) and 0–3 (red), 3–8 (green), and 8–24 h (dark blue). These data
were obtained following analysis (each urine pool in triplicate) with (A) MS data for gefitinib and metabolites included and
(B) with MS data for gefitinib and metabolites removed, demonstrating the lack of any contribution to the separation as a
result of drug-related material in the urine.

This result is somewhat disappointing, as the dose administered at 10 mg/kg, is not in-
significant, and of the order frequently encountered in drug discovery settings. In addition,
as noted above, when these UPLC/IM/MS data for urine were examined using “conven-
tional” methods, the drug and its metabolites were readily detected [14]. This in vivo result
contrasts with the findings of in vitro incubations of gefitinib reported by Liu et al. [23].
This study employed human and mouse liver microsomes, as well as recombinant CYP450s,
to determine the nature of the reactive metabolites produced by the oxidative metabolism
of gefitinb. Upon incubation of the drug at concentrations of 30 µM, a large number of
oxidative metabolites, including a range of reactive metabolites, were detected by MVA,
using the supervised approach of OPLS-DA [23]. However, in vivo radiolabeled studies
have shown that the bulk of the dose of gefitinib given to preclinical species, such as rats
and dogs, was excreted in the feces [11] with under ca. 10% eliminated via the urine. The
qualitative urinary excretion data for gefitinib and a number of its metabolites obtained in
this mouse study [14] are illustrated in Figure 2, with the plasma pharmacokinetic data for
gefitinib and the major circulating O-demethylated and morpholino-carbonyl metabolites
(M523595 and M605211) shown in Figure S1. As this figure shows, these compounds
declined rapidly from their peak observed concentrations and, as noted above, were no
longer detected in circulation 24 h post-dose (see Figure S1).

If we examine the urinary excretion profile of gefitinib and its metabolites, it is clear
that excretion was rapid, as they were present even in the 0–3 h post-dose urine. Indeed,
concentrations of the morpholine ring-opened O-desmethyl metabolite (M8) peaked in
the 0–3 h collection. For gefitinib itself, and e.g., the morpholine-ring-M6 (M537194) and
desfluorophenol-M9 (M387783) metabolites, respectively, the maximum amounts detected
in the urine were present in the 3–8 h post-dose samples, reducing in the 8–24 h urines.
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Figure 2. Relative amounts (based on peak response) for gefitinib and selected metabolites in the urine of IV dosed mice
for the time points obtained from pooled pre-dose (orange) and 0–3 h (grey), 3–8 (yellow), and 8–24 h (blue) post-dose
samples [14]. As indicated, no signals for gefitinib or its metabolites were detected in the pre-dose samples, while the
relative rates of excretion of the drug and its metabolites showed compound-dependent profiles. The pharmacokinetic (PK)
plasma profiles reported in [14] for gefitinib, M605211, and the O-desmethyl metabolite M7 (M523595) are provided in
Figure S1.

There was also a third group of metabolites where, although detectable in both the 0–3
and 3–8 h collections, the maximum amounts observed were in the 8–24 h urine, typified
by the O-desmethyl metabolite M7 (M523595). While readily detected using conventional
methods, the absence of these compounds as discriminating features in the PCA analysis
is more disappointing when compared with some earlier work, e.g., [23,30–34]. However,
given that the removal of gefitinib-related features from the PCA had no discernible effect
on the score plots for PCs 1 and 2, it is unsurprising that the examination of the data
confirmed that none of the top 100 discriminating ions were gefitinib-related. This probably
reflects the combination of the major route of excretion being via the feces and the low
dose of gefitinib administered. Both factors should be compared with the much higher
amounts (often several 100 mg/kg) administered in toxicity studies on, e.g., paracetamol
(acetaminophen) [31,33] or 2-bromophenol [33,34], where significant urinary excretion
of drug/xenobiotic-related metabolites occurred and contributed to the PCA. Thus, the
extensive metabolism of gefitinib, to a large number of metabolites, added to the complexity
of the sample, but clearly did not contribute significant features to the profile. Some
support for this view that high doses are beneficial for a metabolomic approach to drug
metabolism studies on this class of compound comes from a recent study on the TKI
inhibitor nintedanib (used for the treatment of idiopathic pulmonary fibrosis (IPF) and,
when combined with docetaxel as a treatment for NSCLC) [35]. Here, a dose of 200 mg/kg
to mice was employed, which allowed 19 metabolites to be detected and characterized in
the urine and feces following data analysis using OPLS-DA. The same authors were able to
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characterize 38 metabolites of the drug agomelatine (a melatonin analogue) in human liver
microsomal incubations and the excreta of mice dosed orally at 50 mg/kg (again using
OPLS-DA to highlight ions of interest for characterization) [36]. However, despite the
failure to find gefitinib and its metabolites in urine using untargeted metabolite profiling
combined with MVA, it is interesting to observe how the endogenous metabolite profiles
varied considerably with systemic exposure to gefitinib (described in [14] and illustrated in
Figure S1).

2.3. Untargeted Metabolic Phenotyping

In order to examine the effects of exposure to gefitinib and its metabolites on the
urinary excretion of endogenous metabolites, the untargeted profiling data were examined
after the removal of any drug-related ions from the dataset. The inclusion criteria for
endogenous metabolites to be accepted in the data for analysis were that a feature had
to show a minimum of ≤30% CV variation in signal, and ideally less, in the QC samples.
To obtain an indication of the technical variability each sample (from all timepoints) was
analyzed in triplicate (see Figure 3). When the data from this study were analyzed, a total of
6179 features were detected in the positive ESI that met the acceptance criterion of having
a CV of ≤30%. For negative ESI, the corresponding figure was 2025 ions detected with a
CV ≤30%. The data for all of the QC samples are provided in Supplementary Tables S1
and S2, together with a breakdown of features showing CVs of ≤20 and ≤10%. Retention
time variability was less than 0.5% for all of these features. No trends in either the signal
intensity or retention time were observed over the time-course of the analysis for either the
study replicates or QC samples.

As can be seen from the PCA of these urine samples in Figure 1, for the positive ESI
data there was evidence for a clear time-related “trajectory” in response to gefitinib admin-
istration (see Figure S2 for the negative ESI result). Thus, the pre-dose samples clustered
closely together with 0–3 and 3–8 h post-dose samples distant from them. However, the
8–24 h urine data showed evidence that the animals were returning to a more normal
“pre-dose” metabolic phenotype, as these samples were mapped into a similar metabolic
“space” as the pre-dose urine. It is also of interest to note that there were some cage effects,
with an obvious difference between the two pools for the 0–3 h samples evident in the PCA
and, to some extent, in the heatmaps shown in Figure 3.

Analysis of these data by Metaboanalyst [37] and the production of heatmaps based
on changes in the top 100 features (as determined statistically by T-test and ANOVA) for
the positive ESI data, demonstrated similarities between all of the mouse groups involved
in the study at the pre-dose timepoint (see Figure 3A). However, as can be seen in Figure S3,
for both the positive and negative ESI data, there was also evidence for diurnal variation in
the vehicle group in the absence of drug administration. Diurnal variation is also apparent
in Figure 3A for the control mice. However, following the administration of the drug, the
urine of the gefitinib-dosed mice showed a rapid divergence from those of the undosed
controls, as would be expected from the PCA. This divergence was evident in the first 0–3 h
post-dose, but was also present in the data from the 3–8 h timepoint, before normalizing
somewhat over the subsequent 16 h, as shown for the 8–24 h samples in Figure 3B. The
examination of these data showed that the changes detected in the metabolic profiles
comprised both time-related relative increases and decreases in the amounts of numerous
metabolites in the urine obtained from gefitinib-dosed animals. Heatmaps illustrating
the results for the top 100 changed metabolites in the control (Figure 3A) and gefitinib
(Figure 3B) dosed animals provide further support for the time-course trajectory, indicated
in the PCA shown in Figure 1.

Similar heatmaps for the negative ESI data are provided in Figure S4. All of these
results clearly indicate that the administration of gefitinib at a subtoxic “pharmacological
dose” had profound pharmacometabodynamic effects on the urinary metabotypes. As
such, these changes may enable the identification of mechanistic or diagnostic endogenous
metabolites that could prove useful in understanding the activity of the drug at a molecular
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level. We have therefore begun an attempt to characterize the various metabolites that
were affected by the administration of the drug, as described below.

Metabolites 2021, 11, x FOR PEER REVIEW 6 of 16 
 

the complexity of the sample, but clearly did not contribute significant features to the pro-
file. Some support for this view that high doses are beneficial for a metabolomic approach 
to drug metabolism studies on this class of compound comes from a recent study on the 
TKI inhibitor nintedanib (used for the treatment of idiopathic pulmonary fibrosis (IPF) 
and, when combined with docetaxel as a treatment for NSCLC) [35]. Here, a dose of 200 
mg/kg to mice was employed, which allowed 19 metabolites to be detected and character-
ized in the urine and feces following data analysis using OPLS-DA. The same authors 
were able to characterize 38 metabolites of the drug agomelatine (a melatonin analogue) 
in human liver microsomal incubations and the excreta of mice dosed orally at 50 mg/kg 
(again using OPLS-DA to highlight ions of interest for characterization) [36]. However, 
despite the failure to find gefitinib and its metabolites in urine using untargeted metabo-
lite profiling combined with MVA, it is interesting to observe how the endogenous me-
tabolite profiles varied considerably with systemic exposure to gefitinib (described in [14] 
and illustrated in Figure S1). 

2.3. Untargeted Metabolic Phenotyping 
In order to examine the effects of exposure to gefitinib and its metabolites on the 

urinary excretion of endogenous metabolites, the untargeted profiling data were exam-
ined after the removal of any drug-related ions from the dataset. The inclusion criteria for 
endogenous metabolites to be accepted in the data for analysis were that a feature had to 
show a minimum of ≤30% CV variation in signal, and ideally less, in the QC samples. To 
obtain an indication of the technical variability each sample (from all timepoints) was an-
alyzed in triplicate (see Figure 3). When the data from this study were analyzed, a total of 
6179 features were detected in the positive ESI that met the acceptance criterion of having 
a CV of ≤30%. For negative ESI, the corresponding figure was 2025 ions detected with a 
CV ≤30%. The data for all of the QC samples are provided in Supplementary Tables S1 
and S2, together with a breakdown of features showing CVs of ≤20 and ≤10%. Retention 
time variability was less than 0.5% for all of these features. No trends in either the signal 
intensity or retention time were observed over the time-course of the analysis for either 
the study replicates or QC samples. 

 Figure 3. Heatmaps representing control and IV groups (positive ESI) for the top 100 discriminating features. The four time
points (each urine pool in triplicate) are represented as pre-dose (T1, red) and 0–3 h (T2, green), 3–8 h (T3, dark blue), and
8–24 h (T4, light blue) post-dose. Euclidean distance and Ward clustering were applied in both cases. In the case of the
control group (A), no urine was obtained for one of the groups at T2 and T3. Similarly, for the IV group (B), no sample
was obtained for one group at time T3. For comparison, the pre-dose vs. post-dose urine from both the control and dosed
groups are shown in (A) to illustrate the similarity in profiles of all animals prior to study commencement.

2.4. Endogenous Metabolite Identification

The use of online databases permitted the putative “annotation” of many of the
metabolites detected as being changed in the urine of gefitinib-dosed mice. However,
annotations are not identifications, only an indication of possibilities, and are limited by
the content of the respective databases. Thus, while well-established databases (such
as the HMBD) contain large numbers of compounds, many of them are not relevant to
mammals as they are natural products (e.g., plant specific phytochemicals and microbial
secondary metabolites) or xenobiotics, such as drugs (including gefitinib; HMDB0014462),
pesticides, or industrial chemicals. In order to build meaningful models or hypotheses,
these tentative annotations must be carefully curated to eliminate those that clearly lack
“biological plausibility” in the context of the study. Even where those that are highlighted
by such searches do provide viable candidates for further consideration, there are often a
number of potential identifications for compounds with the same nominal mass/atomic
composition (such as leucine and isoleucine or 1-methyl and 3-methylhistidine). For this
reason, there is a need to ensure that metabolite identification for hypothesis generation,
or their use as potential mechanistic markers of the biological activity of a drug or toxin,
are identified to MSI Level 1 [38], if at all possible. While mass spectrometry can often
reduce the search space, through atomic composition and accurate mass data combined
with distinctive/characteristic fragmentation patterns, unequivocal identification may still
not be possible in the absence of an authentic standard. Here, we also employed retention
time (tR) and IM-enabled MS in the analysis as additional means of characterization.

Like many others [39–41], we have observed that the addition of IM provides many ad-
vantages in the characterization of metabolites in untargeted metabolic phenotyping [42–44].
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The first benefit of IM/MS is a consequence of the fact that IM provides a second mode of
separation that is orthogonal to the LC dimension. This can result in significantly improved
mass spectra as co-eluting molecules, whose spectra would contribute unwanted “noise” to
the MS data for the compound of interest, can be removed by IM as a result of differential
mobility. This separation is the result of molecules having different, and characteristic,
collision cross sections (CCS) and, in properly calibrated systems, these values can also act
as an aid to identification. Thus, these CCS data can be used as further evidence of identity,
either by comparison of the experimentally derived value with an authentic standard or,
where these are not available, from a calculated value [44]. Even where the CCS value
obtained does not confirm identification, it may help to reduce the metabolic “search space”
by eliminating obviously incorrect structures.

With that being said, irrespective of the methods used for identification, the large
number of candidate metabolites detected here still makes this a daunting task that we have
not yet completed. However, to illustrate the potential of the approach, some examples
that show how this process might aid in the investigation of the pharmacometabodynamic
effects of gefitinib are provided in Table 1, and their mass spectra are in the supplementary
data (Figures S5–S13).

Table 1. Analytical data for metabolites identified in positive ESI MS as significantly contributing to the PCA.

Compound Adduct Experimental
RT (min)

Authentic
Standard RT

(min)

Experimental
CCS (Å)

Predicted
CCS (Å)

∆CCS Exper-
imental vs.

Predicted (%)

Authentic
Standard
CCS (Å)

∆CCS
Measured vs.
Predicted (%)

Tryptophan [M + H] 3.59 3.22 144.1 141.9 1.5 143.8 0.3

Taurocholic acid [M − H] 5.77 5.94 205.9 205.9 0 207 0.5

Arginyl-lysine [M + H] 5.04 n/a 166.0 173.0 3.0 n/a -

Arginyl-lysine [M − H] 5.03 n/a 167.2 172.8 3.2 n/a -

Deoxyguanosine [M + H] 0.69 0.7 155.7 154.1 1.0 153.7 1.3

Asparaginyl-
histidine [M + H] 2.68 n/a 157.9 156.7 0.8 n/a -

8-hydroxy-
deoxyguanosine [M + H] 2.24 2.51 159.8 158.4 0.9 n/a -

Based on the data illustrated in Figure 3, six examples were chosen to illustrate the
behavior of the many endogenous metabolites seen to change as a result of exposure to
gefitinib. Thus, three of the chosen metabolites that showed a relative increase in urinary
concentration, together with a further three examples that, in contrast, decreased in amount,
are illustrated in Figures 4 and 5, respectively. These metabolites were chosen based on their
profiles as being representative of the types of change being seen, and reasonable confidence
in their identification to MSI 1. Clearly, in the absence of flux experiments, it is not obvious
whether such changes, in these or the other metabolites showing similar excretion profiles,
are the result of increased biosynthesis or decreased utilization/degradation for those
apparently “upregulated” or the reverse for “downregulated” compounds.

The urinary excretion profiles of the metabolites identified as tryptophan and tauro-
cholic acid and the dipeptide lysyl-arginine, selected to exemplify those showing a relative
increase in amount compared with the control animals, are illustrated in Figure 4. These
metabolites were identified in the case of tryptophan based on the characteristic mass
spectrum of the protonated form, as well as the fit of the measured CCS value, to that
obtained from library data/calculated data and tR. The mass spectra of both the [M + H] of
tryptophan and its acetonitrile adduct are provided in Figures S5 and S6. Similar comments
apply to taurocholic acid, with characteristic fragmentation showing the loss of taurine,
etc., (see Figure S7) and a good fit for the CCS value and tR (Table 1). The third example is
for the dipeptide arginyl-lysine, where confident MS-characterization was relatively simple
from the fragmentation pattern obtained by MS (see Figures S8 and S9).
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While it would be easy to over-interpret such urinary excretion data, it would appear
that the onset of the effects of gefitinib administration on the excretion of taurocholic acid
were fairly transient compared with the other two metabolites. Thus, the relative increase
in the amounts of taurocholic acid in the urine was rapid, peaking in the 0–3 h sample, and
declining rapidly thereafter. In the cases of both tryptophan and lysyl-arginine, while they
were also elevated in the 0–3 h post-dose samples, the peak amounts of these metabolites
were seen in the 3–8 h post-dose urine collection.
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In the case of compounds showing a relative decrease in amount compared with
the controls, two metabolites of the purine nucleoside guanosine (guanine linked via a
β-N9-glycosidic bond to ribose) were identified. One of these was deoxyguanosine and
the other 8-hydroxydeoxyguanosine. Both were identified on the basis of the characteristic
mass spectrometric fragmentation data supported by their experimentally determined
CCS values, comparing well to library/calculated values (Table 1 and Figures S10–12,
respectively). As seen with the “upregulated” compounds, a number of dipeptides were
also found to be “downregulated”. As an example, asparaginyl-histidine was easily
characterized based on its fragmentation data (Figure S13). The excretion profiles of all
three metabolites showed a rapid initial decline, with the lowest concentrations seen in the
0–3 h post-dose urine.

While we are confident that the identifications of the metabolites highlighted above are
sound, there are clearly many questions remaining. In part, this requires the identification of
many of the still only partially characterized compounds detected as changing in the urine
of gefitinib-dosed animals. We intend that these remaining metabolites will be identified in
future studies, but, in order to avoid developing spurious and highly speculative theories
about mode of action, etc., we will only base hypotheses on compounds for which we have
confident identifications. Hopefully, as more identities are confirmed it will be possible
to obtain a more comprehensive picture of the nature of the biochemical response of the
mouse to EGFR inhibition by gefitinib, and from that obtain a greater understanding of
both the drug and biological system.

3. Discussion

There are some obvious limitations to the present study, the main one being that it
was not specifically designed as a metabolomic investigation. The original design was to
evaluate the use of state of the art UHPLC/IM/MS in defining the DMPK properties of
gefitinib, using small samples and the minimum number of animals [14]. Such small scale
in vivo DMPK studies are generally undertaken in rodents in the later phases of drug dis-
covery (as a prelude to candidate selection), or early in drug development. However, in an
effort to maximize the data recovery from this study, in line with the well accepted replace,
reduce, and refine (3Rs) initiatives in current animal research, we explored the possibilities
provided for using the remaining samples to obtain further biochemical information via
metabolic phenotyping.

In addition, as noted above, the urine samples analyzed here were obtained from mice
housed in groups (five animals/metabowl, see experimental), and thus represent pooled
collections from each of these groups. Clearly, in an ideal situation, samples of urine would,
like the blood samples, have been collected from individual animals. However, practical
and ethical considerations made this impractical in the context of the overall study design.

Nevertheless, if considered as a preliminary, rather than definitive study, the results
obtained show considerable promise as a means of extracting information from samples
that, having served their main purpose, might otherwise have been discarded. Compared
with the undosed controls, the gefitinib-dosed mice exhibited changes in the urinary content
of a range of metabolites. These were maximal at a time when the circulating concentrations
of gefitinib were high, normalizing with time as the drug and related metabolites were
eliminated from the plasma. By 24 h post-dose, when the animals were no longer exposed
to gefitinib or its metabolites in the circulation, the amounts of these endogenous the
metabolites in urine were close to those of the controls (Figures 4 and 5).

Changes such as these, that appear to be clearly associated with the presence of a
drug, reversing in its absence, are clearly indicative of a “pharmacological” response.
In parallel with pharmacodynamics, we would suggest that they represent a pharmaco-
metabodynamic effect (here defined as “the dynamic, time-related, and reversible changes
in metabolic phenotypes resulting from the pharmacological effects of a drug (or other
bioactive substance) on the metabolome”). To substantiate this conjecture, further exper-
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iments using a study specifically designed to prove the linkage of drug and metabolite
response are indicated.

However, notwithstanding the need for further evidence, it is possible to speculate
that the rapid increase in the relative amounts of the three endogenous metabolites used
as examples above (tryptophan, taurocholic acid, and arginyl-glycine) that were seen to
be increased in amount in the urine (Figure 4) reflect the early effects of gefitinib on, e.g.,
the liver. This might have been the result of, e.g., a reduction in bile flow, with taurocholic
acid then entering the circulation and being excreted via the urine. As the circulating
concentrations of gefitinib rapidly decreased, its effects on the liver would have reduced
and, as biliary homeostasis was restored, the urinary concentrations of taurocholic acid
would normalize. However, without actual measurements of bile concentrations, and a
targeted, and quantitative assay for these compounds in both circulation and urine, this
sort of “explanation” is merely speculation. With tryptophan, it can be conjectured that the
more gradual increase in its concentrations in the urine, peaking well after the maximum
plasma concentrations of gefitinib, were the result of the decreased utilization/degradation
of this essential amino acid or increased protein degradation. The function of the dipeptide,
which followed a similar time course to tryptophan, is more obscure and, at this time, we
do not feel able to comment on it further.

The opposite behavior was seen with deoxyguanosine, asparaginyl-histidine, and
8-hydroxydeoxyguanosine, which declined in amount in the 0–3 h urine samples, when
gefitinib concentrations in the circulation were high, but rapidly returned to more normal
quantities in the subsequent 3–8 h samples and to control values by 8–24 h post-dose
(Figure 5). This profile closely follows the plasma pharmacokinetics of the drug and its
metabolites again, suggesting a clear and direct pharmacometabodynamic effect. The
effects on deoxyguanosine and 8-hydroxydeoxyguanosine are intriguing, suggesting that
gefitinib has some downstream effects on DNA (8-hydroxydeoxyguanosine has been used
as a biomarker of oxidative DNA damage [45]) that might bear further investigation. While
this is once more clearly speculation at the moment, it provides fertile ground for hypoth-
esis generation that could be investigated further (either using bespoke in vitro/in vivo
investigations or by further targeted analyses of these samples).

Based on the review by Poliakova et al. [46] of the known biochemical effects of TKI
inhibitors on a broad spectrum of pathways, including the tricarboxylic acid cycle, glycoly-
sis, lipid and amino acid metabolism, the fact that gefitinib has effects on the metabolome
should not be considered surprising. To date, investigations of the metabolome-wide
effects of TKI inhibitors have been somewhat limited in scope. However, one such investi-
gation has been undertaken on the TKI inhibitors sunitinib and erlotinib. Both drugs were
administered to mice for 2 weeks, at which point the serum, heart, skeletal muscle, and
liver, but not urine, were taken for analysis. This study provided evidence for metabolic
changes when profiled using un-targeted GC-MS [47]. In the case of sunitinib, a cardiotoxin,
significant decreases in O-phosphocolamine, 6-hydroxynicotinic acid, docosahexaenoic
acid (DHA), arachidonic acid (AA), and eicosapentaenoic acid (EPA) were seen in the heart,
and DHA was also lower in the skeletal muscle. For serum and liver, raised amounts of
ethanolamine and cholesterol, respectively, were observed together with decreases in liver
dehydroalanine, adenosine, and docosahexaenoic acid. For erlotinib, increased serum thre-
onic acid, a C14 hydrocarbon, was noted, with decreased liver homoserine and ornithine.
Erlotinib administration resulted in raised spermidine in the heart.

As Poliakova et al. [46] say, in the concluding sentence of their review “ . . . although
the current knowledge on TKIs impact on cellular metabolism is continuously expand-
ing, the detailed molecular mechanisms underlying many of the observations described
within this review remain largely unknown” concluding that “ . . . further biological inves-
tigations are warranted to understand the metabolic on- and off-target effects related to
TKIs treatment”.

The application of UPLC/IM/MS to the analysis of urine, as well as other sample
types, combined with the linkage to drug pharmacokinetics, as demonstrated here, offers a
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practical approach to the study of the global changes in the metabolite profiles resulting
from exposure to TKIs, and should be equally applicable to other drug classes.

4. Materials and Methods
4.1. Chemicals and Reagents

LC/MS grade water, acetonitrile (ACN), and formic acid (FA) were all acquired from
Fluka (Loughborough, UK). Authentic standards and sodium formate (MS calibrant) were
sourced from Sigma Aldrich. Instrument calibration used the “Waters Major Mix IMS/ToF
Calibration Kit for IMS” (Waters Corp., Milford, USA). Leucine Enkephalin (Sigma, Dorset,
UK) was used as the lockmass calibrant MS.

4.2. Study Conduct

A detailed description of the study is provided in [14]. Briefly, gefitinib or vehicle were
dosed intravenously (IV) via the tail vein, at 10 mg/kg (Evotec SAS, Tolouse, France) to male
C57Bl/6JRj mice (n = 10/group, 9 weeks of age, 20.3–26.5 g). The dose solution (1 mg/mL)
was a clear solution in hydroxypropyl-β-cyclodextrin (HPBCD) at pH 4.0 in a 50 mM
acetate buffer (10:90 w/v) and was administered at a rate of 10mL/kg. A full management
review of the study was performed to ensure that the design conformed to both National
and EU guidelines prior to study commencement. Following drug administration, the
mice were housed by dose group (two groups of five for both vehicle and gefitinib-dosed
animals) in “metabowls” to facilitate in the collection of urine. Urine was obtained pre-dose
(overnight collection) and for 0–3, 3–8, and 8–24 h post-administration. After collection,
urine samples were stored at −80 ◦C until transfer (on solid carbon dioxide) to Waters
Corp., (Wilmslow, UK) and were stored at −80 ◦C until analysis, as described below.

4.3. Metabolite Profiling

The metabolite profiling for both endogenous and gefitinib and drug-related metabo-
lites aliquots (20 µL) of each of the urine samples were mixed, in 1.5 mL centrifuge tubes,
with an equal volume of LCMS grade water. To this sample, 350 µL of LCMS grade ACN
was added. Following vortex mixing, samples were kept at 2–8 ◦C for 10 min before
centrifugation (13,000 rcf, 10 min). An aliquot of 150 µL of clear supernatant was then taken
from each sample and was mixed with an equal volume of LC/MS grade water. From
each sample, 20 µL were taken and mixed to provide a pooled sample for use as a quality
control (QC) sample [48–50]. While the study samples were randomized for analysis (in
triplicate), the QC samples were run at regular intervals (every five samples) throughout
the course of the analysis. Prior to analysis, five of the QC samples were run in order to
condition the column and to ensure retention time stability during the analysis.

4.4. Reversed-Phase LC/IM/MS

The sample analysis was performed using an I-Class ACQUITY PREMIER UPLC
configured with a binary solvent manager, sample manager, and column oven (Waters
Corp., Milford, MA, USA), with separation on a 2.1 × 100 mm, 1.8 µm HSS T3 ACQUITY
PREMIER column (Waters Corp., Milford, MA, USA). The elution solvents were (A) 0.1%
(v/v) FA in water and (B) 0.1% (v/v) FA in ACN. RPLC/MS was carried out using a column
temperature of 40 ◦C and a solvent flow rate of 0.5 mL/min, via a multi-linear solvent
gradient beginning with 99% solvent A, which was held for 1 min, following which the
proportion of solvent B was raised in a linear fashion to 15% (3 min), 50% (6 min), and 95%
(9 min). At 10 min after injection, the solvent was returned to 99% A, and the column was
re-equilibrated for 2 min prior to the next sample [51].

The MS data were collected using positive (ESI+) and negative (ESI-) electrospray ion-
ization with a SYNAPT XS mass spectrometer (Waters Corp., Wilmslow, UK) in continuum
mode using the acquisition mode HDMSE [52,53]. A mass (m/z) range of 50–1200 amu and
a scan time of 0.1 s were employed. A low (MS1) collision energy of 4 eV was utilized to
gain precursor information, while elevated energy (MS2) via a linear collision energy ramp
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from 19 to 45 eV was employed to provide fragment ion data. The lockspray, containing
leucine enkephalin at 200 pg/µL, was infused at 20 µL/min, and was acquired every
30 s to ensure mass accuracy. A capillary voltage of 1.0 kV (ESI+), 2.0 kV (ESI-), a cone
voltage of 25 V, and a source temperature set to 120 ◦C were used. The flow rate of the cone
gas (nitrogen) was 50 L/h and the flow rate of the nebulization gas (also nitrogen) was
800 L/h. A desolvation gas temperature of 600 ◦C was used. In the case of the ion mobility
settings, the T-wave velocity was 650 m/s and a pulse height of 40 V was employed. The
drift gas employed for IM was nitrogen (180 mL/min) with calibration over the CCS
range = 130–306 Å2 performed using the Major Mix IMS calibration kit. Calibration of the
TOF over the acquisition mass range used 0.5 mM sodium formate, and the data were
collected with MassLynx vs. 4.2 software (Waters Corp., Wilmslow, UK).

4.5. Data Analysis for Metabolite Identification

LC/MS data were aligned and normalized using Progenesis QI (Nonlinear Dynamics,
Newcastle upon Tyne, UK). The data were aligned using a study pooled QC and normalized
using all of the compounds. Based on the aligned runs, an aggregate file was constructed
to allow for peak picking and to eliminate potential missing values. The processed dataset
was further interrogated using a variety of statistical analysis tools, including EZInfo
(Umetrics, Umeå, Sweden) and MetaboAnalyst [37]. Multivariate statistical analysis was
conducted using unsupervised PCA to determine the group differences. Pareto scaling
was used, in which each variable was centered and multiplied by 1/

√
SK, where SK is the

standard deviation of the variable. Hierarchical clustering and Pearson’s R coefficient were
used for the correlation analysis and pattern searching. Molecular features resulting from
the statistical analysis were identified based on accurate mass, isotopic fit, and matching
of in-silico fragmentation spectra using a combination of compound databases, including
Human Metabolite Database (HMDB vs.4.0) and ChemSpider (vs. 1.0.7075.38452) these
databases were accessed between August and December 2020. The measured CCS values
for statistically relevant molecular features were also compared with theoretically derived
CCS values, using an in-house CCS prediction algorithm [44].

Features corresponding to endogenous metabolites, which were putatively identified
by the in silico searches, were compared with authentic standards wherever possible to
further confirm their identities. An in-house database of standards was used to obtain
the MS (with precursor and fragmentation ion accuracy set to 5 and 10 ppm respectively),
retention time (±0.5 min), and CCS (±2.5%) data.

5. Conclusions

Developments in modern analytical technologies provide opportunities to improve
throughput and increase the efficiency of modern drug discovery. Previously, despite the
limitations imposed by small samples, it has been demonstrated that it is possible, in a
single in vivo study, to characterize both the DMPK properties and excretion profiles of the
drug gefitinib and its metabolites in urine [14]. Here, we have shown, using untargeted
metabolic phenotyping on the same urine samples, time-related changes in the urinary
metabotypes for the endogenous metabolites excreted in the urine that correlate with the
circulating concentrations of the drug and its metabolites. Thus, the largest changes in
endogenous metabolites coincided with the highest observed plasma concentrations of
gefitinib, and returned to control values as the drug concentrations fell. These pharma-
cometabodynamic responses have the potential to provide opportunities to examine both
on and off target effects of drugs (and their metabolites). Such knowledge may enable a
better understanding of the mode of drug action to be obtained at an early stage in drug
discovery, and facilitate the discovery of biomarkers that can be used in the translation of
animal models to patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11060379/s1. Structure S1: Gefitinib. Figure S1: Intravenous pharmacokinetics
(10 mg/kg) of gefitinib, M605211, and the O-desmethyl metabolites in the mouse. Figure S2: PCA
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of negative ESI data. Figure S3: PCA of both positive and negative ESI data for control animals.
Figure S4: Heatmaps representing control and IV groups. Figure S5: Tryptophan fragmentation,
positive ESI. Figure S6: Tryptophan acetonitrile adduct, positive ESI. Figure S7: Taurocholic acid
fragmentation, negative ESI. Figure S8: Arginyl-lysine, positive ESI. Figure S9: Arginyl-lysine,
negative ESI. Figure S10: Deoxyguanosine, positive ESI. Figure S11: Deoxyguanosine, acetonitrile
adduct, positive ESI. Figure S12: 8-Hydroxy-deoxyguanosine, positive ESI. Figure S13: Asparaginyl-
histidine, positive ESI. Table S1: Positive ion data for pooled QC data. Table S2: Negative ion data for
pooled QC data.
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