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Roughness and Condition Prediction Models for Airfield Pavements using 

Digital Image Processing 

 

Abstract 

Based on the assessment of three runways at mid-size Chilean airports, the aim of this article 

is twofold. First, it discusses the potential empirical relationship that may exist between two 

parameters traditionally used to measure pavement roughness and condition, i.e.  the 

International Roughness Index (IRI) and Pavement Condition Index (PCI), both measured 

using industry-standard, semi-automated processes. Second, it proposes an automated and 

parsimonious methodology for estimating the IRI and PCI, based on a digital image 

processing algorithm that accurately determines the total amount of cracking in pavements 

and which essentially requires no human curation. On one hand, a direct correlation between 

IRI and PCI has been obtained that can be considered statistically significant. On the other 

hand, highly reasonable estimates for the IRI and PCI can be achieved based solely on the 

total cracking percentage of a unit sample. The models proposed can be used for airport 

pavement management purposes. 

 

Keywords 

airport pavement management system; IRI vs. PCI model; automatic IRI estimation; 

automatic PCI estimation 

 

1 Introduction 

The management of airport pavements has over time become a progressively critical task due 

to ageing and deterioration, funding has become more restrictive, and potential disruption of 

operations must be highly minimised [1]. To appropriately manage airport pavements, 

several quality indices must be evaluated. These can be: (i) directly measured following a 

prescribed procedure (i.e. an objective approach), (ii) estimated by visual surveys based on 

judgement (i.e. a subjective approach), or (iii) determined by using a combination of both 

approaches [2]. The quality indices that are typically used for airport pavement management 

aim to assess physical properties such as load-bearing capacity, longitudinal and transverse 
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surface evenness, skid resistance, and pavement distress [3]. Two properties that are the 

subject of intensive research in airport pavement engineering are roughness and condition. 

Runways are subjected to increasingly heavy dynamic loads, as well as harsher weather 

conditions [4]. As such, their timely and effective assessment is critical for safe aircraft 

operations. Poor runway maintenance should be addressed from three perspectives, based on 

the potential negative results that may arise from these as follows: (i) a social perspective, as 

veer-off accidents can occur with potentially serious health effects for passengers and crew 

members [5, 6], (ii) an economic perspective, as costs can be adequately covered, e.g. those 

associated with cumulative damage to aircraft landing gear and airport disruption [7], and 

(iii) an environmental perspective, as there could be increased ecological costs, such as an 

additional carbon footprint and embodied energy, which is related to inadequate runway 

performance [8]. Although the coronavirus 2019 (COVID-19) global pandemic caused an 

unprecedented decline on seats offered worldwide by commercial airlines of approximately 

60% in 2020 [9], a shift in the aviation industry is expected to occur towards adopting greener 

and more efficient travelling methods [10]. Following a few years of recuperation, the 

aviation industry is anticipated to make a full recovery [11]. Airports will likely once again 

be operating at pre-pandemic levels in terms of demand and may even become busier. As an 

example, Santiago’s main airport in Chile, Arturo Merino Benítez International Airport 

(ICAO: SCL), is one of the busiest in Latin America: at its peak before COVID-19, the airport 

managed either a take-off or departure operation on its primary runway on average every 3 

minutes. Nowadays, and perhaps more than ever, safe, rapid, and efficient procedures are 

needed to measure airfields pavements’ condition and roughness. 

 

The Chilean airport system comprises airfields grouped into three layers of importance: (i) 

the primary network, which comprises 16 airports essentially aimed at managing 

international flights, (ii) the secondary network, which comprises airports mainly intended 

for managing domestic flights, (iii) the aerodromes network, which comprises the small 

airports located in rural, secluded areas that service small communities by connecting them 

with urban zones. The entire system comprises 300+ airports and aerodromes, of which 

approximately one third is part of public infrastructure. This work is based on the study of 

three airports within the primary network. 
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For airport pavement condition assessment, the Pavement Condition Index (PCI) is a 

parameter that is widely used in airfield pavement management. Extensive research has been 

conducted involving the use of the PCI, for which there appears to be an agreement regarding 

its suitability and appropriateness as it concerns airport pavement engineering. Conversely, 

pavement roughness assessment is a more contentious issue: this is because there appears to 

be a large number of parameters that have been used for airfields, both at the research and 

industry levels. A parameter that has attracted considerable interest is the International 

Roughness Index (IRI), which was developed for highway pavement surfaces. As such, it is 

theoretically not applicable to airport pavements. Nevertheless, as a parameter that is 

extremely familiar to pavement engineers, IRI has indeed been used extensively to assess the 

roughness of airport pavements. Therefore, its validity in the context of airfields is 

continually worth exploring and discussing, as is studying its potential relationship with 

pavement conditions. 

 

This article is based on the assessment of three runways at mid-size Chilean airports and aims 

to establish the prospective relationship that may exist between the two parameters that are 

traditionally used to measure pavement roughness and condition, i.e. the IRI and PCI, 

respectively, which were measured using semi-automated processes. In addition, an 

automated methodology is proposed that is parsimonious in nature to estimate both the IRI 

and PCI, based on a digital image processing algorithm that accurately determines the total 

amount of cracking in the pavement, and which requires essentially no human intervention. 

This article is organised as follows: Section 2 provides an updated literature review on the 

subject to establish the current state-of-the-art knowledge on airport pavement roughness and 

condition assessment as well as attempts to correlate both properties and recent trends in the 

field; Section 3 explains in detail the research process carried out in this work; Section 4 

establishes the methodology of data acquisition and processing methodology, which served 

as the foundation for developing the roughness and condition predictive models described in 

Section 5. Finally, the conclusions of this work are summarised in Section 6. 
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2 Literature Review 

The role of an airport pavement management system (APMS) is to provide support to the 

technical, engineering, and management activities of airport personnel who are responsible 

for providing a pavement infrastructure that is safe and efficient for aircraft operation [12]. 

It is widely accepted that an APMS comprises six basic components, as shown in Figure 1 

[1, 13]. 

 

Figure 1. The basic components of an airport pavement management system [1] 

 

‘Network inventory’ defines the physical characteristics of the set of pavements being 

managed, e.g. pavement geometrics and sections, drainage, construction details, traffic, and 

maintenance programmes [14]. A network inventory serves as the foundation of an APMS. 

‘Condition assessment’ involves the evaluation of pavement surface distress, roughness, 

friction, the presence of foreign debris, and the evaluation of pavement surface deflections 

[12]. In an APMS, the PCI is used for an operational surface to establish both the condition 

and the structural integrity of the pavement. The PCI is obtained following the procedure 

described in ASTM D5340-20, Standard Test Method for Airport Pavement Condition Index 

Surveys [15] and is calculated by performing a pavement survey that aims to register and 

analyse its distress types, severity, and quantity by assigning a score from 0 to 100, with 100 

reflecting a pavement in excellent condition. Extensive research has been published on 

airport pavements regarding the use of PCI for estimating their condition ([4], [16], [3], [17]), 

for which there appears to be an agreement within the technical community regarding the 

appropriateness of this parameter’s use. Conversely, for pavement roughness assessment, a 

more divergent approach can be found in the literature concerning its use for airports; see, 

e.g. Loprencipe and Zoccali [18] and Woods and Papagiannakis [19] for comprehensive 
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discussions on this issue. One parameter that seems to attract substantial research interest is 

the IRI, which was originally proposed in 1986 by two World Bank documents ([20], [21]) 

and formally standardised in ASTM E1926-08 (Reapproved 2021): Standard Practice for 

Computing International Roughness Index of Roads from Longitudinal Profile 

Measurements [22]. The IRI is calculated using a mathematical approach based on a quarter-

car model, where its accumulated distance travelled upwards and downwards as it moves in 

a longitudinal profile is a measure of the surface roughness, as shown in Equation 1 as 

follows: 

 

𝐼𝑅𝐼 =
1

𝑙
∫ |�̇�𝑠 − �̇�𝑢| 𝑑𝑡

𝑙/𝜈

0
    (1) 

 

where l is the profile length in km,  is a simulated speed of 80 km/h, �̇�𝑠 is the time derivative 

of the vertical displacement of the sprung mass, and �̇�𝑢 is the time derivative of the vertical 

displacement of the unsprung mass. Although IRI is not specifically designed for airport 

pavements, there is an extensive body of technical literature that addresses the use of IRI for 

the roughness assessment of airfield pavements (e.g. [23], [24], [25], [3], [26], [27], [28], 

[29], [30]), among which several are intended for specific use in airports located in Brazil, 

Italy, Mexico, South Africa and Canada. Although some international regulations (e.g. ICAO 

[31]) do not include the IRI as a parameter for the roughness evaluation of airport pavements 

(and some authors have even discouraged its use for airfields [32]), its extensive use and 

experience for highway pavements make the IRI an attractive choice for practitioners and 

researchers on the subject. Several other parameters have also been used for pavement 

roughness assessments at airfields including those noted below:  

 

• The Boeing Bump Index (BBI) was developed for what is considered the most critical 

condition of runway roughness, i.e. a heavily loaded aircraft approaching take-off 

speed [33]. The BBI is currently included in America’s Federal Aviation 

Administration’s (FAA) regulations [34] and is largely regarded as an acceptable and 

adequate parameter for the roughness evaluation of airport pavements [18], [35].  
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• The Runway Roughness Index (RRI) was proposed by the FAA, based on human 

factors, and is defined in terms of the weighted root-mean-square of acceleration at 

the pilot station [36]. 

• The Ride Comfort Index (RCI) is a subjective method of rating the roughness of a 

pavement using a scale of 0 to 10, with 10 representing a very good ride quality; 

however, it is acknowledged that this index is not appropriate for indicating the 

presence of individual bumps of excessive magnitude [30]. 

• The Root Mean Square Vertical Acceleration (RMSVA) is calculated for 100-metre 

sections to identify any portions of the runway profile that have higher roughness 

levels as part of the entire runway profile [30], [35]. 

• The Landing Gear Cumulative Stroke (LGCS) refers to the dynamics associated with 

the nose landing gear, which combines the advantages of both the BBI and IRI [37], 

[38]. 

• The Main Landing Gear Cumulative Stroke (MLGCS) is a recently developed index, 

that makes use of the cumulative stroke of the main landing gear instead of that of the 

LGCS to evaluate roughness; it has been found to provide a better correlation in 

comparison to both BBI and IRI [39], [38]. 

• The Full Aircraft Roughness Index (FARI), based on the modelling of an aircraft by 

using three degrees of freedom (pitching angle, transverse roll angle and vertical 

displacement) simultaneously has shown a better correlation than the IRI and 

RMSVA with runway roughness estimation [40].  

 

There have been extensive research efforts reported in pavement engineering literature that 

established empirical relationships between roughness and distress, although intended for 

highway pavements.  For example, Kirbas [41] studied the effect that some typical pavement 

distresses have on the IRI. An overall coefficient of determination of R2 = 0.745 was obtained 

in this regression model that estimates the IRI depending on distress types such as alligator 

cracking, bleeding, block cracking, corrugation, among others. In addition, Lin et al. [42] 

analysed correlations between the repair of some typical types of distress and the associated 

improvement in the IRI. These correlation analyses were performed using artificial neural 

networks obtaining varying coefficients of determination from R2 = 0.537 to 0.945. Such 
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results are in agreement with the study published by Sandra and Sarkar [43], who obtained a 

coefficient of determination of R2 = 0.986 for a predictive model for the IRI depending on 

distress types such as ravelling, patching, potholes, cracking, and rutting. Some other studies 

have been published that address empirical relationships between roughness and condition, 

although adding other external variables in the analysis. For example, Abd El-Hakim and El-

Badawy [44] reported a predictive model for the IRI using artificial neural networks, in which 

neurons in the input layer included the pavement age, a freezing index as well as distress 

types, such as cracking, spalling, and patching. This model achieved a coefficient of 

determination of R2 = 0.828 (a more modest value of R2 = 0.584 was obtained when using a 

more traditional approach based on regression analysis). In this line, other studies, such as 

those published by Gong et al. [45] and Janani et al. [46], developed predictive models for 

the IRI based on pavement distress measurements, but including other aspects such as traffic, 

climate conditions, maintenance, and structural data. These studies also concluded that 

distress types are strongly correlated to the IRI. Finally, there have also been research 

attempts to explicitly correlate the roughness and condition parameters of interest in this 

work, namely the IRI and PCI, respectively. For example, Park et al. [47] proposed a linear 

model between the logarithm of both the PCI and IRI and found a maximum coefficient of 

determination of R2 = 0.66. Another related work has been recently reported by Adeli et al. 

[48] who proposed a piecewise linear model for the PCI depending on the IRI, reporting 

varying coefficients of determination from R2 = 0.59 to 0.76. In addition, Ali et al. [49] 

reported a linear model to predict the PCI depending on the IRI, having a coefficient of 

determination of R2 = 0.79. It is worth remembering that all articles mentioned in this 

discussion were intended for road pavements; therefore, there is currently a gap in the 

literature where applications of this field in airport pavements need to be studied. Regarding 

technologies for use in pavement asset management, Peraka and Biligiri [14] have reported 

the most recent review at the time of writing. Such review highlighted the advent of new 

trends based on image processing and artificial intelligence techniques, which is in line with 

the methodology proposed in this work for estimating the PCI and IRI. 
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3 Research Methodology 

This work was carried out following the four stages summarised in Figure 2. In stage 1, three 

medium-size airfields were selected within the Chilean airport system. The airfields selected 

were the following: (i) La Florida Airport, located in the city of La Serena (ICAO: SCSE), 

(ii) Chacalluta Airport, located in the city of Arica (ICAO: SCAR), and (iii) El Loa Airport, 

located in the city of Calama (ICAO: SCCF). Figure 3 shows aerial photographs of the three 

airports studied in this work, and Table 1 presents a summary of their location and runway 

characteristics. This work only considered analyses carried out on the runways of the airports 

shown in Figure 3. 

 

Figure 2. The research methodology that was followed in this work  

 

Table 1. A summary of the characteristics of the three airports studied in this work 

 

 

1. Selection of 

medium-size 

Chilean airports

2. Photograph 

surveying + 

longitudinal 

profiling

3.1 Roughness 

assessment 

calculation (IRI)

3.2 Condition 

assessment 

calculation (PCI)

3.3 Cracking 

calculation by 

image processing 

(% cracking)

4.1 Establish 

predictive model 

roughness vs 

condition
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4.2 Propose 

predictive model 

cracking vs 

roughness and 

condition

Description La Florida Chacalluta El Loa

City La Serena Arica Calama

Latitude 29º 54' 59'' S 18° 20' 55'' S 22° 29' ′23'' S 

Longitude 71º 11' 58'' W 70° 20' 19'' O 68° 54' ′13'' O

Elevation (masl) 147 49 2,326

Runway length (m) 1,938 2,170 3,040

Runway width (m) 45 45 45

Material Asphalt Asphalt Asphalt

Airport



10 
 

 

 

 

Figure 3. Aerial photographs of the three airfields studied in this work: (a) La Florida 

Airport, (ii) Chacalluta Airport, and (iii) El Loa Airport. 

 

In stage 2, a comprehensive photograph survey was carried out to capture the entire length 

and width of the three runways shown in Figure 3 by using an experimental setup that is 

detailed in Section 4.1. Examples of these photographs are shown in Section 4.1, where their 

ability to capture a wide range of pavement distress types can be observed. In addition, 

longitudinal profiling was performed on the three runways in order to estimate the pavement 

(a)

(b)

(c)
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roughness. These data allowed the study to move on to stage 3, which comprised two 

approaches as follows: (i) a standard procedure aimed at making calculations for the 

pavement condition using the PCI and pavement roughness using the IRI, and (ii) an 

automated procedure that aimed to determine the cracking percentage by using a MATLAB-

based algorithm in image analysis. Once both approaches were completed, stage 4 followed, 

which involved conducting regression analyses for establishing the correlation that may have 

been present between the IRI and PCI, as well as proposing predictive models that 

incorporated the total cracking percentage in a sampling unit as a parameter for correlation 

with the PCI and IRI. 

 

4 Data Generation and Processing 

4.1 The IRI and PCI Calculations – Standard Procedure 

In this study, both IRI and PCI field measurements were carried out using a Laser Crack 

Measurement System (LCMS) that has been attached at the back of a van-type vehicle (an 

image of the actual equipment setup is available online [50]). The LCMS used in this work 

is a 3D scanning system able to automatically detect roughness and some types of distress 

(therefore some others need to be surveyed manually). The technical specifications of this 

system are described as follows: 

 

• Number of laser profilers: 2 

• Height of the profilers: 2.5 m at 90° relative to the pavement 

• Transversal field of view: 4.0 m 

• Vehicle speed: up to 100 km/h 

• Transverse resolution: 1 mm 

• Depth resolution: 0.5 mm 

• Sampling rate: 200 profiles/s 

• Profile spacing: 15 cm 

 

In this study, the PCI calculations for the runways were carried out using a semi-automated 

process comprising the following steps: (i) the definition of branches and sections of the 

included airfields; (ii) the definition of sampling units in terms of size and location for all of 
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the sections defined; (iii) photographic surveying of the airfields in their entirety; (iv) a fitting 

and matching procedure of images to sections; (v) the classification of distresses and PCI 

calculations (performed using a mixed procedure that has an automatic part to determine 

volumetric distresses, and a manual part to determine superficial distresses), following 

ASTM D5340-20 [15]. This procedure allowed for calculating the PCI for 100% of the 

sampling units associated with each of the analysed runways. For example, taking the case 

of Chacalluta Airport, Figure 4b shows the branches and sections defined for the airfield, 

where four branches and 19 sections are selected. The four branches were defined using the 

following code: PIs are related to the runway, Us are associated with the thresholds, RAs, 

DBs and DCs are related to the taxiways, and PLs are associated with apron platforms. For 

the current study, only PIs were selected for analysis. For the example of Chacalluta Airport 

the number of sampling units were as follows: PI-1 comprised 19, PI-2 comprised 82, PI-3 

included 54 and PI-4 had 8, totalling 163 sampling units for this airport. The area of each 

sampling unit was approximately 450 m2, with a 4-metre width and a varying length to cover 

the entire length of the corresponding section. Figure 5 shows some photographs of sampling 

units belonging to Chacalluta Airport’s runway (the PIs in Figure 4) and their corresponding 

PCI value. 

 

Figure 4. Branches and sections selected for the three airports studied in this work: (a) La 

Florida Airport, (b) Chacalluta Airport, and (c) El Loa Airport. 

(a)

(b)

(c)
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Figure 5. Sampling units of Chacalluta Airport’s runway with varying PCI parameters. (a) 

PCI = 98; (b) PCI = 70; (c) PCI = 57. 

 

The parameter IRI was calculated using an industry-standard procedure stated in ASTM 

E1926-08 (Reapproved 2021) [22] that was performed in several profiles along the runways. 

For example, for La Florida Airport, eight profiles were taken on each side of the runway 

centreline, at distances of 1, 3, 5, 7, 9, 11, 13, and 15 m for 100-metre-long sections. Figure 

6 shows a sample of the IRI profiles for +3, +9, -3, -9 m from the runway centreline. Table 

2 summarises the IRI calculations for the entire runway of the above-mentioned airport. 

 

(a) (b) (c)



14 
 

 

Figure 6. A sample of the IRI profiles for La Florida Airport’s runway measured from the 

centreline at a distance of (a) +3m, (b) +9m, (c) -3m, (d) -9m. 

 

Table 2. The IRI values for the entire runway of La Florida Airport. 

 

 

4.2 Cracking Percentage Calculations – Automated Procedure 

For this work, a MATLAB-based code was developed that was able to determine the cracking 

percentage using digital image processing techniques.  The code was developed using the 

(a)

(b)

(c)

(d)

Section Length (m) + 15 m + 13 m + 11 m + 9 m + 7 m + 5 m + 3 m + 1 m - 1 m - 3 m - 5 m - 7 m - 9 m - 11 m - 13 m - 15 m

1 100.0 2.656 2.270 2.669 3.157 2.802 3.163 3.645 3.316 2.856 3.585 3.556 3.048 3.195 2.582 3.412 2.728

2 100.0 2.580 2.275 3.289 2.804 3.107 2.833 2.116 2.222 2.072 2.827 3.331 2.650 4.249 2.471 2.491 2.791

3 100.0 2.869 2.478 3.273 1.950 3.304 3.036 2.167 2.712 2.833 3.415 3.439 2.302 2.553 2.290 2.694 2.894

4 100.0 2.476 1.507 2.316 2.499 3.771 3.345 2.508 2.406 2.085 3.172 3.100 2.494 2.663 2.202 3.794 2.179

5 100.0 2.704 2.252 2.331 2.185 3.374 3.198 2.162 2.818 2.236 4.389 3.880 2.870 2.895 2.963 3.959 2.497

6 100.0 2.630 2.383 3.732 2.588 2.833 2.602 2.201 2.457 2.036 3.106 3.490 2.678 2.548 2.646 3.627 2.948

7 100.0 2.548 2.034 2.925 2.220 2.668 2.279 1.925 2.989 1.859 2.874 3.059 3.077 2.704 2.526 2.402 2.494

8 100.0 2.865 2.069 3.018 2.498 2.824 2.744 2.444 2.911 1.639 2.538 2.666 2.394 2.390 1.994 2.411 3.441

9 100.0 2.876 2.015 2.467 2.203 2.085 2.068 1.889 3.060 2.333 2.428 2.260 3.586 3.115 2.978 2.943 3.149

10 100.0 3.671 2.321 2.088 2.242 3.225 3.107 1.960 3.114 1.475 2.634 2.066 2.482 3.664 2.771 2.792 3.374

11 100.0 2.188 1.611 2.679 2.524 1.635 1.933 1.550 2.927 1.451 2.315 2.344 2.324 2.489 2.244 1.950 2.334

12 100.0 2.772 1.917 2.769 2.425 2.170 2.451 1.665 2.184 2.279 2.773 1.824 2.450 2.148 1.974 2.019 2.228

13 100.0 2.386 1.614 2.157 2.241 1.805 2.002 1.846 2.519 2.309 2.733 2.158 1.540 2.842 2.457 2.421 2.425

14 100.0 2.843 2.192 3.172 2.982 2.443 2.485 1.897 2.353 2.400 3.093 3.089 2.141 3.482 3.086 2.490 2.842

15 100.0 2.325 2.009 2.888 2.134 2.498 2.464 2.283 2.357 2.641 3.389 2.458 2.560 3.444 2.754 2.563 3.468

16 100.0 2.537 1.984 3.437 1.741 2.773 2.815 2.588 3.174 2.130 4.046 2.913 2.571 2.383 2.259 2.436 3.195

17 100.0 2.575 1.950 2.102 1.682 2.372 2.599 2.725 3.120 3.221 4.434 4.142 3.443 3.667 3.254 2.952 1.897

18 100.0 2.534 2.163 2.413 1.995 2.788 2.890 2.635 2.284 2.864 4.104 4.313 2.924 3.761 2.749 3.150 2.623

19 100.0 2.825 2.441 3.258 2.641 2.910 2.848 2.402 2.661 2.671 3.213 2.948 3.334 4.639 2.694 3.738 3.392

20 54.9 4.160 4.263 4.284 3.990 5.301 5.304 5.788 4.622 3.939 4.668 5.677 4.951 5.565 4.852 5.546 4.107

Profile (distance to runway centerline)

IRI (m/km)
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Digital Image Analysis Toolbox provided by MATLAB, with some in-house extensions that 

were suitable for the type of analysis required in this work. Figure 7 shows a sample of the 

images processed using the developed code and reflects an ability to detect a wide range of 

cracking. It is worth noting that this process of obtaining cracking percentage requires 

essentially no human intervention other than loading the seed images for analysis, making 

the process fully automated. All of the images described in Section 4.1 that were used as aids 

for PCI calculations were processed using the MATLAB code developed for this work. 

Therefore, for each sampling unit of the runway, data are available in terms of their PCI, IRI, 

and total cracking percentage. These data allowed for the generation of predictive models 

using these parameters, as it is described in the following section. 

 

Figure 7. Three examples of image processing for cracking percentage determination: the 

left-hand side image is the unprocessed photograph, and the right-hand side image is the 

corresponding processed image. 

 

5 Roughness and Condition Predictive Models 

The information described in previous sections allowed defining for each sampling unit of 

the runways studied in this work their corresponding PCI, IRI and total cracking percentage, 

which made it possible to derive statistically meaningful correlations among these 

parameters. Figure 8 shows some examples of sampling units and their PCI, IRI and total 

cracking percentage. The predictive models were obtained using nonlinear regression 

analysis techniques and a dataset comprising 8,275 images and their corresponding PCI, IRI, 

and cracking percentage, comprising a final total of 24,825 data points. The following 

(a) (b) (c)
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sections detail the regression results for establishing a correlation between pavement 

roughness and condition, which were measured following traditional procedures. 

Additionally, the results were used to establish a correlation between the pavement cracking 

percentage that was measured following an automated procedure and both pavement 

roughness and condition. 

 

 

% Cracking 0.377 0.216 0.214 0.0328 

PCI 70 76 74 81 

IRI (m/km) 4.700 3.585 3.585 2.085 

Figure 8. Sampling unit examples and their corresponding cracking percentage, PCI and 

IRI. 

 

5.1 Roughness vs. Condition 

The first correlation that was performed served as an attempt to establish a statistically 

meaningful relationship between the pavement roughness and condition using the IRI and 

PCI, respectively. As previously noted in Section 4, both parameters were measured by using 

industry-standard procedures. It is worth mentioning that when performing the analysis of all 

images and their corresponding IRI and PCI, it was possible to observe that some small 

subsets of images had assigned the same IRI value but different PCI values within a limited 

range. Therefore, in order to carry out the regression analysis between IRI and PCI, the 

average value of PCIs was used which was then associated to their single corresponding IRI 



17 
 

value.  Figure 9 shows the data points for IRI and their corresponding average PCI, and a 

power fitted curve, obtained via nonlinear least-squares test using the Levenberg-Marquardt 

algorithm, where a coefficient of determination of R2 = 0.895 was obtained. The functional 

form of this predictive model is shown in Equation 2 with the regression coefficients and 

their 95% confidence bounds shown in Table 3. The scatter plot of residuals for this 

regression are shown in Figure 10 where it is possible to see that the variance of the residuals 

does not show a tendency across the full range of the fitted values. It is noted that the 

predictive capacity of this model is comparable with other correlations between PCI and IRI 

reported in the literature, despite these having been obtained for highway pavements (see 

Section 2). 

 

𝐿𝑜𝑔10(𝑃𝐶𝐼) =  𝑎 ⋅ 𝐿𝑜𝑔10(𝐼𝑅𝐼)𝑏 + 𝑐    (2) 

 

Table 3. Regression coefficients and their 95% confidence bounds for Equation 2 

a b c 

-0.574 3.030 1.986 

(-0.751; -0.398) (2.379; 3.681) (1.977; 1.995) 

 

 

Figure 9. Data points and power fitted curve between the IRI and the average value for 

their corresponding PCI for all the runways included in this study. 
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Figure 10. Scatter plot of residuals for the correlation shown in Figure 9. 

 

The predictive model proposed in Equation 2 with the regression coefficients stated in Table 

2 was compared with a previously reported predictive model IRI vs PCI, although for 

application in highway pavements, namely, the model reported in Park et al. [47]. Figure 11 

shows a PCI comparison between values measured and predicted with the two models, using 

the same sample of IRI values.  From this figure, it is possible to see that less scatter and 

lower PCI estimations (and therefore more conservative predictions) are obtained when using 

the model proposed in this work for airports in comparison to those reported for highways. 

 

Figure 11. Comparison of PCI estimations between the predictive model proposed in this 

work and the predictive model for highway pavements proposed in Park et al. [47], using 

the same sample of IRI values. 
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5.2 Cracking percentage vs Roughness and Condition 

This section details the potential correlations that are likely to exist between pavement 

roughness and condition in relation to the total cracking percentage found in a sampling unit. 

Initially, a predictive model for the IRI was proposed as a function of the square root of the 

total cracking percentage. It is worth noting that when analysing the dataset, it was possible 

to observe that small subsets of images had been assigned the same square root of the total 

cracking percentage but different IRI values within a limited range. Therefore, rather than 

including all data points in the regression analysis, it was decided that for each IRI value, the 

average for the square root of the total cracking percentage was used as their corresponding 

value. Figure 12 shows the data points for the average square root of the total cracking 

percentage and their corresponding IRI values, where a linear regression model has been 

proposed whose functional form is stated in Equation 3 with the regression coefficients and 

their 95% confidence bounds shown in Table 4. This predictive model has a coefficient of 

determination of R2 = 0.834. The scatter plot of residuals for this regression are shown in 

Figure 13 where it is possible to see that the variance of the residuals does not show a 

tendency across the full range of the fitted values. 

 

𝐼𝑅𝐼 (𝑚/𝑘𝑚) = 𝑐 ⋅ √(% 𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔) + 𝑑    (3) 

 

Table 4. Regression coefficients and their 95% confidence bounds for Equation 3 

c d 

4.340 1.819 

(3.827; 4.854) (1.708; 1.930) 
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Figure 12. The data points and the linear regression model between the square root of the 

total cracking percentage (on average) and the IRI (m/km). 

 

 

Figure 13. Scatter plot of residuals for the correlation shown in Figure 12. 

 

Finally, a predictive model for the PCI as a function of the cracking percentage is proposed. 

In a similar manner to the predictive model described in Figure 12, it is worth noting that 

when analysing the dataset, it was possible to observe that small subsets of images had been 

assigned the same square root of the total cracking percentage but different PCI values within 

a limited range. Therefore, rather than including all data points in the regression analysis, it 

was decided that for each PCI value, the average for the square root of the total cracking 

percentage was used as their corresponding value. Figure 14 shows the data points for the 

average square root of the total cracking percentage and their corresponding Log10(PCI) 
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values, where a linear regression model has been proposed whose functional form is stated 

in Equation 4 with the regression coefficients and their 95% confidence bounds shown in 

Table 5. This predictive model has a coefficient of determination of R2 = 0.842. The scatter 

plot of residuals for this regression are shown in Figure 15 where it is possible to see that the 

variance of the residuals does not show a tendency across the full range of the fitted values. 

 

𝐿𝑜𝑔10(𝑃𝐶𝐼) = 𝑒 ⋅ √(% 𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔) + 𝑓    (4) 

 

Table 5. Regression coefficients and their 95% confidence bounds for Equation 4 

e f 

-0.262 1.979 

(-0.306; -0.218) (1.965; 1.992) 

 

 

Figure 14. The datapoints and the linear regression model between PCI and 

√(% 𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔) 
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Figure 15. Scatter plot of residuals for the correlation shown in Figure 14. 

 

6 Conclusions and further research 

Airport pavement roughness and condition correlations were proposed based on the analysis 

of 8,275 images of three runways of mid-size airports in Chile. This work used industry-

standard methodologies to assess two parameters that are traditionally used to measure 

roughness and condition, i.e. IRI and PCI. Although the IRI parameter has not been devised 

for use in airport pavements, its extensive use at both the research and industry levels makes 

it relevant for investigation in this work. The study results suggest that there is a statistically 

reasonable level of correlation between IRI and PCI (predictive capacity, R2 = 0.895) and, as 

such, it can be used to provide useful information for airport management agencies to ensure 

timely maintenance decisions. In addition, an automated, parsimonious, and virtually 

inexpensive method for estimating both the IRI and PCI was proposed, based on an 

automated image analysis procedure that required no human intervention. The image analysis 

procedure calculated the total amount of cracking observed in a pavement sampling unit with 

high accuracy. The results suggested the presence of a statistically reasonable predictive 

capacity for predicting the IRI (R2 = 0.834) and the PCI (R2 = 0.842). It is anticipated that 

the predictive models proposed in this work could help airport management agencies when 

conducting pavement condition evaluation in the context of their APMS. The simplicity of 

the functional forms of all the models proposed in this work (i.e. linear) is acknowledged. 

Further research should be carried out in trying to improve the predictive capacity of the 

regressions performed herein, e.g. using artificial intelligence techniques such as artificial 
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neural networks. In addition, it must be explored how the predictive capacity of the models 

proposed in this work may change for different sampling unit sizes, and accordingly, for the 

processing of different image sizes. 
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