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Abstract

In this work, we focus on instance-level open vocab-
ulary segmentation, intending to expand a segmenter for
instance-wise novel categories without mask annotations.
We investigate a simple yet effective framework with the
help of image captions, focusing on exploiting thousands
of object nouns in captions to discover instances of novel
classes. Rather than adopting pretrained caption models or
using massive caption datasets with complex pipelines, we
propose an end-to-end solution from two aspects: caption
grounding and caption generation. In particular, we devise
a joint Caption Grounding and Generation (CGG) frame-
work based on a Mask Transformer baseline. The frame-
work has a novel grounding loss that performs explicit and
implicit multi-modal feature alignments. We further design
a lightweight caption generation head to allow for addi-
tional caption supervision. We find that grounding and gen-
eration complement each other, significantly enhancing the
segmentation performance for novel categories. We con-
duct extensive experiments on the COCO dataset with two
settings: Open Vocabulary Instance Segmentation (OVIS)
and Open Set Panoptic Segmentation (OSPS). The results
demonstrate the superiority of our CGG framework over
previous OVIS methods, achieving a large improvement of
6.8% mAP on novel classes without extra caption data. Our
method also achieves over 15% PQ improvements for novel
classes on the OSPS benchmark under various settings.

1. Introduction

Instance-Level Segmentation [17, 40] is a core vision
task that goes beyond object detection [38, 39, 50] via seg-
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menting and classifying each object. Although it continues
to attract significant research effort [2,4-6,8-10, 18,26, 34—

,44,54-57,60,61,64,72,74], current solutions mainly fo-
cus on a closed-set problem that assumes a pre-defined set
of object categories [24,31,40]. In practice, many applica-
tions need to detect and segment new categories. To save
the need of annotating new object categories, zero-shot ob-
ject detection/segmentation [3,48] is proposed, where mod-
els are trained on base classes and equipped with the ability
to segment new classes. However, zero-shot setting suffers
from low novel-class performance, as high-level word em-
beddings cannot effectively encode fine-grained visual in-
formation.

To address this issue, recent work [69] takes an open vo-
cabulary setting by pretraining a visual backbone on cap-
tioned images for learning rich visual features. With the
success of pretrained Vision Language Models (VLMs) [30,

], several approaches, e.g., VILD [23], propose effective
methods to distill knowledge from VLMs into detectors or
segmentation methods. Meanwhile, several works decou-
ple the learning of open vocabulary classification and de-
tection/segmentation into a two-stage pipeline [15,21]. Re-
cently, state-of-the-art solutions [19,28,33,71,79] for open
vocabulary detection/segmentation try to adopt larger-scale
dataset pre-training with the help of VLMs. For example,
Detic [79] adopts the ImageNet-21k [51] dataset to enlarge
the detector in a weakly supervised manner, while Prompt-
Det [19] augments the detection dataset with image-caption
pairs scraped from the Internet. Recent XPM [28] also
pretrains their model on caption datasets [52]. These ap-
proaches typically require a complex architecture design to
leverage extra datasets [31, 51]. Despite the performance
improvement, these methods are not cost-effective in terms
of data utilization. In this paper, we explore the use of cap-
tion data with more effective designs.

Caption-related vision tasks can be broadly divided into
grounding and generation. The former [13, 14,22,41,67]
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Figure 1. (a) OVR-CNN [69] uses all words for caption grounding, then finetunes, in a two-stage pipeline. (b) OpenSeg [21] uses extra
agnostic head for segmentation and Nouns for grounding. (c) Our method encodes only object nouns in captions for caption grounding,

and all words for caption generation in one unified framework.

A woman walking down the street holding an umbrella

There is a red double decker bus parked on the street

*umbrella

*bus *car

Figure 2. Example of Instance Segmentation and Panoptic Segmentation results of CGG. Categories marked by **’ are novel categories.
Sentences are generated by the Instance Segmentation model. To the best of our knowledge, we are the first to unify OVIS, OSPS and

Caption Generation in one framework.

requires a model to align the text and corresponding region
features, e.g., OVR-CNN [69] and OpenSeg [21] in Fig. 1
(a) and (b), while the latter [59, 66, 73] learns a model that
output a caption for a given imagery input. The relationship
between the two tasks and open vocabulary instance seg-
mentation is not well explored. We argue that caption data
encode rich structural and semantic information, which may
help the process of novel class detection. Different from the
OVR-CNN [69] (see Fig. 1(a)) that adopts a caption model
in the pre-training process where the caption data and detec-
tion results are not well aligned, we propose a unified frame-
work to jointly perform caption grounding, generation, and
instance segmentation.

Our framework presents a novel caption grounding loss
and an extra caption decoder for the generation loss, as
shown in Fig. 1(c). The caption data is thus well exploited
in both the input and output stages. In particular, we use
object queries as inputs following Mask2Former [10]. At
the input stage, we adopt separated object nouns to ground
each object query, providing us with the grounding loss. At
the output stage, with a lightweight Transformer decoder,
we add supervision to the generated caption, resulting in
the generation loss. Both losses are well coupled and have
a mutual effect for novel class segmentation, adding only
0.8% GFlops during the training. For inference, our method
drops the caption generation module for OVIS and OSPS
with no extra computation cost.

We carry out experiments in two different settings, in-
cluding Open Vocabulary Instance Segmentation (OVIS)

and Open Set Panoptic Segmentation (OSPS) [29]. Ex-
perimental results demonstrate that our proposed method
achieves significant improvements for novel classes de-
spite using a strong baseline [10] as the encoder. The
proposed method achieves new state-of-the-art results on
COCO OVIS and COCO OSPS without any data pre-
training and complex pipelines. Figure 2 shows that our
method predicts instance segmentation, panoptic segmenta-
tion, and the corresponding caption in one unified frame-
work while predicting novel classes. In particular, our
method achieves a large improvement of 6.8% mAP over
previous XPM [28] on OVIS and 15% PQ improvements
over previous method [63].

2. Related Work

Zero-Shot Detection and Segmentation. Scaling up data
collection and annotation is laborious and expensive for
large vocabulary detection and segmentation. Zero-Shot
Detection [48] and Segmentation [3] tries to detect/segment
novel categories that the annotations are not accessible dur-
ing the training process. Many studies address this prob-
lem by aligning region features to the fixed text embed-
dings [1, 20, 47,70, 80]. Due to the limited capacity of
word embeddings and the advent of large Vision-Language-
Models (VLMs), recent studies [23, 68, 69] have moved to
the open vocabulary setting.

Open Vocabulary Object Detection (OVOD). Recent
studies [16,23,68,69,79] focus on the open vocabulary set-



ting, in which models are trained by leveraging pre-trained
language-text pairs including captions and text prompts.
For instance, OVR-CNN [69] is first pretrained on image-
caption data to recognize novel objects, then fine-tunes the
model for zero-shot detection. Recently, many works on
image classification successfully expand their vocabulary
sizes by pretraining on large-scale image-text pairs datasets.
VILD [23] proposes to distill the rich representation of pre-
trained CLIP [46] into the detector, while DetPro [16] adds
a fine-grained automatic prompt learning. Meanwhile, sev-
eral works extract pseudo region annotations from the pre-
trained VLMs and employ them as the additional training
data for detectors. Detic [79] improves the performance
on the novel classes with image classification datasets by
supervising the max-size proposal with all image labels.
Methods above share the same idea of trying to enlarge
the capacity of training data to find the rare classes, thus
they need more computation/annotation costs and complex
pipelines. On the contrary, we focus on designing a way
to discover novel classes from the caption data in one uni-
fied framework without pre-training on extra datasets nor
distilling knowledge from pretrained VLMs.

Open Vocabulary Segmentation (OVS). Beyond OVOD,
OVS further requires the model to segment the novel
classes. Current solutions for OVS usually decouple mask
generation and mask classification as two different steps.
The former generates mask regions, while the latter per-
forms classification with pre-trained VLMs [21,32]. Dense-
CLIP [78] proposes a similar pipeline to that in OVD by
distilling CLIP knowledge through generating pseudo mask
labels. Our method proposes an end-to-end pipeline to per-
form caption learning (grounding/generation) and segmen-
tation learning jointly. The differences with OpenSeg [21]
are: 1. We extract object nouns from captions, rather than
nouns and adjectives as in OpenSeg. 2. For text encoders,
we use BERT embeddings that are purely trained on text
corpus, while OpenSeg employs a state-of-the-art VLM
(ALIGN [30]). 3. We mainly focus on instance-level open
vocabulary segmentation task rather than semantic segmen-
tation.

Image Captioning. This task requires the model to gen-
erate captions to describe the content of images [59].
State-of-the-art methods follow multi-modal attention de-
signs, treating the task as a multi-modal translation prob-
lem [66,73,75]. Our focus in this work is not to design a
new captioning model, but to explore image captioning as a
sub-task for open vocabulary learning to enhance the novel
class discovery ability. To our best knowledge, this study is
the first attempt that explores caption generation on OVS.

3. Methodology

In this section, we first review the background of open
vocabulary instance segmentation. Then, we present our

Caption Grounding and Generation framework, which aims
to fully exploit caption data through joint caption grounding
and generation.

3.1. Background

Problem Setting. We first describe the open-vocabulary
problem setting. Let Dp = {(I,n, Vm)}\2, be the set of
training images and instance annotations for a limited set of
base classes Vp. Among these images, there are also novel
classes V, whose annotations cannot be accessed during
the training. For OSPS, novel classes come from the thing
classes, while the stuff classes are treated as base classes.
Each image I, is associated with a set of ground-truth (GT)
annotations ),,,, which comprises instance masks and their
corresponding object classes. In order to detect and segment
novel classes, following previous works [69], we leverage
additional image-level annotations, i.e., image captions. Let
Do = {(I.,Y)}¢ be another set of training images with
image caption annotations. Each image I . is annotated with
a caption ).. Compared to pixel-level annotations, captions
are easier to collect, and its vocabulary V¢ is much larger
than base classes, i.e., |Vc| > |Vg|. Therefore, exploiting
the additional information from the image caption dataset
would be beneficial.

Open-vocabulary instance segmentation aims to train a
model to segment both base classes Vp and novel classes
V. Following previous methods [21, 28, 69], our model
uses high-level semantic embeddings from a pretrained text
Transformer (BERT [12]) as the weights of the linear clas-
sifier. We focus on distilling knowledge in the captions to
the target classes via representation similarities.
Baseline Method. We adopt the recent Mask2Former [10]
model as our baseline since the mask-based Transformer ar-
chitecture can be readily extended into multi-modal training
with captions. Mask2Former takes a Transformer encoder-
decoder architecture with a set of object queries, where the
object queries interact with encoder features via masked
cross-attention. Given an image I, during the inference,
Mask2Former directly outputs a set of object queries Q =
{¢:},i = 1,..N,, where each object query g; represents
one entity. Then, two different Multiple Layer Perceptrons
(MLPs) project the queries into two embeddings for mask
classification and mask prediction, respectively. During the
training, each object query is matched to the ground truth
mask via masked-based bipartite matching. The loss func-
tion is Lmask = Aclchls + )\ceLce + )\diCELdiCEs where
L5 is the Cross-Entropy (CE) loss for mask classification,
and L. and L ;.. are the Cross-Entropy (CE) loss and Dice
loss [43] for segmentation, respectively. In particular, fol-
lowing [69], we use pretrained embeddings to replace the
learnable classifier for training and inference, as shown in
Fig. 3.

The original Mask2Former can only detect and segment
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Figure 3. The illustration of CGG framework. The input image I is first provided to Mask2Former. The output of the Transformer decoder
is then fed into an MLP, which generates N, mask predictions together with the output of the pixel decoder. Then the query is transferred
into N4 multi-modal embeddings {eZM }, of which the similarity with class embeddings is computed to produce classification predictions.
{eﬁ” } also outputs grounding loss and generation loss with text features extracted by word encoder and sentence encoder.

closed-set objects and cannot handle the novel classes. Our
method extends it to perform open-vocabulary segmenta-
tion in a new framework.

3.2. CGG Framework for OVS

Overview. Figure 3 presents the overall pipeline of our
CGG framework. Based on Mask2Former [10], follow-
ing [69], we set the pretrained text embeddings as the
weights of the final linear classifier. We add two losses:
the caption grounding loss and the caption generation loss.
A caption generator is appended at the end of the output
queries, directly producing the image caption. During the
training, we adopt a pre-trained sentence encoder and word
encoder to encode both captions and object nouns extracted
from captions into sentence features and word features. The
former is used for caption generation loss, while the latter is
used for caption grounding loss. During the inference, we
discard all the newly-introduced modules, and perform the
same inference procedure as Mask2Former.
Class-Agnostic Pretraining. Following previous works
[ ], we first pretrain our framework using only base
data annotations in a class-agnostic manner. Such a process
is similar to training a Region Proposal Network (RPN) at
the first stage. The goal of pretraining is to encode instance-
wised information into object queries. Then we load the
pretrained model for joint training with caption data.
End-to-End Caption Grounding. Previous works like
OVR-CNN [69] pre-train their models with caption data.
The core idea is to learn a Vision to Language (V2L) pro-
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jection layer where the language data from novel classes are
transformed into vision features via multiple multi-modal
losses including grounding loss and a set of auxiliary self-
supervision loss.

There are two potential issues with the previous design.
Firstly, training caption and segmentation separately can-
not fully explore caption data and detection/segmentation
annotations. The training of segmenter is isolated and the
connection between the two models is broken. Secondly,
there is a weakened region-word alignment in the tradi-
tional grounding process by calculating similarities between
multi-modal embeddings and all words in caption data,
because object-unrelated words may encounter the vision-
language implicit matching. We argue that object nouns in
caption data should be well aligned with region features in
a more fine-grained manner since the class categories are
always nouns in captions.

Therefore, rather than sending the entire sentence as in-
puts, we extract only object nouns from the sentence and
feed it to a word encoder. Such extraction finds more
precise semantic embeddings, verified effectively for novel
class grounding. For multi-modal embeddings, we adopt an
MLP as the V2L projection and take the outputs of Trans-
former decoder in Mask2Former as the inputs, since the ob-
ject queries group region features naturally, which is well
proved in many previous works [5, 10]. Given an image-
caption pair (I, C), we first calculate similarities between
N, multi-modal embeddings {¢}} and N,, word features
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The core idea of grounding is that: the similarity between
the matched image-caption pairs should be high, while for
the unmatched pairs, it should be low. During the training,
given a batch of image-caption pairs (B;, B¢), for each
similarity S € {S¢, Sr}, the grounding loss is composed
of two aspects. Take the similarity normalized along text
dimension S¢ as an example, from the image perspective,
the grounding loss is as follows:

exXp SC(Ia C)
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and from the caption perspective, the grounding loss is for-
mulated as:
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The final grounding loss is formulated as the sum of four
losses:
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Optimizing the grounding loss aligns the multi-modal em-
beddings and language embeddings in a large noun vocab-
ulary.

End-to-End Caption Generation. Besides using caption
data for grounding loss to align regions and words, we ar-
gue that caption data can also be employed as a generative
supervision signal for a more fine-grained multi-modal un-
derstanding. The key insight is that we force the model

®)
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Figure 4. The effectiveness of caption generation. The generated
caption depicts rich information beyond object nouns.

to predict the occurring instances and their relationships
in the image to identify novel classes. Unlike grounding
loss that aims to push nouns and query embeddings as close
as possible, generative loss decodes the visual features into
the semantic embeddings, which are complementary to the
grounding loss. As shown in Fig. 4, the caption generation
module can help the model learn specific status and rela-
tionships of objects in the scene.

Specifically, since the multi-modal embeddings encode
the region-wise information, we directly take these embed-
dings {eM} as the input of a lightweight caption generator,
which includes a stack of Transformer decoder layers. To
supervise the caption generator, we simply adopt a Cross
Entropy Loss on the predicted distribution of text vocabu-
laries, which is the commonly used objective function in the
research field of caption generation.

Lgen = = »_log(pa(wilwy, ..., wi—1)),  (6)

t=1

where pg (¢ |1, . . .,W:—1) is the probability of predicting
a particular word from the caption, 6 denotes the parame-
ters of the generation network. Hence, this loss function
enforces the predicted sentence to be consistent with the in-
put caption C, making the multi-modal embeddings {e} }
capable of representing various objects and their potential
relations in the image.

Overall Loss Design. The overall training loss contains
four items, i.e., the classification loss L.;s, the segmen-
tation loss Li,qsk, the caption grounding loss Lg.,, and
the caption generation loss Lgye,. Following the previous
method [69], the classification loss is selected as the Cross-
Entropy Loss that takes the dot product of multi-modal em-
beddings e and base class embeddings as its logit inputs.
The final loss function L is the weighted summation of the
four losses: L = )\clchls + )\maskLmask + )\groLgro +
AgenLgen. We follow the default setting in the MMDetec-
tion framework, where the weights are set to 2.0, 5.0, 2.0
and 2.0 in all our experiments.

Inference. Compared to the baseline model, CGG only in-
troduces extra losses and a caption generation head during
the training. During the inference, following [69], we use



the pretrained embeddings of all classes to perform open
vocabulary segmentation via dot product, including base
classes and novel classes. The remaining inference proce-
dure is the same as the Mask2Former [10].

4. Experiments
4.1. Experimental Setup

Dataset Settings. For Open Vocabulary Instance Segmen-
tation, we mainly conduct experiments on COCO dataset
[40]. Following previous works [28, 69], we split 48 base
classes with mask annotations and 17 target classes with-
out mask annotations. There are 107,761 training images
with 665,387 mask annotations from base classes and 4,836
testing images consisting of 28,538 and 4,614 mask in-
stances for base and target classes, respectively. For cap-
tioned images, we use the entire MS-COCO training set
with 118,287 images. Each image is annotated with five
captions describing the visually-grounded objects in the im-
age. Unlike previous works [19, 49, 79] that adopt extra
caption datasets, like Conceptual Captions [53] with 3M
image-caption pairs for pre-training, we do not use extra
caption datasets or detection datasets. We follow the ori-
gin OVR-CNN [69] setting by only exploring a limited cap-
tion dataset within COCO. For Open Set Panoptic Segmen-
tation [29], we mainly adopt the COCO-panoptic dataset.
We follow the previous works [29, 63] by splitting part of
thing classes into unknown classes. We obtain three differ-
ent splits by varying the numbers of unknown classes (K %
ratios, 5%, 10%, 20%). Different from previous works, we
use extra caption data for training.

Metric. For OVIS setting, we report the mask-based mean
Average Precision (mAP) at intersection-over-union (IoU)
of 0.5. To analyze the performances on base and target
classes, we carry out experiments in two settings: con-
strained setting where the model is only evaluated on test
image inputs, which belong to either base classes or target
classes; generalized setting in which a model is tested on
both base and target class images. The latter is more chal-
lenging as it requires the model to segment target classes
and avoid class bias from base classes, mostly with very
high scores. We further report open vocabulary detection
with box-based mAP. For OSPS setting, we employ the
panoptic segmentation metrics, including Panoptic Qual-
ity (PQ) and Segmentation Quality (SQ), where we report
known classes and unknown classes separately for refer-
ence. More details about the data preparation can be found
in the appendix.

Implementation Details. We implement our models in Py-
Torch [45] with MMDetection framework [7]. For both
settings, we use the distributed training framework with 8
GPUs. Each mini-batch has one image per GPU. The opti-
mizer is AdamW [42] with a weight decay of 0.0001. We

Table 1. Results on Open Vocabulary Instance Segmentation.

Constrained Generalized
Base | Novel | Base | Novel All
OVR [69] 42.0 20.9 41.6 17.1 352
SB[1] 41.6 20.8 41.0 16.0 345
BA-RPN [76] | 41.8 20.1 41.3 15.4 345
XPM [28] 42.4 24.0 41.5 21.6 36.3
CGG (Ours) 46.8 29.5 46.0 28.4 41.4

Method

Table 2. Results on Open Set Panoptic Segmentation (OSPS).
Note that previous methods EOPSN [29] and Dual [63] treat all
unknown things as one class while not classifying them. In con-
trast, CGG performs complete Open Vocabulary Panoptic Seg-
mentation, classifying each unknown thing into its specific cate-
gory. We report the mean PQ and SQ for all unknown categories.
* indicates that the scores are averaged from each unknown class.

Method K(%) pQ™ SQIT(hnow]x;th SQ™ PQlilenogngh
EOPSN [29] 44.8 80.5 28.3 73.1 23.1 74.7
Dual [63] 5 45.1 80.9 28.1 73.1 30.2 80.0
CGG (Ours) 50.2 83.1 343 | 81.5 | 45.0% | 85.2%
EOPSN 44.5 80.6 284 | 71.8 17.9 76.8
Dual 10 45.0 80.7 27.8 72.2 24.5 79.9
CGG (Ours) 49.2 82.8 34.6 81.2 | 41.6* | 82.6*
EOPSN 45.0 80.3 28.2 71.2 11.3 73.8
Dual 20 45.0 80.6 27.6 70.1 214 79.1
CGG (Ours) 48.4 82.3 344 | 81.1 | 36.5% | 78.0*

adopt full image size for a random crop in both the pre-
training and training process following Mask2Former [10].
For classification head, word encoder, and sentence en-
coder, we all adopt the BERT embeddings (pre-trained with
fixed input embeddings, not the output of transformer lay-
ers). We use a LVIS class name parser to extract object
nouns from captions to ensure that the extracted nouns rep-
resent objects in the image [24]. For OVIS, we keep the
top-100 queries as the model outputs. For OSPS, following
previous work [29, 63], rather than Mask2Former baseline,
we put thing mask predictions first and fill the remaining
background with stuff mask predictions. Note that all ex-
periments use ResNet-50 backbone for fair comparison.

4.2. Main Results

Results on OVIS. We evaluate the performance of CGG
and baselines on the Open Vocabulary Instance Segmenta-
tion task on MSCOCO. As shown in Tab. 1, our model
outperforms the best baseline XPM by 5.5% mAP in the
constrained setting where only novel categories input and
6.8% mAP in the generalized setting where both base and
novel categories are employed as input. The generalized
setting is more challenging because the model also needs
to distinguish novel categories from given base categories,
which have a data distribution bias from training data. We
observed that CGG has a greater improvement in general-



Table 3. Results on COCO Open Vocabulary Object Detection
(OVOD). IN-21K indicates ImageNet-21K [11]. CC indicates
Conceptual Captions [53]

Method Epochs  ExtraData  APS0%%, AP50%*
DLWL [49] 96 YFCC100M 19.6 429
Cap2Det [65] 8.5 None 20.3 20.1
OVR-CNN [69] 12 None 22.8 39.9
Detic [79] 96 IN-21K & CC 24.1 44.7
PromptDet [19] 24 LAION-novel 26.6 50.6
CGG (Ours) 12 None 29.3 42.8

ized settings compared to constrained settings, which fur-
ther shows the effectiveness of CGG in identifying the lan-
guage embeddings of novel classes and distinguishing them
from base classes.

Results on OSPS. To show the scalability of CGG, we also
perform experiments on the Open Set Panoptic Segmen-
tation task by expanding the base classes from base thing
classes to including stuff classes, maintaining the whole
training pipeline of CGG unchanged. The results are shown
in Tab. 2. Compared with traditional Open Set Panop-
tic Segmentation, CGG actually performs a more difficult
Open Vocabulary Panoptic Segmentation and still outper-
forms previous methods EOPSN and Dual by a large margin
of 14.9% PQ on unknown things in 20% unknown things
setting [29], and 16.9%, 14.8% in 10% and 5% settings, re-
spectively. Due to the scalability of Mask2Former and our
simple yet effective training pipeline, which can fully uti-
lize the open vocabulary knowledge from caption data, our
model can perform well on open vocabulary panoptic seg-
mentation.

Results on OVOD. Besides the segmentation task, we also
evaluate Open Vocabulary Object Detection task by match-
ing Ground Truth with bounding boxes in the testing stage.
As shown in Tab. 3, CGG achieves better AP50 score in
novel classes compared to several previous works [19,79]
in a shorter training schedule with no extra data used (only
COCO-Caption). Previous methods like PromptDet [19]
and Detic [79] tend to use large-scale image-text datasets,
thus causing a longer training schedule and higher compu-
tational cost. We observe that CGG has inferior results in
APE)OZ‘l’f . It may cause by the shorter training schedule and
exposure to base classes compared with other methods.

4.3. Ablation Study and Analysis

We do ablation studies of our model to validate the ef-
fectiveness of each component. We do all the ablations on
the MSCOCO 48/17 split [69] with the metric mAP.
Effectiveness of the CGG framework. First, we evalu-
ate the significance of each proposed module. As shown in
Tab. 4a, the baseline Class Emb., which transfers class la-
bels to their corresponding text embeddings, only achieves

a meager AP score of 0.2 for the novel class. As a com-
parison, adding Caption Grounding increases the Novel AP
to 22.2, verifying the significance of Caption Grounding,
which helps align multi-modal embeddings explicitly. Fur-
ther, with the Caption Generation module, the final score
reaches 28.4. The increase arises from a more strict regu-
larization of Caption Generation, which supervises beyond
nouns. For example, the caption “a woman holding an
umbrella” requires the network to capture the relationship
“holding” as well. If the Caption Generation module plays
independently, the performance decreases to 0.3.

Training Pipeline. Previous methods like OVR-CNN
[69] train their embeddings before fine-tuning the seg-
mentor/detector, called ’emb-segm.” In this paper, we in-
stead pre-train a class-agnostic segmentor and then train the
multi-modal embeddings e} on image-text data. We name
it ’segm-emb.” These pipelines are compared over CGG in
Tab. 4b. Note that “segm-emb-segm” is also included as
a candidate. Results show that though “segm-emb” is in-
ferior to others for base classes, it achieves significantly
higher scores for novel classes. This phenomenon arises
because training the segmentor in the last stage overfits the
base classes, thus leading to a worse recall for novel classes.
Grounding Nouns Extraction. In CGG, we extract only
object nouns from the sentences, leaving other words un-
touched. To validate the effectiveness of different word se-
lection strategies, we also try to extract all words, and all
nouns, except for only object nouns. The results are shown
in Tab. 4c. By extracting all words, the novel AP decreases
by 20.8, and by extracting all words without distinguishing
whether they refer to objects or not, the novel AP decreases
by 13.3. In conclusion, different extracting strategies sig-
nificantly impact the model’s performance.

Layers of Caption Generator. We evaluate the influence
of layers of the transformer decoder in the caption genera-
tor. The results are in Tab. 4d. We test 2, 4, and 6 layers
transformer decoders and observe that the middle number of
4 is a better choice, while fewer layers of 2 and more layers
of 6 both harm the performance. Moreover, heavier caption
generators may improve mAP for base classes a little, but
also increase the computational cost.

Ablation on Class-Agnostic Pretraining. As a class-
agnostic segmentor is trained to segment base and potential
novel objects before training the multi-modal embeddings
and caption generator, we do ablations on the effectiveness
of class-agnostic pretraining and its alternatives. As shown
in Tab. 4e, without any class-agnostic pretraining, the mAP
on novel classes decreases by 5.7%. Moreover, if we freeze
the Mask2Former, and only trains multi-modal embeddings
and caption generator, the mAP on novel classes decreases
by 2.0%, compared to the CGG model.

GFLOPs and Parameter Analysis. CGG adds a
lightweight Transformer decoder as the caption generator in



Table 4. Ablation studies and comparison analysis on COCO OVIS.

(a) The Effectiveness of Each Components.

(b) Training Pipeline Comparison

(c) Nouns Extraction in Caption Grounding

baseline Gro. Gen. Base Novel Settings Base Novel All Method Base Novel All
Class Emb. 48.6 0.2 emb-segm 49.2 20.3 41.6 All Words 44.7 7.6 35.0

w. Gro. v 49.1 222 segm-emb-segm 50.2 243 434 All Nouns 48.8 15.0  40.0

w. Gen. v 494 0.3 segm-emb (CGG)  46.0 284 414 Object Nouns ~ 46.0 284 414
Both (CGG) v v 48.0 28.4

(d) Caption Generator Design

(e) Effect of Class-Agnostic Pretraining

(f) GFlops and Parameters

#layers Base Novel All Settings Base  Novel All Schedule Parameters ~ GFLOPs
2 46.7 234 40.6 No class-agnostic 46.2 22.7 40.0 baseline 35.65M 227.48

4 (CGG) 46.0 28.4 41.4 Freeze class-agnostic ~ 47.6 26.4 42.1 Ours: Inference 35.65M 227.48
6 48.2 269 426 CGG 46.0 284 414 Ours: Training 81.19M 229.33

a couple of elephants that are standing in the dirt

4

a man riding a snowboarding down the side of a hill

there is a lot of food on this table

a black and white photo of a large brown dog

Figure 5. Visualization of CGG results. Instance Segmentation (Top) and Panoptic Segmentation (Bottom). Categories marked by **’ are
novel categories. Captions generated are depicted upon each image-prediction pair. Novel categories are colored in the caption if it has.

e,
ik i i
i@ Class-agnostic pretrain

Figure 6. The embedding space of multi-modal embeddings
{eM}. The dimension of the embeddings is reduced to 2 dimen-
sions using t-SNE [58]. Each color represents a class label in the
17 novel COCO classes. Each dot represents the embedding with
the corresponding mask matched with ground truth annotations.

training. As shown in Tab. 4f, the #Parameters increases by
127.7% in training, while the total GFLOPs only increase
by a small margin of 0.8%. Since text data is much smaller
than images under the same batch size, the increased com-
putational cost by the caption generator can be ignored. The
GFLOPs and Parameters during inference are the same as
the Mask2Former baseline.

Segmentation Results Visualization. Fig. 5 shows the
qualitative results of CGG. The row shows panoptic results

and the second row shows instance results. Novel classes
detected in the image are marked with **’ and highlighted
in the caption. The result shows that our framework can
identify and segment base and novel classes. We show the
generated comprehensive captions above the images.

Embeddings Space Visualization. Fig. 6 shows the t-SNE
visualization result of the trained multi-modal embeddings
(right) and the embeddings from a class-agnostic pretrain-
ing model (left). Specifically, we evaluate our model on
the COCO validation set and get all the embeddings for
each image. We change the bipartite matching strategy of
Mask2Former to calculating mask loss only, thus getting
the matching result between ground truth labels and multi-
modal embeddings. The original Mask2Former [10] model
cannot distinguish different novel classes in the embedding
space, with only class-agnostic pretraining. After training
using caption grounding and generation, the embeddings
can formulate groups consistent with their categories.

5. Conclusion

In this paper, we present a joint Caption Grounding and
Generation (CGG) framework for instance-level open vo-
cabulary segmentation. Our core insights are two folds:



Firstly, the caption contains fine-grained nouns, which leads
to better fine-grained grounding with object queries. Sec-
ondly, the caption can be a supervision signal that forces
the model to predict novel objects. To our knowledge, we
are the first to unify segmentation and caption generation
for open vocabulary learning. We obtain significant per-
formance improvement on both OVIS and OSPS and com-
parable results on OVOD without extra large-scale datasets
pre-training.

Limitation and Future Work. Due to the limited com-
putation resources, we do not pre-train our framework on
extra caption datasets. Moreover, we do not use VLMs
such as CLIP for distillation or supervision, and we do not
experiment on larger scale datasets, like LVIS and Open-
Image [25,31]. We will put these as future work.
Acknowledgement. This work is supported by the Na-
tional Key Research and Development Program of China
(No0.2020YFB2103402). We also gratefully acknowledge
the support of SenseTime Research for providing the com-
puting resources for this work.

6. More Implementation Details

Baseline Details. All the table results in main paper use the
same ResNet50 [27] backbone for a fair comparison. The
number of object queries is /00 by default. Our method is
trained by only 12 epochs on the COCO train set and eval-
uated on the COCO validation set. All the experiments are
carried out on 8 V100 GPUs. Following previous meth-
ods [28, 69], the metric we use for OVIS is mAP (mean AP
on the IoU threshold of 0.5).
Training and Inference Details. We adopt the default
training of Mask2Former [7, 10,62]. A learning rate multi-
plier of 0.1 is applied to the backbone. For data augmenta-
tion, we use the default large-scale jittering (LSJ) augmen-
tation with a random scale sampled from the range 0.1 to
2.0 with the crop size of 1024 x 1024. We use the default
Mask R-CNN inference setting [26], where we resize an
image with shorter side to 800 and longer side to 1333. For
the Inference of OSPS, we do not use the default joint merge
for things and stuff. We put the thing mask first and fill the
remaining area with stuff mask prediction because the thing
predictions for unknown are usually in a low score, and they
may be covered by high score stuff mask prediction.
Training Splits For OVIS and OSPS. For OVIS, we fol-
low the 48/17 split in COCO proposed by [48], in which 48
classes are base classes, and 17 are novel classes. For OSPS,
we follow the unknown things split proposed by [29]. The
unknown percentages are 5%, 10%, and 20% separately.
Concretely, for 48/17 split of OVIS, the base classes
are: “person”, “bicycle”, “car”, “motorcycle”, “truck”,
“boat”, “bench”, “bird”, “horse”, “sheep”, “zebra”, “gi-
raffe”, “backpack”, “handbag”, “skis”, “kite”, “surfboard”,
“bottle”, “spoon”, “bowl”, “banana”, “apple”, “orange”,

Table 5. Ablation on fully supervised instance segmentation, ob-
ject detection, and panoptic segmentation. AP-novel indicates the
mean AP on the 17 novel classes (trained in the fully supervised
setting). AP-bbox indicates object detection.

Method Instance Panoptic
AP | AP-novel | AP-bbox | PQ | PQ-th | PQ-st
class-label | 59.3 66.6 589 464 | 519 | 382
class-emb. | 50.6 57.8 50.2 444 | 505 | 35.1
w/ gro. | 50.8 57.4 50.3 44.1 ] 503 | 35.0
w/ gen. | 50.9 57.6 50.7 442 | 50.5 | 3438
w/both. | 51.3 57.5 50.7 443 | 50.6 | 349

“broccoli”, “‘carrot”, “pizza”, “donut”, ‘“chair”, “bed”,
“tv”, “laptop”, “remote”, “microwave”, “oven”, “refrig-
erator”, “book”, “clock”, “vase”, “toothbrush”, ‘“train”,

CLINNYS

“bear”, “suitcase”, “frisbee”, “fork”, “sandwich”, “toilet”,
“mouse”, “toaster”.

The novel classes are: ’bus’, ’dog’, ’cow’, ’ele-
phant’, umbrella’, "tie’, ’skateboard’, *cup’, knife’, *cake’,
"couch’, ’keyboard’, ’sink’, ’scissors’, ’airplane’, ’cat’,
’snowboard’.

For OSPS, the unknown things are: 5%: ‘“car”, “cow”,

“pizza”, “toilet”. 10%: “boat”, “tie”, “zebra”, “stop sign”.
29 (13 2 13

20%: “dining table”, “banana”, “bicycle”, “cake”, “sink”,
“cat”, “keyboard”, “bear”.

b}

7. More Experiments Results

Will Joint Grounding and Caption Help the Fully Su-
pervised Baseline? To answer this question, we perform
ablation on fully supervised settings in Tab. 5. For the
proposed CGG, we verify two main components, includ-
ing caption grounding and caption generation. Class-emb
means only using pre-trained text embeddings for mask
classification. Class-label is a traditional learnable, fully
connected layer that converts the classes into contiguous la-
bels. In Tab. 5, we observe that the fully supervised method
achieves better results than using class embeddings in all
three tasks. As shown in the last three rows of Tab. 5, for
within class embedding settings, the added caption ground-
ing and generation modules help to improve the perfor-
mance on OVIS, but no performance gain on OSPS. We
conclude that joint grounding and caption have limited ben-
efits (0.5% improvements) in supervised settings.

Will Better Caption Generator Help Open Vocabulary
Instance Segmentation? We further explore the influence
of the caption generation module to open vocabulary in-
stance segmentation. Fig. 6 shows the results. As the
caption generator becomes larger, the overall segmentation
quality (AP all) increases. On the contrary, the quality of
the caption (including BLUE and CIDEr) generation drops.
This means a better caption generator may not be a better
open vocabulary instance segmenter. The role of the cap-
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Figure 7. The correlation map between Ground Truth and model
predictions on novel classes. The noun embeddings and object
queries for novel classes are highly correlated.

tion generator is to force the model to know the existence
of novel objects, and pursuing a better caption generation
model is not our goal of OVIS and OSPS.

8. Visual Analysis and Comparison

Visualization Analysis both Nouns and Object Queries.
We calculate the correlation map between the predicted
multi-modal embeddings e and the Ground Truth class
embeddings. As shown in Fig. 7, our model can correctly
distinguish novel classes based on the segmentation masks.
More Visual Examples from Caption Generation. We
observe that in some cases, the caption generated by CGG
can predict objects that are not in the category list. Cate-
gories beyond the given list cannot be correctly classified
using the similarity between multi-modal embeddings and
class embeddings since the class embeddings are not acces-
sible during inference, like in Fig. 8§, images top. There is
a couple of luggage on the floor, but *luggage’ is not a class
in the validation dataset. Without a caption generator, the
model classifies the luggage as ’suitcase.” However, with
the caption generation module, the generated caption suc-
cessfully depicts the word "luggage’. In the bottom images,
“tennis’ is also described by captions. Fig. 9 shows more
visualization results with captions.

More Visualization Results on OVIS and OSPS. In
Fig. 10, we present more visual results of OVIS and OSPS
tasks. The CGG model can well segment and classify novel
categories well.

Zero Shot Visualization on ADE20K dataset. In Fig. 11,
we show the visualization results on ADE20K dataset [77].
CGG can detect and segment novel classes in a zero shot

10

a couple pieces of [liggage on top of the floor

CGG‘ CGG w/o generator
Figure 8. Examples of captions predicting objects that are not in
the category list.

manner on ADE20K. At the same time, CGG generates
comprehensive captions that well depict the content of the
images.
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