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Abstract 12 

Risk assessment of earth dams is concerned not only with the probability of failure but also with the 13 

corresponding consequence, which can be more difficult to quantify when the spatial variability of 14 

soil properties is involved. This study presents a risk assessment for an earth dam in spatially 15 

variable soils using the random adaptive finite element limit analysis. The random field theory, 16 

adaptive finite element limit analysis, and Monte Carlo simulation are employed to implement the 17 

entire process. Among these methods, the random field theory is first introduced to describe the soil 18 

spatial variability. Then the adaptive finite element limit analysis is adopted to obtain the bound 19 

solution and consequence. Finally, the failure probability and risk assessment are counted via the 20 

Monte Carlo simulation. In contrary to the deterministic analysis that only a factor of safety is given, 21 

the stochastic analysis considering the spatial variability can provide statistical characteristics of the 22 
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stability and assess the risk of the earth dam failure comprehensively, which can be further used for 23 

guiding decision-making and mitigation. Besides, the effects of the correlation structure of strength 24 

parameters on the stochastic response and risk assessment of the earth dam are investigated through 25 

parametric analysis. 26 

Keywords: Risk assessment; Spatial variability; Random adaptive finite element limit analysis; 27 

Random field theory; Monte Carlo simulation 28 

 29 

Article Highlights 30 

(1) The methods of probabilistic risk assessment of earth dams in spatially variable soils are 31 

clarified in the framework of random adaptive finite element limit analysis. 32 

(2) The statistical characteristics of the stability and quantitative risk assessment of the earth dam 33 

considering the soil spatial variability are studied. 34 

(3) The effects of the correlation structure of strength parameters on the stochastic response and 35 

risk assessment of the earth dam are investigated. 36 

 37 

1. Introduction 38 

Earth dams composed of soils and rock debris are a type of commonly seen geo-structures in 39 

the word, which have attracted increasing attention because of the serious consequences of their 40 

destruction [1]. The soil properties in the earth dams generally exhibit a certain spatial variability 41 

even within homogeneous layers as a result of depositional and post-depositional processes [2]. The 42 

existence of spatial variability increases the complexity of evaluating dam stability [3, 4]. From an 43 

engineering perspective, the concern is not only the stability of an earth dam, but also the 44 
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consequence of its failure. The risk assessment accounts for the probability of failure as well as the 45 

corresponding consequence simultaneously [5]. In this case, the effects of the soil spatial variability 46 

on the risk assessment of earth dams can be more profound since the consequences associated with 47 

different failure modes are individual [6]. However, a majority of analyses assume that the material 48 

properties applied to soil layer are deterministic, and a monotonous factor of safety with minimum 49 

information is obtained. These conventional deterministic methods ignore the soil spatial variability, 50 

which deviate from the actual stability and risk. Therefore, it is more rational to take the spatial 51 

variability of soil properties into account when assessing the stability and the risk of earth dams, 52 

otherwise the results can be distorted. 53 

At present, the spatial variability of soil properties is often described by the random field theory 54 

for stochastic analysis [7]. Random finite element method (RFEM) which incorporates the random 55 

field theory and the finite element method has attracted widespread attention in the field of 56 

geotechnical engineering by dint of its promising performance [8-11]. In the context of RFEM, the 57 

spatial variability can be well characterized by a random field of the parameters of interest and then 58 

mapped onto the partitioned finite element mesh [12, 13]. Although the RFEM has the ability to 59 

deal with the problems of random variables with spatial variability and produces a seemingly 60 

reasonable solution, the results obtained greatly depend on the size of the mesh and may lead to an 61 

undemanding factor of safety and consequence owing to unsuitable meshing [14, 15]. 62 

Alternatively, the random adaptive finite element limit analysis (RAFELA) is developing 63 

rapidly in recent years, which can give precise ultimate solution by imposing the adaptive meshing 64 

within the finite element limit analysis [16]. Unlike RFEM which manually divides the mesh and 65 

gets a single solution, RAFELA relies on adaptive meshing technique and brackets the solution by 66 
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strictly close lower bound (LB) and upper bound (UB). This approach greatly improves the 67 

calculation accuracy through generating the mesh automatically, which can be applicable to 68 

complicated structures that RFEM may not be well competent even with a sufficiently dense mesh 69 

because of the irregular geometry [17]. Nowadays, RAFELA has become a powerful tool to deal 70 

with a variety of stability problems where the soil properties are spatially variable [18-20], but it has 71 

rarely been reported in quantifying the dam stability and risk assessment. 72 

In this study, RAFELA is employed to assess the risk of an earth dam failure where the spatial 73 

variability of the strength parameters is involved. This state-of-the-art technique integrates the 74 

random field theory and adaptive finite element limit analysis (AFELA) in a Monte Carlo simulation 75 

(MCS) framework. At first, the random fields of the strength parameters are discretized by the 76 

Karhunen–Loève expansion (KLE). Then the bound solution and the corresponding consequence 77 

are obtained by the AFELA. Subsequently, the probabilistic risk assessment of the dam failure is 78 

quantified via the MCS. Furthermore, a series of parametric analyses with regards to the correlation 79 

structure of the strength parameters are discussed. 80 

 81 

2. Methodology 82 

2.1 Adaptive finite element limit analysis 83 

Finite element limit analysis (FELA) embedded with adaptive meshing, also termed as AFELA, 84 

is a powerful tool newly developed for evaluating the performance of the geotechnical structures. 85 

The former inherits the advantages of the finite element method and limit theorem providing a 86 

variety of modeling environments and strict bound solution. The latter can produce adaptive meshes 87 

automatically in an optimal way to maximize accuracy while keeping the computational cost at a 88 
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minimum [16, 21, 22]. 89 

According to the bounding theorems of classical plasticity that assume the material to be 90 

perfectly plastic and follows an associated flow rule, LB and UB solutions can be evaluated by 91 

constructing a reasonable statically admissible stress and kinematically admissible velocity fields, 92 

respectively. Considering a structure of rigid plastic material with volume V is subjected to a set of 93 

body forces b while a set of tractions t are acting on its boundary. As shown in Fig. 1, the 94 

displacements are prescribed on left of the boundary uS , while the tractions are prescribed on the 95 

right part of the boundary σS . n is the outward normal to the boundary. For such a scenario, the 96 

limit analysis can be described as the maximum magnitude of the tractions that can be sustained 97 

without the structure suffering collapse or the minimum magnitude of the tractions that will cause 98 

collapse. 99 

 100 

 101 

Fig. 1 Surface and body forces acting on a structure of rigid plastic material 102 

 103 

To answer this question, a load multiplier α  is introduced to describe the tractions acting on 104 

the structure which are given by α t  . Mathematically, the solution within the limit analysis 105 
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framework should satisfy the following governing equations: 106 

1. The equilibrium and static boundary conditions: 107 

T    in 
         on 

b
A t
∇

=
+ =

σ

V
α S

σ 0
σ  (1) 108 

2. Yield conditions: 109 

( ) 0F  ≤σ  (2) 110 

3. Associated flow rule assuming infinitesimal strains: 111 

( )ε u λ F  = ∇ = ∇ σ  (3) 112 

4. Complementary conditions: 113 

( ) =0  0λF  λ ≥σ ，  (4) 114 

where A denotes an equilibrium matrix, σ   denotes a vector of stresses, T∇   denotes the 115 

equilibrium operator (∇  being the strain-displacement operator), F denotes the yield function, ε  116 

denotes the strain, u  denotes the displacements, and λ  denotes the plastic multipliers. 117 

In a finite element context, the governing equations are discretized by introducing appropriate 118 

approximations for the variables involved [23], and the mathematical description containing Eqs. 119 

(1)-(4) can be expressed as: 120 

( )
maximize  
subject to , 0

α
   α F  = + ≤0σ σA p p  (5) 121 

where p  and 0p  denote the proportional part to a scalar parameter α  and constant part of the 122 

external load, respectively. 123 

A feasible algorithm to assess the stability of a geo-structure is the strength reduction limit 124 

analysis [24]. In this case, Eq. (5) can be rewritten as: 125 

( )
maximize  0
subject to , 0   F  = ≤0σ σA p  (6) 126 

But as mentioned by Li and Wang [25], the numerical analysis using the conventional FELA 127 
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with strength reduction method may identity misleading failure surfaces and incorrect volumes of 128 

sliding mass because of the mesh distortion. To alleviate this problem, the adaptive meshing is 129 

introduced into the FELA to deliver a narrower bound solution and a more accurate failure 130 

mechanism by using control variables [22, 26, 27]. The principles and procedures of this intelligent 131 

technique can be referred to Sloan [16]. In this study, the internal dissipation that calculates from 132 

the deviatoric stresses and strain rates is selected as the control variable for subsequent analysis. 133 

 134 

2.2 Random field theory 135 

Random field theory suggested by Vanmarcke [7] is an important tool modeling the spatial 136 

variability of soil properties and has the ability to generate more realistic spatial distributions of the 137 

random variables. Generally, a two dimensional stationary random filed is necessary for plane issues, 138 

which can be defined by three parameters, namely, mean value ( μ ), coefficient of variation (COV), 139 

and autocorrelation function. Among these parameters, the autocorrelation function is introduced to 140 

describe the correlation between spatial points since the value of a soil parameter at one point will 141 

present a certain correlation to the adjacent one, and the correlation depends on its relative distance. 142 

The single exponential autocorrelation function which has been widely used in geotechnical 143 

engineering is chosen here to characterize the spatial variability of a random variable and is given 144 

by: 145 

( ) exp i j i j

x z

x x z z
ρ x, z

h h

 − −
 = ∆ ∆ = − −
 
 

 (7) 146 

where ( ) ( ),  and  ,i i j jx  z x  z  denote the positions of a random variable, xh  and zh  denote the 147 

horizontal and vertical autocorrelation distances, respectively. 148 

The discretization of the random field is indispensable when numerical techniques such as 149 
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finite element or finite difference methods are employed [28]. At present, the methods for 150 

conducting this task can be mainly divided into three categories, including point methods, average-151 

type methods, and series expansion methods. Thereinto, the KLE, one of the series expansion 152 

methods, which can give consideration to both computation efficiency and accuracy is adopted here 153 

[29, 30]. 154 

Considering a random field denoted by ( ),  ; H x z θ  , where θ   denotes the numerable 155 

variable corresponding to a possible realization of random field, the KLE gives a second-moment 156 

characterization of this random process in accordance with deterministic orthogonal functions and 157 

uncorrelated random variables: 158 

( ) ( ) ( )
1

,  ; ,  i i i
i

H x z θ μ+ σ λ f x z ξ θ
∞

=

= ∑  (8) 159 

where σ   denotes the standard deviation, iλ   and ( ), if x z   denote the eigenvalues and 160 

eigenfunctions of the autocorrelation function, respectively, and ( )iξ θ   denotes a set of 161 

uncorrelated random variables with zero mean and unit variance. 162 

Generally, it is practical to truncate the series expansion at the Mth term with a given accuracy: 163 

( ) ( ) ( )
1

,  ; ,  
M

i i i
i

H x z θ μ+ σ λ f x z ξ θ
=

= ∑  (9) 164 

where M is the number of truncation terms, which depends on the desired calculation accuracy 165 

and the autocorrelation function [31, 32]. 166 

As illustrated in Eq. (9), using KLE to simulate a random filed is based on the spectral 167 

decomposition of its autocovariance function which is bounded, symmetric, and positive definite. 168 

Hence, the essential step for realizing the discretization is to answer the iλ  and ( ), if x z  from 169 

the Fredholm integral equation of the second term: 170 

( ) ( ) ( ) ( )1 1 2 2 2 2 2 2 1 1,  ,  ,  ,  d d ,  i i iρ x z x z f x z x z λ f x z
Ω

  = ∫  (10) 171 
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Ghanem and Spanos [33] proposed a feasible procedure to obtain the accurate eigenvalues and 172 

eigenfunctions. But it is worth noting that analytic solutions are difficult to appear when the 173 

autocorrelation function is complex, and the numerical methods such as the wavelet-Galerkin are 174 

required in this case [34]. 175 

In the above analysis, the random variables are considered to be normally distributed, and the 176 

Gaussian random field is thus generated to model the parameters with spatial variability. But the 177 

Gaussian model may not always applicable, especially when the random variables are strictly 178 

nonnegative. Combined with the existing site-specific data of geotechnical properties, a lognormal 179 

random field is applied here to avoid negative values, which has also been confirmed to perform 180 

well in geotechnical literature [28, 31, 35]. It is worth noting that the geotechnical properties are not 181 

limited to lognormal distribution, which is only used here for illustration. Herein, the standard 182 

deviation and mean of InH can be quantified as: 183 

( )2 2
In In 1H H Hσ σ μ= +  (11) 184 

2
In InIn 0.5H H Hμ μ σ= −  (12) 185 

In this way, Eq. (9) is reformulated as: 186 

( ) ( ) ( )In In
1

,  ; exp ,  
M

H H i i i
i

H x z θ μ + σ λ f x z ξ θ
=

 
=  

 
∑  (13) 187 

 188 

2.3 Monte Carlo simulation 189 

The MCS services as an unbiased approach for reliability analysis often producing accurate 190 

solution for general problems, which has long been popular in geotechnical engineering duo to its 191 

simple principle and reliable performance [36, 37]. In the framework of MCS, a series of random 192 

fields are generated in a manner satisfying the given probability distribution and correlation 193 
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structure, and the response is evaluated for each generated set. This process is performed 194 

continuously until various statistical characteristics of the aimed issues are identified. As a result, 195 

the issues of interest can be well understood from a probabilistic point of view. 196 

For an earth dam, the factor of safety ( )sF X  is defined as the ratio of resistant force ( )S X  197 

to the driving force ( )T X   along a certain slip surface, where X   denotes a set of random 198 

variables used to simulate the random filed, [ ]1 2, , , NX  X  ...  X=X . Then a performance function 199 

( )g X  is formulated to define the limit state: 200 

( ) ( ) ( ) ( )1 1sg S T F= − = −X X X X  (14) 201 

Further, the failure probability of the earth dam denoted as fP   can be calculated by the 202 

following integral: 203 

( ) ( )
( ) 0

0f g
P P g f d

<
=  <  =  ∫ XX

X X X  (15) 204 

where ( ) 0g <X  denotes the failure domain, and ( )fX X  denotes the joint probability density 205 

function. 206 

MCS is selected here to evaluate the fP  since it has the ability to quantify the integral of Eq. 207 

(15) via a large number of simulations, and fP  can be therefore given as: 208 

( )
MCS

MCS
=1MCS MCS

1 N
fail

f
i

N
P I

N N
= =∑ X  (16) 209 

where 
MCSN  denotes the number of MCS, ( )MCSI X  denotes the event of failure of the earth dam, 210 

when the dam fails, ( )MCS 1I =X  and ( )MCS 0I =X  otherwise, and failN  denotes the total failure 211 

events in 
MCSN . 212 

 213 

2.4 Risk assessment 214 

Risk assessment considers not only the probability of failure but also the consequence, which 215 
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evaluates the safety of structures in a quantitative manner [4]. Mathematically, the risk assessment 216 

can be defined as the product of the failure probability and consequence [4, 5]: 217 

fR P C=  (17) 218 

where R  denotes the risk, and C  denotes the failure consequence termed as the sliding mass of 219 

the earth dam here. 220 

But the above equation is specific to the earth dams with only one failure mode. When the 221 

spatial variability of material parameters is included, there are numerous potential failure modes for 222 

an earth dam. The consequence for the deep failure is obviously greater than that of shallow, so the 223 

risk assessment needs to be extended considering the consequence associated with each failure mode 224 

individually. In this end, a modified definition with regards to the Eq. (17) is rewrote in a MCS 225 

framework [4, 5, 38]: 226 

=1

=1 =1 =1MCS MCS MCS

1 1

fail

fail fail fail

N

N N N i
fail i

fi i i i f
i i i fail

CN
R P C C C P C

N N N N
= = = = =

∑
∑ ∑ ∑  (18) 227 

where fiP   and iC   denote the probability and corresponding consequence of the ith failure 228 

respectively, and C  denotes the average consequence among the failures. 229 

Comparing the Eqs. (17) and (18), it can be found that the expressions are consistent except 230 

for that the modified definition uses the average consequence of all failure modes instead of 231 

individual consequence. In the context of risk assessment, the fP   can be answered by MCS 232 

mentioned above, and consequence of each failure mode can be given by K-means clustering 233 

method [4, 39]. 234 

 235 

3. Implementation procedure 236 

In order to facilitate the understanding of the implementation procedure of RAFELA, a 237 
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flowchart that illustrates the specific steps is showed in Fig. 2. In general, seven steps are needed in 238 

this procedure, and details of each step are summarized as follows: 239 

(1) Determine deterministic parameters and spatially varying variables, including but not limited 240 

to model configuration, site-specific information, and statistical characteristics that can be 241 

characterized by a set of prior knowledge, such as means, distributions, coefficients of variation 242 

(COVs), autocorrelation functions, and autocorrelation distances. 243 

(2) Discretize the lognormal random fields by means of KLE to characterize the spatial variability, 244 

in which the truncation term M in KLE is set to a suitable value to achieve a relatively accurate 245 

random field representation [40]. Then, a realization of the underlying Gaussian random fields 246 

is modeled. 247 

(3) Run the RAFELA software with the above given geometrical and geotechnical input 248 

parameters. In this study, Optum G2 is employed to perform the numerical analysis, and bound 249 

solution is obtained in each realization with the discrete random fields. 250 

(4) Generate the independent standard normal random sample vector ( )iξ θ   for MCSN   times, 251 

and achieve MCSN  realizations of the underlying Gaussian random fields. 252 

(5) Repeat the numerical calculation MCSN  times using the random fields generated above, and 253 

MCSN   output files containing factors of safety, failure modes, and consequences for each 254 

realization are obtained. 255 

(6) Extract the factors of safety and consequences from the MCSN  output files, and the failure 256 

events that the values of sF  are below 1.0 are denoted as failN . Hence, the fP  is given by 257 

MCSf failP N N= , and the C  is given by 
=1

=∑
failN

i fail
i

C C N . 258 

(7) Assess the risk of the earth dam failure by the product of the probability of failure and the 259 
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average consequence among the failures, so the R  can be expressed as fR P C= . 260 

 261 

Run the RAFELA software with the above given geometrical 
and geotechnical input parameters, and bound solution is 

obtained in each realization

Repeat the numerical calculation NMCS times using the random 
fields generated above, and NMCS output files containing 

information for each realization are obtained.

Discretize the lognormal random fields by means of KLE to 
characterize the spatial varying variables, and a realization of 

random fields is modeled

Generate the independent standard normal random sample 
vector ξ for NMCS times, and achieve NMCS realizations of  

random fields.

Determine deterministic parameters and spatially varying 
variables, including but not limited to model configuration, site-

specific information, and statistical characteristics

Assess the risk of the earth dam failure by the product of the 
probability of failure and the average consequence among the 

failures, so the risk can be expressed as

Extract the failure events Nfail from the NMCS output files, and the 
failure probability Pf  as well as the average consequence     are 

quantified accordingly

fR P C=

C

 262 

Fig. 2 Flowchart of the implementation procedure for the RAFELA 263 

 264 

4. Case study 265 

4.1 Deterministic analysis 266 

The earth dam presented here is shown in Fig. 3, which consists of an embankment on a soil 267 
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foundation. The embankment has a height of 10 m with upstream and downstream slopes of 2 h:1 268 

v, and the foundation is also 10 m high. The reservoir water level is 9 m above the foundation. A 269 

horizontal under-drain is specified at the toe of the downstream slope to maintain the water level at 270 

the tail water elevation for a distance of 5 m near the embankment toe. 271 

 272 

 273 

Fig. 3 The geometry of the earth dam 274 

 275 

Prior to performing the probabilistic analysis that takes the spatial variability of stochastic 276 

parameters into account, a deterministic calculation with mean input parameters is conducted to 277 

study the seepage behavior and stability of the dam. The soils properties in embankment and 278 

foundation are presented in Table 1. Adaptive meshing is employed in all analyses, where the default 279 

option of shear dissipation is selected as the adaptivity control to refine the mesh, and three adaptive 280 

iterations are defined for acquiring an accurate solution. An initial mesh of 1,000 elements is 281 

specified here and then a final mesh of 10,000 elements is generated according to the results of 282 

iterations. 283 

 284 

Table 1 Deterministic soil parameters for the case study 285 
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Soil properties Embankment Foundation 

Unit weight γ (kN/m3) 19 20 

Cohesion c (kPa) 10 15 

Internal friction angle φ (°) 20 23 

Saturated hydraulic conductivity Ks (m/d) 0.1 0.1 

Saturated water content θs (%) 50 50 

Residual water content θr (%) 5 5 

Poisson's ratio υ 0.334 0.334 

Elasticity modulus E (MPa) 5 5 

 286 

Figure 4 shows the saturation distribution of the earth dam subjected to the reservoir water 287 

level. In particular, the van Genutchen model is used to describe the soil-water characteristic curve 288 

involved in seepage analysis [41], and the model parameters vGα   and vGn   are 0.62 and 1.11, 289 

respectively. The saturation distribution obtained here is highly consistent with the SEEP/W that has 290 

the same model configuration and hydraulic parameters, in which the minimum degree of the 291 

saturation on the downstream is 0.712 in AFELA and 0.713 in SEEP/W [42]. 292 

 293 

 294 

Fig. 4 The degree of saturation of the earth dam subjected to the reservoir water level 295 
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 296 

Further, the stability of the earth dam is calculated based on the results from the seepage field. 297 

As the LB is at the safe side, it is chosen as the basis for subsequent analysis to reduce the 298 

computational consumption. As shown in Fig. 5, the factor of safety is 1.217 in the AFELA. The 299 

failure surface of the earth dam and the adapted meshes for approximately 10,000 elements in the 300 

numerical analysis are also illustrated in Fig. 5. It can be found that the mesh density near the 301 

phreatic line and the failure surface is relatively high, which is due to the automatic optimization 302 

iterations and helps to get a more accurate solution. 303 

 304 

 305 

Fig. 5 The stability of the earth dam in the AFELA 306 

 307 

4.2 Stochastic analysis 308 

In this section, the stochastic response for the earth dam is illustrated considering the spatial 309 

variability of strength parameters. The specific statistical properties of the soil parameters in the 310 

embankment and foundation are shown in Table 2. Particularly, c and φ are thought to be statistically 311 

independent, and the strength parameters are assumed have the same autocorrelation distance in 312 

horizontal and vertical directions. 313 

 314 
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Table 2 Statistical properties of the strength parameters 315 

Strength 

parameters 

Mean value  COV xh  (m) zh  (m) Distribution 

Embankment Foundation 

c (kPa) 10 15 0.3 20 2 Lognormal 

φ (°) 20 23 0.15 20 2 Lognormal 

 316 

Once the statistical properties are determined, the random fields of the strength parameters can 317 

be generated by the KLE. Meanwhile, in order to model a relatively accurate random field, the 318 

truncation term M in the KLE is set to 1,000. Figure 6 illustrates a realization of the random fields 319 

implemented in the stochastic analysis. 320 

 321 

 322 

Fig. 6 A realization of the random fields. (a) c. (b) φ 323 

 324 

Further, the approach for quantifying the statistical response is conducted through MCS. A 325 

series of random fields are modeled in a manner consistent with the correlation structure of the 326 
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variables, and each set of random fields produces a deterministic solution. This process will continue 327 

until the fP  is basically stable and unaffected by a single extreme event. Theoretically, the result 328 

can be more reliable as the number of implementations increases. Herein, after balancing the 329 

efficiency of the calculation and the accuracy of the results, two thousand simulations are performed 330 

for the cases where fP  is larger than 10%, and more simulations are added for other cases to ensure 331 

that the maximum error in fP  is less than 0.01 at a confidence level of 90%. 332 

Consequently, the fP  is 15.1%, which means that a total of 302 failure events occur in 2,000 333 

simulations. In more detail, the probability distributions of the factor of safety, including the 334 

histogram of the relative frequency and cumulative probability, are presented in Fig. 7. In contrary 335 

to the deterministic analysis that a single factor of safety is obtained, the stochastic analysis can 336 

provide more information, especially the statistical characteristics of the stability, which helps to 337 

deepen the understanding of the overall permanence of the earth dam from the perspective of 338 

probability. 339 

 340 

 341 

Fig. 7 Probability distributions of factor of safety 342 
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 343 

In addition to the factors of safety, a large number of failure modes are also identified 344 

simultaneously. Figure 8 shows three typical failure modes, namely shallow failure, intermediate 345 

failure, and deep failure. Intrinsically, the diversity of the dam failure here comes from the spatial 346 

variability of the soils, which partly explains the uncertainty of the failure occurrence in actual 347 

observation. 348 

 349 

 350 

Fig. 8 Typical failure modes of the spatially variable earth dam. (a) shallow failure. (b) intermediate 351 

failure. (c) deep failure 352 

 353 

The consequences associated with above three failure modes are quite different. According to 354 



20 
 

the Eq. (18), it is necessary to evaluate the consequence for each failure event individually, and the 355 

average consequence among these failures can therefore be obtained. The average consequence is 356 

calculated to be 125.5 m2 in a total of 302 failures. Finally, the risk of the earth dam failure can be 357 

quantified by the product of the failure probability and average consequence, and the result is 18.95 358 

m2. 359 

 360 

5. Discussion 361 

When modeling the random field, several parameters of the correlation structure, such as the 362 

COV, xh , and zh , are indispensable. Regarding the values of these parameters are mostly empirical 363 

and trial owing to lack of sufficient data, which are therefore necessary to have further discussion. 364 

5.1 Effects of the COV 365 

For the stochastic analysis above, the COVs of c and φ are set to 0.3 and 0.15, respectively. In 366 

fact, it is strenuous to determine its exact value because a great deal of effort must be put into testing 367 

the site information. Therefore, eight groups of different parameters are taken to investigate the 368 

effects of the COVs of c and φ on the stochastic response and risk assessment, including 0.15, 0.3, 369 

0.45, and 0.6 for c, and 0.1, 0.15, 0.2 and 0.25 for φ. 370 

As shown in Figs. 9 and 10, the probability distributions of factor of safety for different COVs 371 

of c and φ are presented. The fP  rises from 3.7% to 39.7% when the COV of c increases from 0.15 372 

to 0.6, and rises from 6.8% to 34% when the COV of φ increases from 0.1 to 0.25. It is worth noting 373 

that the results here and later are given by treating the stochastic parameters of the embankment and 374 

foundation as simultaneous variations. 375 

 376 
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 377 

Fig. 9 Probability distributions of factor of safety for different COV of c. (a) The COV of c is 0.15. 378 

(b) The COV of c is 0.3. (c) The COV of c is 0.45. (d) The COV of c is 0.6 379 

 380 
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 381 

Fig. 10 Probability distributions of factor of safety for different COV of φ. (a) The COV of φ is 0.1. 382 

(b) The COV of φ is 0.15. (c) The COV of φ is 0.2. (d) The COV of φ is 0.25 383 

 384 

Subsequently, the risk assessment of the earth dam failure is summarized in Table 3. Similar to 385 

the fP , the R  rises with the increase of the COVs of c and φ. Particularly, the R  reaches 55.2 386 

m2 when the COV of c increases to 0.6, and reaches 47.37 m2 when the COV of φ increases to 0.25. 387 

Both the fP  and R  indicate that the COVs of c and φ have a significant impact on the dam failure, 388 

so more attention should be paid to measuring these two parameters. 389 

 390 

Table 3 Risk assessment of the earth dam for different COVs of c and φ 391 

COV c φ 
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0.15 0.3 0.45 0.6 0.1 0.15 0.2 0.25 

R  (m2) 4.46 19.41 35.85 55.2 7.93 19.41 32.82 47.37 

 392 

5.2 Effects of the xh  and zh  393 

The autocorrelation distance is used to describe the spatial extent that the soil properties are 394 

significantly correlated. A large autocorrelation distance suggests a smoothly varying field over a 395 

large spatial extent whereas the opposite implies a more ragged field thus less uniformity in the soil 396 

properties. In general, the autocorrelation distance is decomposed in two directions, horizontal and 397 

vertical. Although the exact values are hard to come by, previous studies have shown that the xh  398 

is much greater than the zh  [43, 44]. Likewise, in order to investigate the effects of the xh  and 399 

zh  on the stochastic response and risk assessment, eight groups of different parameters are taken, 400 

including 10 m, 15 m, 20 m, and 40 m for horizontal direction, and 1 m, 1.5 m, 2 m, and 4 m for 401 

vertical direction, respectively. 402 

It can be observed from Figs. 11 and 12 that the fP   rises as the autocorrelation distance 403 

increases, which would be expected. A larger autocorrelation distance suggests a stronger correlation 404 

of the random variables and generates a smaller fluctuation of the simulated values when modeling 405 

the random field. The average simulated values vary a lot from one realization to another in this 406 

case, leading to a more spread-out distribution of the factor of safety. As a result, the fP  rises from 407 

10.6% to 16.9% when the xh  increases from 10 m to 40 m, and rises from 11.8% to 16.5% when 408 

the zh  increases from 1 m to 4 m.  409 

 410 
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 411 

Fig. 11 Probability distribution of factor of safety for different xh . (a) The xh  is 10 m. (b) The xh  412 

is 15 m. (c) The xh  is 20 m. (d) The xh  is 40 m 413 

 414 
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 415 

Fig. 12 Probability distribution of factor of safety for different zh . (a) The zh  is 1 m. (b) The zh  416 

is 1.5 m. (c) The zh  is 2 m. (d) The zh  is 4 m 417 

 418 

Further, the risk assessment of the earth dam failure for different xh  and zh  is summarized 419 

in Table 4. It can be seen that increasing the xh   and zh   increases both the fP   and R  , 420 

respectively. Meanwhile, by comparing the Tables 3 and 4, it can be inferred that the stochastic 421 

response and risk assessment are more sensitive to the COVs of c and φ than that of the xh  and 422 

zh . 423 

 424 

Table 4 Risk assessment of the earth dam for different xh  and zh  425 

 426 
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Autocorrelation 

distance (m) 

xh  zh  

10 15 20 40 1 1.5 2 4 

R  (m2) 13.24 17.01 19.41 22.8 15.06 18.14 19.41 20.94 

 427 

6. Conclusions 428 

This study presents a risk assessment for an earth dam in spatially variable soils using RAFELA. 429 

The spatial variability of soils, mainly the strength parameters, is described by the random field 430 

theory. Then the stochastic analysis is implemented through unbiased MCS in the efficient AFELA 431 

framework, and the failure probability and the average consequence among the failures are obtained. 432 

Subsequently, the risk of the earth dam failure is assessed by the product of the failure probability 433 

and the average consequence. In contrary to the deterministic analysis that only a failure mode and 434 

a factor of safety are obtained, the stochastic analysis considering the spatial variability can deliver 435 

a wide range of failure modes and assess the risk of the earth dam failure comprehensively, which 436 

can be served as a theoretical basis for further decision-making and mitigation. 437 

The effects of the correlation structure of strength parameters on the stochastic response and 438 

risk assessment are investigated by performing a series of parametric analyses. Both the fP  and 439 

R  of the earth dam rise with the increase of parameters in correlation structure. The stochastic 440 

response and risk assessment are more sensitive to the COVs of c and φ than that of the xh  and 441 

zh . As a guide, in the actual investigation of site spatial properties, measures should be taken to pay 442 

more attention to the influential parameters, which can help deepen the understanding of the overall 443 

performance of the structure. 444 

 445 
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