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Abstract. Understanding spatial correlation is vital in many fields in-
cluding epidemiology and social science. Lee, Meeks and Pettersson (Stat.
Comput. 2021) recently demonstrated that improved inference for areal
unit count data can be achieved by carrying out modifications to a graph
representing spatial correlations; specifically, they delete edges of the pla-
nar graph derived from border-sharing between geographic regions in or-
der to maximise a specific objective function. In this paper we address the
computational complexity of the associated graph optimisation problem.
We demonstrate that this problem cannot be solved in polynomial time
unless P = NP; we further show intractability for two simpler variants of
the problem. We follow these results with two parameterised algorithms
that exactly solve the problem in polynomial time in restricted settings.
The first of these utilises dynamic programming on a tree decomposition,
and runs in polynomial time if both the treewidth and maximum degree
are bounded. The second algorithm is restricted to problem instances
with maximum degree three, as may arise from triangulations of planar
surfaces, but is an FPT algorithm when the maximum number of edges
that can be removed is taken as the parameter.

Keywords: Parameterised complexity - treewidth - colour coding - spatial statis-
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1 Introduction

Spatio-temporal count data relating to a set of n non-overlapping areal units for
T consecutive time periods are prevalent in many fields, including epidemiology
[11] and social science [1]. As geographical proximity can often indicate correla-
tion, such data can be modelled as a graph, with vertices representing areas and
edges between areas that share a geographic boundary and so are assumed to
be correlated. The count data is then represented as a weight assigned to each
vertex. However, such models are often not ideal representations as geographical



proximity does not always imply correlation [9]. Instead, Lee, Meeks and Pet-
tersson [7] recently proposed a new method for addressing this issue by deriving
a specific objective function (given in full in Section 2.2), and then searching for
a spanning subgraph with no isolated vertices which maximises this function.
Maximising this objective function corresponds to maximising the natural log of
the product of full conditional distributions over all vertices (corresponding to
spatial units) in a conditional autoregressive model. Such models are typically
written as a series of univariate full conditional distributions rather than a joint
distribution. This objective function is highly non-linear, and rewards removing
as few edges as possible, while applying a penalty that (non-linearly) increases
as the difference between the weight of each vertex and the average weight over
its neighbours increases. Due to the size of the data, exhaustive searches for
optimal subgraphs are intractable and so efficient algorithms are required for
this problem. Lee, Meeks and Pettersson [7| gave a heuristic for this problem,
but point out that many standard techniques are not applicable to this problem,
suggesting that this problem is hard to solve efficiently in general.

1.1 Owur contribution

We show that the problem is indeed NP-hard, even on planar graphs, and provide
examples that illustrate two of the major challenges inherent in the problem: we
cannot optimise independently in disjoint connected components and we cannot
iterate towards a solution. We also show that the decision variant of minimising
the penalty portion of the objective function is NP-complete even when restricted
to planar graphs with maximum degree at most five. We then investigate a
simplification in which the goal is to find a subgraph with a penalty term of
zero. We show that this is solvable linear time and space in the number of edges
of the graph, and we completely characterise all such subgraphs. However, we
also show that finding a subgraph with a penalty term of zero on all vertices of
degree two or more is NP-complete.

In the positive direction, we give two exact algorithms that are tractable in
their respective restricted settings. These both require that the input graph have
bounded maximum degree: we note that graphs arising from areal studies will
often have small maximum degree. The first algorithm runs in polynomial time
if both the maximum degree and treewidth of the underlying graph are bounded.
The second algorithm is only guaranteed to be correct if the underlying graph
has maximum degree three, but is fixed-parameter tractable when parameterised
by the maximum number of edges that can be removed.

1.2 Paper outline

Section 2 gives notation and definitions, the formal problem definition, and ex-
amples that illustrate two of the major challenges inherent in the problem. We
then prove in Section 3 that, unless P=NP, there is no polynomial-time algorithm
to solve the main optimisation problem, even when restricted to planar graphs.
Section 4 then examines three simplifications of the problem. In Section 5 we



introduce two algorithms to exactly solve the problem in certain special cases,
and we finish with concluding thoughts and open problems in Section 6. Note
that some details and proofs are omitted due to space constraints.

2 Background

In this section we give the notation we need for this paper, define the problem,
and then demonstrate why some common techniques from graph theory are not
applicable to this problem.

2.1 Notation and definitions

A graph is a pair G = (V, E), where the vertex set V is a finite set, and the edge
set E C V2 is a set of unordered pairs of elements of V. Two vertices u and
v are said to be adjacent if e = wv € E; u and v are said to be the endpoints
of e. The neighbourhood of v in G is the set Ng(v) = {u € V : wv € E},
and the degree of v in G is dg(v) := |Ng(v)|. An isolated verter is a vertex
of degree zero, and a leaf is a vertex of degree one. The mazimum degree of a
graph G is A(G) := max,cy dg(v). A graph H = (Vg, Eg) is a subgraph of G
if Vg CV and Ey C E; H is a spanning subgraph of G if Vi =V so that H is
obtained from G by deleting a (possibly empty) subset of edges. Given an edge
e in E(G) (respectively a set E' C E(G)) we write G\ e (respectively G\ E') for
the subgraph of G obtained by deleting e (respectively deleting every element
of E'). A graph G is planar if it can be drawn in the plane (i.e. vertices can be
mapped to points in the plane, and edges to curves in the plane whose extreme
points are the images of its endpoints) in such a way that no two edges cross.
Given any partition of a subset of the plane into regions, we can define a planar
graph whose vertices are in bijection with the set of regions, in which two regions
are adjacent if and only if they share a border of positive length. In particular,
if each region has three sides (i.e, the partition is a triangulation of a subset of
the plane) then the resulting graph will have maximum degree three.

2.2 The optimisation problem

Following Lee, Meeks and Pettersson [7], we are concerned with the following
optimisation problem.

CORRELATION SUBGRAPH OPTIMISATION
Input: A graph G = (V, E) where |V| = n, and function f: V — Q.
Question: What is the maximum value of

2
score(H, f) = Y Indp(v) —nln | Y du(v) (f(v)—w> :

vev vev du (v)

taken over all spanning subgraphs H of G such that dg(v) > 1 forallv € V?




We will say that a subgraph H of G is walid if H is a spanning subgraph
of G and dy(v) > 1 for all v € V. Given a vertex v in the input graph G, we
will sometimes refer to f(v) as the weight of v. We also define the neighbour-
hood discrepancy of a vertex f in a graph H with weight function f (written
NDg (v, f)) as

ZUGNH(’U) f(u) > ’ )

NDpg (v, f) := (f(v) - 51 (0)

2.3 Why common graph algorithm techniques fail

This problem is particularly resistant to many approaches common in algorith-
mic graph theory. We will describe two of these now. Firstly, on a disconnected
graph G, combining optimal solutions on each connected component is not guar-
anteed to find an optimal solution on G. This is true even if there are only two
disconnected components, one of which is an isolated edge and the other being
a path, as illustrated in the following example.

Ezample 1. Consider the graph G consisting of a path on four vertices (v, va, vs,
v4) along with an isolated edge between vertices v, and vy, as shown in Figure 1,
and let H = G \ {vav3}. Note that H is the only proper subgraph of G which
has no isolated vertices. Let f be defined as follows: f(v1) = 0, f(va) = 1,
f(vs) =10, f(vs) =11, f(ve) =0, and f(vp) = x for some real z. If z = 1 then
score(G, f) < score(H, f) but if x = 1000 then score(G, f) > score(H, f).

Va

Vb

Fig. 1. Graph for Example 1. The value of the function at each vertex is shown inside
the respective vertex.

To understand why disconnected components can affect each other in such a
manner, note that the negative term in the score function contains a logarithm
of a sum of neighbourhood discrepancies. This means that the relative impor-
tance of the neighbourhood discrepancy of any set of vertices depends on the
total sum of the neighbourhood discrepancies across the whole graph. In other
words, the presence of a large neighbourhood discrepancy elsewhere (even in a
separate component) in the graph can reduce the impact of the neighbourhood
discrepancy at a given vertex or set of vertices. However, the positive term in the
score function is a sum of logarithms, so the contribution to the positive term
from the degree of one vertex does not depend on any other part of the graph.



A reader might also be tempted to tackle this problem by identifying a “best”
edge to remove and proceeding iteratively. The following example highlights that
any algorithm using such a greedy approach may, in some cases, not find an
optimal solution.

Ezample 2. Consider the graph G being a path on six vertices labelled vy, v, v3,
v4, 5, and vg with f(vy) = 1000, f(ve) = 2000, f(vsz) = 1999, f(vs) = 1001,
f(vs) = 2019, and f(ve) = 981 as shown in Figure 2. Let H = G \ {vavs, v4vs},
and let H = G\ {vsvg}. The maximum score that can be achieved with the
removal of only one edge is achieved by removing edge v3vs and creating H'.
However, the optimal solution to CORRELATION SUBGRAPH OPTIMISATION on
G is H, and involves removing edges vovs and vqvs.

Fig. 2. Graph for Example 2. The value of the function at each vertex is shown inside
the respective vertex.

3 Hardness on planar graphs

In this section we prove NP-hardness of CORRELATION SUBGRAPH OPTIMISA-
TION on planar graphs.

Theorem 1. There is no polynomial-time algorithm to solve CORRELATION
SUBGRAPH OPTIMISATION on planar graphs unless P=NP.

We prove this result by means of a reduction from the following problem,
shown to be NP-complete in [10]; the incidence graph Gg of a CNF formula &
is a bipartite graph whose vertex sets correspond to the variables and clauses of
@ respectively, and in which a variable x and clause C are connected by an edge
if and only if x appears in C.

CuBIic PLANAR MONOTONE 1-IN-3 SAT

Input: A 3-CNF formula @ in which every variable appears in exactly three
clauses, variables only appear positively, and the incidence graph Gg is
planar.

Question: Is there a truth assignment to the variables of @ so that exactly
one variable in every clause evaluates to TRUE?




We begin by describing the construction of a graph G and function f :
V(G) — N corresponding to the formula ¢ in an instance of CUBIC PLANAR
MONOTONE 1-IN-3 SAT}; the construction will be defined in terms of an integer
parameter ¢ > 1 whose value we will determine later. Note that G is not the
incidence graph Gg of .

Suppose that @ has variables x1, ..., x, and clauses C1, ..., C,,. Since every
variable appears in exactly three clauses and each clause contains exactly three
variables, we must have m = n. For each variable z;, G contains a variable
gadget on 3t2 + 6t + 8 vertices. The non-leaf vertices of the gadget are:

— U;, with f(uz) = 7t7

— U4, with f(’UZ) = 4t7

— 2} with f(z]) = 4t, and

— w;; for each j € {1,2,3}, with f(w; ;) = 3t.

The vertex v; is adjacent to u;, z; and each w; ; with ¢ € {1,2,3}; z; is adjacent
to z;. We add leaves to this gadget as follows:

u; has 3t pendant leaves, each assigned value 7t + 1 by f;

z; has 3t pendant leaves, each assigned value t — 1 by f;

2! has 3t? pendant leaves, each assigned value 4t by f;

each vertex w; ; has exactly one pendant leaf, assigned value 3¢ by f.

For each clause C;, G contains a clause gadget on t + 2 vertices: a; and a;-,
which are adjacent, and t2 pendant leaves adjacent to a;. We set f(a;) = 2t, and
f takes value t on a; and all of its leaf neighbours. We complete the definition of
G by specifying the edges with one endpoint in a variable gadget and the other
in a clause gadget: if the variable x; appears in clauses C,,, C;, and C,,, with
r1 < 79 < 13, then we have edges w; 1a,,, w; 20, and w; 3a, 3. The construction
of the variable and clause gadgets is illustrated in Figure 3.

Recall that a subgraph H of G is wvalid if H is a spanning subgraph of G and
di(v) > 1 for all v € V. Recall that the neighbourhood discrepancy of a vertex
v with respect to f in a valid subgraph H, written NDy (v, f), is

> wenn (o) f(v)>2

NDH(va f) = (f(”) - dH(U)

The goal of CORRELATION SUBGRAPH OPTIMISATION is therefore to maximise

score(H, f) : ZlndH )—nln [Z dg(v) NDg(f, )] )

veV veV

over all valid subgraphs H of G. We now give several results that are necessary;
the proofs of these are omitted due to space constraints but can be found in [3].
This first set of results give several properties of valid subgraphs of G.
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Fig. 3. Construction of the variable and clause gadgets.

Lemma 1. For any valid subgraph H,
> NDyl(u, f) =6nt.
u a leaf in G
Lemma 2. For any valid subgraph H,
0 < NDp (2}, f),NDg(aj, f) < 1/t
Lemma 3. For any valid subgraph H,
Z Indg(v) > 6nlnt + 2n.
veV
Lemma 4. Let H be any subgraph of G (not necessarily valid). Then
Z Indg(v) < 6nlnt+ 20n.
veV

We now give two lemmas that relate the existence of truth assignments of a
3-CNF formulae to bounds on the neighbourhood discrepancies of some vertices
within a valid subgraph H.

Lemma 5. If & is satisfiable, there is a valid subgraph H such that for all v €
VA\{z},a;: 1 <i<n} with dg(v) > 1 we have ND(v, H) = 0.
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Lemma 6. If ¢ is not satisfiable, then for any valid subgraph H, there exists a
verter v € V\{z},a} : 1 <i<n} with dg(v) > 1 such that

1) "

NDy (v, f) > t2/9.



We now give bounds on the possible values for score(H, f) depending on
whether or not @ is satisfiable.

Lemma 7. If & is satisfiable, there is a valid subgraph H with
score(H, f) > 6nlnt — nln(12nt).
Lemma 8. If & is not satisfiable, then for every valid subgraph H we have
score(H, f) < 6nlnt 4+ 20n — nln(t?/9).
We are now ready to prove Theorem 1, which we restate here for convenience.

Theorem 1. There is no polynomial-time algorithm to solve CORRELATION
SUBGRAPH OPTIMISATION on planar graphs unless P=NP.

Proof. We suppose for a contradiction that there is a polynomial-time algorithm
A to solve CORRELATION SUBGRAPH OPTIMISATION on planar graphs, and show
that this would allow us to solve CUBIC PLANAR MONOTONE 1-IN-3 SAT in
polynomial time.

Given an instance @ of CUBIC PLANAR MONOTONE 1-IN-3 SAT, where we
will assume without loss of generality that @ has n > %7 variables, we proceed
as follows. First construct (G, f) as defined above, taking ¢ = n?; it is clear that
this can be done in polynomial time in |®|. Note that G is planar: to see this,
observe that repeatedly deleting vertices of degree one gives a subdivision of the
incidence graph which is planar by assumption. We then run A4 on (G, f) and
return YES if the output is at least 1—2771111 n, and NO otherwise.

It remains to demonstrate that this procedure gives the correct answer. Sup-
pose first that @ is satisfiable. In this case, by Lemma 7, we know that there
exists a subgraph H of G with

score(H, f) > 6nlnt — nln(12nt)
= 6nlnn® —nln(12n?)
=12nlnn —3nlnn —nlnl2
>9nlnn —3n
> 1—71 Inn
5 )
since 3 < Inn/2, so our procedure returns YES.
Conversely, suppose that @ is not satisfiable. In this case, by Lemma 8 we
know that, for every valid subgraph H we have
score(H, f) < 6nlnt + 20n — nln(t?/9)
= 6nInn? + 20n — nin(n/9)
=12nlnn+20n —4nlnn+nln9
< 8nlnn+ 23n
< 1—771 Inn
9 )

since 23 < Inn/2, so our procedure returns NO. O



4 Simplifications of the problem

One may wonder if the hardness of CORRELATION SUBGRAPH OPTIMISATION
is due to the interplay between the two parts of the objective function. We
show in Section 4.1 that just determining if there is a valid subgraph with total
neighbourhood discrepancy below some given constant is NP-complete, even if
the input graph is planar and has maximum degree at most five. In Section 4.2 we
that show that subgraphs that have zero neighbourhood discrepancy everywhere
(if they exist) can be found in time linear in the number of edges, however
determining if there exists a subgraph that has zero neighbourhood discrepancy
everywhere excluding leaves is NP-complete.

4.1 Minimising neighbourhood discrepancy

Consider the following problem, which questions the existence of a subgraph
whose total neighbourhood discrepancy is below a given constant.

AVERAGE VALUE NEIGHBOURHOOD OPTIMISATION
Input: A graph G = (V, E), a function f:V — Q, and k € Q.
Question: Is there a spanning subgraph H of G such that dg(v) > 1 for all

v €V and )
> (f(v) _ Zewetn /) fw)) < k7

veV dH(U)

First observe that the AVERAGE VALUE NEIGHBOURHOOD OPTIMISATION is
clearly in NP. The NP-hardness of AVERAGE VALUE NEIGHBOURHOOD OPTI-
MISATION can be shown by giving a reduction from CUBIC PLANAR MONOTONE
1-IN-3 SAT, which we used earlier in Section 3. The full proof is omitted due
to space constraints but can be found in [3].

Theorem 2. AVERAGE VALUE NEIGHBOURHOOD OPTIMISATION is NP-complete,
even when restricted to input graphs G that are planar and have maximum de-
grees at most five.

4.2 Ideal and near-ideal subgraphs

An obvious upper-bound to score(H, f) is given by >_ v (g)Indu(v) (ie. as-
sume every vertex has zero neighbourhood discrepancy), so a natural question
to ask is whether, for a given graph G and function f, a valid subgraph H of
G can be found that achieves this bound. In such a graph, it must hold that
NDg (v, f) = 0 for every v € V(H). We say such a graph H is f-ideal (or simply
ideal, if f is clear from the context). We now show that this definition is equiv-
alent to saying that a graph H is f-ideal if and only the restriction of f to any
connected component of H is a constant-valued function.
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Theorem 3. A graph H is f-ideal if and only if for each connected component
C; in H there exists some constant c¢; such that f(v) = ¢; for all v € V(C;).

Proof. Let P denote a path of maximal length in an f-ideal graph such that
the weights of the vertices of P strictly increase as one follows the path. In an
ideal graph, any edge between vertices of different weights means that P must
contain at least two distinct vertices, however the first and last vertices in such
a path cannot have zero neighbourhood discrepancy. Thus, no such path on one
or more edges can exist in an ideal graph, so a graph G is ideal if and only if
for each connected component C; in GG there exists some constant ¢; such that
f(v) = ¢ for all v € V(C;). O

Thus, ideal subgraphs can be found by removing any edge wv if f(u) # f(v)
(in O(|E|) = O(n?) time), and if necessary we can test if such a graph has no
isolated vertices (and thus is valid) quickly. The proof of Theorem 3 highlights
that maximal paths with increasing weights must start and end on vertices that
do not have zero neighbourhood discrepancy, so one might be tempted to relax
the ideal definition to only apply on vertices that are not leaves. We therefore say
a graph H is f-near-ideal if NDg (v, f) = 0 for every v € V(H) with dg(v) > 2.
In other words, we now allow non-zero neighbourhood discrepancy, but only at
leaves, motivating the following problem.

NEAR IDEAL SUBGRAPH
Input: A graph G = (V, E) where |V| = n, and a function f: V — Q.
Question: Is there a valid subgraph H of GG such that H is f-near-ideal?

While an ideal subgraph (if one exists) can be found quickly, it turns out
that solving NEAR IDEAL SUBGRAPH is NP-complete, even on trees. We reduce
from subset-sum, which is NP-complete [6], and which we define as follows.

SUBSET SUM
Input: An integer k, and a set of integers S = {s1,$2,...,8n}-

Question: Is there a subset U C {1,2,...,n} such that > _,; s, = k?

uelU

Given an instance (5, k) of SUBSET SUM, we will construct a graph G with
weight function f such that (G, f) has a near-ideal subgraph if and only if there
is a solution to our instance of SUBSET SuM.

The graph G contains 3n + 3 vertices labelled as follows:

— vy for the target value, vs for a partial sum, and v, for a pendant, and
— ) forpe{l,...,n} and j € {1,2,3}.

Vertex vy is adjacent to vertices vy, v,, and 11117 for p € {1,...,n}. For each
pe{l,...,n}, vll, is adjacent to 1112,, and 1112] is adjacent to vg. This graph can be
seen in Figure 4. We then define f as follows:
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Fig. 4. Diagram of graph for reduction from SUBSET SuM. The values inside the vertices
are their associated weights.

- f(vt) = 7k7
- f(Us) = f(v,) =0, and
— f(v)) =sp forpe {1,...,n}, and for j € {1,2,3}.

Note that for the condition dg(v) > 1 to hold for our subgraph H, the
only edges in G that might not be in H are of the form vsv; or v;vg for some
p € {1,...,n}. Additionally, for any p € {1,...,n}, at most of one of vsv; or
’U;’U% can be removed. We can then show that G has a near-ideal subgraph if
and only if it is constructed from a yes-instance of SUBSET SuM. The complete

proof is omitted due to space constraints but can be found in [3].

Theorem 4. NEAR IDEAL SUBGRAPH is NP-complete, even if the input graph
G is a tree.

5 Parameterised results

In this section we describe two parameterised algorithms for CORRELATION SUB-
GRAPH OPTIMISATION. We make use of two parameterised complexity problem
classes to describe these. A problem is in the fized parameter tractable (or FPT)
class with respect to some parameter k if the problem can be solved on inputs
of size n in time f(k) -n2W for some computable function f. Note in particular
that the exponent of n is constant. Another class of parameterised problems is
XP: a problem is in XP with respect to some parameter k if the problem can be
solved on inputs of size n in time O(nf(k)). In XP problems, the exponent of n
may change for different values of k, but if an upper bound on k is given then this
also upper bounds the exponent of n. For further background on parameterised
complexity, see [2].

In Section 5.1 we show that CORRELATION SUBGRAPH OPTIMISATION is
in XP parameterised by the maximum degree when treewidth is bounded, and
is in FPT parameterised by treewidth when the maximum degree is bounded.
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Then in Section 5.2 we consider the more restricted case where G has maximum
degree three, and show that with this restriction CORRELATION SUBGRAPH OP-
TIMISATION is in FPT parameterised by the number of edges that are removed.
We highlight that this restriction on the maximum degree occurs naturally in
triangulations of surfaces, such as can occur when discretising geographic maps.

5.1 An exact XP algorithm parameterised by treewidth and
maximum degree

We now briefly describe an exact XP algorithm for solving CORRELATION SUB-
GRAPH OPTIMISATION on arbitrary graphs that leads to the following result.

Theorem 5. CORRELATION SUBGRAPH OPTIMISATION can be solved in time

O(ZZA(G)(tw(G)—H) . n2A(G)+1>.

The algorithm follows fairly standard dynamic programming techniques on
a nice tree decomposition T' of G with treewidth tw(G) that is rooted at some
arbitrary leaf bag. A nice tree decomposition is a tree decomposition with one
leaf bag selected as a root bag so that the children of a bag are adjacent bags
that are further from the root, and the additional property that each leaf bag is
empty, and each non-leaf bag is either a introduce bag, forget bag, or join bag,
which are defined as follows. An introduce bag v has exactly one child below
it, say pu, such that v contains every element in p as well as precisely one more
element. A forget bag v has exactly one child below it, say p, such that v contains
every element in p except one. A join bag A has exactly two children below it,
say p and v, such that A, u, and v, all have precisely the same elements. See
[2], in particular Chapter 7, for an introduction to tree decompositions, and a
formal definition of nice tree decompositions.

We will outline the core ideas here; full details are omitted due to space
constraints but can be found in [3]. We first define some specific terminology
that will be useful when describing the algorithm. Let T" be a tree decomposition
(not necessarily nice) with an arbitrary bag labelled as the root. For each bag
v € T, denote by G, the induced subgraph of G consisting precisely of vertices
that appear in bags below v but do not appear in v, where we take below
to mean further away from the root bag. The set of edges between a vertex
in v and a vertex in GG, will be important to our algorithm, so we will write
E, ={uw e E(G) |ucvAveG,} to be the set of edges with one endpoint in
G, and the other in v. An example of a graph, a tree decomposition, G, and
FE, are shown in Figure 5.

Our algorithm will process each bag, from the leaves towards the root, deter-
mining a set of states for each bag such that we can guarantee that the optimal
solution will correspond to a state in the root bag. Given a bag v of a tree de-
composition and a set of edges I C F,, define Ql’,7 ; to be the set of graphs G’
with V(G') =V (G,)Uv, E(G') C E(G), and for any edge uv € E,, wv € E(G’)
if and only if uv € I.
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G T G, E,
A
® root
B F l v o I
C E | ® F C e l E
|7 N
D D D

Fig. 5. From left to right, we have a graph G with a tree decomposition displayed by
circling vertices, the tree indexing a tree decomposition of G drawn as a graph with
the root and the bag v labelled, the graph G, consisting of the induced subgraph on
vertices D and E, and the the set of edges E, = {C'D, EF} (i.e., the edges of G that

are between a vertex in G, and a vertex in v).

Definition 1. For a bag v, the set of all valid states at v is
S, ={(I,D)|I CE,, G, #0, and there exists a graph H € G,,

with D =" Indg(v), and dg(v) > 1 Vv € V(G,)}.
vEG,

Each state corresponds to at least one graph (H in the definition) but there
may be multiple graphs that all lead to the same state. For each state we will also
store the best possible (i.e., lowest) value of ) . dp(v) NDg(v, f) (i.e., total
neighbourhood discrepancy summed over vertices that only appear below the
current bag) over all of the graphs H that correspond to a given state. This
allows us to compute the contribution to the penalty portion of the objective
function from the subtree under consideration.

5.2 Parameterisation by k in low degree graphs

We also study the problem when G has maximum degree three and we want
to bound the maximum number of edges that can be removed. In this setting
we define k-CORRELATION SUBGRAPH OPTIMISATION and show that it is in
FPT when parameterised by k, the maximum number of edges that can be
removed from G to create H. This setting is of interest as the dual graph of any
triangulation has maximum degree three and triangulations are often used to
represent discretised surfaces |5, §].
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k-CORRELATION SUBGRAPH OPTIMISATION
Input: A graph G = (V, E) where |V| = n, an integer k, and a function
f:V-=Q

Question: What is the maximum value of

score(1. ) i= 3 ndy(v) =nln | 3 dy(v) (f@)—M) ,

veV veV du(v)

taken over all spanning subgraphs H of G such that |F(G \ H)| < k and
dpg(v) > 1forallv e V?

Theorem 6. For an integer k > 1, k-CORRELATION SUBGRAPH OPTIMISATION
can be solved on graphs with mazimum degree three in time 252108 k+0M)p og p.

This can be proven using the following guide; full details are omitted due to
space counstraints but can be found in [3]. Consider in turn each possibility R
for the graph consisting of deleted edges, and for each such graph we consider in
turn the possibilities of the degree sequence of the remaining graph. The number
of distinct graphs R that must be considered is independent of n, and for each R
the number of degree sequences of G\ R is linear in n. As R has maximum degree
two and therefore consists only of paths and cycles, it has treewidth at most two.
We can therefore adapt well-known colour-coding methods (see [4, Section 13.3]
for more details) for finding subgraphs with bounded treewidth in FPT time
so that we can identify a subgraph R in G whose removal gives the biggest
improvement to the neighbourhood discrepancy term while still maintaining the
correct degree sequence of G\ R.

6 Discussion and conclusions

CORRELATION SUBGRAPH OPTIMISATION is a graph optimisation problem aris-
ing from spatial statistics with direct applications to epidemiology and social
science that we show is intractable unless P=NP. We also show that it is resis-
tant to common techniques in graph algorithms, but can be solved in polynomial
time if both the treewidth and maximum degree of G are bounded, or if G has
maximum degree three and we bound the maximum number of edges that can
be removed. However the question still remains as to whether CORRELATION
SUBGRAPH OPTIMISATION itself is hard when the maximum degree of the input
graph is bounded. We also note as an interesting open problem whether COR-
RELATION SUBGRAPH OPTIMISATION admits efficient parameterised algorithms
with respect to (combinations of) parameters other than the maximum degree.
Additionally, the original paper that introduced CORRELATION SUBGRAPH OP-
TIMISATION gives one heuristic for solving the problem, but leaves open any
guarantee on the performance of this heuristic. Thus the investigation of the
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performance of this heuristic, or indeed of any new approximation algorithms,
form two other significant open problems for correlation subgraph optimisation.
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