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Abstract—Radio frequency fingerprint identification (RFFI)
is an authentication technique that identifies wireless devices
by analyzing the characteristics of the received physical layer
signals. In recent years, RFFI has been significantly enhanced
by deep learning. A neural network (NN) is often leveraged
to predict device identity. As a data-driven approach, deep
learning requires the collection of large amounts of data for NN
training. In addition, the RFFI system should be evaluated on
datasets collected under various conditions to assess the system’s
robustness. However, only a few RFFI datasets are publicly
available, and there are no clear guidelines for building an
RFFI testbed for data collection. This paper presents a tutorial
to build both closed-set and openset RFFI systems. A LoRa-
RFFI testbed is created as a case study and the implementation
details are described in depth. The LoRa-RFFI testbed involves
60 commercial-off-the-shelf (COTS) LoRa development boards as
devices to be identified, and a USRP N210 software-defined radio
(SDR) platform for physical layer signal reception. Experiments
are carried out using the implemented LoRa-RFFI testbed, and
the collected datasets are made publicly available online. It is
anticipated that this work can aid the research community in
constructing RFFI testbeds and facilitate the development of
RFFI research.

Index Terms—Wireless security, device authentication, radio
frequency fingerprint, deep learning

I. INTRODUCTION

Wireless devices are becoming ubiquitous in our daily lives,
with billions of wireless sensors/devices embedded in cities,
homes, and factories [1]. Wireless security becomes a pressing
concern due to the massive number of devices. Authentication
is the first defense for any wireless network, which prevents
unauthorized devices from gaining access to the network and
confidential resources. Conventional authentication schemes
rely on cryptographic algorithms, which require keys to be
installed or agreed upon between legitimate parties. However,
it is challenging to ensure the security of the key distribu-
tion and management. Moreover, cryptographic authentication
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schemes rely on software addresses such as media access con-
trol (MAC) addresses, which however can be tampered with.
Therefore, a lightweight, low-cost and reliable authentication
mechanism is needed for wireless security.

Radio frequency fingerprint identification (RFFI) is a po-
tential authentication method suitable for low-cost wireless
devices [2]. RF signals are generated by the analog front-
end of wireless transmitters, which consists of mixers, os-
cillators, power amplifiers, antennas, etc. These components
inevitably deviate from nominal specifications due to varia-
tions in manufacturing processes. Therefore, each transmitter
contains device-specific RF hardware impairments, termed RF
fingerprint (RFF). The RF impairments cause unique distortion
to the emitted RF signals, which allows us to extract RFF from
the physical layer signal captured at the receiver and uniquely
identify from which device the packet is sent. Traditional RFFI
systems rely on handcrafted features, which depend heavily on
the quality of the designed feature extraction algorithm. The
algorithms design requires expert knowledge of the underlying
communication protocols.

Recently, deep learning (DL) is widely employed in RFFI
due to its excellent feature extraction capabilities [3], [4].
Although a DL-based RFFI system can achieve excellent iden-
tification performance, it is data-hungry as a large number of
labeled signals are required to train a well-performing neural
network (NN). The lack of comprehensive public datasets and
testbed construction tutorials has greatly limited the develop-
ment of RFFI research. Firstly, there are only a few public
RFFI datasets available online, but most of them only focus
on specific scenarios. The implemented RFFI system should
be tested on the datasets collected in various environments and
conditions to evaluate system robustness. Secondly, there are
no detailed instructions on how to construct an RFFI system.
This has left many researchers unable to quickly build an
RFFI testbed or use existing datasets to evaluate the designed
algorithms, thus greatly limiting the expansion of the RFFI
research community.

This article aims to offer a comprehensive tutorial to guide
researchers to build an RFFI testbed. The necessary knowledge
of hardware/software requirements for implementing an RFFI
system is elaborated, and the collection settings are detailed.
The collected dataset is made public for researchers to rapidly
evaluate their designed RFFI protocol. The RFFI testbed
construction tutorial as well as the closed-set and openset
protocols are covered in Section II. Then we use LoRa as a
case study to illustrate how to create an RFFI testbed from
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Fig. 1: Overview of a closed-set RFFI system.

scratch, which is presented in Section III. Specifically, we
employ 60 LoRa development boards as devices under test
(DUTs), and a USRP N210 software-defined radio (SDR)
platform as the receiver to capture physical layer signals. In
Section IV, a series of experiments are conducted with the
implemented LoRa-RFFI testbed and the collected datasets
are made public. Section V details the designed closed-set
and openset LoRa-RFFI protocols, and results on the col-
lected dataset are provided. Section VI reviews the existing
public RFFI dataset and Section VII concludes the work. The
testbed implementation and dataset are based on our previous
work [2]. The dataset and code are accessible online [2].

II. RFFI SYSTEM

This section will first introduce the appropriate hardware
platforms for an RFFI testbed, including DUTs and receivers.
Then the signal collection program is described. The openset
and closed-set RFFI protocols are discussed.

A. RFFI Testbed

As shown in Fig. 1, a basic RFFI testbed consists of N
transmitters (DUTs) to be identified and a receiver running
the signal collection program and RFFI protocol.

1) Transmitters (DUTs): Depending on their programma-
bility, DUTs can be categorized into commercial off-the-shelf
(COTS) consumer electronics & IoT devices, IoT development
kits, and SDR devices.

Consumer electronics and commercial loT devices are usu-
ally equipped with wireless modules, e.g., smartphones and
laptops have WiFi/Bluetooth connectivity. They do not require
any programming thus transmission can be easily enabled.
However, their transmission parameters are difficult to control
such as power, packet interval, payload information, etc.

IoT development kits are also excellent candidates for con-
structing RFFI testbeds. They are programmable and therefore
allow precise control of some transmission parameters. They
are highly recommended from the research perspective be-
cause they are more flexible compared to consumer electronics
and only require a small amount of programming effort.

SDR devices and waveform generators can be customized
for any RF waveform. Their RF front-end components are
usually more expensive and of higher quality than COTS IoT
devices [4]. Furthermore, by using these types of equipment,

the characteristics of the transmitted waveform can be modi-
fied to emulate DUTs with various hardware impairments. For
instance, the authors in [5] use SDRs to emulate DUTs with
different values of I/Q mismatch.

2) Receiver: The RFFI systems leverage the physical layer
signal, i.e., IQ samples, for identification, which is however
inaccessible in most COTS receivers. Therefore, SDR devices
are often utilized for signal collection in RFFI research.
The SDR platforms capture radio signals and then convert
them to baseband IQ samples. All the rest procedures of the
communication system, such as packet detection and decoding,
are implemented by software. Note that the employed SDR
platform must be compatible with the target communication
protocol. The main parameters to consider include the range of
receiving operating frequency and the bandwidth. For instance,
ADALM-PLUTO SDR cannot be used for WiFi 802.11a that
operates in the 5 GHz band because it only supports receiving
frequencies ranging from 325 MHz to 3.8 GHz. In addition to
the SDR platforms, the vector signal analyzer (VSA) can also
be used to capture physical layer IQ samples.

B. Signal Collection

The SDR receiver will capture a buffer of 1Q samples,
which may be composed of valid wireless packets as well
as useless Gaussian noise. Therefore, we need to develop a
signal collection program to extract the region of interest, i.e.,
IQ samples of wireless packets, and discard the noise part.
The signal collection program mainly includes three necessary
steps, namely packet detection, synchronization and carrier
frequency offset (CFO) compensation. The packet detection
algorithm is first executed at the receiver to determine whether
a valid wireless packet is present in the captured 1Q samples.
If a packet exists, a synchronization algorithm is performed
to accurately locate the start point of the received packet.
Finally, the CFO of the received signal should be estimated
and compensated since the oscillator frequency is sensitive to
temperature variations [6].

The signal collection program varies depending on the com-
munication technologies due to different preamble structures.
Different SDR boards can utilize the same program to collect
wireless packets of a particular protocol.

C. RFFI Protocol

Depending on whether rogue devices are present in the
inference stage, RFFI can be categorized into closed-set
identification and open-set identification. This section first
introduces the signal representation module that is included
in both closed-set and openset protocols. Then the protocol
details are presented.

1) Signal Representation: The signal representation module
converts the collected complex-number 1Q samples to appro-
priate feature representations as NN inputs. Numerous signal
representations have been designed in prior RFFI studies. For
instance, complex IQ samples can be decomposed into two
independent branches, i.e., I and Q, to form a real-number ma-
trix as the NN input [5]. In some studies, the time-domain 1Q
samples are transformed to frequency spectrum [6], [7], which



can make the signal characteristics more evident and enhance
identification performance. The design of signal representation
should also take the employed communication technology into
consideration. For example, LoRa devices communicate with
chirp signals whose frequency linearly changes over time, thus
time-frequency domain spectrogram is an appropriate signal
representation for LoRa-RFFI systems [6].

2) Closed-Set Identification Protocol: As shown in Fig. 1,
closed-set RFFI consists of two stages: training and inference.
All DUTs in the inference stage are assumed to be already
involved in the training process.

Training: A training dataset is first created by capturing a
large number of packets from the N legitimate devices. The
corresponding transmitter labels are also saved to the training
dataset since the NN is typically trained in a supervised man-
ner. The collected packets are then transformed into designed
signal representations as NN inputs. When sufficient packets
are available in the training dataset, a NN is constructed
and its parameters are updated with the training data. The
model needs to be re-trained when new devices join the
communication network.

There are many varieties of NNs investigated in previ-
ous RFFI studies, including convolutional neural network
(CNN) [2], [8], [9], recurrent neural network (RNN) [10], long
short-term memory (LSTM) [6], [8] network and transformer.
The characteristics of the signal representation should be taken
into account when designing the neural network. For instance,
1D CNNs can be used to process IQ samples because they are
efficient for handling time series data [9], whereas 2D CNNs
are more appropriate for spectrograms as they are effective
for image-like data [2]. The NNs can be implemented by nu-
merous DL libraries such as PyTorch, TensorFlow, MATLAB
Deep Learning Toolbox, etc.

Inference: The collected IQ samples are converted to the
same signal representation as that in the training stage and fed
into the NN, with the output being the predicted device label.

3) Openset Identification Protocol: The openset RFFI pro-
tocol designed in [2] is illustrated in Fig. 2. It is composed
of three stages, namely training, enrollment, and inference. In
contrast to the closed-set RFFI system, the openset RFFI sys-
tem can identify DUTSs that are not included during training.
This is significant for RFFI since the data from rogue devices
and attackers are never available during training.

Training: We first collect signals from M DUTs to train
an NN-based feature extractor instead of a classification NN.
The input to the feature extractor is the signal representation
transformed from the IQ samples and the output is the ex-
tracted RFF. Note that the M DUTs used during training are
not necessarily involved in the latter stages. Therefore, the
training stage can be carried out by a third party with a large
number of DUTs to enhance the generalization of the NN-
based feature extractor. In the openset protocol, the NN serves
as a feature extractor but not a classifier, and thus is not needed
to be re-trained when new devices join.

Enrollment: An enrollment stage is additionally introduced
between the training and inference stages. We collect signals
from the NV legitimate DUTs and extract their RFFs with the
trained feature extractor. The extracted RFFs and correspond-
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Fig. 2: Overview of an openset RFFI system.

ing transmitter labels are then saved into an RFF database.
The enrollment stage should be conducted in a controlled
environment where only legitimate DUTs exist.

Inference: The inference stage of an openset RFFI protocol
is required to accomplish two tasks, namely rogue device
detection and device classification. The first task determines
whether the received signal is from a legitimate device, and
the device classification module further predicts the specific
identity of a legitimate DUT. Note that the inference stage
can be implemented by simple distance measurement such as
the k-nearest neighbor (kNN) algorithm [2].

D. Summary

As can be observed, all the RFFI operations are imple-
mented at the receiver side and no modification is required
at the transmitters. This unique feature makes RFFI extremely
suitable for legacy and future IoT networks, as RFFI can be
deployed with a specialized receiver without upgrading the
transmitter firmware. In addition, RFFI does not require a
dedicated packet but can piggyback on existing packets, which
will not drain transmitter energy and can achieve a per-packet
authentication.

III. LORA-RFFI CASE STUDY: TESTBED

LoRa is taken as a case study to illustrate how to construct
an RFFI testbed. Both the hardware equipment and signal
collection program are illustrated. The implemented LoRa-
RFFI testbed is based on the work in [2].

A. LoRa-RFFI Testbed

1) LoRa DUTs: We use 60 COTS LoRa development
boards as DUTs to be identified, which are shown in the
upper part of Fig. 3. To make the testbed more representative,
four models of LoRa development boards are employed since
there are likely a variety of transmitters in a LoRa network.
Specifically, we use 45 Pycom LoPy4, five Mbed SX1261
shields, five Pycom FiPy, and five Dragino SX1276 Shields
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Fig. 3: Experimental devices. 60 LoRa DUTs and a USRP
N210 SDR connected to a PC.

for experiments. The LoPy4 and FiPy are micropython-
programmable. The Mbed SX1261 and Dragino SX1276 are
based on Mbed and Arduino platforms, respectively, and are
programmed in C/C++ language.

The spreading factor (SF) and bandwidth of LoRa devices
are configured as seven and 125 kHz, respectively. They
continuously transmit LoRa packets at 868.1 MHz with ‘Hello’
as the payload. Note that the payload content is not relevant
in this work because only the preamble part is leveraged for
identification, which is consistent for all the LoRa packets.

2) SDR Receiver: A USRP N210 SDR platform with a
UBX 40 full-duplex daughterboard is used to implement the
LoRa receiver, which is shown in the lower part of Fig. 3. The
USRP devices support various software development frame-
works, such as Universal Hardware Driver (UHD), MATLAB,
GNU Radio, LabVIEW, etc. The users can design customized
signal processing algorithms with these platforms.

The sampling rate of USRP N210 is configured as 1 MHz,
which is eight times oversampling compared to the transmis-
sion bandwidth of 125kHz. The receiver gain is set to 0 dB.

B. Signal Collection

In our testbed, the USRP N210 SDR is connected to
a Windows PC. MATLAB is used to access the USRP
N210 and implement the signal collection program. The
MATLAB Communications Toolbox provides a system object
comm.SDRuReceiver to configure radio parameters and receive
data from the USRP board, which is based on the UHD driver.
According to our setting, this system object returns a column
vector of 375,000 complex numbers once it is called, which
is the captured RF signal.

The signal collection module aims to extract valid LoRa
packets from the captured 1Q samples. Three steps are needed
to complete the signal collection, namely packet detection,
synchronization, and CFO compensation. Then the packet
preamble part is extracted for RFFI. The algorithms are
explained in [6], which are specially designed for LoRa
signals. The designed MATLAB signal collection program

can be used for any SDR platform by simply replacing the
comm.SDRuReceiver system object with the adopted SDR
platform. Note that it is crucial to verify the signals are
correctly captured. This can be achieved by comparing the
collected signals to the simulated LoRa preamble waveform.

IV. LORA-RFFI CASE STUDY: DATASET

This section elaborates on the datasets collected with the
LoRa-RFFI testbed, including the experimental environments
and dataset information.

A. Dataset Overview

The dataset consists of 16 sub-datasets that are collected
in numerous conditions and thus can be leveraged for various
evaluation purposes. Each sub-dataset corresponds to an HDF5
file, and the details are shown in Table I. The considered
collection conditions include which DUTSs are involved, en-
vironments, whether LOS is included, channel condition, and
antenna polarization direction. In addition to the real-collected
datasets, several augmented test datasets are also provided.
Data augmentation can emulate more channel conditions by
feeding the collected signals into a wireless simulator, which
is detailed in Section IV-B2.

B. Dataset Details

Each HDFS5 file contains a number of LoRa signals, i.e., IQ
samples of the preamble part, as well as device labels. Some
HDFS5 files contain the real-collected signals, others contain
the signals augmented by a wireless channel simulator.

1) Real-Collected Dataset: The variations of wireless chan-
nels can degrade the RFFI system performance, posing a
significant obstacle for RFFI development [2], [9]. The impact
of wireless channels is reflected in two aspects, namely the
multipath effect and the Doppler effect. The multipath effect
is determined by the RF signal propagation environment,
while the Doppler effect is caused by the movement of
RF transceivers and/or surrounding objects. Therefore, it is
expected that the dataset contains signals collected in various
locations and in moving scenarios.

We first collect some sub-datasets in a residential room. The
LoRa transmitter and USRP N210 receiver are roughly placed
half a meter apart, with line-of-sight (LOS) between them.
The surrounding objects remain static during signal collection.
This is nearly the ideal case since both multipath and Doppler
effects are not strong.

The signal collection is also carried out in an office building,
whose floor plan is given in Fig. 4. As shown in the figure, the
receiver is located in an office room, and the LoRa transmitters
are in turn placed at six locations A-F, respectively. Both
LOS and non-line-of-sight (NLOS) scenarios are involved. We
further consider three scenarios.

« Stationary scenario: the transmitter and receiver, as well
as the surrounding objects, remain static. The channel
coherence time is sufficiently long and therefore the
channel can be assumed constant during signal collection.

e Mobile scenario: the USRP N210 receiver is static, but
the LoRa transmitter is carried by a person walking at



TABLE I: Dataset Information

Sub-dataset Name DUT Index | # Packets Per Dev | Environment | LOS/NLOS | Channel Condition | Ant. Polar. | Augmentation
dataset_training_aug.h5 1-30 1,000 | Residential LOS Stationary Linear Yes
dataset_training_aug_0Ohz.h5 1-30 1,000 | Residential LOS Stationary Linear Yes
dataset_training_no_aug.h5 1-30 500 | Residential LOS Stationary Linear No
dataset_seen_devices.h5 1-30 400 | Residential LOS Stationary Linear No
dataset_rogue.h5 41-45 200 | Residential LOS Stationary Linear No
dataset_residential.h5 31-40 400 | Residential LOS Stationary Linear No
dataset_other_device_type.hS | 46-60 400 | Residential LOS Stationary Linear No
A.h5 31-40 200 | Office loc. A | LOS Stationary Linear No
B.h5 31-40 200 | Office loc. B | LOS Stationary Linear No
C.h5 31-40 200 | Office loc. C | LOS Stationary Linear No
D.h5 31-40 200 | Office loc. D | NLOS Stationary Linear No
E.h5 31-40 200 | Office loc. E | NLOS Stationary Linear No
EhS 31-40 200 | Office loc. F | NLOS Stationary Linear No
B_walk.h5 31-40 200 | Office loc. B | LOS Object moving Linear No
F_walk.h5 31-40 200 | Office loc. F | NLOS Object moving Linear No
moving_office.h5 31-40 200 | Office LOS Mobile Linear No
moving_meeting_room.h5 31-40 200 | Office NLOS Mobile Linear No
B_antenna.h5 31-40 200 | Office loc. B | LOS Stationary Orthogonal | No
F_antenna.h5 31-40 200 | Office loc. F | NLOS Stationary Orthogonal | No
A_aug_Ohz.h5 31-40 200 | Office loc. A | LOS Stationary Linear Yes
A_aug_10hz.h5 31-40 200 | Office loc. A | LOS Stationary Linear Yes
A_aug_30hz.h5 31-40 200 | Office loc. A | LOS Stationary Linear Yes
A_aug_50hz.h5 31-40 200 | Office loc. A | LOS Stationary Linear Yes
A_aug_100hz.h5 31-40 200 | Office loc. A | LOS Stationary Linear Yes
7.2m 4.0m 4.4 m

Office

®)

|
@
2]
|
wTg

|

Corridor

70m

©®

Meeting Room

58m
Fig. 4: Floor plan.

a speed of v =2 m/s. The channel coherence time is
calculated to be around ¢/(v x f.) = 0.1728 s, where ¢
is the light of speed in free space, and f. is the carrier
frequency which is 868.1 MHz in this paper.

o Object moving scenario: the transceivers are kept static
but there is one person moving between them at a normal
speed of around 2 m/s. The Doppler effect in this setting
is weaker than that in the mobile scenario, therefore the
coherence time should be less than 0.1728 s.

These channel conditions cover most indoor communication
situations, which can be used to evaluate the LoRa-RFFI
performance in the indoor environment.

Another factor to consider is the polarization direction of

the transmitter and receiver antennas. The RFFI accuracy
decreases when the antenna polarization in the training and test
datasets differs. This has been investigated in earlier transient
feature-based studies but is often overlooked in recent DL-
based work. It is critical to explore how antenna polarization
affects signal characteristics and how to improve the system’s
robustness in response to this. The dataset contains signals
collected under both orthogonal and linear polarization di-
rections. Linear polarization refers to the two antennas being
aligned and having the same polarization, while Orthogonal
polarization means that the two antennas have orthogonal
polarization directions.

2) Augmented Dataset: Some channel conditions are dif-
ficult to create by conducting experiments. For instance,
the rapid movement of LoRa transceivers can cause severe
Doppler effects, but it is challenging to conduct experiments
at such a high speed. Alternatively, we can feed the collected
data into a wireless channel simulator, which can emulate a
variety of channel conditions.

In the data augmentation, each signal is sent through a
tapped delay line (TDL) channel model with various multi-
path and Doppler effects. More specifically, the multipath is
described by the exponential power delay profile (PDP) while
the Doppler effect can be depicted by Jake’s Doppler power
spectrum. The details/mathematical expressions of the wireless
channel simulator can be found in [2].




V. LORA-RFFI CASE STUDY: PROTOCOLS AND RESULTS

This section describes the designed closed-set and openset
LoRa-RFFI protocols and the results on the collected dataset.
The code and dataset used in this section are available in [2].

A. Signal Representation

The channel-independent spectrogram proposed in [2] is
used as the signal representation, which can mitigate the
channel effects. The impact of wireless channels is a huge
challenge in the development of RFFI research. The RFFI per-
formance can be severely degraded when channel conditions
are inconsistent with the training data, which is unacceptable
given that most wireless devices are mobile. To overcome this,
we design mitigation algorithms in the time-frequency domain.
More details about the derivation of channel-independent
spectrogram can be found in [2].

B. Closed-Set Identification

1) Protocol Implementation: The closed-set RFFI protocol
is implemented with a classification CNN.

Training: We leverage the TensorFlow library to construct a
classification CNN. A softmax-activated fully connected layer
is subsequently connected to the deep learning model proposed
in [2] to perform the classification function. The CNN is
updated by the RMSprop optimizer with an initial learning
rate of 0.001. The learning rate decreases by 80% when the
validation loss does not reduce for 10 epochs. The training
stops when validation loss plateaus for 30 epochs.

Inference: The input to the CNN is the channel-independent
spectrogram converted from the received IQ samples, and the
output is a probability vector over all the predictable DUTs.
The input and output dimensions are (102, 62, 1) and (30, 1),
respectively. The prediction result is the DUT with the highest
probability.

2) Results: We use the IQ samples and device labels
stored in ‘dataset_training_aug.h5’ to train the CNN. 10%
of the signals are used for validation and the rest are
used for training. The saved IQ samples are converted to
channel-independent spectrograms as NN inputs. Then we
use ‘dataset_seen_devices.h5’ to test the trained CNN. The
classification result is depicted in Fig. 5. It is a confusion
matrix often used to visualize the classification results. The
overall accuracy reaches 99.6% which means the trained CNN
can classify DUTs 1-30 with high accuracy.

C. Openset LoRa-RFFI Protocol

1) Protocol Implementation: The openset RFFI protocol
is implemented with an NN-based feature extractor, an RFF
database, and the kNN algorithm.

Training: The architecture of the feature extractor is given
in [2], which is implemented with the TensorFlow library as
well. Triplet loss is used to train the feature extractor. Note
that it is supervised training as the ground truth device labels
are used to select positive, negative, and anchor samples. The
utilized optimizer is RMSprop and the learning rate sched-
uler is exactly the same as that introduced in Section V-B.
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Fig. 5: Classification result of the closed-set RFFI system. The
overall accuracy is 99.6%

Consistent with the training settings for the closed-set RFFI
protocol, 10% of the signals are used for validation and the rest
are used for training. The trained feature extractor accepts the
channel-independent spectrogram, i.e., a (102, 62, 1) tensor,
and outputs a vector of 512 elements, i.e., RFF.

Enrollment: The N legitimate DUTs are required to enroll
their RFFs into an RFF database. They transmit wireless
signals to the receiver and the trained feature extractor is
utilized to extract RFFs. The corresponding labels are also
saved in the RFF database for use in the inference stage.

Inference: Th kNN algorithm is used to realize openset
identification, which involves rogue device detection and de-
vice classification. The received 1Q samples are first trans-
formed into a channel-independent spectrogram and the RFF
is extracted. A detection score is then calculated as the average
Euclidean distance to the RFF’s k nearest neighbors in the RFF
database. The signal is considered to be from a rogue device
when the detection score is higher than a predefined threshold.
If the detection score is lower than the threshold, the signal
is deemed to be from the most frequent DUT in its k nearest
neighbors. The number of neighbors & is set to 15 according
to our empirical optimization.

2) Results: We use ‘dataset_training_aug.h5’ to train
the feature extractor and ‘dataset_residential.hS’ to create
the RFF database in the enrollment stage. Then we use
‘dataset_rogue.h5’ to test the rogue device detection per-
formance. The result shows that the area under the curve
(AUC) reaches 0.9905 which indicates excellent rogue device
detection ability. The dataset ‘A.h5’ is used to evaluate the
device classification and the overall accuracy is over 95%.

VI. REVIEW OF EXISTING DATASETS

There are currently four LoRa datasets available online [2],
[71, [8], [11]. Elmaghbub et al. use a USRP B210 to collect
signals from 23 LoPy4 and 2 FiPy boards. The authors carry
out experiments in three environments. Al-Shawabka et al.
collect packets from 100 FiPy development boards with a
USRP N210. The data collection is carried out in both an



indoor wireless testbed and outdoor environment [8]. The
authors in [7] conduct experiments within a building. The
receiver is a USRP B210 and 22 LoRa transmitters of five
different models are used as DUTs to be identified. Compared
to the above-introduced datasets, the dataset presented in this
paper additionally incorporates the signals collected in moving
scenarios and takes into account the conditions of antennas [2].

Some WiFi-RFFI datasets are open source as well [5], [9],
[12]. Sankhe et al. take 16 USRP X310 SDRs as DUTs to
transmit WiFi 802.11a packets and use a USRP B210 for
the reception [5]. Similarly, Al-Shawabka et al. employ SDRs
as DUTs as well. Specifically, they use 13 USRP N210 and
seven USRP X310 for transmitting and a USRP N210 for
receiving [9]. In addition to the SDRs, the authors in [12] use
174 COTS WiFi NICs as DUTs, and 41 USRP SDRs of three
models as the receivers.

There are also publicly available datasets based on other
communication protocols besides LoRa and WiFi. The authors
of [13] use RFFI to identify seven COTS DIJI M100 UAVs
that employ a proprietary communication protocol. Liu et al.
use a USRP B210 to collect ADS-B signals from 130 flying
aircrafts [14]. Piva et al. release an RFFI dataset for UHF
RFID research as open source, containing signals collected
from 200 COTS RFID tags [15].

VII. CONCLUSION

This article presents an easy-to-follow tutorial on construct-
ing an RFFI testbed and building RFFI protocols. We list
the required hardware devices, i.e., transmitters and receivers,
and introduce both the closed-set and openset RFFI protocols.
After that, LoRa is taken as a case study to show how to
design RFFI systems in detail. We present the used hardware
devices and the designed closed-set and openset LoRa-RFFI
systems. We collect a number of datasets leveraging the
implemented LoRa-RFFI testbed and make them open-source.
Both the collection scheme and dataset are fully detailed. The
collected dataset is used to evaluate the implemented closed-
set and openset LoRa-RFFI systems. The results show that
the designed LoRa-RFFI systems have excellent performance.
Finally, we summarize the existing public dataset available for
RFFI research.
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