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Data-driven clustering and Bernoulli merging for
the Poisson multi-Bernoulli mixture filter

Marco Fontana, Ángel F. García-Fernández, Simon Maskell

Abstract—This paper proposes a clustering and merging ap-
proach for the Poisson multi-Bernoulli mixture (PMBM) filter
to lower its computational complexity and make it suitable for
multiple target tracking with a high number of targets. We define
a measurement-driven clustering algorithm to reduce the data
association problem into several subproblems, and we provide
the derivation of the resulting clustered PMBM posterior density
via Kullback-Leibler divergence minimisation. Furthermore, we
investigate different strategies to reduce the number of single
target hypotheses by approximating the posterior via merging
and inter-track swapping of Bernoulli components. We evaluate
the performance of the proposed algorithm on simulated tracking
scenarios with more than one thousand targets.

Index Terms—Random finite sets, Bayesian estimation, multi-
target tracking, Poisson multi-Bernoulli mixtures.

I. INTRODUCTION

Multi-target tracking (MTT) is a well-known problem of
interest in many application fields, including surveillance,
traffic control and autonomous driving [1]–[3]. The main goal
is the estimation of the number of targets and their states
based on the noisy measurements recorded by a sensor, which
includes false alarms and missed detections. The targets move
in a dynamic scenario, appearing and disappearing from the
field of view of the sensor.

MTT has been studied for decades, and several solutions
have been proposed to improve the trade-off between perform-
ance and computational efficiency. Among the most widely-
used approaches, we mention multiple hypothesis tracking
(MHT) [4]–[8], joint probabilistic data association (JPDA) [9]
and random finite sets (RFS) [10].

In the last decade, several solutions to the MTT problem
have been based on different birth models. With Poisson
point process (PPP) birth model and the standard meas-
urement/dynamic models, the posterior is a Poisson multi-
Bernoulli mixture (PMBM) [11], [12]. With multi-Bernoulli
birth, the conjugate prior is a multi-Bernoulli mixture (MBM),
which can be labelled and written in δ-generalised labelled
multi-Bernoulli (δ-GLMB) form [12, Sec. IV] [13]. Approx-
imate filters based on the PMBM and δ-GLMB filters are
the Poisson multi-Bernoulli (PMB) filters [14], [15] and the
labelled multi-Bernoulli (LMB) filter [16].

The PMBM filter can be considered a state-of-the-art fully
Bayesian MHT filter, with an efficient representation of global
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hypotheses with probabilistic target existence (Bernoulli com-
ponents) and information on undetected targets. The (track-
oriented) PMB filter, which only propagates one component
of the PMBM filter, can be seen as a fully Bayesian version of
the integrated JPDA filter, with differences explained in [11,
Section IV. A].

Of particular importance in real-world scenarios is to be
able to track a large number of targets. The main challenge
in large-scale MTT problems is the evaluation of all the
possible measurement-target associations, which is known as
data association problem. Several approaches were developed
to efficiently manage the large number of hypotheses resulting
from this combinatorial problem [17]–[21]. Among several
methods, clustering and hypothesis merging are some of the
most popular and most effective solutions. We briefly review
the literature on these topics.

Clustering is considered one of the most effective strategies
to increase the scalability of tracking algorithms. In a context
of sufficiently-sparse targets, clustering addresses large data
association problems defining several independent subprob-
lems. In the original MHT paper [4], the author describes a
procedure to associate measurements with clusters of inde-
pendent potential targets, merging the clusters associated to
common measurements, and creating new individual clusters
for the measurements not associated with any potential target
in the prior. This method, as the following ones derived from
[4], can be referred to hypothesis clustering [22]. Similar
procedures have been used in [23] to cluster targets based
on the data association in multiple scans. In [24] the authors
propose a spatial clustering of the tracks based on a min-
imum separation distance, addressing the assignment of new
measurements to the most appropriate cluster using the gating
procedure. In [25] a review of the split method presented in
[5] is used to initialise new clusters based on the independent
components in each cluster, detected by using rectangular
areas in the measurement space. In [26] the authors describe
an efficient cluster management approach based on a dynamic
data structure, which implements the hypothesis tree. These
methods do not have a straightforward application on multi-
Bernoulli filters, as they are based on the concept of confirmed
target, which is not defined for targets with probabilistic target
existence.

For the δ-GLMB filter, a clustering algorithm for large-
scale tracking based on predicted measurements gating regions
is proposed in [27]. A drawback of this approach is that
the δ-GLMB representation of a labelled MBM involves an
exponential increase in the number of global hypothesis,
which requires extra computational time [12]. In addition, this



implementation neglects information on undetected targets,
which is required in fully Bayesian MTT [28] and important
in many applications, for example, autonomous vehicles and
search-and-track [29].

Merging is another popular approach used to decrease the
number of hypotheses in the filters and therefore computa-
tional time. One of the first contributions of this kind can be
found in [30], where the authors suggest merging all tracks
which share measurements for the past N times.

The first approaches to improve the computational efficiency
of the PMBM filter were proposed in [12], where the authors
suggested to cap the number of global hypotheses in the filter
and pruning the Poisson and Bernoulli components whose
weight is below a threshold. An alternative approach is to
perform track-oriented N-scan pruning [31]. Two efficient
PMB approximations of the PMBM posterior density were
proposed in [32] for multiple extended object filtering, based
on the original paper [11] and the variational approximation
via Kullback–Leibler divergence minimisation.

In this work, we focus on developing novel clustering and
merging algorithms to provide an efficient implementation of
the PMBM filter. We proceed to explain the contributions.
Our first contribution is a new data-driven clustering technique
with low computational burden for the PMBM filter. To the
best of our knowledge, this is the first attempt to cluster
Bernoulli components in a PMBM filter implementation. We
first define the concept of clustered PMBM density that is
of general validity for any clustering algorithm. A clustered
PMBM density is the union of independent a PPP and a
number of independent MBMs, one for each cluster. We
obtain the best fitting clustered PMBM by minimising the
Kullback-Leibler divergence (KLD) after introducing auxiliary
variables over the track indices in the target space [33], see
diagram in Fig. 1. Then, the proposed clustering algorithm
takes into account the predicted density and the received
measurements to group potential targets that may have given
rise to a common measurement, which is computationally
advantageous compared to spatial clustering techniques.

Our second contribution is a Bernoulli merging approach for
local hypotheses corresponding to the same potential target.
We compute the similarity between Bernoulli components via
the KLD and merge the most similar ones, as presented in
[34]. The proposed method allow us to obtain an accurate
representation of the filter posterior, merging similar local
hypotheses with different data association history.

Our third contribution aims to improve the efficiency of
the clustering algorithm for situations in which targets move
in close proximity and then separate. In this setting, some
Bernoulli components of different potential targets may over-
lap even though the actual locations of the potential targets are
already well separated, which hinders clustering. To address
this, we propose to swap certain Bernoulli components of
different potential targets, keeping the PMBM representation
unaltered, so that all the Bernoulli components of the same
potential target are found in the same region, and clustering
can be done efficiently. This approach bears resemblance to
the particle swapping approach used in the particle filter for
track-before-detect in [35] and also to the set JPDA algorithm

  

Figure 1: Schematic of the clustered PMBM filter. The prediction step
propagates a clustered PMBM density on the set of clusters Ck−1

computed at the previous time instant. Once the filter receives the set of
measurements Zk for the current time instant k, we obtain the new set of
clusters Ck and perform a KLD minimisation (with auxiliary variables)
to obtain the current clustered PMBM. The clustering algorithm can be
defined by the user.

[36] and variational PMB filters [15].
The paper is organised as follows. Background on the

PMBM filter is provided in Section II. In Section III, given
the clusters of potential targets, we provide the clustered
posterior density of the filter through KLD minimisation.
The measurement-driven clustering algorithm is presented in
Section IV. Section V introduces two strategies to decrease the
number of Bernoulli components via intra-track and inter-track
Bernoulli merging. Finally, we evaluate filter performance via
simulations in Section VI, and we draw the conclusions in
Section VII.

II. BACKGROUND: PMBM FILTERING

In this section, we briefly review the standard dynamic
model and the standard point target measurement model in
Section II-A. Section II-B provides an overview of the PMBM
filter; for a more extensive description we refer the reader
to [11], [12]. Finally, we introduce auxiliary variables in the
PMBM in Section II-C.

A. Multi-target system modelling

In the context of multi-target systems, we regard filtering
as the estimation of the states of a time-varying number of
targets at the current time step k. We denote a single target
state as xk ∈ Rnx , and the set of target states at time k as
Xk ∈ F(Rnx), where F(Rnx) is the set of all finite subsets
of Rnx . The set Xk is modelled as a RFS, meaning that both
the cardinality |Xk| and the elements of the set (i.e., the target
states) are random variables [10].

At each time step, a target with state x survives with
probability pS(x), or departs with probability 1 − pS(x)
independently of the rest of the targets. The evolution of a
surviving target can be defined by a Markov transition density
g(·|x). At time step k + 1, the multi-target state Xk+1 is the
union of the surviving targets and the independent new targets,
which are modelled by a PPP with intensity λ(·).

The set of measurements at time k is denoted by Zk ∈
F(Rnz ) and is the union of target-generated measurements
and independent PPP clutter with intensity λC(·). At each
time step, an existing target xk is detected with probability
pD(xk), or misdetected with probability 1 − pD(xk). Each
detected target xk ∈ Xk generates a measurement zk with
density l(zk|xk).



B. PMBM density

For the models described in Section II-A, the density
fk′|k(·) of the set of targets at time step k′ ∈ {k, k + 1} given
measurements up to time step k is a PMBM [11]. That is, it
results from the union of two independent RFSs: a PPP with
density fpk′|k(·), and a MBM RFS with density fmbmk′|k (·). The
PMBM density is expressed as

fk′|k(Xk′|k) =
∑

Y ]W=Xk′|k

fpk′|k(Y )fmbmk′|k (W ) (1)

where the sum goes over all mutually disjoint sets Y and W ,
such that their union is Xk′|k.

The PPP density represents the targets that exist at the
current time, but have not yet been detected. Its density is

fpk′|k(X) = e−
∫
λk′|k(x)dx

∏
x∈X

λk′|k(x) (2)

where λk′|k(·) is the intensity. In the PPP, the cardinality is
Poisson distributed and targets are independent, and identically
distributed. The MBM part represents the potentially detected
targets, and it can be described as [11]

fmbmk′|k (X) =
∑

a∈Ak′|k

wa
k′|k

∑
]
n
k′|k
j=1 Xj=X

nk′|k∏
i=1

f i,a
i

k′|k(Xi) (3)

where i is the index over the Bernoulli components, a =
(a1, . . . , ank′|k) ∈ Ak′|k represents a specific data association
hypothesis, ai ∈ {1, . . . , hik′|k} is an index over the hik′|k
single target hypotheses for the i-th potential target, and nk′|k
is the number of potentially detected targets. Each set of single
target hypothesis a ∈ Ak′|k is also called a global hypothesis
(whose mathematical expression is provided in [11]), and it is
associated to a weight wa

k′|k
satisfying

∑
a∈Ak′|k

wa
k′|k

= 1.
The Bernoulli density corresponding to the i-th potential

target, i ∈ {1, . . . nk′|k}, and the ai single target hypothesis
density f i,a

i

k′|k(X) can describe a newly detected target, a
previously detected target or clutter. It efficiently models both
the uncertainty regarding target existence and state. Mathem-
atically, it can be expressed as

f i,aik′|k (X) =


1− ri,a

i

k′|k X = ∅
ri,a

i

k′|kp
i,ai

k′|k(x) X = {x}
0 otherwise

(4)

where ri,a
i

k′|k ∈ [0, 1] is the probability of existence and pi,a
i

k′|k(·)
is the state density given that it exists. We often refer to a
potential target as a track, which is defined as a collection of
single target hypotheses corresponding to the same potential
target [11].

The prediction and update steps of the PMBM filter to
obtain (1) are given in [11], [12].

C. PMBM with auxiliary variables

In order to perform clustering on the PMBM density (1)
based on KLD minimisation, which will be done in Section III,
we require to introduce auxiliary variables in the density (1), as

done in [11], [33] for PMB filters. Auxiliary variables do not
change the PMBM/MBM distribution, they just make implicit
information in the posterior explicit. Similar approaches to in-
troduce auxiliary/hidden variables in mixtures of densities can
be found in the particle filtering and expectation maximisation
literature [37], [38].

Given (1), the target state space is augmented with an
auxiliary variable u ∈ Uk′|k =

{
0, 1, .., nk′|k

}
, such that

(u, x) ∈ Uk′|k × Rnx . Variable u = 0 implies that the target
has not yet been detected, so it corresponds to the PPP, and
u = i indicates that the target corresponds to the i-th Bernoulli
component. We denote a set of target states with auxiliary
variables as X̃k′ ∈ F

(
Uk′|k × Rnx

)
.

Definition 1. Given fk′|k (·) of the form (1), the density
f̃k′|k (·) on the space F

(
Uk′|k × Rnx

)
of sets of target states

with auxiliary variable is [33]

f̃k′|k

(
X̃k′

)
=

∑
]
n
k′|k
l=1 X̃l]Ỹ=X̃k′

f̃pk′|k

(
Ỹ
) ∑
a∈Ak′|k

wak′|k

nk′|k∏
i=1

[
f̃ i,a

i

k′|k

(
X̃i
)]

= f̃pk′|k

(
Ỹk′
) ∑
a∈Ak′|k

wak′|k

nk′|k∏
i=1

[
f̃ i,a

i

k′|k

(
X̃i
k′

)]
(5)

where, for a given X̃k′ , Ỹk′ =
{

(u, x) ∈ X̃k′ |u = 0
}

and

X̃i
k′ =

{
(u, x) ∈ X̃k′ |u = i

}
, and

f̃pk′|k

(
X̃k′

)
= e−

∫
λk′|k(x)dx

∏
(u,x)∈X̃k′

λ̃k′|k(u, x) (6)

λ̃k′|k (u, x) = δ0 [u]λk′|k (x) (7)

f̃ i,a
i

k′|k

(
X̃k′

)
=


1− ri,a

i

k′|k X̃ = ∅
ri,a

i

k′|kp
i,ai

k′|k (x) δi [u] X̃ = {(u, x)}
0 otherwise

(8)

where the Kronecker delta δi [u] = 1 if u = i and δi [u] = 0,
otherwise. The introduction of the auxiliary variables allows
us to remove the sum over the sets in (5), as there is only one
term in the sum that provides a non-zero density.

III. CLUSTERED PMBM APPROXIMATION VIA KLD
MINIMISATION

In this section, we are given clusters of potential targets,
and our aim is to approximate a PMBM density as a clustered
PMBM density based on KLD minimisation with auxiliary
variables. The clustered PMBM density ensures that potential
targets belonging to different clusters are independent, and
corresponds to the union of an independent PPP and inde-
pendent MBMs, one for each cluster. The results in this section
hold for any clustering algorithm and show how to obtain the
parameters of the clustered PMBM posterior once the clusters
are defined. The specific data-driven clustering algorithm we
propose is explained in Section IV.



A. Clustered density

Suppose we perform clustering at each update and denote
the set of clusters as Ck = {C1

k , . . . , C
nck
k }, where each element

Cik is the set of auxiliary variables corresponding to the tracks
assigned to the cluster c ∈ {1, . . . , nck}. The set Ck is a
partition of the auxiliary variable space without 0, Uk′|k \{0},
that meets the following properties [10]
• Each cluster Cck is a subset of auxiliary variables Cck ⊂

Uk′|k \ {0}.
• The union of the clusters is the auxiliary variable space

without 0; i.e., ∪n
c
k
c=1C

c
k = Uk′|k \ {0}.

• The intersection of any two distinct clusters with indices
c1 and c2, c1 6= c2, is empty; i.e., Cc1k ∩ C

c2
k = ∅.

Given Ck, we can approximate the density of the set of targets
with independent clusters (including auxiliary variables) as

q̃k′|k

(
X̃k′

)
= q̃0k′|k

(
Ỹk′
) nck∏
c=1

q̃ck′|k

(
∪i∈CckX̃

i
k′

)
. (9)

where q̃0k′|k(·) represents the density on the set of undetected
targets Ỹk′ , and the density on the detected target set is
expressed as the multiplication of the cluster densities q̃ck′|k(·).
The form (9) implies that targets belonging to different clusters
are independent. If there is exactly one potential target in each
cluster, all potential targets are independent, and (9) becomes
PMB, with auxiliary variables.

B. Clustered PMBM with auxiliary variables

We calculate the clustered PMBM density (9) by minimising
the KLD between f̃k′|k (·) in (5) and q̃k′|k (·) in (9). The KLD
is defined as the set integral [10]

D
(
f̃k′|k

∥∥q̃k′|k ) =

∫
f̃
(
X̃k′|k

)
log

f̃
(
X̃k′|k

)
q̃
(
X̃k′|k

) δX̃. (10)

Lemma 2. Let f̃k′|k(·) be the PMBM density with auxiliary
variables in (5). The densities q̃0k′|k (·), q̃1k′|k (·),..., q̃

ck′|k
k′|k (·) in

(9) that minimise the KLD D
(
f̃k′|k

∥∥q̃k′|k ) are

q̃0k′|k

(
Ỹk′
)

= f̃pk′|k

(
Ỹk′
)

(11)

q̃ck′|k

(
∪i∈CckX̃

i
k′

)
∝

∑
a∈Ak′|k

wak′|k
∏
i∈Cck

[
f̃ i,a

i

k′|k

(
X̃i
k′

)]
. (12)

where Ỹk′ and X̃k′ are given in Definition 1, and q̃ck′|k(·) is
the cluster density of the cluster c.

Lemma 2 builds on (1), which was derived in [11], and
computes the clustered PMBM given the clusters. See App.
A for the proof of Lemma 2. We can see that the density of
each cluster is a multi-Bernoulli mixture for the set of targets
in the cluster, and the density for the undetected targets is
a PPP. Therefore, (9) with (11) and (12) define a clustered
PMBM, with auxiliary variables.

As in (12) index i only goes through the potential targets
in the cluster, there can be repeated terms in the sum, which
can be merged into one. To do so, we can define a cluster

alphabet Ack′|k by only considering the entries of the Ak′|k
that correspond to this cluster, adding a level of indirection
between the cluster density and the Bernoulli components that
constitute them. Then, we can define a weight for the ac cluster
hypothesis that is the sum over all the weights wack′|k with the
same local hypotheses for the potential targets in the cluster.
Thus, we can rewrite the cluster density (12) as

q̃ck′|k

(
∪i∈CckX̃

i
k′

)
=

∑
ac∈Ack′|k

wack′|k

∏
i∈Cck

[
f̃
i,aic
k′|k

(
X̃i
k′

)]
.

(13)

C. Clustered PMBM

The clustered density without auxiliary variables can be
obtained by integrating out the auxiliary variables in (9).

Lemma 3. Let q̃k′|k (·) be the clustered density with auxiliary
variables in (9) defined in F

(
Uk′|k × Rnx

)
. The correspond-

ing density qk′|k (·) in F (Rnx) is derived by integrating out
the auxiliary variables, obtaining∑

u1:n∈Unk

q̃k′|k ({(u1, x1) , ..., (un, xn)})

= qk′|k ({x1, ..., xn}) (14)

where

qk′|k (Xk′) =
∑

Y 0]X1]...]Xck′|k=Xk′

q0k′|k
(
Y 0
) nck∏
c=1

qck′|k (Xc)

(15)

and

qck′|k ({x1, ..., xn})

=
∑

u1:n∈Unk

q̃ck′|k ({(u1, x1) , ..., (un, xn)}) . (16)

The proof of Lemma 3 in reported in App. B. If q0k′|k (·) and
qck′|k (·) are obtained via the KLD minimisation on a PMBM
in (11)-(12), the density qk′|k (·) is the union of ck′|k + 1
independent RFS [10] (as its density is obtained through
the convolution formula). One RFS represents undetected
targets, and each of the rest of them corresponds to the
RFS in a cluster, whose density is an MBM. Therefore, a
clustered PMBM is the union of an independent PPP and ck′|k
independent MBMs.

It can be shown that the KLD between the PMBM (5) and
clustered PMBM (9) with auxiliary variables is an upper bound
of the KLD distance between the PMBM and clustered PMBM
densities without auxiliary variables [33]

D
(
fk′|k

∥∥qk′|k ) ≤ D
(
f̃k′|k

∥∥q̃k′|k ) (17)

where qk′|k denotes the clustered PMBM density in the
form of (15) without auxiliary variables. Therefore, Lemma
2 minimises an upper bound of the KLD between fk′|k and
qk′|k, which is the one of primary interest.



D. Recursive clustered PMBM approximation

So far, we have explained how to obtain a clustered PMBM
density from a PMBM density. In order to apply these results
to the filtering recursion, in this section we explain how to
obtain a clustered PMBM from a previously clustered PMBM,
in which the clusters may differ.

After the prediction, we obtain a clustered PMBM density
f̃k|k−1 of the form (9), where q̃0k|k−1 and q̃ck|k−1 are defined,
respectively, in (11) (13) on the set of clusters Ck−1. At time k
we use a new cluster Ck (e.g., following the procedure that will
be described in Section IV-B). We compute a new clustered
PMBM density q̃c

′

k|k−1 based on the new set of clusters Ck via
KLD minimisation, where c′ is the cluster index in the set Ck.

Lemma 4. Let us assume the predicted density with auxiliary
variables f̃k|k−1 (·) is a clustered PMBM density with clusters

C1
k−1, ..., C

nck−1

k−1 such that

f̃k|k−1

(
X̃k

)
= f̃0k|k−1

(
Ỹk

) nck−1∏
c=1

f̃ ck|k−1

(
∪i∈Cck−1

X̃i
k

)
(18)

where

f̃ ck|k−1

(
∪i∈Cck−1

X̃i
k

)
=

∑
ac∈Ack|k−1

wack|k−1

∏
i∈Cck−1

f̃ i,a
i

k|k−1

(
X̃i
k

)
.

(19)

If the clusters at time step k are C1
k , ..., C

nck
k , the predicted

clustered density q̃k|k−1
(
X̃k

)
of the form (9) that minimises

D
(
f̃k|k−1||q̃k|k−1

)
is a clustered PMBM characterised by

q̃c
′

k|k−1

(
∪i∈Cc′k X̃k

)
∝

nck−1∏
c=1:Cc

′
k ∩C

c
k−1 6=∅

∑
ac∈Ack|k−1

wack|k−1

×
∏

i∈Cc′k ∩C
c
k−1

f̃ i,a
i

k|k−1

(
X̃i
k

)
. (20)

and q̃0k|k−1 as defined in (11).

See App. C for the proof of Lemma 4. In (20), potential
targets that belong to the same cluster at time step k − 1
and k retain their statistical dependencies (modelled by an
MBM). The PMBM update is performed independently for
each cluster c′ on the basis of the predicted cluster density
(20) as described in [11], [12].

IV. MEASUREMENT-DRIVEN CLUSTERING

In this section we describe a novel procedure to effi-
ciently cluster the potential targets on the basis of the current
set of measurements Zk. At each time step k, tracks and
measurements are linked through the gating procedure based
on efficient data structures, described in Section IV-A. The
cluster formation is performed by the algorithm described in
Section IV-B. Finally, an efficient method to prune the global
hypotheses in the new clustered PMBM density is presented
in Section IV-C.

A. Gating via efficient data structures

Gating can significantly reduce the complexity of the data
association problem by avoiding computing low-weight hy-
potheses [39]. In the PMBM update, each measurement can
be associated to a previous Bernoulli or to the PPP. For each
previous Bernoulli, we calculate its predicted measurement ẑ
and its covariance matrix S [12]. In ellipsoidal gating, we
can evaluate if a received measurement zj is likely to be
produced by the hypothesis ai of the potential target i, (i, ai),
by computing its Mahalanobis distance with the covariance
matrix S, to each ẑ. For each hypothesis (i, ai), zj ∈ Zk
belongs to Gk(i, ai) if the Mahalanobis distance between zj
and the predicted measurement of (i, ai) is below the threshold
γG.

Denoting as Nh
k the sum of the number of Bernoulli

components and the number of Gaussian components in the
PPP intensity [12] in the filter at time instant k, the evaluation
of all these possible pairs has a complexity O(|Zk| · Nh

k ). It
is possible to lower the complexity of this process by using
efficient data structures; we proceed to discuss how k-d trees
[40] and R-trees [41] can be used in this context.

1) k-d tree: The k-d tree is a binary space-partitioning tree,
which recursively divides the k-dimensional space to organise
the entries and perform fast range searches. At each time
step k, the computational cost of building a k-d tree based
on the set of measurements Zk is O(|Zk| log |Zk|). For each
hypothesis (i, ai), we define the mean variance across dimen-
sions in the innovation covariance (σi,a

i

k )2 = tr(Si,a
i

k )/nz .
Then, we perform Nh

k range queries on the expected target
measurements ẑi,a

i

k for a range defined by γGσ
i,ai

k . Thus, the
gating procedure queries the k-d tree in a computational time
O(Nh

k (|Zk|1−1/nz + s)) [42] at each time instant, where nz
is the number of dimensions of the search space, and s is
the average number of measurements returned by each query.
Note that in our setting k = nz as the k-d tree operates on
the single measurement space.

2) R-tree: The R-tree is a hierarchical data structure in
which every entry is represented by a minimum bounding d-
dimensional rectangle (MBR). The internal nodes of the tree
organise the leaf nodes into larger MBR, allowing efficient
retrievement of the entries that intersect a window (or a point)
in the d-dimensional space [43].

In the R-Tree implementation, the tree is built on the Nh
k

predicted single target states, with an overall computational
time O(Nh

k logNh
k ). The predicted measurement from the

Bernoulli f i,a
i

, and its covariance matrix are represented by
an nz-dimensional rectangle Ri,ai with centre in ẑi,a

i

k and
dimensions proportional to the standard deviation σd,i,a

i

k of the
innovation covariance Si,a

i

k for each axis. That is, the gating
area is defined by

Ri,a
i

=
{
z :
∣∣∣zdk − ẑd,i,aik

∣∣∣ ≤ γGσd,i,aik ,∀d
}

(21)

where d ∈ {1, . . . , nz} indicates the dimensions, zk =
[z1k, ..., z

n
zk

]T , and γG is the gating threshold. We define
the set of measurements Gk(i, ai) selected to update the
hypothesis ai ∈ {1, . . . , hk′|k} as the subset of the meas-



urements Zk which belong to into the rectangle Ri,ai . The
gating procedure can be implemented by inserting the hyper-
rectangles Ri,ai in the R-tree, and it provides an efficient
approximation of the ellipsoidal gating [5]. The entire gating
procedure is performed with |Zk| queries in a computational
time O(|Zk|((logNh

k )nz−1 + s)), where s is the number of
elements returned at each query.

The capability of the R-tree to efficiently store hyper-
rectangles allows us to perform fewer queries than with the
k-d tree, exploiting the efficiency provided by the logarithmic
query time on a greater number of elements in the tree [24].
On the other side, the efficiency of the R-tree is reduced if
the hyper-rectangles in the structure show a high degree of
overlap, as more edges need to be inspected to complete a
query [44].

B. Clustering

Potential targets that have local hypotheses with common
measurements at the current or past time steps are not inde-
pendent and, in principle, should belong to the same cluster.
Nevertheless, the dependencies in the distributions of the
potential targets tend to weaken if there are no common
measurements in recent time steps. In this work, we pro-
pose a clustering algorithm that only accounts for the data
associations at the current time step. The algorithm does not
explicitly maintain cluster information from scan to scan, as
it defines new clusters at each time step. It only retrieves
information from the previous time step to cluster misdetected
tracks. Its main benefit is the computational efficiency and
ease of implementation, though it discards possible target
dependencies lingering from past time steps.

Suppose Ck = {C1
k , . . . , C

nck
k } is a partition of the auxiliary

variable set Uk′|k\{0} =
{

1, .., nk′|k
}

. For each cluster Cck
we can determine the set of associated measurements Sck as
the union of the sets of the gated measurements for the targets
in the cluster,

Sck =
⋃
i∈Cck

Gik (22)

where Gik =
{
Gk(i, ai)|ai ∈ {1, . . . , hik′|k}

}
is the set of

measurements related to the track i.
The relation between targets and measurements can be

represented by a graph, where the nodes denote the targets, and
the edges connect targets that have at least one measurement
in their gates in common. The partitioning of the tracks
into clusters is defined by the connected components of the
graph, which can be considered as a disjoint union of graphs
(see Fig. 2). The connected components of the graph can be
determined by an algorithm for traversing or searching graph
data structures, as depth-first search or breadth-first search
[45]. This approach obtains sets of clusters such that the
intersection of any two distinct measurements sets is empty;
i.e., Sc1k′|k ∩ S

c2
k′|k = ∅, c1 6= c2, {c1, c2} ⊂ {1, . . . nck}.

The isolated nodes of the graph, i.e., those that are not
an endpoint of any edge, represent the misdetected targets at
the current time step k, as they are not associated with any
measurement. The algorithm clusters the misdetected targets

Figure 2: Example of disjoint union of graphs. The 15 nodes represent
the potential targets arranged in 5 clusters, on the basis of the common
measurements represented by the edges. Adjacent nodes depict potential
targets associated to the same measurement, while loops represent
measurements related to a single potential target. Cluster C2

k contains
three misdetected targets, which belonged to the same cluster at the
previous time instant. The dashed lines in C2

k represent the dummy
measurement assigned by the clustering algorithm (Alg. 1).

according to their cluster membership at the previous time
instant k − 1. A dummy measurement ∗j , j ∈ {1, . . . nck−1},
is generated for each cluster at time k − 1, and the targets
misdetected at time k are associated with the corresponding
measurement ∗j , where j represent the cluster membership at
k − 1. Fig. 2 shows an example of this kind for cluster C2

k ,
where it can be noted that the misdetected targets are clustered
due to the links provided by the dummy measurement, rep-
resented with dashed lines. The pseudocode of the clustering
algorithm is provided in Algorithm 1.

Algorithm 1 Measurement-driven clustering
Input: Pairs target-measurements A = {(i,Gik)|i ∈ Uk′|k}

Set of clusters at the previous time step
Ck−1 = {C1, . . . , Cn

c
k−1}

Output: Set of clusters at the current time step Ck
1: Obtain U0 = {i : i ∈ Uk|k \ {0} ,Gik = ∅}: the set of

indices of misdetected tracks.
2: Retrieve the indices of misdetected tracks at time step
k in each cluster defined at the previous time step
{C1

0 , . . . , C
nck−1

0 } such that Ci0 ⊆ Ci, ∪
nck−1

i=1 Ci0 = U0.
3: for j ∈ {1 . . . , nck−1} do
4: for i ∈ Cj0 do
5: Gik ← Gik ∪{∗j} . Assign a dummy measurement.
6: end for
7: end for
8: Generate the graph G on A.
9: Assign the track indices of the connected components of
G to a cluster to obtain Ck = {C1, . . . , Cn

c
k}.

10: return Set of clusters Ck.

C. Efficient pruning for the new clustered PMBM

After we have obtained the clusters via Algorithm 1, we can
use Lemma 2 or 4 to obtain the clustered PMBM, and perform
the update for each cluster independently. Due to the product
over the clusters in (20), if previously independent clusters
are merged, the resulting MBM can contain a high number of
multi-Bernoulli components. We propose an efficient method
to prune the least likely components by computing only the



K best merged global hypotheses in each cluster Cc
′

k ∈ Ck,
where K is adaptively determined by the normalised merged
weights.

Suppose c′ is the index of the new cluster and assume we
merge the previous clusters with indices in the set M =
{c|Cc′k ∩ Cck−1 6= ∅}. We define the binary decision variables
vc,j ∈ {0, 1}, where vc,j = 1 if the global hypothesis of
index j ∈ {1, . . . , |Ack|k−1|} in the cluster c contributes to the
solution. According to the same logic, we denote the weight
selected by the variable vc,j as wc,j . We can describe the
problem of finding the best merged global hypothesis as an
optimisation problem

maximise
∑
c∈M

|Ack|k−1|∑
j=1

vc,j logwc,j (23)

subject to
|Ack|k−1|∑
j=1

vc,j = 1, c ∈M . (24)

The solution to (23) corresponds to taking the maximum
weight wc,j over j for each c. Here, we take the K best global
hypothesis until the normalised weight of the K-th hypothesis
is below a pruning threshold Γmbm.

Assuming the set of global hypotheses is sorted by descend-
ing weight in each cluster c ∈M, the problem can be solved
in O(|M|K max(log |M| , logK)) using a branch-and-bound
approach implemented with a priority queue [46, Ch. 6].
Starting from the best hypothesis, defined as the product of the
best hypothesis in each cluster, we determine the other K − 1
merged hypotheses by iteratively extracting and expanding the
best solution in the tree of all the possible combinations of
weights.

Once we obtain the set of merged global hypotheses for
each cluster c ∈M, we can define the posterior density on a
partition Ck, as shown in Lemma 2 and 4. If the nk′|k tracks
are partitioned into a set of nck clusters, the simplified data
association problem can be split into nck independent sub-
problems. This approximation enables a remarkable reduction
of the computational time and it enables the direct use of
parallelization techniques in the update step.

V. MERGING OF BERNOULLI DENSITIES

In this section, we present two merging strategies to reduce
the number of Bernoulli components in the clustered PMBM
posterior. In Section V-A, we propose to merge the most
similar single target hypotheses corresponding to the same
potential target according to the KLD between Bernoulli
RFSs [34]. In Section V-B, we present an algorithm that can
rearrange the Bernoulli components across different potential
targets that is useful in cluster formation and to lower the
number of Bernoulli components in situations where targets
get in close proximity and then separate.

A. Intra-track Bernoulli merging

This section deals with merging of different local hypo-
theses corresponding to the same potential target. The aim
is to detect the Bernoulli components that are sufficiently

similar in terms of KLD for each potential target. The similar
Bernoulli components, each in a different local hypothesis,
are substituted by a single local hypothesis, reducing the
overall number of single target hypotheses and decreasing the
computational burden of the update step.

The algorithm results in an heuristic mixture reduction
procedure which iteratively decrease the number of mixture
components by merging the most similar Bernoulli compon-
ents at each iteration. Note that, unlike in [32], the merging
is performed at the Bernoulli components level, and it does
not affect the global hypotheses weights directly. Neverthe-
less, after the update of the global hypotheses with the new
local hypotheses indices due to merging, the list of global
hypotheses can present duplicates, which can be simplified by
summing the weights of the identical global hypotheses.

We perform merging in two ways. First, Bernoulli com-
ponents (of the same potential target) associated with the
same measurement are merged. Second, we use the KLD
to determine similar Bernoulli components that should be
merged. Note that a distance between Bernoulli densities based
on the Rényi divergence has been presented in [47].

1) Bernoulli merging: Let us consider a potential target i,
its hik|k single target hypotheses with index ai ∈ {1, . . . , hik|k},
and the subset of global hypotheses Aik′|k ⊆ Ak′|k in which
the target i is supposed to exist. The potential target state can
be described by the mixture of Bernoulli densities

f̃ ik′|k(X̃i) =
∑

a∈Ai
k′|k

W i,ai

k′|k f̃
i,ai

k′|k(X̃i) (25)

where W i,ai

k′|k is the component weight defined as the sum of
the weights associated to the global hypotheses in which a
specific Bernoulli component f̃ i,a

i

k|k appears, i.e.,

W i,ai

k′|k =
∑

a∈Ai
k′|k

wak′|k . (26)

Suppose pi,a
i

k′|k(x), the single target density of f̃ i,a
i

k′|k(X̃i),

is Gaussian, e.g. pi,a
i

k′|k(x) = N (x;µi,a
i

k′|k, P
i,ai

k′|k). Assume
that we aim to merge the components of indexes Aimk′|k ⊆
{1, . . . , hik|k} in the Bernoulli mixture f̃ ik′|k(X̃i) into a

single Bernoulli density f̂ ik′|k
(
X̃i
)

, with single target density

p̂ik′|k(x) = N (x; µ̂i,k′|k, P̂
i
k′|k). The approximated Bernoulli

density f̂ ik′|k

(
X̃i
)

that minimises the KLD D(f̃ |f̂ ) is char-
acterised by

Ŵ i,ai

k′|k =
∑

ai∈Aim
k′|k

W i,ai

k′|k (27)

and it is expressed by [11], [32]:

f̂ ik′|k

(
X̃i
)

=


1− r̂ik′|k X̃i = ∅
r̂ik′|kN (x; µ̂ik′|k, P̂

i
k′|k)δi [u] X̃i = {(u, x)}

0 otherwise

(28)



where

r̂ik′|k =

∑
ai∈Aim

k′|k
W i,ai

k′|kr
i,ai

k′|k∑
ai∈Aim

k′|k
W i,ai

k′|k

(29)

µ̂ik′|k =

∑
ai∈Aim

k′|k
W i,ai

k′|kr
i,ai

k′|kµ
i,ai

k′|k∑
ai∈Aim

k′|k
W i,ai

k′|kr
i,ai

k′|k

(30)

P̂ ik′|k =

∑
ai∈Aim

k′|k
W i,ai

k′|kr
i,ai

k′|k(P i,a
i

k′|k + µi,a
i

k′|k(µi,a
i

k′|k)T )∑
ai∈Aim

k′|k
W i,ai

k′|kr
i,ai

k′|k

− µ̂ik′|k(µ̂ik′|k)T . (31)

2) KLD between Bernoulli distributions: We aim to find an
approximation of (25) by merging the most similar Bernoulli
components. We evaluate the similarity between two Bernoulli
distributions using the closed-form of the KLD between two
Bernoulli distributions presented in Lemma 5. The proof and
other distances for Bernoulli merging are available in [34].

Lemma 5. Let f̃1(X̃) and f̃2(X̃) be two Bernoulli RFS
distributions with Gaussian single target densities. The i-th
Bernoulli RFS has probability of existence ri, mean x̄i, and
covariance matrix Pi. If r2 /∈ {0, 1}, the KLD of f̃2 from f̃1
exists and it is a finite value, given by:

DKL(f̃1

∥∥∥f̃2 )

= (1− r1) log
1− r1
1− r2

+ r1 log
r1
r2

+
r1

2

[
tr
(

(P2)
−1
P1

)
− log

(
|P1|
|P2|

)
− nx

+ (x2 − x1)
T

(P2)
−1

(x2 − x1)

]
. (32)

If r1 = r2 ∈ {0, 1}, the KLD is:

DKL(f̃1

∥∥∥f̃2 )

=
r1

2

[
tr
(

(P2)
−1
P1

)
− log

(
|P1|
|P2|

)
− nx

+ (x2 − x1)
T

(P2)
−1

(x2 − x1)

]
. (33)

3) Identification of similar Bernoulli components: The pro-
posed intra-track merging algorithm consists of two main
steps. Firstly, for each potential target i, the algorithm reduces
the hik|k−1 Bernoulli components associated with zjk to one
single Bernoulli component f̂ i,jk|k by moment-matching, see
(29)-(31). The output of this step is a set of mk single
target hypotheses resulting from the merging algorithm, hik|k−1
Bernoulli components associated with a misdetection hypo-
thesis, and their relative weights in the mixture.

Secondly, the single target hypotheses are iteratively merged
by following a greedy merge procedure based on the KLD
defined in Lemma 5, as described in [34]. The procedure con-
siders the distances between all the elements of the Bernoulli
set, and merges the two most similar Bernoulli components at

Figure 3: Example of a superposition of Bernoulli components for the
same potential target. The stars indicate the measurements zk at time k,
while the circles represent the Bernoulli components associated to the
corresponding measurement at each time step. At k = 3, f1,13 and f1,23
are updated with the same measurement z13 , and they are merged into the
new Bernoulli f̂1,13 (not displayed in the figure). At the next time instant,
the KLD between f1,14 and f1,24 results below the threshold, leading to
the merging for the local hypothesis. The notation for the density f̃(·)
has been simplified in the figure.

each iteration, i.e., those which show the minimum distance.
The merging is performed only if the distance is below a
specified threshold Γm. Otherwise, the algorithm breaks the
loop and returns the current set of Bernoulli components. The
algorithm is similar to that proposed by Runnalls in [48], and
the pseudocode is available in [34]. Note that an appropriate
choice of the threshold Γm allows the filter to keep well-
spaced mixture components in the mixture, providing a more
adequate representation of complex scenarios.

Fig. 3 shows an example of the different steps of the intra-
track merging algorithm. At time k = 3, the potential target
i = 1 is described by three Bernoulli components, of which
two updated with the same measurement z13 . We can assume
that both f1,13 and f1,23 are sufficiently similar, and merge them
in a new hypothesis according to the first step of the procedure.
At time k = 4, the KLD between the two target hypotheses
is lower than a pre-defined threshold, enabling the reduction
via moment-matching to one single component.

B. Inter-track Bernoulli swapping
It is known that after targets get in close proximity and

then separate, local targets hypotheses from different targets
get mixed up. For example, in an area where there is only one
target, we may have hypotheses from multiple targets [35].
A standard clustering algorithm cannot put this target into a
single cluster.

In this section, we propose a strategy to swap Bernoulli
components across different potential targets to improve clus-
tering after targets get in close proximity and separate. There
are two computational benefits of swapping Bernoulli compon-
ents when targets get in close proximity and the separate 1)
we avoid performing repeated prediction and update steps that
are similar for different potential targets in standard PMBM
filtering, see Fig. 4, and 2) we increase the number of clusters.

We first note that the PMBM posterior (without auxiliary
variables) remains unchanged by permuting the Bernoulli
indices in each global hypothesis. That is, the clustered MBM
in (13) expressed without auxiliary variables is equivalent to

q̂ck′|k
(
∪i∈CckX

i
k′
)

=



∑
ac∈Ack′|k

wack′|k

∑
∪j∈Cc

k
Xj=X

∏
i∈Cck

[
f
σac (i),a

σac (i)
c

k′|k
(
Xi
k′
)]
(34)

where σac = (σac(1), ..., σac(n
c
k′|k)) is a permutation of

(1, ..., nck′|k) applied to global hypothesis ac. The idea is
then to use the flexibility introduced in (34) to design a
fast algorithm that swaps the candidate Bernoulli indices in
specific global hypotheses to improve clustering. In addiction,
these candidates will then likely be merged by the intra-track
Bernoulli merging algorithm, described in Section V-A, at the
next time step. In the following, we propose a computationally
efficient method to exploit this flexibility through four steps.

1) Candidate tracks: We identify the tracks with divergent
data association histories indirectly by computing the KLD
between the Gaussian component of the single target hypo-
theses of each track in a cluster. If a pair of components
of track i has a KLD greater than a defined threshold Γs,
we consider that the data association history is divergent
and the track i is considered as candidate for the inter-track
swapping. Given the Gaussian component pi,a

i

k′|k of the single
target hypothesis ai of track i, we define the set of candidate
tracks in the cluster c ∈ {1, . . . , nck} as

Tc =
{
i|DKL

(
pi,a

i

k′|k

∥∥∥pi,bik′|k

)
> Γs

}
(35)

where i ∈ Cck and ai, bi ∈ {1, . . . hik′|k}. Note that this
procedure can be implemented as an extension of the intra-
track merging procedure presented in Section V-A with no
extra computational time.

In Fig. 4, we consider Tc = {1, 2}, as we suppose that the
KLD between the Bernoulli components of the tracks 1 and
2 exceeds the threshold at time k = k2.

2) Bernoulli local clustering: We seek to represent each
potential target i ∈ Tc by means of a set of similar hypotheses,
i.e., Bernoulli components located in the same area. We apply
the K-means algorithm [49] on the posterior mean positions
of the candidate tracks to obtain a partition of the Bernoulli
components, where K= |Tc|. We indicate the resulting local
cluster associated with the Bernoulli component f i,a

i
c

k′|k(·) with

the index ji,a
i
c ∈ {1, . . . , |Tc|}. The clustering requires a low

increase in the computational burden of the algorithm, as the
number of local hypotheses to cluster is usually low due to
the pruning and merging procedures applied before this point.
The example in Fig. 4 shows the partition of the Bernoulli
components in the cluster C1

k2
into two subclusters G1 and

G2, where the subscripts {1, 2} represent the indices ji,a
i
c .

3) Track assignment to local clusters: At this point, each
candidate track belongs to multiple local clusters. We assign
each track i ∈ Tc to one single local cluster, in order to locate
it in a specific area. We express the assignment by the vector
s = (s(1), . . . , s(|Tc|)), s(ji,a

i
c) ∈ Tc, with s(ji,a

i
c) being the

index of the reference track for the local cluster ji,a
i
c . This

procedure allows us to split the original cluster into several
subclusters, correspondent to the local clusters, reducing the
data association problem into smaller ones.

Figure 4: Example of two targets crossing. The stars indicate the
measurements at time k = {0, k1, k2}, and the coloured circles represent
the Bernoulli components associated to the tracks at each time step, where
the tracks i = {1, 2} are depicted respectively in blue and green. The
tracks are composed of a single Bernoulli at k = 0, and then updated
with common measurements at k = k1. When the targets move away,
the tracks are represented at different locations, and the related Bernoulli
components can be clustered into two local clusters, namely G1 and G2.
The notation for the density f̃(·) has been simplified in the figure.

4) Bernoulli swapping: At this stage, we allocate the
Bernoulli components in each local cluster l ∈ {1, . . . , |Tc|}
to the track s(l) assigned to the local cluster l.

For example, assume the track 1 is assigned to the local
cluster G1 and track 2 is assign to G2 in Fig. 4. The swapping
procedure aims to allocate f2,1k2 to track 1 and f1,2k2 to track 2.

We represent the Bernoulli swapping procedure by consider-
ing the MBM cluster density of the current cluster c expressed
in (13). We determine an equivalent MBM cluster density as
in (34) by defining σac according to the following rules:
• σac(i) = i, for i /∈ Tc.
• σac(i) = s(ji,a

i
c) for i ∈ Tc.

Once we have selected σac , we should note that there is a
rearrangement between Bernoulli components and tracks that
carries along to the following time steps.

VI. SIMULATIONS

In this section, we proceed to assess the accuracy and
computational time of the clustered PMBM filter and the pro-
posed Bernoulli merging strategies in two scenarios. We also
compare the standard PMBM filter implementation [12], the
track-oriented PMB filter [11] and the PMBM filter with intra-
track Bernoulli merging [34] against their clustered versions.

The filter implementations use a threshold for pruning the
Poisson components Γp = 10−5, a threshold for pruning
global hypotheses Γmbm = 10−4, and a threshold for pruning
Bernoulli components Γb = 10−5. The maximum number
of global hypotheses is Nh = 200 for the standard PMBM
and PMB filters, while the limit on the number of global
hypotheses is N c

h = 20|Cc| for each cluster c in the clustered
versions of the filters. The ellipsoidal gating is performed with
a k-d tree of threshold Γg = 4.5σi,a

i

k , while the estimation
is performed selecting the global hypothesis with the highest
weight and reporting Bernoulli components whose existence
probability is above 0.4 [12, Sec. VI.A]. The intra-track



Bernoulli merging procedure has threshold Γm = 0.25 to
determine similar Bernoulli components, and the inter-track
Bernoulli has its threshold set at Γs = 50. These parameters
have been determined empirically for good performance, and
they represent a reasonable trade-off between computational
burden and accuracy. Note that the clustering and merging
methods only add two parameters to those required by the
standard PMBM filter implementation.

Furthermore, we provide a comparison with the efficient
implementation of the δ-GLMB [13] with joint prediction and
update, with and without adaptive birth. The number of global
hypotheses and birth model in δ-GLMB are matched with the
standard PMBM filter [33]. All filters have been implemented
using Murty’s algorithm [50].

In the simulations, target motion follows a nearly con-
stant velocity model [51]. The target state is described in
a two-dimensional Cartesian coordinate system by sk =
[px,k, vx,k, py,k, vy,k]T , where the first two components rep-
resent position and velocity of the target on the x-axis, and
the last two those on the y-axis. The parameters of the linear
and Gaussian motion and measurement models are

F = I2 ⊗
(

1 T
0 1

)
, Q = qI2 ⊗

(
T 3/3 T 2/2
T 2/2 T

)
H = I2 ⊗

(
1 0

)
, R = I2

where ⊗ is the Kronecker product, T = 1 is the sampling
period, and q = 0.01 or q = 0.2 in Scenario 1 and 2, respect-
ively. The clutter model is Poisson, uniformly distributed in the
area of interest, with a mean number of clutter measurements
per scan λc dependent on the area of interest in each scenario.
We set the probability of survival of the targets pS = 0.99, and
the probability of detection pD = 0.9 for all the simulations.
To evaluate the performance of the algorithm, we consider the
root mean square (RMS) of the GOSPA error (α = 2, c = 10,
p = 2) [52], which allows us to decompose the total error into
localization error, missed target error and false target error.

We consider two scenarios based on different parameters
and structure, as shown in Fig. 5 and 9. For each scenario,
we perform four simulations denoted by the index Nsim and
defined by the number of groups of targets Ng , the mean num-
ber of targets born during the simulation Nb, the mean number
of targets alive at each time step Na, the side length of the area
of interest dA and the mean number of clutter measurements
per scan λc. All units in this section are expressed in the
international system and omitted for notational clarity. Tab. I
reports the parameters of the simulations and the mean number
of global hypotheses before and after pruning, N b

GH and Na
GH ,

respectively, in the standard PMBM for each simulation and
scenario.

The simulations have been performed on a laptop equipped
with Intel (R) Core(TM) i7-8850H @ 2.60 GHz and 16 GB
of memory. All the codes are written in MATLAB, except for
Murty’s algorithm and R-Tree, which are written in C++1, and
the priority queue, which is based on a Python implementation.

1We used the Murty’s algorithm implementation in the tracker component
library [53], and a modification of the R-Tree algorithm by Antonin Guttman
available on https://github.com/nushoin/RTree.

Table I: Simulations parameters for Scenario 1 and 2. The number of
groups of targets Ng is not defined in scenario 2, as the targets are born
in the same area of interest.

Scenario 1 Scenario 2
Nsim 1 2 3 4 1 2 3 4

Ng 4 16 64 256 N/D N/D N/D N/D
Nb 16 64 256 1024 16 64 256 1024
Na 14 56 224 895 6 24 96 374
dA 400 750 1350 2550 600 1200 1800 2400
λc 2.25 6.25 20.25 72.25 24 96 216 384
Nb

GH 267 284 300 296 143 242 258 259
Na

GH 126 163 191 195 33 61 88 91

Figure 5: Example of a simulation Nsim = 2 in Scenario 1. Each group
is composed by four targets, and each target is depicted with a different
colour within the group. All the targets are born at time step k = 1 and
survive for 101 time steps, except the blue targets that die at time step
k = 50 in all the groups. The target positions at k = 1 are indicated by
a cross, and the circles show the target positions every ten time steps.

The results are based on the average on 50 Monte Carlo (MC)
runs, except for those related to the simulations Nsim = 4,
which are based on 30 MC runs due to the long execution
timesfor the standard PMBM filter.

Note that all filters use sub-optimal estimators and different
approximations, like pruning, merging and clustering. While
the PMBM filter without approximations and an optimal
estimator provides optimal estimates of the set of targets, a
PMB filter implementation can perform better than a PMBM
filter implementation with a sub-optimal estimator and approx-
imations.

A. Gating

In Fig. 6, we compare the mean gating times of several
gating procedures. The gating time is defined as the time to
update the single target hypotheses in the prediction density
f̃k|k−1 (·), and it includes the time to build and query the



Figure 6: Comparison between the computational time of the gating
procedure using different data structures (5MC runs). The dashed lines
represents the asymptotic computational complexity based on Nhyps.

space partitioning data structure. It also considers the time
to generate the misdetection hypotheses and to compute the
expected target measurements and the innovation covariances.
The gating thresholds for the ellipsoidal, k-d tree and R-Tree
gating are γG = 20, γG = 4.5 and γG = 8 respectively, and
they provide equivalent results.

Fig. 6 highlights the asymptotic computational complexity
based on the mean of the total number of single target hypo-
theses Nhyps generated throughout all the time instants of each
simulation. The use of k-d trees or R-trees has a computational
burden associated with the initialisation step, which overcomes
the benefits of using data structures for Nsim = 1. This
computational effort is rewarded with faster queries, resulting
in a relevant speed-up of the gating procedure as the number of
targets increases in the simulations. The comparison between
k-d tree and R-Tree yields a limited difference in terms of
gating time, and results independent on the number of targets.

B. Scenario 1

Scenario 1 is an extension of the base scenario proposed in
[12], which consists of four targets, all born at time step 1 and
alive throughout the simulation of 101 time steps, except one
which dies at time step 50 (the blue ones in Fig. 5). The base
scenario is considered challenging, as all the targets get close
at time step 50, when the blue one dies. We extended the base
scenario by generating Ng groups of four targets in the area
of interest, as shown in Fig. 5. Each group of four targets is
generated at a distance doffset = 150 from the centre of the
adjacent groups, within a square area of side length da = 300.
The total area of interest is A = [0, dA(Ng)] × [0, dA(Ng)],
where dA(Ng) = da + doffset · (Ng − 1).

We test the scenario with four configurations based on
different numbers of groups Ng as indicated in Tab. I. In
each configuration, the targets are born according to a PPP

Figure 7: Comparison between performance and execution times between
the standard PMBM and PMB filters (in blue),their clustered versions (in
red) and δ-GLMB in Scenario 1. Each version of the filter is represented
with a different marker. The simulations Nsim = [1, 2, 3, 4] have mean
number of targets born during the simulation Nb = [16, 64, 256, 1024],
and they indicated with a box or a superscript number (δ-GLMB).
The blue and red dashed lines represent the asymptotic computational
complexity O(N2

a) and O(Na), respectively.

of intensity λ · uA(z) at the first time step, where uA(z) is
a uniform density in its area of interest and λ = 3Ng; the
PPP intensity decrease to 0.005 at the next time steps. The
intensity is Gaussian with mean [dA(Ng)/2, 0, dA(Ng)/2, 0]T ,
and covariance diag([(1.1dA(Ng))

2, 1, (1.1dA(Ng))
2, 1]).

1) Clustering: In Fig. 7 the results of the simulations
based on Scenario 1 are indicated using different markers, and
the asymptotic computational complexity based on the mean
number of targets alive at each time step Na is expressed by
the two dashed lines. Note that the computational gains are
highly dependent on the scenario, and we cannot draw general
conclusions.

The outcome shows reduced computational time for both
the clustered PMBM and PMB compared to their standard
implementations and the δ-GLMB filter with adaptive birth.
Notably, the clustered PMBM and its variations based on
Bernoulli merging and swapping show the same performance
than the standard filter, where the two Bernoulli reduction
techniques provide even lower execution times, as indicated
in more detail in Tab. II. The δ-GLMB filter without adaptive
birth results faster than PMBM, but it shows a high GOSPA
error, especially in the misdetected target error, due the great
number of targets born simultaneously at the beginning of the
simulations.

The clustered PMB filter is usually faster than the cor-
respondent standard implementation, although it results less
accurate. The management cost of the clusters overcomes the
benefits of our approach in scenarios with a low number of
targets, e.g. Nsim = 1. Similar conclusions can be drawn for
pD = 0.7, see App. D.



Table II: Performance and computation time of the clustered PMBM with Bernoulli merging and swapping techniques based on different simulations in
Scenario 1. The simulations Nsim = [1, 2, 3, 4] have mean number of targets born during the simulation Nb = [16, 64, 256, 1024].

RMS GOSPA error Time (s)
Nsim 1 2 3 4 1 2 3 4

Standard PMBM 5.28 9.37 18.65 38.35 14.71 80.78 630.05 37523.1
Clustered PMBM 5.29 9.33 18.46 37.09 3.36 12.86 57.33 285.61

Clustered PMBM intra-track merging 5.28 9.31 18.46 36.84 2.97 11.16 44.25 212.50
Clustered PMBM merging and swapping 5.27 9.27 18.42 37.08 2.83 10.28 42.69 198.73

Figure 8: Comparison of the mean number of clusters and mean number
of tracks per cluster for the clustered PMBM with intra-track and
inter-track Bernoulli merging. The simulations are based on different
simulations in Scenario 1. Solid lines correspond to the clustered PMBM
performing only intra-track merging, while dashed lines correspond to
the clustered PMBM performing both the intra and inter track Bernoulli
merging and swapping procedures.

2) Inter-track Bernoulli merging: Tab. II compares the
results of the simulations based on Scenario 1 of the clustered
PMBM filter approximated with the intra and inter track
Bernoulli merging and swapping procedures. As already no-
ticed, these techniques presents a greater reduction of the
computational time in the most challenging scenarios, e.g.
Nsim = {3, 4}. This observation is supported by the statistics
reported in Fig. 8, where it is possible to notice a significant in-
crease in the number of clusters using the inter-track Bernoulli
swapping procedure. Moreover, the mean number of tracks per
cluster falls to two regardless of the number of targets in the
simulation, which suggests the formation of efficient clusters
comprising an updated track and a new one related by the
same measurement.

C. Scenario 2

Scenario 2 considers targets that appear and
disappear at different time instants in an area
A = [0, dA(Nsim)] × [0, dA(Nsim)], dA = 600Nsim.
The target state at the appearing time is Gaussian with
mean [dA(Nsim)/2, 0, dA(Nsim)/2, 0]T and covariance
diag([(60Nsim)2, 1, (60Nsim)2, 1]). The probability of
survival is pD = 0.99 and the expected number of
targets born at each time step is Nb/100, where Nb is
indicated in Tab. I. The PPP intensity is Gaussian with
mean [dA(Nsim)/2, 0, dA(Nsim)/2, 0]T , and covariance
diag([(1.1dA(Nsim))2, 1, (1.1dA(Nsim))2, 1]).

In Fig. 10 we show the results of the simulations based
on Scenario 2. The RMS GOSPA error of the PMBM filter
results higher than the respective clustered version in sim-
ulations Nsim ∈ {3, 4}. The reason is related to the high

Figure 9: Example of a simulation Nsim = 2 in Scenario 2. The colours
represent the evolution over time of the target positions in the field of
view.

clutter rate in these simulations, which generates a significant
number of global hypotheses. Most of these hypotheses are
pruned in the PMBM filter due to the cap on the maximum
number of global hypotheses. The distributed representation of
the global hypotheses implemented by the clustered PMBM
allows us to express a higher number of global hypotheses
in a more efficient way, resulting in better performance in
reduced computational time. Note that, as in Scenario 1, if the
number of targets is low, the management cost of the clusters
overcomes the benefits of our approach for some filters.

VII. CONCLUSIONS

In this paper, we have proposed several algorithms to reduce
the complexity of the PMBM filter, enabling its use in complex
scenarios with high number of targets. We have introduced the
clustered PMBM density and a clustering algorithm based on
the measurements associated with the potential targets. We
have also proposed two techniques to decrease the number
of similar Bernoulli components that arise while filtering,
namely intra-track Bernoulli merging and inter-track Bernoulli
swapping.

We have evaluated the filters in two simulated scenarios
showing the advantages of PMBM clustering for a high num-



Figure 10: Comparison between performance and execution times
between the standard PMBM and PMB filters (in blue), their clustered
versions (in red) and δ-GLMB in Scenario 2. Each version of the
filter is represented with a different marker. The simulations Nsim =
[1, 2, 3, 4] have mean number of targets born during the simulation
Nb = [16, 64, 256, 1024], and they indicated with a box or a super-
script number (δ-GLMB). The blue and red dashed lines represent the
asymptotic computational complexity O(N2

a) and O(Na), respectively.

ber of targets. Considering clustering, tracking well-separated
targets splits the problem into different targets reaching linear
complexity with a clustered PMBM filter. If all targets are in
close proximity, it is not possible to split targets into clusters,
and the PMBM and clustered PMBM should have similar
complexity.

Future work is the development of a hybrid MPI (Message
Passing Interface) and OpenMP (Open Multi-Processing) [54]
implementation, such that the algorithm can be scaled beyond
the capabilities of the shared memory systems for which
OpenMP alone is applicable. Future lines of research can also
include the use of the proposed merging strategies to perform
multi-sensor average fusion in the PMBM/PMB framework
[55]. Furthermore, other clustering techniques can be explored
to perform clustered PMBM filtering.
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Supplementary material: Data-
driven clustering and Bernoulli
merging for the Poisson multi-
Bernoulli mixture filter

APPENDIX A
PROOF OF LEMMA 2

In this appendix, we prove Lemma 2. Applying the KLD
in (10) can be written as [10, Eq. (3.53)]
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where constant denotes terms that do not depend on q. By
standard KLD minimisation, we prove that the density on the
augmented set of undetected targets in the clustered density is
equal to the PPP of the PMBM density (6) with auxiliary vari-
ables. Furthermore, the cluster density q̃ck′|k on the augmented
set of targets Cck is proportional to the MBM expressing the
global hypotheses based on the Bernoulli components of the
tracks in the cluster.

APPENDIX B
PROOF OF LEMMA 3

In this appendix, we prove Lemma 3, which provides
the relation between the clustered density of the clustered
density qk′|k(·) and the clustered density q̃k′|k(·) with auxiliary
variables.

A. Preliminary result

Given a set with auxiliary variables, we can map it to a set
without auxiliary variables with the mapping

h ({(u1, x1) , ..., (un, xn)}) = {x1, ..., xn} .

This is equivalent to a transition density
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(36)

where δh(X̃k′) (·) is the multi-target Dirac delta [10], and we
have applied that the multi-target Dirac delta can be seen as
the union of independent sets.

We proceed to prove that we can recover (14) in Lemma
3, by applying the transition density f

(
Xk′ |X̃k′

)
in (36) to

a density q̃k′|k (·) and calculating the set integral. As there is
no change in cardinality the set integral for fixed cardinality
n becomes
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u1:n∈Unk

∫
δ{x′1,...,x′n} ({x1, ..., xn})

× q̃k′|k ({(u1, x′1) , ..., (un, x
′
n)}) dx′1:n

=
∑

u1:n∈Unk

q̃k′|k ({(u1, x1) , ..., (un, xn)})

which is equivalent to (14) in Lemma 3. Therefore, in the
next subsection we prove (14) in Lemma 3 by applying the
transition density f (·|·) to q̃k′|k (·).

B. Proof

We can rewrite (9) by explicitly considering the convolution
sum over the independent sets (see Definition 1)

q̃k′|k

(
X̃k′

)
=

∑
]
n
k′|k
l=1 X̃l]Ỹ=X̃k′

q̃0k′|k

(
Ỹ
) nck′|k∏
c=1

q̃ck′|k

(
X̃c
)
.

As we shown in the previous subsection, the clustered PMBM
density in F (Rnx) an be recovered by applying the set integral

qk′|k (Xk′) =

∫
f
(
Xk′ |X̃k′

)
q̃k′|k

(
X̃k′

)
δX̃k′

where f (·|·) is given by (36). Applying Lemma 2 in [15]
yields

qk′|k (Xk′)

=

∫ ∫
f
(
Xk′ |Ỹ ] X̃1 ] ... ] X̃ck′|k

)
× q̃0k′|k

(
Ỹ
) nck′|k∏
c=1

q̃ck′|k

(
X̃c
)
δỸ δX̃1:ck′|k

=
∑

Y 0]X1]...]Xck′|k=Xk′

[∫
δh(Ỹ 0)

(
Y 0
)
q̃0k′|k

(
Ỹ 0
)
δỸ

]



Table III: Mean number of global hypotheses in the standard PMBM
before and after pruning in Scenario 1 with probability of detection pD =
0.7.

Scenario 1
Nsim 1 2 3

Nb
GH 286 300 305

Na
GH 42 175 183

×
nc
k′|k∏
c=1

[∫
δh(X̃c) (Xc) q̃ck′|k

(
X̃c
)
δX̃c

]
.

Now, using the fact that

qc0
(
Y 0
)

=

∫
δh(Ỹ 0) (Xk′) q̃

0
k′|k

(
Ỹ
)
δỸ

qck′|k (Xc) =

∫
δh(X̃c) (Xc) q̃ck′|k

(
X̃c
)
δX̃c

we finish the proof of (14).

APPENDIX C
PROOF OF LEMMA 4

In this appendix, we prove Lemma 4. Applying the KLD
in (10) and defining the density q̃c

′

k′|k−1 (·) as

q̃c
′

k′|k

(
X̃i
k′

)
=


1− ri,a

i

k′|k X̃i
k′ = ∅

ri,a
i

k′|kp
i,ai

k′|k(x)δi[u] X̃i
k′ = {(u, x) : u ∈ c′}

0 otherwise

and X̃k′ = X̃1
k′ ] ... ] X̃

nk′|k−1

k′ , the KLD can be written as
[10, Eq. (3.53)]

D
(
f̃k′|k−1

∥∥q̃k′|k−1) =

∫
f̃k′|k−1

(
Ỹk′ ] X̃k′

)
× log

f̃k′|k−1

(
Ỹk′ ] X̃k′

)
q̃k′|k−1

(
Ỹk′ ] X̃k′

) δỸk′δX̃k′

= constant−
∫
f̃0k′|k−1

(
Ỹk′
)

log q̃0k′|k−1

(
Ỹk′
)
δỸk′

−
∫ nck−1∏

c=1

∑
a∈Ak′|k−1

wak′|k−1
∏

i∈Cck−1

[
f̃ i,a

i

k′|k−1

(
X̃i
k′

)]

× log

nc
′
k′|k∏
c′=1

q̃c
′

k′|k−1

(
∪i∈Cc′k X̃

i
k′

) δX̃1
k′ ...δX̃

nk′|k
k′

= constant−
∫
f̃0k′|k−1

(
Ỹk′
)

log q̃0k′|k−1

(
Ỹk′
)
δỸk′

−
∑

a∈Ak′|k

wak′|k−1

nc
k′|k∑
c=1

nc
′
k′|k∑
c′=1

∫ ∏
i∈Cck

[
f̃ i,a

i

k′|k−1

(
X̃i
k′

)]

× log
(
q̃c
′

k′|k−1

(
∪i∈CckX̃

i
k′

))[∏
i∈Cc

δX̃i
k′

]
as in App. A, the constant denotes terms that do not depend on
q. As the cluster density q̃c

′

k′|k−1(·) on the target not belonging

Figure 11: Comparison between performance and execution times
between the standard PMBM and PMB filters (in blue), their clustered
versions (in red) and δ-GLMB in Scenario 1 with probability of detection
pD = 0.7. Each version of the filter is represented with a different
marker. The simulations Nsim = [1, 2, 3, 4] have mean number of
targets born during the simulation Nb = [16, 64, 256, 1024], and they
indicated with a box or a superscript number.

to the cluster c′ is zero, we can rewrite the last equation
considering just the target states in the intersection between
the the clusters c and c′

D
(
f̃k′|k−1

∥∥q̃k′|k−1) =

= constant−
∫
f̃0k′|k−1

(
Ỹk′
)

log q̃0k′|k−1

(
Ỹk′
)
δỸk′

−
∑

a∈Ak′|k

wak′|k−1

nc
k′|k∑
c=1

nc
′
k′|k∑
c′=1

∫ ∏
i∈Cc∩Cc′

[
f̃ i,a

i

k′|k−1

(
X̃i
k′

)]

× log
(
q̃c
′

k′|k−1

(
∪i∈Cc∩Cc′ X̃

i
k′

)) ∏
i∈Cc∩Cc′

δX̃i
k′


which proves the proportionality between the cluster prediction
density q̃c

′

k′|k−1(·) and the product of the MBMs based on
the Bernoulli components of the targets belonging to the
intersection Cc ∩ Cc′ , for c ∈ {1, . . . , nck−1}.

APPENDIX D
AN ADDITIONAL EVALUATION OF THE CLUSTERED PMBM

FILTER

In this appendix we present the evaluation of the clustered
PMBM and the proposed Bernoulli merging strategies in
Scenario 1 with probability of detection pD = 0.7. We
provide a comparison with the standard PMBM and PMB
filters, and with the efficient implementation of the δ-GLMB
with joint prediction and update, with and without adaptive
birth. The mean number of global hypotheses in simulations
Nsim = {1, 2, 3} is reported in Tab. III. The other simulation
parameters are identical to those reported in Sec. VI.



Fig. 11 shows the performance of the filters in terms
of RMS GOSPA error and execution time. Compared to
the standard PMBM implementation, the proposed clustered
methods allow us to reduce the computational time providing
similar accuracy. As for higher pD = 0.9, the management
cost of the clusters in the PMB filter overcomes the benefits
of our approach in scenarios with a low number of targets
(Nsim = 1 and Nsim = 2).


