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Local-to-Global Information Communication for
Real-Time Semantic Segmentation Network Search

Guangliang Cheng∗, Peng Sun∗, Ting-Bing Xu, Shuchang Lyu and Peiwen Lin�

Abstract—Neural Architecture Search (NAS) has shown great
potentials in automatically designing neural network architec-
tures for real-time semantic segmentation. Unlike previous works
that utilize a simplified search space with cell-sharing way, we
introduce a new search space where a lightweight model can be
more effectively searched by replacing the cell-sharing manner
with cell-independent one. Based on this, the communication of
local to global information is achieved through two well-designed
modules. For local information exchange, a graph convolutional
network (GCN) guided module is seamlessly integrated as a
communication deliver between cells. For global information
aggregation, we propose a novel dense-connected fusion module
(cell) which aggregates long-range multi-level features in the
network automatically. In addition, a latency-oriented constraint
is endowed into the search process to balance the accuracy and
latency. We name the proposed framework as Local-to-Global In-
formation Communication Network Search (LGCNet). Extensive
experiments on Cityscapes and CamVid datasets demonstrate
that LGCNet achieves the new state-of-the-art trade-off between
accuracy and speed. In particular, on Cityscapes dataset, LGCNet
achieves the new best performance of 74.0% mIoU with the speed
of 115.2 FPS on Titan Xp.

Index Terms—Neural Architecture Search, Real-Time Seman-
tic Segmentation, Graph Convolutional Network.

I. INTRODUCTION

SEMANTIC segmentation [1]–[6] has been a fundamental
vision task that aims at predicting pixel-level semantic

categories for images. With the recent advances in deep
learning technology [7]–[12], many works focus on the so-
phisticated model design regarding depth, width and atten-
tion mechanism to pursue higher accuracy, which involves
many time-consuming operations. Although these methods
achieve impressive results on the public semantic segmenta-
tion benchmarks [13]–[15], they are difficult to be deployed
on the resource-constrained applications, such as the auto-
driving vehicles and the navigation robots, which require high
computational efficiency without incurring accuracy drop. To
overcome this problem, researchers have designed some low-
computation CNN models to harvest the satisfactory segmen-
tation accuracy. ICNet, ENet and SegNet [16]–[18] reduce
the computational cost by incorporating some specifically
designed modules with reduced input size or filter numbers.
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Fig. 1: The inference speed (FPS) and mIoU performance
among different networks on the Cityscapes test set. Our
LGCNet achieves the state-of-the-art trade-off between the
speed and performance.

BiSeNet [19], [20] decouples the context and spatial informa-
tion with bilateral path, and then fuses them to achieve a satis-
factory trade-off between accuracy and latency. DFANet [21]
utilizes lightweight depth-wise separable convolutions and
remedies its accuracy drop by incorporating an aggregation
module. Although achieving remarkable results, these human-
designed strategies usually require expertise in architecture
design through enormous trial and error to carefully balance
the accuracy and resource-efficiency. Such human-designed
process need to be redone when the hardware setting changes,
which further increases the difficulty in applying to the actual
applications.

Different from manually designed architectures, network
architecture search methods have drawn extensive attention
[22]–[30] and achieved remarkable performance. They mainly
focus on the block-based (also called as cell) search for the
backbone and utilize the multi-scale module such as ASPP
[31] to fuse the global information. For the building block,
some works directly design the search space on the targeted
platform. CAS [32] searches for two cell types (normal and
reduction cell) and then stacks the identical cells repeatedly to
form a network. FBNet [33] and SqueezeNet [34] search the
hyper-parameters including number of blocks, channel num-
bers of each layer for the network based on the efficient blocks
in human-designed network such as ResNet and MobileNet
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[8], [35]. For multi-scale module, AutoRTNet [36] and CAS
[32] automatically aggregate features at different levels with
a multi-scale fusion cell, and [29] utilizes a recurrent neural
network (i.e. controller) to decide which layer and what kind
of operations will be employed.

Although the searched building block and multi-scale cell
have achieved satisfactory performance with above methods,
some indispensable aspects for a remarkable real-time seg-
mentation network are ignored:

1) Difficult to achieve a good trade-off between latency and
accuracy due to the limited cell diversity with the identical
cell. As shown in Figure 2 (a), the cell is prone to learn a
complicated structure to achieve high performance without any
resource constraint, and the network stacked with it will result
in high latency. When a low-computation constraint is applied,
the cell structure tends to be over-simplified as shown in
Figure 2 (b), which may not achieve satisfactory performance.
We thus modify the cell setting from cell-sharing manner to
cell-independent one, which can be flexibly stacked to form a
lightweight network with cell diversity as shown in Figure 2
(c).

2) Lack of local information exchange. Above methods
only consider the global information fusion using the multi-
scale module during the search progress, while the local in-
formation exchange between adjacent cells are very important
to achieve a good trade-off between latency and accuracy
because different cells can be treated as multiple agencies,
whose achievement of social welfare may require information
exchange between them inspired by [37].

3) Global information fusion. CAS [32] and [29] search
a multi-scale module in which only the short-range features
from stride=8 to stride=16 are taken into account to reduce
the inference time cost, but it would be helpful to improve the
accuracy if the lower level information in stride=4 could be
incorporated since some boundary clues from this feature are
essential for achieving more fine-grained segmentation results.

Based on the independent cell mechanism, it’s worth fur-
ther exploring how to effectively establish the local-to-global
information communication among cells of the whole network
during the search process. With this aim in mind, in this
article we present a new lightweight segmentation network
search method by integrating the local information exchange
and global information fusion together from the local and
global aspects. First, to address the local exchange, we utilize a
Graph Convolutional Network [38] guided module (GGM) as
the local information exchange deliverer among cells, through
which the information of each cell can be propagated to
the next adjacent cell. Second, a dense-connected fusion cell
is proposed to perform global information aggregation, in
which the long-range multi-level features (low-level spatial
details and high-level semantic context) in the network can be
effectively exploited and fused. A latency-oriented constraint
for target computing platform is embedded into the search
process, thus the searched model can achieve better trade-off
between the accuracy and latency.

To verify the effectiveness of the proposed search method,
extensive experiments and detailed analysis are provided on
two public segmentation datasets, i.e., the standard Cityscapes
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Fig. 2: (a) The network stacked with complicated cells results
in high latency and high performance. (b) The network stacked
with simple cells leads to low latency and low performance.
(c) The cell diversity strategy, i.e., each cell possesses its own
independent structure, can flexibly construct the high accuracy
lightweight network.

[13] and CamVid [15] benchmarks. The experimental results
show that our method achieves much better performance and
faster inference speed than GAS [39], which is a prior state-
of-the-art trade-off between accuracy and speed. Compared
to other real-time methods, our method also locates in the
top-right area in Figure 1, which indicates that our method
obtains the new state-of-the-art trade-off between accuracy and
latency.

This article is an extension of our conference version [39],
and the major contributions can be summarized as follows.
• We extend previous segmentation network architecture

search from only graph-guided local information ex-
change between adjacent cells to the whole information
communication of local perception and global fusion.

• The global information aggregation is implemented via
the dense-connected fusion cell, which aggregates multi-
level features automatically to effectively fuse the low-
level spatial details and high-level semantic context.

• More detailed algorithm descriptions, deeper analyses,
and more comparison experiments are presented in this
paper to demonstrate the effectiveness of the proposed
method for the lightweight segmentation network archi-
tecture search.

• The lightweight segmentation model via the proposed
search method is customizable in practical applications.
Notably, it achieves 74.0% mIoU on the Cityscapes
test set and 115.2 FPS on NVIDIA Titan Xp for one
769×1537 image.

The remainder of this article is organized as follows. Section II
reviews the related works; Section III describes the details of
the proposed method; Section IV presents experimental results
and discussions, and Section V draws concluding remarks.
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Fig. 3: Illustration of our local-to-global information communication network. In reduction cells, all the operations adjacent
to the input nodes are of stride two. (a) The backbone network, which is stacked by a series of independent cells. (I) The
GCN-Guided Module (GGM), which performs local information exchange between adjacent cells. αk and αk−1 represent the
architecture parameters for cell k and cell k − 1, respectively. α

′

k is the updated architecture parameters by GGM for cell
k. The dotted lines indicate that GGM is only utilized in the search progress. (II) The Dense-Connected Fusion Cell, which
aggregates the multi-scale feature to capture global context information.

II. RELATED WORK

a) Semantic Segmentation Methods: FCN [1] is the pi-
oneer work to achieve the end-to-end semantic segmentation
task. Since then, to improve the segmentation performance,
some remarkable works have utilized various heavy backbones
[7]–[10] or well-designed network modules to capture multi-
scale context information [2], [4], [31]. These outstanding
works are designed for high-performance segmentation, which
is inapplicable to the real-time applications. In terms of effi-
cient segmentation methods, there are two mainstreams. One
is to employ the human-designed and relatively light back-
bone (e.g. ENet [18]) or introduce some efficient operations
(e.g. depth-wise dilated convolution). DFANet [21] utilizes a
lightweight backbone to speed up and equips with a cross-
level feature aggregation module to remedy the accuracy drop.
Another is based on a multi-branch algorithm that consists
of more than one path. For example, ICNet [16] proposes to
use the multi-scale image cascade to speed up the inference.
BiSeNet [19] decouples the extraction for spatial and context
information using two paths.

b) Information Communication for Semantic Segmenta-
tion: Capturing local details and global context information
in images and properly combining them is critical for se-
mantic segmentation performance. A post-process module of
conditional random field (CRF) [40] is proposed to improve
the ability of capturing local details. After that, the dilated
convolution [3] is utilized to remedy the resolution loss,
and the ASPP [3] and PSPNet [2] modules enable efficient
combination of local detail information and global context
information based on the multi-scale features.

c) Neural Architecture Search: Neural Architecture
Search (NAS) aims at automatically searching network archi-
tectures. Most existing architecture search works are based
on either reinforcement learning [41], [42] or evolutionary
algorithm [43], [44]. Though they can achieve satisfactory
performance, they need thousands of GPU hours. To solve this
time-consuming problem, one-shot methods [45], [46] have
been developed to train a parent network from which each
sub-network can inherit the weights. They can be roughly
divided into cell-based and layer-based methods according to
the type of search space. For cell-based methods, ENAS [26]
proposes a parameter sharing strategy among sub-networks,
and DARTS [22] relaxes the discrete architecture distribution
as continuous deterministic weights, such that they could be
optimized with gradient descent. SNAS [28] proposes novel
search gradients that train neural operation parameters and
architecture distribution parameters in the same round of back-
propagation. Additionally, there are some fantastic works [47],
[48] that gradually lower the size of the search space in order
to lessen the complexity of optimization. For the layer-based
methods, FBNet [33], MnasNet [49], ProxylessNAS [27] use a
multi-objective search approach that optimizes both accuracy
and real-world latency.

d) NAS for Segmentation: In the field of semantic
segmentation, DPC [50] is the pioneer work by introducing
meta-learning techniques into the network architecture search
problem. Auto-Deeplab [51] searches cell structures and the
downsampling strategy together in the same round. More
recently, CAS [32] searches an architecture with customized
resource constraint and a multi-scale module that has been
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widely used in the semantic segmentation field. [29] over-
parameterizes the architecture during the training via a set of
auxiliary cells using reinforcement learning.

e) Graph Convolutional Network: Convolutional neural
networks on graph-structure data is an emerging topic in deep
learning research. Kipf [38] presents a scalable approach for
graph-structured data that is based on an efficient variant
of convolutional neural networks which operate directly on
graphs, for better information propagation. After that, Graph
Convolutional Networks (GCNs) [38] is widely used in many
domains, such as video classification [52] and action recog-
nition [53]. Recently, Zhang et al. [54] propose the Graph
HyperNetwork to amortize the search cost: given an architec-
ture, it directly generates the weights by running inference
on a graph neural network. In this paper, we apply the
GCNs to model the relationship of adjacent cells in network
architecture search. Specifically it takes the combination of
local and global information into consideration during the
search progress through the communication between adjacent
cells and dense-connected fusion.

III. METHODS

In this section, we first formulate the search problem
and the overall framework, and then introduce the cell ar-
chitecture search. Later we describe the proposed local to
global information communication method, which consists of
GCN-Guided Module (GGM) for local information exchange
between adjacent cells, dense-connected fusion module for
global information aggregation and latency-oriented search for
a lightweight model, respectively.

A. Problem Formulation

a) Overview: As shown in Figure 3(a), the input image
is firstly processed by three convolutional layers followed
by a series of independent cells, then the searchable dense-
connected fusion cell fuses long-range multi-scale features
for producing the representation feature by considering the
local detail information and global context information before
the pixel level classification. The GCN-Guided module is
embedded into the search framework to bridge the information
between adjacent cells. Then the search process is directed
towards the goal of a lightweight network by the latency-
oriented optimization loss.

The overall loss function in the training stage can be
formulated as:

min
a∈A

Lval + β ∗ Llat (1)

where A denotes the search space, Lval and Llat are the
validation loss and the latency loss, respectively. Our goal is
to search an optimal architecture a ∈ A that achieves the best
trade-off between the performance and latency.

b) Notation Table: As shown in Table I, we build the
following notation table for clear representation.

TABLE I: The symbols and notations used in this paper.

N , the intermediate node number of the cell
M , the number of candidate operations

Õh,i , the selected operation at edge (h, i)
Zh,i , the one-hot random variable at edge (h, i)
Oh,i , all possible operations at edge (h, i)
αh,i , the architecture parameter at edge (h, i)
αk , the architecture parameter matrix of cell k

latmh,i , the latency cost of candidate operation m at
edge (h, i)

𝑖" 𝑖#

𝑥"

𝑥#

Fig. 4: The structure of cell in our LGCNet. Each colored edge
represents one candidate operation.

B. Preliminaries: Cell Architecture Search

A cell is the basic component of a network, which is a
directed acyclic graph (DAG) as shown in Figure 4. Each
cell has two input nodes i1 and i2, N ordered intermediate
nodes, denoted by N = {x1, ..., xN}, and an output node that
outputs the concatenation of all intermediate nodes N . Each
node represents the latent representation (e.g. feature map) in
the network, and each directed edge in this DAG represents
a candidate operation (e.g. conv, pooling). The number of
intermediate nodes N is 2 in our work. Each intermediate
node takes all its previous nodes as input. In this way, x1 has
two inputs I1 = {i1, i2} and node x2 takes I2 = {i1, i2, x1}
as inputs. The intermediate nodes xi can be calculated by:

xi =
∑
c∈Ii

Õh,i(c) (2)

where Õh,i is the selected operation at edge (h, i).
To search the selected operation Õh,i, the search space is

represented with a set of one-hot random variables from a fully
factorizable joint distribution p(Z) [28] and is optimized by
the single level optimization as opposed to bilevel optimization
employed by DARTS [22]. Concretely, each edge is associated
with a one-hot random variable which is multiplied as a mask
to the all possible operations Oh,i = (o1h,i, o

2
h,i, ..., oMh,i) in this

edge. We denote the one-hot random variable as Zh,i = (z1h,i,
z2h,i, ..., zMh,i) where M is the number of candidate operations.
The intermediate nodes during search process in such way are:

xi=
∑
c∈Ii

Õh,i(c) =
∑
c∈Ii

M∑
m=1

zmh,io
m
h,i(c) (3)

An essential issue is how to make the one-hot random
variables z (or P (Z)) differentiable in Equation 3. We use
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reparameterization [55] to relax the discrete architecture dis-
tribution to be continuous:

Zh,i= fαh,i(Gh,i) = Softmax((logαh,i +Gh,i)/λ) (4)

where αh,i is the architecture parameters at the edge (h, i),
and Gh,i = −log(−log(Uh,i)) is a vector of Gumbel random
variables, Uh,i is a uniform random variable and λ is the
temperature of softmax.

To better balance the speed and performance, we only
employ the following 8 types of operations in Table II as the
set of candidate operations O:

TABLE II: The candidate operations for the cell-independent
search.

3 × 3 max pooling
skip connection
3 × 3 conv
zero operation
3 × 3 separable conv
3 × 3 dilated separable conv (dilation=2)
3 × 3 dilated separable conv (dilation=4)
3 × 3 dilated separable conv (dilation=8)

C. Local to Global Information Communication

a) GCN-Guided Module for Local Information Ex-
change: With cell independent mechanism, we propose a
novel GCN-Guided Module (GGM) to naturally bridge the op-
eration information between adjacent cells. The total network
architecture of our GGM is shown in Figure 3 (I). Inspired
by [52], the GGM represents the communication between
adjacent cells as a graph and performs reasoning on the graph
for information exchange. For more through explanation on
what role that GGM plays, please refer to the section D of
Network Visualization and Analysis.

Specifically, we utilize the similarity relations of edges
in adjacent cells to construct the graph where each node
represents one edge in cells. In this way, the state changes
for the previous cell can be delivered to the current cell by
reasoning on this graph. As stated before, let αk represents the
architecture parameter matrix for the cell k, and the dimension
of αk is p × q where p and q represents the number of edges
and the number of candidate operations, respectively. Same as
cell k, the architecture parameter αk−1 for cell k−1 is also a
p × q matrix. To fuse the architecture parameter information
of previous cell k− 1 into the current cell k and generate the
updated α′k, we model the information propagation between
cell k − 1 and cell k as follows:

α′k = αk + γΦ2(G(Φ1(αk−1),A)) (5)

where A represents the adjacency matrix of the reasoning
graph between cells k and k − 1, and the function G denotes
the Graph Convolutional Networks (GCNs) [38] to perform
reasoning on the graph. Φ1 and Φ2 are two different trans-
formations with two fully connected (FC) layers. Specifically,
Φ1 maps the original architecture parameter to the embedding
space and Φ2 transfers it back into the source space after

Cell-0 output

Cell-7 output

Cell-13 output

Conv 1x1

Conv 1x1

Conv 1x1

Up x 2

Up x 2

Dimension reduction

Dimension reduction

Dimension reduction

Element-wise sum……

……

Up x 2

Fig. 5: Overview of the dense-connected fusion cell for auto-
matic multi-scale feature aggregation. The fusion cell contains
E edges (dotted arrows), each edge is equipped with some
candidate operations. “Up×2” means upsampling operation.

the GCN reasoning. γ controls the fusion of two types of
architecture parameter information.

For the function G, we construct the reasoning graph
between cell k − 1 and cell k by their similarity. Given an
edge in cell k, we calculate the similarity between this edge
and all other edges in cell k − 1, and a softmax function is
used for normalization. Therefore, the adjacency matrix A of
the graph between two adjacent cells k and k − 1 can be
established by:

A = Softmax(φ1(αk) ∗ φ2(αk−1)T ) (6)

where we have two different transformations φ1 = αkw1 and
φ2 = αk−1w2 for the architecture parameters, and parameters
w1 and w2 are both q × q weights which can be learned via
back propagation. The result A is a p× p matrix.

Based on this adjacency matrix A, we use the GCNs to
perform information propagation on the graph as shown in
Equation 7. A residual connection is added to each layer of
GCNs. The GCNs allow us to compute the response of a
node based on its neighbors defined by the graph relations,
so performing graph convolution is equivalent to performing
message propagation on the graph.

G(Φ1(αk−1),A) = AΦ1(αk−1)W g
k−1 + Φ1(αk−1) (7)

where the W g
k−1 denotes the GCNs weight with dimension

d × d. In fact, the weight W in GCN is embedded into the
updated architecture parameter (i.e. α′), as shown in Equation
5, thus the weight W can be learned via back propagation.

The proposed GGM seamlessly integrates the graph con-
volutional network into neural architecture search, which can
bridge the operation information between adjacent cells. More-
over, the GCN-guided Module is only used in the training
phase, thus it introduces no extra parameters and computa-
tional cost to the searched model in the inference stage.

b) Dense-Connected Fusion Cell for Global Information
Aggregation: As we mentioned before, the effective combina-
tion of local details and global context information is crucial
for semantic segmentation, which is usually accomplished by
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the multi-scale module such as ASPP in Deeplab and multi-
scale cell in CAS. However, multi-scale cell in CAS only
considers short range features from stride=8 and stride=16 to
reduce time cost, while the ASPP also takes more latency
due to multiple convolutional layers. We thus propose the
dense-connected fusion cell to tackle these two issues. On one
hand, our dense-connection cell aggregate long range features
from stride=4 to stride=16 in the network, which can capture
more fine-grained clues to further improve accuracy. On the
other hand, we search operations for each feature scales, which
can obtain more lightweight operations guided by the latency
oriented loss (convolutional layer will obtain larger loss than
lightweight operations such as pooling).

The structure of the proposed dense-connected fusion cell
is shown in Figure 5. As shown in Figure 3, the fusion cell
takes the outputs of cell-0, cell-7, and cell-13 with different
resolutions as its inputs, thus the dense-connected fusion cell is
designed to combine multi-scale features (i.e., low-level spatial
details and high-level semantic context). The dense-connected
fusion cell is designed as a directed acyclic graph consisting
of M nodes and E edges, each node is a latent representation
(i.e., feature map) and each directed edge is associated with
some candidate operations. As shown in Figure 5, the number
of channels of three inputs will be reduced to 48 through a 1
× 1 convolution layer to save time cost in subsequent process.
Each edge is able to search specific operators from the search
space, unless explicitly specified by “Up×2”, in which only
deconvolutional layer and upsample layer (interpolate) can be
searched. The middle feature maps of three branches are cross-
branch connected densely by concatenation. Then the output
of the dense-connected fusion cell is designed as the element-
wise sum of the final feature maps from three branches.
We use the same sampling and optimization process as the
normal/reduction cell to optimize the fusion cell’s architecture
parameter.

Given the candidate operation set, the dense-connected
fusion cell also efficiently enlarges the receptive field of the
network. For the operation set of the aggregation cell, we
collect the following 10 kinds of operations in Table III:

TABLE III: The candidate operations for the aggregation cell.

1 × 1 conv
3 × 3 conv
3 × 3 separable conv
3 × 3 dilated separable conv (dilation=2)
3 × 3 dilated separable conv (dilation=4)
3 × 3 dilated separable conv (dilation=8)
3 × 3 dilated separable conv (dilation=12)
Global pooling with output size 1 × 1 + 1 × 1 conv + upsampling
Global pooling with output size 2 × 2 + 1 × 1 conv + upsampling
Global pooling with output size 5 × 5 + 1 × 1 conv + upsampling

c) Latency-Oriented Search: To obtain a real-time se-
mantic segmentation network, we take the real-world latency
into consideration during the search process, which guides
the search process towards the direction to find an optimal
lightweight model. Specifically, we create a GPU-latency
lookup table [27], [32], [33], [49] which records the inference
latency of each candidate operation. During the search process,

each candidate operation m at edge (h, i) will be assigned a
cost latmh,i given by the pre-built lookup table. In this way, the
total latency for cell k is accumulated as:

latk =
∑
h,i

M∑
m=1

zmh,ilat
m
h,i (8)

where zmh,i is the softened one-hot random variable as stated
in Equation 3. Given an architecture a, the total latency cost
is estimated as:

LAT (a)=

K∑
k=0

latk (9)

where K refers to the number of cells in architecture a. The
latency for each operation latmh,i is a constant and thus total
latency loss is differentiable with respect to the architecture
parameter αh,i.

The total loss function in LGCNet is designed as follows:

L(a,w) = min
a∈A

Lval + β ∗ Llat

= min
a∈A

CE(a,wa) + β log(LAT (a))
(10)

where CE(a,wa) denotes the cross-entropy loss of architec-
ture a with parameter wa, LAT (a) denotes the overall latency
of architecture a, which is measured in micro-second, and the
coefficient β controls the balance between the accuracy and
latency. The architecture parameter α and the weight w are
optimized in the same round of back-propagation.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to verify
the effectiveness of our LGCNet and compare the network
searched by our method with other works on two standard
benchmarks.

A. Experiment Setup

a) Datasets and Evaluation Metrics: In order to verify
the effectiveness and robustness of our method, we evaluate it
on the Cityscapes [13] and CamVid [15] datasets. Cityscapes
[13] is a public released dataset for urban scene understanding.
It contains 5000 high-quality pixel-level fine annotated images
(2975, 500, and 1525 for the training, validation, and test sets,
respectively) with size 1024 × 2048 collected from 50 cities.
The dense annotation contains 30 common classes and 19 of
them are used in training and testing. CamVid [15] is another
public released dataset with object class semantic labels. It
contains 701 images in total, in which 367 for training, 101
for validation and 233 for testing. The images have a resolution
of 960 × 720 and 11 semantic categories. For evaluation, we
use the mean of class-wise intersection over union (mIoU),
network forward time (Latency), and Frames Per Second (FPS)
as the evaluation metrics.
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b) Implementation Details: We conduct all the exper-
iments using Pytorch 0.4 [56] on a workstation, and the
inference time for all the experiments is reported on one
Nvidia Titan Xp GPU. The whole pipeline contains three
sequential steps: search, pretraining and finetuning. It starts
with the search process on the target dataset and obtains
the light-weight architecture according to the optimized α
followed by the ImageNet [57] pretraining, and this pretrained
model is subsequently finetuned on the specific dataset for 200
epochs.

In the search process, the architecture contains 14 cells and
each cell has N = 2 intermediate nodes. With the consideration
of speed and accuracy, we set the initial channel for the
network as 8. For the training hyper-parameters, the mini-batch
size is set to 16. The architecture parameters α are optimized
by Adam, with initial learning rate 0.001, β = (0.5, 0.999) and
weight decay 0.0001. The network parameters are optimized
using SGD with momentum 0.9, weight decay 0.001, and
cosine learning scheduler that decays learning rate from 0.025
to 0.001. For gumbel softmax, we set the initial temperature
λ in equation 4 as 1.0, and it gradually decreases to the
minimum value of 0.03. The search time cost on Cityscapes
takes approximately 10 hours with 16 TitanXP GPU cards.

For finetuning details, we train the network with mini-batch
8 and SGD optimizer with ‘poly’ scheduler that the learning
rate decays from 0.01 to zero. Following [58], the online
bootstrapping strategy is applied to the finetuning process. For
data augmentation, we use random flip and random resize with
a scale between 0.5 and 2.0. Finally, we randomly crop the
image with a fixed size for training.

For the GCN-guided Module, we use one Graph Convolu-
tional Network (GCN) [38] between two adjacent cells, and
each GCN contains one layer of graph convolutions. The
kernel size of the GCN parameters W in equation 7 is 64
× 64. We set the γ as 0.5 in equation 5 in our experiments.

For the dense-connected fusion cell, we set the node number
M and edge number E as 9 and 13, respectively.

B. Real-time Semantic Segmentation Results
In this part, we compare the model searched by LGCNet

with other existing real-time segmentation methods on seman-
tic segmentation datasets. The inference time is measured on
an Nvidia Titan Xp GPU and the speed of other methods
reported on Titan Xp GPU in CAS [32] are used for fair
comparison. Moreover, the speed is remeasured on Titan Xp
if the origin paper reports it on different GPU and is not
mentioned in CAS [32].

a) Results on Cityscapes: We evaluate the network
searched by LGCNet on the Cityscapes test set. The valida-
tion set is added to train the network before submitting it
to Cityscapes online server. Following [19], [32], LGCNet
takes an input image with size 769 × 1537 that is resized
from origin size 1024 × 2048. Overall, our LGCNet gets
the best performance among all methods with the speed of
115.2 FPS. With only fine data and without any evaluation
tricks, our LGCNet yields 72.4% mIoU which is the state-
of-the-art trade-off between performance and speed for real-
time semantic segmentation. LGCNet achieves 74.0% when

TABLE IV: Comparing results on the Cityscapes test set.
Methods trained using both fine and coarse data are marked
with ∗. The mark § represents that the speed is measured on
TitanX, and the mark † denotes the speed is remeasured on
Titan Xp. The mark τ indicates that TensorRT acceleration
has been used.

Method Input Size mIoU (%) Latency(ms) FPS
FCN-8S [1] 512 × 1024 65.3 227.23 4.4
PSPNet [2] 713 × 713 78.4 1288.0 0.78
DeepLabV3∗ [4] 769 × 769 81.3 769.2 1.3
AutoDeepLab∗ † [51] 769 × 769 81.2 303.0 3.3
SegNet [17] 640 × 360 57.0 30.3 33
ENet [18] 640 × 360 58.3 12.7 78.4
SQ [59] 1024 × 2048 59.8 46.0 21.7
ICNet [16] 1024 × 2048 69.5 26.5 37.7
SwiftNet [60] 1024 × 2048 75.1 26.2 38.1
DF1-Seg [61] 768 × 1536 73.0 29.1 34.4
ESPNet [62] 1024 × 512 60.3 8.2 121.7
ESPNetV2 [63] 1024 × 512 66.2 14.7 68.0
ERFNet [64] 1024 × 512 69.7 48.5 20.6
BiSeNet-Xception39 [19] 768 × 1536 68.4 9.5 105.8
BiSeNet-Res18 [19] 768 × 1536 74.7 15.3 65.5
DFANet A§ [21] 1024 × 1024 71.3 10.0 100.0
DFANet A † [21] 1 1024 × 1024 71.3 19.0 52.6
ShelfNet [65] 768 × 1536 74.8 16.9 59.2
CAS [32] 768 × 1536 70.5 9.25 108.0
CAS∗ [32] 768 × 1536 72.3 9.25 108.0
GAS [39] 769 × 1537 71.8 9.22 108.4
GAS∗ [39] 769 × 1537 73.5 9.22 108.4
FasterSeg [66] 2 1024 × 2048 71.5 11.13 89.8
HyperSeg-M [30] 512 × 1024 75.8 21.6 46.2
BiSenet v2τ [20] 512 × 1024 72.6 5.6 179.2
STDC1-Seg75τ [67] 768 × 1536 75.3 6.98 143.1
LGCNet 769 × 1537 72.4 8.68 115.2
LGCNet∗ 769 × 1537 74.0 8.68 115.2
LGCNetτ 769 × 1537 74.0 4.67 205.6

the coarse data is utilized. The full comparison results are
shown in Table IV. Compared to BiSeNet-Xception39 [19]
and CAS [32] that have comparable running speed with
us, our LGCNet surpasses them by a large margin with
4.0% and 1.9% improvement, respectively. Compared to other
methods such as SegNet [17], ENet [18], SQ [59] and ICNet
[16], our method achieves significant improvement in speed
while achieving the performance gain over them about 15.4%,
14.1%, 12.6%, 2.9%, respectively. To fairly compare with
BiSeNet v2 [20] and STDC1-Seg75 [20], we remeasured our
method with TensorRT 5.1.5 acceleration. Although STDC1-
Seg75 [20] performs better than our method in accuracy, our
running speed is much faster (205.6 vs 143.1 in FPS), which
demonstrates that the proposed method can achieve either
better performance or faster running speed when comparing
with the co-occurrent works.

also have many candidate operations using DW-Conv, so
the speed of our LGCNet is still capable of beating it if the
DW-Conv is optimized correctly like DFANet.

1After merging the BN layers for DFANet, there still has a speed gap
between the original paper and our measurement. We suspect that it is caused
by the inconsistency of the implementation platform in which DFANet has
the optimized depth-wise convolution (DW-Conv). LGCNet

2The speed, which is tested by Pytorch without TensorRT, is provided by
the authors.
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b) Results on CamVid: To evaluate the transfer capacity
of LGCNet, we transfer the network searched on Cityscapes to
Camvid directly. Table V shows the comparison results with
other methods. With input size 720 × 960, LGCNet achieves
the 73.8% mIoU with 158.6 FPS that is also the state-of-the-art
trade-off between performance and speed, which demonstrates
the superior transferability of LGCNet.

TABLE V: Results on the CamVid test set with resolution
of 960 × 720. ”-” indicates the corresponding result is not
provided by the methods.

Method mIoU (%) Latency(ms) FPS
SegNet [17] 55.6 34.01 29.4
ENet [18] 51.3 16.33 61.2
ICNet [16] 67.1 28.98 34.5
BiSeNet [19] 65.6 - -
DFANet A [21] 64.7 8.33 120
CAS [32] 71.2 5.92 169
FasterSeg [66] 71.1 7.59 131.8
GAS [39] 72.8 6.53 153.1
LGCNet 73.8 6.31 158.6

c) Visual Segmentation Results: We provide some visual
prediction results on the Cityscapes validation set. As shown
in Figure 6, the columns correspond to the input image, ground
truth, the prediction of LGCNet. It demonstrates that LGCNet
can achieve satisfactory and consistent visual results.

Fig. 6: Results of the proposed LGCNet on the Cityscapes
validation set. The first column is input image, the second
column is ground truth, and the final column displays the
output of LGCNet.

C. Ablation Study

To verify the effectiveness of each component in our
framework, extensive ablation studies for the GCN-Guided
module, dense-connected fusion cell, and the latency loss are
performed. In addition, we also provide some insights about
the role of the GCN-Guided Module in the search process.

a) Effectiveness of GCN-Guided Module: We propose
the GCN-Guided Module (GGM) to build the connection
between cells. To verify the effectiveness of the GGM, we
conduct a series of experiments with different strategies: a)

network stacked by shared cells, i.e., one type of normal cell
and one type of reduction cell; b) network stacked by inde-
pendent cells, i.e., each cell has its own structure; c) based on
strategy-b, using fully connected layer to infer the relationship
between cells; d) based on strategy-b, using GGM to infer
the relationship between cells. The corresponding experiment
results are shown in Table VI. The performance reported
here is the average mIoU over five repeated experiments on
the Cityscapes validation set with latency loss weight β =
0.005. ± denotes the variance of mIoU for each strategy.
Overall, performance suffers greatly when there is just one
independent cell since there is a larger search space, which
makes optimization much more challenging. This performance
drop is mitigated by adding a communication mechanism
between cells. Especially, our GCN-Guided Module can bring
about 3% performance improvement compared to the fully-
connected mechanism (i.e. setting (c)).

TABLE VI: Ablation study for the effectiveness of GCN-
Guided Module on Cityscapes validation dataset.

Methods mIoU (%) Params FPS
a) cell shared 68.6 (± 0.9) 6.60 M 100.1
b) cell independent 67.1 (± 1.0) 4.18 M 118.9
c) cell independent + FC 69.7 (± 0.6) 3.24 M 112.8
d) cell independent + GCN 73.0 (± 0.5) 2.09 M 115.2

b) Comparison against Random Search: As discussed
in [68], random search is a competitive baseline for hyper-
parameter optimization. To further verify the effectiveness
of the GCN-Guided Module, we randomly sample ten ar-
chitectures from the search space and evaluate them on the
Cityscapes validation set with ImageNet pretrain. Specifically,
we try two types of random settings in our experiments:
a) fully random search without any constraint; b) randomly
select the networks that meet the speed requirement over 100
FPS from the search space. The results are shown in Table
VII, in which each value is the average result of ten random
architectures. In summary, the network searched by LGCNet
can achieve an excellent trade-off between performance and
latency, while random search will result in high overhead
without any latency constraint or low performance with latency
constraint.

TABLE VII: Comparison to random search on the Cityscapes
validation set.

Methods mIoU (%) FPS
Random setting (a) 69.8 (± 0.5) 61.9 (± 4.8)
Random setting (b) 66.3 (± 0.4) 107.6 (± 3.4)
LGCNet 73.0 (± 0.5) 115.2 (± 3.7)

c) Dimension Selection: The dimension selection of
GCN weight W in Equation 7 is also important, thus we
conduct experiments with different GCN weight dimensions
(denoted by d). Experimental results are shown in Table VIII
in which the values are the average mIoU over five repeated
experiments on the Cityscapes validation set with latency
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loss weight β = 0.005. The experimental result indicates that
LGCNet achieves the best performance when d = 64.

TABLE VIII: Ablation study for different GCN weight dimen-
sions of GGM.

Methods mIoU (%) FPS
without GGM 67.1 112.9
GGM with d = 16 72.1 111.6
GGM with d = 32 72.2 109.2
GGM with d = 64 73.0 115.2
GGM with d = 128 72.5 107.1
GGM with d = 256 72.6 116.3

d) Different Reasoning Graph: For GCN-Guided Mod-
ule, in addition to the way described in Section 3.2, we also
try another way to construct the reasoning graph. Specifically,
we treat each candidate operation in a cell as a node in the
reasoning graph. Given the architecture parameter αk for cell
k with dimension p×q, we first flatten the αk and αk−1 to the
one dimensional vector α′k and α′k−1, and then perform matrix
multiplication to get adjacent matrix A = α′k(α′k−1)T . Differ-
ent from the “edge-similarity” reasoning graph in Section 3.2,
we call this graph “operation-identity” reasoning graph. We
conduct the comparison experiment for two types of graphs
on the Cityscapes validation set under the same latency loss
weight β = 0.005, the comparison results are shown in Table
IX.

TABLE IX: The comparison results for reasoning graph for
edges and operations.

Reasoning Graph mIoU (%) FPS
Operation-identity 71.2 106.4
Edge-similarity 73.0 115.2

Intuitively, the “operation-identity” way provides more fine-
grained information about operation selection for other cells,
while it also breaks the overall properties of an edge, and thus
doesn’t consider the other operation information at the same
edge when making a decision. After visualizing the network,
we also found that the “operation-identity” reasoning graph
tends to make cell select the same operation for all edge, which
increases the difficulty of the trade-off between performance
and latency. This can also be verified from the result in Table
IX. So we choose the “edge-similarity” way to construct the
reasoning graph as described in Section 3.2.

e) Effectiveness of the Dense-connected Fusion Cell: To
demonstrate the effectiveness of the proposed dense-connected
fusion cell (DCFC), we conduct a series of experiments with
different strategies: a) without multi-scale feature aggregation;
b) with ASPP module [4]; c) with PPM module [2]; d) with
searched MSCell in [32]; e) with searched dense-connected
fusion cell (DCFC). The results are shown in Table X. Overall,
the searched dense-connected fusion cell successfully boosts
up the mIoU from 69.5% to 73.0% on the Cityscapes valida-
tion set. Particularly, the searched aggregation cell surpasses
the ASPP module and PPM module, searched MSCell by 0.6%
and 0.5%, 0.3% performance gains with faster inference speed.

TABLE X: The performance for different multi-scale modules
on the Cityscapes validation set.

Methods mIoU (%) FPS
a) LGCNet 69.5 124.1
b) LGCNet with ASPP 72.4 108.4
c) LGCNet with PPM 72.5 114.1
d) LGCNet with MSCell 72.7 112.7
e) LGCNet with DCFC 73.0 115.2

We also conduct a ablation study for which features should
be aggregated, and the result is shown in the Table XI.
Specifically, the cell 0 is fixed for all experiment settings
because there is only one cell with low level information
(stride=4), and we explore different choices for other feature
scales (i.e., stride=8 and stride=16). The numbers in the table
is the average result of three repeated experiments with the
same random seed on the Cityscapes validation set. The results
show that cell 0, cell 7 and cell 13 can achieve best trade-off
between accuracy and latency comparison to other settings.

TABLE XI: Ablation study for which features should be
aggregated on Cityscapes validation dataset.

Cells to aggregate mIoU (%) FPS
a) [0, 5, 13] 72.5 109.8
b) [0, 6, 13] 71.8 113.4
c) [0, 7, 13] 72.9 115.1
e) [0, 7, 10] 72.2 115.2
f) [0, 7, 11] 72.1 114.6
g) [0, 7, 12] 72.4 112.8

f) Effectiveness of the Latency Constraint: As mentioned
above, LGCNet provides the ability to flexibly achieve a su-
perior trade-off between performance and speed with latency-
oriented optimization. We conducted a series of experiments
with different loss weights β in Equation 10. Figure 7 shows
the variation of mIoU and latency as β changes. With smaller
β, we can obtain a model with higher accuracy, and vice-
versa. When the beta grows from 0.0005 to 0.005. When the
β increases from 0.0005 to 0.005, the latency dramatically
decreases and performance somewhat degrades slightly. How-
ever, as the β increases from 0.005 to 0.05, the performance
declines rapidly while the latency decline is fairly limited.
Thus in our experiments, we set β as 0.005. It is obvious that
the latency-oriented optimization works well for achieving a
balance between accuracy and latency.

D. Network Visualization and Analysis

a) Network Visualization: As shown in Table VI, the
network searched by our LGCNet with GGM has a smaller
parameter size while achieving much higher performance. The
visualization results can effectively help to analyze which
component brings in the performance improvement. We thus
visualize the networks searched on Cityscapes by the three
methods: 1) LGCNet with GGM; 2) LGCNet with fully
connected layer; and 3) random search in Figure 9, Figure
10 and Figure 11, respectively.
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Fig. 7: The accuracy on the Cityscapes validation set for
different latency constraint settings.

Compared to the other methods, the network searched by
our LGCNet with GGM shows the following three advantages:

1) The cells in the shallow stage tend to choose light-
weight operations (i.e., none, max pooling, skip connection),
while the cells in the deep stage prefer the complicated
ones, which is the goal of pursuing both high speed and
performance as mentioned in the introduction of our study.
Specifically, under the same latency loss weight, the network
searched by our LGCNet with GGM comprises thirty light-
weight operations (dashed-line arrow in the figure) with lower
latency, whereas the other two methods utilize twenty-one
and twenty-three light-weight operations, respectively. Our
LGCNet with GGM, on the other hand, achieves superior
performance, demonstrating the effectiveness of the concept
of burden-sharing in a group of cells when they are aware of
how much others are willing to contribute.

2) The deeper layers tend to utilize larger receptive field
operations (e.g. conv with dilation = 4 or 8), which plays a
key role to improve performance in semantic segmentation [3],
[4]. Specifically, the network searched by our LGCNet with
GGM uses 11 large receptive field operations (denoted by the
green arrow) in the last four cells and the other methods only
use 4 or 8 operations, respectively.

3) As we anticipated, the final structure searched by our
LGCNet with GGM exhibits sufficient cell-level diversity. On
the contrary, the network search by LGCNet with fully con-
nected layer tends to employ similar structures, for instance,
cell 7 is similar to cell 8 and 9, and cell 1 is similar to the
cell 2, 3 and 4.

Moreover, we also show the architecture of the searched
dense-connected fusion cell in Figure 8. We clearly found that
the selection of operations in the shallow stage (i.e. low-level
features) tends to choose more dilated convolution operations
for achieving enough receptive field when performing the
multi-scale feature fusion. As we expected, we obverse that the
choice of dilated convolution operations in the low-level stage
narrows the semantic gaps among the features from different
scales.

b) Analysis of the GCN-Guided Module: One concern
is about what kind of role does GCN play in the search

process. We suspect that its effectiveness is derived from the
following two aspects: 1) to find a light-weight network, we
do not allow the cell structures to share with each other
to encourage structure diversity. Apparently, learning cells
independently makes the search process much more difficult
due to the enlarged search space and does not guarantee
better performance, thus the GCN-Guided Module can be
regraded as a regularization term to the search process. 2)
We have discussed that p(Z) is a fully factorizable joint
distribution in the above section. As shown in Equation 4,
p(Zh,i) for current cell becomes a conditional probability if
the architecture parameter αh,i depends on the probability αh,i

for previous cell. In this case, the GCN-Guided Module plays
a role of modeling the condition in probability distribution
p(Z).

V. CONCLUSION

In this paper, a novel Graph-guided and Dense-Connected
Fusion Architecture Search (LGCNet) framework is proposed
to tackle the real-time semantic segmentation task. In con-
trast to the existing NAS approaches, which stack the same
searched cell into a whole network, LGCNet explores to search
different cell architectures and adopts the graph convolutional
network to bridge the information connection among cells. In
addition, we propose a novel dense-connected fusion cell that
aggregates multi-level features in the network automatically
to effectively fuse the low-level spatial details and high-
level semantic context. Finally, a latency-oriented constraint
is endowed into the search process for balancing accuracy
and speed. Extensive experiments have demonstrated that
LGCNet performs much better than the state-of-the-art real-
time segmentation approaches.
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