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Abstract 9 

Regular monitoring is essential for vulnerable coastal locations such as areas of 10 

landward retreat. However, for coastal practitioners, surveying is limited by budget, 11 

specialist personnel/equipment and weather. In combination structure-from-motion 12 

and multi-view stereo (SfM-MVS) has helped to improve accessibility to topographic 13 

data acquisition. Pole-mounted cameras with SfM-MVS have gained traction but to 14 

guarantee coverage and reconstruction quality, greater understanding is required on 15 

camera position and interaction. This study uses a multi-camera array for image 16 

acquisition and reviews processing procedures in Agisoft Photoscan (Metashape). The 17 

camera rig was deployed at three sites and results verified against a terrestrial laser 18 

scanner (TLS) and independent precision estimates. The multi-camera approach 19 

provided effective image acquisition ~11 times faster than the TLS. Reconstruction 20 

quality equalled (>92% similarity) the TLS, subject to processing parameters. A change 21 

in image alignment parameter demonstrated significant influence on deformation, 22 

reducing reprojection error by~ 94%. A lower densification parameter (‘High’) offered 23 

results ~4.39% dissimilar from the TLS at 1/8th of the processing time of other 24 

parameters. Independent precision estimates were <8.2mm for x, y and z dimensions. 25 

These findings illustrate the potential of multi-camera systems and the influence of 26 

processing on point cloud quality and computation time.  27 
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1. Introduction 30 

Coastal monitoring is an essential part of coastal protection, and repeat surveys offer 31 

insights into the effect of hydrodynamics on local geomorphology. Regular and 32 

impromptu surveying enables understanding of erosion rates, storm response and 33 

longer-term trends (Harley et al., 2011), and is important for the mitigation and 34 

prevention of flooding and erosion events.  35 

For coastal researchers and managers, increasing the frequency of surveys for coastal 36 

recession assessment can be complex and limited by factors such as budget, availability 37 

of specialist personnel or weather conditions. Development of SfM-MVS, a low-cost and 38 

flexible 3D reconstruction technique, has become an increasingly effective method for 39 

acquiring topographic data and has shown to provide results comparable to ‘industry 40 

standard’ TLS surveys (Westoby et al. 2018; Del Rio et al., 2020). TLS deployment is 41 

common practice for monitoring coastal recession; however, surveys can be extremely 42 

costly, skilled operators are required, and survey times can be long (Dewez et al., 2013; 43 

Rosser et al., 2013; Letortu et al., 2018; Westoby et al., 2018).  44 

SfM-MVS was derived from traditional photogrammetry, enabling 3D scene geometry to 45 

be reconstructed from 2D images. The quality of SfM-MVS reconstruction is highly 46 

dependent upon the effectiveness of the image acquisition scheme. The flexibility of 47 

SfM-MVS has fuelled development of novel applications and data acquisition schemes 48 

adapted to specific budgets, scales or environments. A variety of platforms have been 49 

utilised for monitoring coastal environments such as unmanned aerial vehicles (UAV) 50 

(e.g. Casella et al., 2020), poles (e.g. Pikelj et al., 2018), kites (e.g. Duffy et al., 2018) and 51 

hand-held cameras (e.g. James and Robson 2012). UAVs have become a popular 52 

platform for image acquisition but not all coastal researchers have the expertise or 53 

budget to use UAVs, and coastal flights are increasingly subject to tightened regulations 54 

(JNCC, 2019).  55 

The use of terrestrial pole-mounted cameras with SfM-MVS is less restricted, making 56 

them useful in coastal settings.  Single cameras with telescopic poles or cranes has 57 

proven an effective image acquisition method for geomorphic change (Rossi, 2018; 58 

Visser et al., 2019). Recent developments in commercial GNSS systems (Leica GS18) 59 

containing a very low-resolution camera (1 MP) for 3D reconstructions shows the 60 
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desire for adaptable image acquisition techniques, highlighting future avenues of 61 

development for pole-mounted cameras with SfM-MVS. For this approach to be 62 

deployed, two significant operational challenges need to be addressed: first, 63 

establishing the camera’s field of view (FOV) during image capture; secondly, 64 

optimising the overlap and interaction of images in the network because the camera’s 65 

position and orientation are harder to verify and maintain. These issues make it 66 

challenging to guarantee coverage of a site, thus requiring a significant degree of pre-67 

planning for image acquisition to reduce the risk of inadequate results (Wessling, 68 

Maurer and Krenn-Leeb, 2014;  Eltner et al., 2016). 69 

There is an opportunity to provide an alternative, efficient, approach to SfM-MVS image 70 

acquisition and, therefore, processing which would enable regular surveys of coastal 71 

recession. The use of a pole mounted array of cameras, along with systematic and pre-72 

determined guidelines for image acquisition, would define image interaction before 73 

deployment. Moreover, the identification of optimal processing parameters for this 74 

setup may reduce computational cost whilst aiding the accurate reconstruction of the 75 

point cloud.  76 

The aim of this paper is to explore this potential by designing and testing a bespoke 77 

multi-camera rig that can achieve scene reconstruction similar to a TLS.  The developed 78 

camera array is deployed at three coastal recession sites (< 2 m height). The objectives 79 

are three-fold: 1. to test the degree to which acquiring images in this way can speed up 80 

data acquisition in comparison to a TLS, without over- or under-representing an area of 81 

the survey; 2. to optimise SfM-MVS processing parameters to produce reconstructions 82 

similar to that of a TLS; and 3. to assess the overall reconstruction quality compared to a 83 

TLS, a benchmark of survey performance. This research builds on the work of Godfrey 84 

et al. (2020) by employing multiple synchronised cameras on a roving rig over larger 85 

scales and investigates the role software parameters play on computational processing 86 

and deformation reduction at sites with a linear image acquisition. The goal is to 87 

provide a systematic and reliable approach to using SfM-MVS for monitoring landward 88 

retreat which will reduce data gaps and provide an option for less experienced users on 89 

lower budgets and in highly restricted environments.  90 
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1.1 Study Sites 91 

A camera rig was used to survey three sites of landward retreat: Crosby, Thurstaston 92 

and Silverdale on the north-west coast of England, UK. Each site had different scale, 93 

sediment composition, vegetation cover and had been exposed to different 94 

hydrodynamic conditions, thus providing evidence of research applicability. 95 

1.1.1 Crosby  96 

Crosby is located north of the Mersey Estuary in Liverpool Bay,  North-West England, 97 

UK (Figure 1a). The coastline is susceptible to some of the highest surge conditions in 98 

the UK owing to the shallow nature of the north-eastern Irish Sea. Crosby has a macro-99 

tidal environment with a mean spring tidal range of ~ 8 m (Plater & Grenville, 2010).  100 
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 101 

Figure 1: Locations and aerial images of Crosby (a), Thurstaston (b) and Silverdale (c) study sites. 102 

. The average height of the cliff is ~1.5 m (vegetated on the cliff top and rubble at the 103 

base) and is classified as ‘Erodible’ with an expected recession of 52 m over a 20-year 104 

period (Environment Agency, 2019). Here, the objective is to reconstruct ~27 m-long 105 

site of landward retreat. 106 

1.1.2 Thurstaston 107 

Thurstaston is located on the west-side of the Wirral Peninsula, North West England 108 

(Figure 1b). The Dee estuary is hyper-tidal at its mouth with spring tidal range of 7-8 m 109 
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(Moore et al., 2009). Thurstaston is beach environment, and the cliffs are composed of 110 

glacial till. The coastline has experienced progressive landward retreat and recession is 111 

expected to be ~10 m over a 20-year period (Environment Agency, 2019). The study 112 

site is a low cliff formation (~1 m height) with a sloping front and an alongshore 113 

distance of ~13 m.  114 

1.1.3 Silverdale 115 

Silverdale saltmarsh is situated on the north-east shore of the River Kent estuary in 116 

Morecambe Bay, North West England (Figure 1c). The saltmarsh is subject to one of the 117 

largest tidal ranges in the world (10 m) and has suffered from cycles of sediment 118 

erosion and accretion that cut away at the saltmarsh edge. The coastline is considered 119 

‘Erodible’ and the retreat distance calculated by the Environment Agency (2019) is ~1.7 120 

m over a 20-year period.. The survey site is a mature, vegetated section of saltmarsh 121 

edge at ~1 m in height and a length of ~28 m.  122 

2. Materials and Methods 123 

A prototype camera rig, based on camera positions established in Godfrey et al. (2020), 124 

was used for systematic image acquisition. Images were processed with SfM-MVS 125 

software and the point clouds compared to TLS data through an overall ‘performance’ 126 

assessment.  127 

2.1 Camera Rig Design 128 

Optimal fixed camera positions were identified by Godfrey et al. (2020) as ≥ five images 129 

at a cliff: camera height ratio of approximately 3:4, a stand-off distance of 2 m, camera 130 

obliqueness angle of 40° declination from vertical (z-axis) and a baseline of 0.33 m & 131 

0.22 m. Six cameras were used along a horizontal rig length of 1.65 m (approximately 132 

97% overlap between images) and a survey pole with a maximum extension of 2.5 m 133 

(Figure 2). Images were levelled, and a remote control was used for image capture 134 

synchronisation. To maintain a consistent image overlap the camera rig was  moved by 135 

a calculated distance along the cliff (D) front before capturing the images – Equation 1: 136 

 (1)     D = 2a + b 137 
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where a represents the distance from the central pole to the end camera’s lens (0.77 m) 138 

and b is the distance specified for the overlap of images (~0.33 m). Equation (1) gave a 139 

D value of ~1.8 m. 140 

The camera rig was designed for a © ‘GoPro Hero 4 Black’ action camera. The GoPro 141 

camera has a 1/2.3 inch (6.2 x 4.65 mm) CMOS sensor. The pixel dimensions are 1.55 142 

µm with a 4:3 aspect ratio. The GoPro has a ‘fisheye’ lens of 3 mm which is later 143 

corrected for in processing. The camera’s angle of view (AOV) is 120° horizontally and 144 

94° vertically when used in ‘Wide’ image capture mode. The GoPro is small (80 x 80 x 38 145 

mm) and light weight (152 g) which made it useful for the multi-camera rig.  146 
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 147 

Figure 2: Camera Grid representation in SketchUp 2018. a) Camera grid dimensions showing height, width 148 

and spacing of camera. b) Camera declination from the z-axis. c) Estimated camera FOVs for the camera rig. 149 

d) Representation of camera rig movement in relation to the scene of reconstruction – the cross marks the 150 

location of the camera rig for image capture. 151 
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2.2 Data Acquisition 152 

Thurstaston and Silverdale were surveyed in November 2018 and Crosby in December 153 

2018. These days were chosen based on low tide and suitable weather conditions i.e. 154 

sufficient cloud cover to ensure a suitably diffuse illumination of the site (James and 155 

Robson, 2012). TLS surveys were acquired immediately after the SfM-MVS surveys, 156 

stopping at every second position of the camera rig to accommodate the TLS’ scan 157 

coverage (Table 1).  158 

The TLS survey was undertaken using a Faro 330 and scans processed in Faro SCENE 159 

3D (v.7.1), edited to remove noise, errors and crop the areas irrelevant to the survey 160 

(Godfrey et al., 2020). The scans for each site were registered together using ground 161 

control points (GCPs) as markers for correct orientation. Average TLS mean error (mm) 162 

for each site is given in Table 1. At each site GCPs (0.15 m2 checkerboards) were 163 

scattered across the scene approximately 1 m apart. Post SfM-MVS and TLS surveys, the 164 

checkerboards were georeferenced using a Trimble real-time kinematic global 165 

positioning system (RTK-GPS) R6 with a 8 mm horizontal accuracy and 15 mm vertical 166 

accuracy. The horizontal coordinates for the reference points were set to the British 167 

National Grid (OSTN02) while the vertical coordinates were referenced to mean sea 168 

level using the geoid model OSGM02. 169 

The linear nature of areas of landward retreat meant image acquisition was a linear 170 

process. James and Robson (2012) discussed the increased potential of systematic 171 

distortion or ‘doming’ for reconstructions of this type. To reduce this potential impact, 172 

GCPs were distributed evenly across the site and continuous parallel imagery was 173 

avoided, where possible, by the inclusion of 40° vertical obliqueness and the rig 174 

positions moved relative to the orientation of the cliff face (Figure 2d). 175 
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 177 

 178 

Table 1: Data acquisition information for TLS and camera rig SfM-MVS surveys at Thurstaston, Silverdale and Crosby. 179 

Site Date 
Images 

Processed 

Rig 

stops 

TLS 

stops 

TLS Data 

acquisition 

(mins) 

TLS Mean error 

range (mm) 

SfM-MVS Image 

acquisition 

(mins) 

Cliff 

Height 

(~m) 

Pole 

Height 

(m) 

Thurstaston 04.11.18 80 8 4 35.52 3.8 9.03 1 1.39 

Silverdale 16.11.18 102 17 10 88.8 3.7 

 

4.93 

 

1 1.39 

Crosby 04.12.18 114 19 8 71.04 7.6 6.96 1.5 2.13 
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3. Analysis 180 

 181 

3.1 SfM-MVS Point Cloud Generation 182 

SfM-MVS processing covers two main stages: first, a sparse point cloud is generated 183 

from the images; second, this point cloud is intensified through a process of 184 

densification. The aim was to optimise these two stages by speeding up processing time 185 

whilst still producing a high-quality 3D reconstruction. The process of software 186 

optimisation, therefore, entailed a two-stage assessment procedure, with the outcome 187 

of stage one processing feeding into stage two (Figure 3). 188 

 189 

Figure 3: Workflow depicting the process of point cloud generation and assessment. Cross-hatching reflects 190 

the parameters used in processing. 191 

Stage One processing began with the images being uploaded into Agisoft Photoscan 192 

(Version 1.3.2.42025) and the camera model being changed to ‘fisheye’ to match the 193 

calibration parameters of the GoPro Hero 4 Black (Godfrey et al., 2020). The process of 194 

image alignment identifies and tracks features across the uploaded images; the external 195 

and internal camera parameters are solved through a bundle adjustment and a sparse 196 

point cloud is created. The choice of image alignment parameter determines whether 197 
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the image is downscaled or upscaled (software options shown in Figure 3). The 198 

alignment parameters tested in Stage One were ‘Highest’ (Godfrey et al., 2020) which 199 

upscales the image by a factor of 4 and ‘Medium’ which downscales the image by a 200 

factor of 4 (2 times by height and width of the image) (Agisoft, 2018). ‘Medium’ was 201 

used as a computationally faster option for larger sites.  The two sparse point clouds 202 

produced were manually cleaned to remove noise and GCPs in the images referenced 203 

using software markers and the collected RTK-GPS data (section 2.2).The software 204 

markers were only placed on well-observed GCPs in the central portion of the images in 205 

order to reduce deformation brought on by the linear nature of the site and use of a 206 

fisheye lens (Figure 4a-c).  The marker positions were used in the ‘Optimise Cameras’ 207 

option which reduced point cloud deformation by re-running the bundle adjustment 208 

and reduces image observation error. . 209 

The two sparse point clouds then underwent ‘Ultra High’ densification (Godfrey et al., 210 

2020) to establish the impact of image alignment parameters on point cloud 211 

deformation.  The subsequent reprojection error, which provides an indication of 212 

deformation, was used to determine the image alignment parameters to be used for 213 

‘Stage Two’ analysis (Figure 3).  214 

Stage Two used the findings of Stage Stage One to investigate the impact of densification 215 

through a comparison against the equivalent TLS reconstruction. The densification 216 

process intensified the number of points in the sparse point cloud and created the 217 

fundamental structure of the subsequent model. Again, there are a range of parameters 218 

within Agisoft Photoscan for reconstruction quality ranging from ‘Lowest’ to ‘Ultra High’ 219 

(Figure 3). Image downscaling underpins these parameters. The ‘Ultra High’ setting uses 220 

the images at their original scale and each lesser step is downscaled by a factor of 4 221 

(Agisoft, 2018)The densification parameters chosen for testing were ‘Low’, ‘High’ and 222 

‘Ultra High’ to reflect a variety of quality and timescales for a SfM-MVS reconstruction. 223 

 224 
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Figure 4: Example images used in the point cloud generation showing the estimated central placement of 225 

markers onto GCPs in Agisoft Photoscan a) Thurstaston b) Silverdale c) Crosby. 226 

 227 

3.2 Performance Assessment 228 

The dense point clouds produced using SfM-MVS were exported as LAZ files and their 229 

overall performance tested against the TLS benchmark. To evaluate the performance of 230 

the multi-camera rig for image acquisition and the optimal parameters within Agisoft 231 

Photoscan, a systematic method of performance assessment was undertaken using 232 

three tests. Two of the tests were previously used in Godfrey et al. (2020) and evaluated 233 

positional point accuracy (deviation analysis & GCP analysis) and the other assessed 234 

point cloud density (surface density analysis). An aggregated weighted average of the 235 

three tests was used to assess the overall performance of the camera rig image 236 

acquisition under varying densification parameters. The comparative tests are set out 237 

below: 238 

I. Deviation analysis (B): C2C closest point distance calculation is a direct 239 

method for 3D point cloud comparison (Appendix A). 240 

II. Surface Density Analysis (M): The surface density was estimated using 241 

CloudCompare (V2.9) which calculates the number of points present within a 242 

sphere with a specified radius (5.5 mm) (Appendix A).  243 

III. GCP metric (G): This metric was used to compare the ability of the TLS and 244 

SfM-MVS to reconstruct the GCPs in the scene (Godfrey et al., 2020) 245 

(Appendix A). 246 

Once the above three comparative tests were completed, an aggregated weighted 247 

average of SfM-MVS performance (A) was calculated for each point cloud. Point cloud 248 

deformation is a significant issue for sites with a linear image acquisition. Consequently, 249 

50% weighting was given to the Deviation Metric (B) as it provides a clear indication of 250 

point cloud deformation and the remaining 50% was divided between GCP Analysis 251 

(25%) and Surface Density (25%) to reflect the accuracy and density of the point cloud 252 

(Equation 2): 253 



14 | P a g e  
 

(2)          ( )      ( )      ( ) 254 

A score of 1 implies that SfM-MVS produced results that were (in aggregate across the 255 

three tests) of equivalent quality to those generated by the TLS.  256 

The point clouds that provided scores most similar to the TLS for each site underwent an 257 

independent precision assessment to review the strength of the image network and influence of 258 

GCPs. The process of precision maps was developed by James, Robson and Smith (2017) and 259 

involves using Monte Carlo simulations on the bundle adjustment procedure in Agisoft 260 

Photoscan. Precision assessment is used to independently examine SfM-MVS 261 

reconstructions without a reference point cloud e.g., TLS. The precision maps produced 262 

display the spatial distribution of precision across the point cloud and represents the 263 

repeatability of the reconstruction. Greater detail on this procedure can be found in James, 264 

Robson and Smith (2017). 265 

 266 

4. Results  267 

4.1 Stage One Results 268 

Stage One produced two dense point clouds for each of the three sites, one 269 

reconstructed using ‘Medium’ image alignment plus ‘Ultra High’ densification, and the 270 

second using ‘Highest’ image alignment plus ‘Ultra High’ densification. The purpose of 271 

this test was to identify the image alignment parameter that may exacerbate 272 

deformation.  273 

All the point clouds created initially contained visible signs of deformation.As discussed 274 

in section 2.2,  due to the linear nature of the site and image acquisition, reconstructions 275 

can be susceptible to the impacts of deformation, making GCPs essential. The inclusion 276 

of georeferenced data during optimisation helped to remove significant deformation by 277 

re-running the bundle adjustment with the inclusion of GCPs. This process reduced 278 

potential error on the estimated tie points and camera positions by adjusting their 279 

position to the reference coordinate system (James, Robson and Smith, 2017; Agisoft, 280 
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2018). The coordinates provided an external reference set and established an 281 

alternative method of point cloud correction without pre-processing of images. 282 

Table 2: Reprojection Errors (m) for point clouds constructed under different Image Alignment parameters 283 

for Thurstaston, Silverdale and Crosby. 284 

Site 
Image Alignment 

Parameter 

Densification 

Parameter 

Reprojection Error 

(m) 

Thurstaston 
Medium 

Ultra High 

 

0.008 

Highest 0.255 

Silverdale 
Medium 0.012 

Highest 0.236 

Crosby 
Medium 0.012 

Highest 0.071 

 285 

Choice of image alignment parameter revealed a further impact on point cloud 286 

deformation. Table 2 displays higher reprojection errors for all three sites when using 287 

the ‘Highest’ image alignment parameter. For example, Crosby had a reprojection error 288 

of 0.071 m (Figure 5b), in comparison the use of ‘Medium’ photo alignment produced a 289 

reprojection error of 0.012 m (Figure 5a). The reprojection error is an indicator of poor 290 

accuracy at the image alignment which can result in false matches during feature 291 

tracking. Therefore, the ‘Highest’ image alignment parameter was excluded and 292 

processing for all future reconstructions in Stage Two used the ‘Medium’ parameter. 293 

 294 
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Figure 5: Crosby dense point cloud deformation under differing image alignment parameters. a) ‘Medium’ 295 

image alignment plus ‘Ultra-High’ densification. b) ‘Highest’ image alignment plus ‘Ultra-High’ densification. 296 

 297 

4.2 Stage Two Results 298 

Stage 2 results were based on point clouds created using a ‘Medium’ image alignment 299 

parameter, and a range of densification parameters: ‘Low’, ‘High’ and ‘Ultra High’ tested 300 

against a TLS benchmark.  301 

4.2.1 Deviation Analysis Results 302 

The mean C2C was in the range of 8-10.4 mm for all sites and densification parameters. 303 

Overall, images acquired by the camera rig displayed consistent levels of replication in 304 

comparison to the TLS dense point cloud. The TLS point cloud mean errors were 305 

between 3.7 – 7.6 mm for the three sites (Table 1). Higher deviation values were 306 

displayed for the ‘Ultra High’ and ‘Low’ densification processing parameter, with the 307 

exception of the ‘Low’ densification for Thurstaston. Generally, improved C2C values 308 

were created by the densification parameter ‘High’.  309 

Deviation between the SfM-MVS point cloud and the TLS are illustrated by a colour scale 310 

of difference in Figure 6 a-c. The spatial distribution of error for all sites generally 311 

followed vegetation patterns. Deviation was observed along the cliff margin at 312 

Silverdale, Crosby and in a small section of Thurstaston where vegetation was present 313 

or overhanging. There was also a minor degree of difference on the peripheries of each 314 

point cloud, all below 0.1 m difference, which was consistent with reduced image 315 

overlap. The Thurstaston reconstruction also displayed deviation in the centre of the 316 

point cloud where less features were present in the scene. 317 
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 318 

 319 

 320 

Figure 6: Scalar fields displaying the highest C2C values for each site a) Thurstaston, ‘Ultra High’ 321 

densification (highest mean C2C value – 9.01 mm) dense point cloud. b) Silverdale, ‘Low’ densification 322 

(highest mean C2C value – 10.4 mm) dense point cloud. c) Crosby, ‘Ultra High’ densification (highest mean 323 

C2C value 9.23 mm) dense point cloud. 324 



18 | P a g e  
 

4.2.2 Surface Density Results 325 

The choice of densification parameter had an expected impact on surface density, with 326 

the ‘Low’ setting producing densities less than 10% of the TLS and ‘Ultra High’ 327 

providing the highest levels of density (Figure 7). For example, this parameter produced 328 

point clouds for Thurstaston and Silverdale that were more than twice the density of 329 

those produced by TLS.  The ‘High’ parameter offered similar densities to the TLS.  330 

 331 

Figure 7: Surface density for each site and densification parameter compared to the equivalent TLS result. 332 

As with the previous C2C result, vegetation had an impact on the resultant dense point 333 

cloud for both SfM-MVS and the TLS. Areas of low surface density for both techniques 334 

were those occluded by the shadowing vegetation from overhanging plants or tall plants 335 

in the foreground. 336 

4.2.3 GCP Results 337 

SfM-MVS produced consistently higher positional accuracy than TLS, with all results 338 

above 1 across all sites and densification parameters (Figure 8 a-c). The ‘High’ 339 

densification parameter provided the highest positional accuracies with an error range 340 

of 0.03 – 14.7 mm and a mean error of 1.5 mm for Thurstaston, 1.3 mm for Silverdale 341 
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and 1.4 mm for Crosby. A probable cause was the ‘Ultra High’ densification created a 342 

degree of ‘noise’ within the point cloud and the ‘Low’ parameter did not provide 343 

sufficient points to reconstruct the dimensions of the GCP accurately.  344 

 345 

 346 

Figure 8: Results of the three comparative tests (Deviation, Surface Density, GCP) compared to the TLS 347 

reconstruction benchmark for a.) Thurstaston b.) Silverdale c.) Crosby. Reconstruction accuracies of SfM-348 
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MVS and the TLS for each site and densification parameter. A result of 1 would imply that SfM-MVS and the 349 

TLS were equivalently accurate. 350 

4.2.4 Aggregated Test of SfM-MVS Performance & Precision Maps 351 

The calculation of an aggregate weighted average for the three tests provided each site 352 

and densification parameter with an overall score relative to the benchmark score of 1 353 

for the TLS. 354 

 355 

Figure 9: The overall SfM-MVS point cloud performance for each site and densification parameter compared 356 

to the TLS point cloud. The timescale for computer processing is included as a label on each column. ‘Ultra 357 

High’ provided the best overall score but poorest processing times. 358 

Results show a consistent change in reconstruction performance with densification 359 

parameter across the three sites (Figure 9). ‘Ultra High’ produced the greatest level of 360 

performance. ‘High’ densification with a ‘Medium’ image alignment parameter provided 361 

very good replication with results reaching over 92% similarity to the TLS survey 362 

(Figure 9). An increased densification parameter had the expected impact of increasing 363 

processing time significantly (Figure 9). For example, processing took in the region of a 364 

few minutes for lower settings but took over 21 hours for the Crosby ‘Ultra High’ setting 365 

(Laptop: MSI GL72 7QF Intel 7 with GEFORCE GTX 960M and 16 GB RAM). Although 366 
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‘High’ did not reach the levels of performance provided by ‘Ultra High’ densification, it 367 

offered a result within >92 % similarity of the TLS with 87% less processing time on 368 

average. As a result of these lower processing times and high similarity with the TLS, 369 

point clouds created through a ‘Medium’ image alignment and ‘High’ densification were 370 

used to assess precision (Figures 10-12). 371 

The precision maps allowed the spatial distribution of precision to be visualised and the 372 

separate influences of image network geometry (internal precision) and GCPs (external 373 

precision) to be understood (James, Robson and Smith, 2017) - blue referring to 374 

increased precision.   375 

 376 

Figure 10: Precision error maps separated into x, y and z components for Thurstaston. Overall survey 377 

precision including georeferencing error and internal precision (surface shape error) excluding any 378 

georeferencing error are displayed in two columns. Mean precision (mm) is displayed on the bottom left of 379 

each map. 380 

The Thurstaston reconstruction showed millimetre mean precision across all three 381 

dimensions, with all dimensions (x, y and z) providing values < 6 mm (Figure 10). 382 
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Precision estimates displayed a slight offset, approximately 1 mm, between internal 383 

(Shape) and external (Overall) precision. The lower internal precisions (Figure 10) 384 

suggest the image acquisition scheme provided a strong image network, producing 385 

robust feature tracking and tie points.  386 

 387 

Figure 11: Precision error maps separated into x, y and z dimensions for Silverdale. Overall survey precision 388 

including georeferencing error and internal precision (surface shape error) excluding any georeferencing 389 

error are displayed in two columns. Mean precision (mm) is displayed on the bottom left of each map. 390 

Precision maps for Silverdale also showed millimetre mean precision for each 391 

dimension for both internal and external precision – all less than 6 mm (Figure 11). 392 

Overall, the reconstruction had slightly higher precision values than Thurstaston but 393 

only a very minor offset between external and internal precision, suggesting strength in 394 

both the image and GCP network.  395 
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 396 

Figure 12: Precision error maps separated into x, y and z dimensions for Crosby. Overall survey precision 397 

including georeferencing error and internal precision (surface shape error) excluding any georeferencing 398 

error are displayed in two rows. Mean precision (mm) is displayed on the bottom left of each map. 399 

The Crosby reconstruction showed millimetre precision for each dimension (Figure 12). 400 

Precision estimates for both overall precision and shape values lied close together but 401 

with an offset of approximately 1 mm in each plane. However, the scale and similarity of 402 

magnitude in overall and shape precision suggested both good image network geometry 403 

and GCP distribution and measurement. The scale and spatial distribution of estimated 404 

precision both internally and externally corresponded with the C2C results (combined x, 405 

y and z) in section 4.2.1. Poorer precision estimates were present along the cliff where 406 

vegetation is present.  407 
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5. Discussion 408 

Images obtained using the camera rig produced point clouds with reconstruction 409 

quality similar to, and indeed exceeding, a TLS. The systematic approach to image 410 

acquisition and processing with SfM-MVS provided consistent reconstruction results 411 

across all three sites. Thus, the findings provide a valuable first step in the use of multi-412 

camera setups and offers new understanding that will benefit projects which look to use 413 

more robust camera types or alternative camera setups for rapid and low cost 414 

assessment of coastal recession.  415 

5.1 Reconstruction Comparison 416 

The use of the camera rig with SfM-MVS displayed an average error of 8.93 mm 417 

deviation from the TLS across all three sites and densification parameters. In this study, 418 

as with Castillo et al. (2012), Nouwakpo et al. (2016) and Westoby et al. (2018), the TLS 419 

is the assumed benchmark standard for comparison of image-based 3D reconstruction. 420 

However, error is inherent within all monitoring techniques including TLS.  The TLS 421 

surveys produced average errors in the range of 3.7 mm to 7.6 mm (Table 1). 422 

Consequently, when comparing the SfM-MVS point cloud to the TLS, the measured 423 

deviation may appear inflated when it reflects some of the error present within the 424 

reference survey.  425 

The standard deviation of distance between point clouds has been used as an indicator 426 

for reconstruction quality by Nouwakpo et al. (2016) whose work will be used as 427 

comparator (Table 3). The average standard deviation across all three sites using 428 

‘Medium’ alignment and ‘High’ densification compared to the TLS was 7.8 mm. 429 

Nouwakpo et al. (2016) recorded standard deviation values of 5 mm over a 6 m plot 430 

when comparing a TLS and pole-mounted SfM-MVS image acquisition (DSLR). The 431 

standard deviation results display a similar order of magnitude, with an offset of 2.8 432 

mm, on average. However, the scale of sites in this current paper is more than double 433 

that of Nouwakpo et al. (2016). A standard deviation measure relative to length of site 434 

offers the opportunity for improved context of these results (Table 3). 435 

 436 
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Table 3: Calculation of dimensionless indictor based on standard deviation from the three study sites 437 

compared with data from Nouwakpo et al. (2016).  438 

  
Mean Standard 
Deviation (mm) 

Length of 
Site (m) 

Dimensionless 
Indicator 

Thurstaston 7.5 13 0.58 

Silverdale 8 28 0.29 

Crosby 7 30 0.23 

Nouwakpo et al. 
(2016) 

5 6 0.83 

 439 

Nouwakpo et al. (2016) report reconstruction quality poorer than all three sites 440 

surveyed with the camera rig (Table 3). The greatest difference from the findings of 441 

Nouwakpo et al. (2016) were the results of the Crosby survey, where there was a 72 % 442 

improvement in the standard deviation relative to the length of site. Although there is a 443 

need for greater research into the impact of stand-off distance and site complexity, 444 

these results provide encouraging findings for systematic image acquisition using 445 

multiple cameras. 446 

Independent precision estimates for all sites showed millimetre-scale results.  The 447 

inclusion of independent precision estimates helped to provide a holistic view of 448 

reconstruction quality. Precision estimates (both internal and external) for the three 449 

sites ranged from 3.28 mm – 8.15 mm (x, y and z). Internal precision displayed 450 

marginally lower values than external values, suggesting a minor propagation of error 451 

produced from the measurement of the GCPs. The reduced precision in the z-axis across 452 

all three sites is consistent with reduced vertical accuracy (~15 mm) of the RTK-GPS 453 

relative to horizontal accuracy (~8 mm). James et al. (2017) reported a much greater 454 

offset of 40 mm between internal and external precision for simulated UAV flights. The 455 

scale and distribution of precision across the three surveyed sites was consistent, and in 456 

line with the spatial distribution of error produced in the C2C analysis. The variation in 457 

precision between sites reached a maximum of 3 mm. All sites have shown ≤ 8.15 mm 458 

precision estimates in each dimension, suggesting a good image network through the 459 

use of oblique and well captured images that produced high quality tie points. Minor 460 

offsets between internal and external precision were present at all sites suggesting a 461 
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good distribution of GCPs and good image network geometry. Crosby shows slightly 462 

poorer precision values than Thurstaston and Silverdale. This difference may be the 463 

consequence of increased linearity of the site, reducing the possibility of more 464 

convergent images and reducing the quality of the reconstruction. Crosby and 465 

Thurstaston show a marginally higher but similar magnitude offset between internal 466 

and external precision (~1 mm) suggesting that the minor errors present in the GCP 467 

measurement propagated through the reconstruction to produce a slightly poorer 468 

external precision value.  469 

5.2 Influence of Processing and GCPs 470 

The influence of image processing proved to be a significant contributor to the overall 471 

reconstruction quality when using a systematic approach to SfM-MVS.  472 

5.2.1 GCP Influence 473 

The three sites surveyed provided good texture for feature extraction, but the thin 474 

linear geometry of the site meant a potential for a ‘drift’ in the estimation of internal and 475 

external camera parameters (James and Robson, 2012). Drift can lead to systematic 476 

deformation and may be more prevalent in action cameras due to the increased lens 477 

distortion. The inclusion of GCPs in the field is necessary to reduce deformation at sites 478 

with a linear image acquisition (James and Robson, 2012) and an increase in the 479 

number of GCPs has shown to improve survey accuracy (Warrick et al., 2017; Westoby 480 

et al., 2018).  Precision estimates across all sites showed good GCP networks with 481 

precision similar in scale to the image network estimates (all sites < 8.2 mm precision 482 

for x, y and z). The minor offset of internal and external (~ 1 mm) precision shows the 483 

GCP network has improved (distribution and number) since Godfrey et al. (2020), in 484 

which the external precision estimate revealed a greater offset between internal and 485 

external precision (offset of ~ 7 mm on average across x, y and z).. Although precision 486 

estimates suggested a good image network geometry, the estimates did not consider the 487 

potential for systematic deformation. This form of deformation was more easily 488 

identified through the reprojection error and, subsequently, removed during stage one 489 

processing through strategic marker placement and choice of processing parameter 490 

(section 4.1).  491 
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5.2.2 Influence of Processing Parameters 492 

The choice of processing parameter also proved to be influential on overall point cloud 493 

reconstruction. The choice of Stage One image alignment parameter showed 494 

considerable impact on systematic deformation with the ‘poorer’ image alignment 495 

setting (‘Medium’) providing a reconstruction that had 18 times, on average, less 496 

reprojection error (an initial indicator for systematic deformation) than the ‘Highest’ 497 

setting. The ‘Highest’ image alignment parameter upscaled the image by a factor of four 498 

and, therefore, introduced an increased number of feature matches across distorted 499 

portions of the image.  500 

The quality of reconstructions from overlapping 2D images is known to be significantly 501 

dependent on image content and subsequent feature matching (Gruen, 2012). 502 

Therefore, cameras with greater FOVs, such as action cameras provide a high degree of 503 

feature tracking (Streckel & Koch, 2005). Thus the combination of a linear image 504 

capture and a wider FOV encouraged feature tracking across the distorted borders of 505 

the image, impairing the software’s ability to adequately estimate camera pose, image 506 

network geometry and, therefore, reconstruction quality (James and Robson, 2012; 507 

Eltner et al., 2016). Although the poorer reprojection error provided by the ‘Highest’ 508 

image alignment parameter may appear contradictory, the upscaling of the image 509 

encouraged matches with poor covariance and thus a poor estimation of camera pose 510 

and orientation. Consequently, the downscaling of the image (‘Medium’ image 511 

alignment parameter) ‘forced’ the software to use larger, more stable features as 512 

keypoints and so there was a lower likelihood of systematic error through ‘drift’ in 513 

camera pose estimation. Similar conclusions were also made by Prosdocimi et al. 514 

(2015), who documented how decreasing image resolution (e.g. downscaling) led to 515 

reduced error potentially due to error smoothing. 516 

The choice of densification parameter (Stage Two) had a marked impact on SfM-MVS 517 

performance. The densification process improved the reconstruction with each higher 518 

interval. Here, densification multiplied the tie points established in the image alignment 519 

stage and did not optimise any aspects of the point cloud, making it a less influential 520 

step (James, Robson and Smith, 2017). The choice of densification parameter i.e., 521 

medium, high, ultra-high can produce a result that under performs, equals, or surpasses 522 

the point density of the TLS reconstructions. Eltner & Schneider (2015) and Smith and 523 
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Vericat (2015) also found SfM-MVS to outperform the TLS on small-scale sites with 524 

single cameras.  525 

The ‘Ultra High’ densification parameter required longer processing times than the 526 

‘High’ setting (increase of 87% on average), potentially increasing density without 527 

substantial advantage. Extended processing time during the densification stage is not 528 

uncommon in SfM-MVS research, particularly when using large datasets (Nagle-529 

McNaughton & Cox, 2020). However, the results reported in this paper found that the 530 

‘High’ densification parameter offered in Agisoft produced results only 4.39 % 531 

dissimilar to the TLS on average across all three sites and processing of approximately 532 

1/8th of the time, on average. This represented a significant gain in efficiency, important 533 

where processing power is limited, time is constrained, or the image dataset is large.  534 

5.3 Future Research 535 

Overall, the multi-camera rig provides a rapid, systematic and accurate method of image 536 

acquisition for SfM-MVS. Across all sites the 3D reconstructions from the rig have 537 

shown consistently strong results in comparison to the TLS and through independent 538 

precision assessment. The choice of a nominally lower image alignment parameter, 539 

‘Medium’, provided decreased reprojection error and less deformation. The 540 

combination of ‘Medium’ image alignment with the ‘High’ densification setting provided 541 

results that were >92 % similar to TLS. The benefit of using a lower image alignment 542 

parameter does not mean the choice of the ‘Highest’ parameter may not be 543 

advantageous for other reconstructions, as deformation may be less prevalent at sites 544 

where a 360° image capture is possible. This research corroborates the suggestions of 545 

Brasington, Vericat and Rychkov (2012) and Eltner et al. (2016) that diligent selection 546 

of processing parameters post-image acquisition is an important step for optimising 547 

reconstruction quality.  548 

Data acquisition using the rig also proved to be considerably faster than using a TLS. 549 

The camera rig provided a data acquisition 10.71 times faster, on average, than the TLS 550 

across the three sites. This reduction in time is particularly important with respect to 551 

fieldwork in marine and coastal settings where tides and weather can reduce the 552 

accessibility of sites and rapid acquisition of field data can be vital to fully survey an 553 

area.  554 
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The findings reveal the camera rig is a low cost (~£600) and resource efficient 555 

alternative to the TLS (~£35,000; Visser et al., 2019), producing reconstructions that 556 

are similar to, and in some cases even exceed, the TLS benchmark.  The strong precision 557 

values established for all sites revealed that the camera rig, in combination with the 558 

placement of the GCPs produced a strong image network geometry and robust GCP 559 

network. Thus, this new form of data acquisition provides a systematic, easily followed 560 

process that secures a level of coverage that may not be as achievable for less 561 

experienced users of SfM-MVS.  562 

Future work should consider: 563 

a) The setup of the multi-camera rig was specifically designed for sites of coastal 564 

recession of a particular height range and a specified stand-off distance. Exploring the 565 

use of multi-camera setups in different environment settings and scales would expand 566 

the potential of the multiple cameras. 567 

b) Software marker placement displayed an influence on reconstruction. A focussed 568 

examination of the impact of software marker placement on 3D reconstruction quality 569 

would interesting, particularly, the impact on different lens types e.g., DSLR compared 570 

to fish-eye. 571 

c) Further research could explore adaptions to the multi-camera rig such as in-situ 572 

monitoring with permanent camera positions. 573 

d) Comparisons with other SfM-MVS image acquisition schemes such as single DSLRs or 574 

other platforms could provide further details on the accuracy and usability of multi-575 

camera setups. 576 

e) The combination of multiple cameras and a GNSS system in a single unit may provide 577 

the opportunity to remove GCPs and further reduce surveying time. 578 

f) The stand-off distance for the camera rig was set to 2 m to ensure observed changes 579 

were not the result of alternating image resolution (James and Robson, 2012). However, 580 

the impact of changing distance on accuracy and precision values could be explored in 581 

future research. 582 

 583 
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 584 

 585 

 586 

6. Conclusions 587 

The rig provided a systematic and effective method of image acquisition that proved to 588 

be ~11 times faster than the TLS, on average, across the three test sites. Comparative 589 

tests with a TLS showed overall reconstruction quality that could equal (> 92 % 590 

similarity) or surpass the TLS benchmark depending upon selected processing 591 

parameters. The image alignment parameter proved to significantly influence point 592 

cloud deformation at all three test locations with an average reduction of 94 % in 593 

reprojection error through a change in processing parameter (‘Medium’ instead of 594 

‘Highest’). The choice of densification parameter had a significant bearing on processing 595 

times with ‘Ultra High’ parameter increasing times by 87% on average. However, a 596 

marginally lower densification parameter (‘High’) offered results only 4.39 % dissimilar 597 

from the TLS and processing of approximately 1/8th of the time on average.  598 

Independent precision estimates across all three test locations were < 8.2 mm for x, y 599 

and z dimensions, suggesting consistent levels of reconstruction across varying 600 

alongshore scales. The research has revealed increased speed of data acquisition in 601 

comparison to a TLS, as well as the simplified nature of the image capture network, 602 

allowing images to be acquired systematically for sites of coastal recession.  603 

This research provides several advancements in terms of the practical application of 604 

SfM-MVS in the field. The camera rig offers an affordable, accurate, easily operable and 605 

rapid option for monitoring coastal recession without regulatory restriction. These 606 

practical implications of the work are important in supporting the real-world 607 

implementation of the coastal monitoring techniques for practitioners and policy 608 

makers that may not have large budgets or specialist expertise available to them. 609 

For SfM-MVS researchers, the paper takes some of the first steps into the use of roving 610 

multiple cameras.  The evidence on the successful use of action cameras, alternative 611 
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processing options for reducing deformation and computational processing times 612 

illustrates exciting avenues for further research.  613 

 614 

 615 

 616 

 617 

 618 

Figures & Table Captions 619 

Figures: 620 

Figure 1: Locations and aerial images of Crosby (a), Thurstaston (b) and Silverdale (c) study 621 

sites. 622 

Figure 2: Camera Grid representation in SketchUp 2018. a) Camera grid dimensions showing 623 

height, width and spacing of camera. b) Camera declination from the z-axis. c) Estimated camera 624 

FOVs for the camera rig. d) Representation of camera rig movement in relation to the scene of 625 

reconstruction – the cross marks the location of the camera rig for image capture. 626 

Figure 3: Workflow depicting the process of point cloud generation and assessment. Cross-627 

hatching reflects the parameters used in processing. 628 

Figure 4: Example images used in the point cloud generation showing the estimated central 629 

placement of markers onto GCPs in Agisoft Photoscan a) Thurstaston b) Silverdale c) Crosby. 630 

Figure 5: Crosby dense point cloud deformation under differing image alignment parameters. a) 631 

‘Medium’ image alignment plus ‘Ultra-High’ densification. b) ‘Highest’ image alignment plus 632 

‘Ultra-High’ densification. 633 

Figure 6: Scalar fields displaying the highest C2C values for each site a) Thurstaston, ‘Ultra High’ 634 

densification (highest mean C2C value – 9.01 mm) dense point cloud. b) Silverdale, ‘Low’ 635 

densification (highest mean C2C value – 10.4 mm) dense point cloud. c) Crosby, ‘Ultra High’ 636 

densification (highest mean C2C value 9.23 mm) dense point cloud. 637 

Figure 7: Surface density for each site and densification parameter compared to the equivalent 638 

TLS result. 639 
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Figure 8: Results of the three comparative tests (Deviation, Surface Density, GCP) compared to 640 

the TLS reconstruction benchmark for a.) Thurstaston b.) Silverdale c.) Crosby. Reconstruction 641 

accuracies of SfM-MVS and the TLS for each site and densification parameter. A result of 1 642 

would imply that SfM-MVS and the TLS were equivalently accurate. 643 

Figure 9: The overall SfM-MVS point cloud performance for each site and densification 644 

parameter compared to the TLS point cloud. The timescale for computer processing is included 645 

as a label on each column. ‘Ultra High’ provided the best overall score but poorest processing 646 

times. 647 

Figure 10: Precision error maps separated into x, y and z components for Thurstaston. Overall 648 

survey precision including georeferencing error and internal precision (surface shape error) 649 

excluding any georeferencing error are displayed in two columns. Mean precision (mm) is 650 

displayed on the bottom left of each map. 651 

Figure 11: Precision error maps separated into x, y and z dimensions for Silverdale. Overall 652 

survey precision including georeferencing error and internal precision (surface shape error) 653 

excluding any georeferencing error are displayed in two columns. Mean precision (mm) is 654 

displayed on the bottom left of each map. 655 

Figure 12: Precision error maps separated into x, y and z dimensions for Crosby. Overall survey 656 

precision including georeferencing error and internal precision (surface shape error) excluding 657 

any georeferencing error are displayed in two rows. Mean precision (mm) is displayed on the 658 

bottom left of each map. 659 

Tables: 660 

Table 1: Data acquisition information for TLS and camera rig SfM-MVS surveys at Thurstaston, 661 

Silverdale and Crosby. 662 

Table 2: Reprojection Errors (m) for point clouds constructed under different Image Alignment 663 

parameters for Thurstaston, Silverdale and Crosby. 664 

Table 3: Calculation of dimensionless indictor based on standard deviation from the three study 665 

sites compared with data from Nouwakpo et al. (2016).  666 

 667 

 668 
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 669 

Supplementary Material 670 

  671 

Appendix A - Comparative Testing Details 672 

I. Deviation analysis (B): The details of this test are provided in Godfrey et al., 673 

2020 but will be provided here again for clarity. C2C closest point distance 674 

calculation is a direct method for 3D point cloud comparison and was used in 675 

Godfrey et al., 2020. “The C2C test calculated the mean distance (combined x, y 676 

and z) and standard deviation in distance across each point cloud. A scalar field 677 

was then generated which was coloured to represent areas of greater deviation. 678 

The resulting mean C2C distance (j) was expressed relative to a 100 mm scale in 679 

the form of a deviation metric (B) – Equation 3. The deviation metric (B) was 680 

then used in the overall performance assessment against the TLS (Equation 8).” 681 

 (3)                 (
 

   
) 682 

 683 

I. Surface Density Analysis (M): The estimation of point cloud density is an 684 

important step to judge the coverage of the 3D reconstruction. The surface 685 

density was estimated using CloudCompare (V2.9) which calculates the 686 

number of points present within a sphere with a specified radius (5.5 mm). 687 

The sphere is aligned with each point in the point cloud and the number of 688 

surrounding points estimated. The result is the mean density, standard 689 

deviation in density and a scalar field which represents areas with higher or 690 

lower surface density. This process was also undertaken for the TLS point 691 

cloud as a benchmark for comparison and offers a method for comparing the 692 

level of coverage of the point cloud. Equation 4 was used to compare the 693 

surface density for SfM-MVS (Rs) relative to the TLS surface density (Rt). The 694 

surface density metric (M) was then used in the overall performance 695 

assessment (Equation 2) 696 
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(4)        
  

  
 697 

 698 

I. GCP metric (G): This metric was used to compare the ability of the TLS and 699 

SfM-MVS to reconstruct the GCPs in the scene. The details of this test are 700 

provided in Godfrey et al., 2020 but will be provided here again for clarity. 701 

“Expressions (5) and (6) describe the test of accuracy for both TLS and SfM-MVS 702 

(   refers to the accuracy of SfM,    refers to the performance of the TLS).  703 

Firstly, under- and over-measurement of the GCPs had to be treated equitably. 704 

The conditional statement (‘if, then’ denoted by the logical operator  )  705 

occupying the numerator space in equations (5) and (6) describes this process 706 

(S represents SfM-MVS and T represents TLS measured values).  707 

Following the logical process, the value was then divided by the GCP known 708 

value (R) to obtain a ratio of each method of reconstruction’s error relative to 709 

reality.  Subtracting this result from 1 provided a measure of how accurate the 710 

method of reconstruction had been at recreating the known dimensions of the 711 

GCP.  712 

(5)       = 1-{ 
[(   ) (   )] [(   ) (   )] 

 
} 713 

(6)       = 1-{ 
[(   ) (   )] [(   ) (   )] 

 
} 714 

(7)     Q=  
  

  
 715 

Equation (7) describes the ratio of the results of equations 5 and 6 and 716 

compares the ability of SfM-MVS to accurately reconstruct the GCP compared to 717 

the TLS. If SfM-MVS proved more accurate than the TLS a value for Q of >1 718 

would be returned for each of the GCPs. This test was applied to the x 719 

(alongshore) and y (cross-shore) axes of the GCPs at each site. There was a 720 

varying number of GCPs at each location, therefore, Equation 8 was used to 721 

accommodate the varying number of GCPs: i represented the varying number of 722 
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GCP measurements (x & y) and was equal to 18 at Thurstaston, 50 at Silverdale 723 

and 42 at Crosby: 724 

(8)         ∑
 

 
(  )

 
     725 

The Q value for each of the GCP measured in the point cloud was weighted by 726 

1/i to reflect the number of GCP used in the metric. These calculations were 727 

only performed for GCPs at the base of the cliff were there was no impact from 728 

vegetation. If one of the techniques was able to reconstruct a GCP while the 729 

other was unable, the former was given a value of 2 in order to reflect the 730 

ability of one monitoring techniques ability to reconstruct a GCP over the 731 

other.” 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 
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