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Abstract. In this paper we investigate phenomena of spontaneous emer-
gence or purposeful formation of highly organized structures in networks
of related agents. We show that the formation of large organized struc-
tures requires exponentially large, in the size of the structures, networks.
Our approach is based on Kolmogorov, or descriptional, complexity of
networks viewed as finite size strings. We apply this approach to the
study of the emergence or formation of simple organized, hierarchical,
structures based on Sierpinski Graphs and we prove a Ramsey type the-
orem that bounds the number of vertices in Kolmogorov random graphs
that contain Sierpinski Graphs as subgraps. Moreover, we show that
Sierpinski Graphs encompass close-knit relationships among their ver-
tices that facilitate fast spread and learning of information when agents
in their vertices are engaged in pairwise interactions modelled as two per-
son games. Finally, we generalize our findings for any organized structure
with succinct representations. Our work can be deployed, in particular,
to study problems related to the security of networks by identifying con-
ditions which enable or forbid the formation of sufficiently large insider-
subnetworks with malicious common goal to overtake the network or
cause disruption of its operation.

Keywords: Organized Threat Structures, Network Threats, Sierpinksi
Triangle, Sierpinski Graphs, Kolmogorov Complexity, Ramsey Theory.



1 Introduction

In this paper, we address the problem of the formation or emergence of
certain configurations or patterns, termed highly organized structures in
our context, in evolving networks of agents (e.g. social networks) based on
combining the concepts of Ramsey Numbers in graphs and Kolmogorov
Complexity. Our work does not rely on random graph or asymptotics
techniques and focuses on finite graphs and can be used to study when
and how organized structures appear in finite size networks of interacting
agents, answering questions such as the following: (i) given a network of
interacting agents of a specific size, how large can an organized subnet-
work be in which a common goal diffuses to overtake the whole network?
(ii) can a subgroup of a specific organization structure appear in networks
of a given size? and (iii) how large a network of interacting agent should
be before it becomes vulnerable to the possibility of formation of large
subnetworks of closely-interacting malicious agents?

Broadly speaking, Ramsey theory refers to mathematical statements
that a specific structure (e.g. string, graph, number sequence etc.) is cer-
tain to contain a large, highly organised, substructure. Examples of such
statements stems from several disciplines, including mathematical logic,
number theory, analysis, and graph theory. One of the most well-known
such statements in number theory, proved by van der Waerden in 1927
(see [15]) is the following: for any fixed positive integers r and k, there
exists some positive integer n such that if the integers {1, 2, . . . , n} are
colored using r different colors, then there exist at least k monochromatic
integers in arithmetic progression. The least such value of n is called the
Van der Waerden number W (r, k). In this paper, our focus is on the
Ramsey Theory of graphs. This research area was inaugurated in 1930 by
Ramsey in [12] in which he stated and proved the, so called, Ramsey’s
Theorem: for any graph H, there exists a natural number n such that for
any colouring of the edges of Kn (i.e. the clique on n vertices) with two
colours, Kn contains a monochromatic copy of H as a subgraph, not nec-
essarily induced. The least such value n is called the Ramsey number of
H and is denoted by r(H) (if H = Kt, we simply write r(t)). For our pur-
poses, we consider the Ramsey numbers for the class of Sierpinski Graphs.
This class of graphs has bounded maximum degree for its vertices. This
fact leads to linear, in the number of vertices of H, upper bounds for the
Ramsey numbers of these graphs. This follows from a more general result
of Chvátal, Rödl, Szemerédi and Trotter in [4] which states that if H is
a graph on n vertices and maximum degree ∆, then the Ramsey number



r(H) is bounded by c(∆)n for some constant c(∆) depending only on ∆.
That is, the Ramsey number of bounded-degree graphs grows linearly in
the number of vertices. Moreover, a linear bound also holds for the in-
duced Ramsey numbers which are defined as the Ramsey numbers only,
now, the monochromatic copy of H needs to form an induced subgraph,
which is a stricter form of subgraph that allows the existence of edges in
the subgraph H if and only if they are edges of H. Other edges, which
may exist among vertices of H as edges of the larger graph should not
exist, as it may be the case in the general subgraph notion. The Induced
Ramsey Theorem states that rind(H) exists for every graph H (see, e.g.,
Chapter 9.3 in [6]).

On the other hand, the Kolmogorov complexity of a finite object (most
often a bit sequence modelling a finite structure such as a graph) is defined
as the minimum number of bits into which the object can be compressed
without losing information, i.e. so as the compressed string is recoverable
through some algorithm, running on a reference machine, which is most
often the universal Turing machine (see [9]). Note the the word complex
in the context of Kolmogorov complexity reflects, rather, lack of orga-
nization, pattern, and “sophistication” as opposed to the meaning the
word complex has in everyday language as describing an object or entity
of a high degree of organization and fine structural details. Thus, an ob-
ject of high Kolmogorov complexity is, actually, of low complexity in the
usual sense since they have all randomness properties while objects of low
Kolmogorov complexity lack randomness, having internal structural orga-
nization and many regularities. Thus, they can be succinctly described or
compressed, in the terminology of Kolmogorov complexity theory. With
regard to this concept of complexity, it was proposed and developed, inde-
pendently, by Andrei Kolmogorov, Ray Solomonoff, and Gregory Chaitin
([8, 10, 3]). This concept addresses the complexity of finite objects, in con-
trast with classical complexity theory, like NP-completeness, that ad-
dresses the complexity of infinite sets of finite objects, i.e. languages in
the complexity-theoretical terminology.

Based on Ramsey theory and Kolmogorov Complexity arguments, we
investigate, in this paper, phenomena of existence or formation of highly
organized structures, such as organizations, people’s networks, and soci-
etal patterns, in evolving networks of agents. As a specific case, we focus
on the class of Sierpinski Graphs which have, also, the important prop-
erty of being close-knit, i.e. agents interconnected with connections based
on these graphs are very “cohesive”. Close-knit graph families play an
important role in diffusion processes in graphs (see [13]) in contexts such



as the emergence of shared and agreed upon innovations or ideas over
large population of agents..

2 Closeness properties of graphs

Agent interactions and the study of their long term evolution as well as
properties using such models, can reveal crucial information about the dy-
namics of the social fabric and the way it expands as well as how organized
substructures emerge, inescapably, due to these dynamics. For instance, in
this paper we show that, under certain conditions, one may locate in large
structures containing interacting agents, large substructures with certain
“member closeness” properties. We show, for instance, in this paper that
large close-knit regular substructures emerge, as the network expands,
as a form of local “island” of regularity and social organization, even if
the network of agents evolves in unpredictable (i.e. random) ways on a
global scale. Close-knit agent structures, as Young showed in [13], play
an important role in diffusing throughout society ideas and beliefs that
are, initially, held by only a relatively small group of interacting agents.

Young’s mathematical result examines how an idea or opinion spreads
over a population of interacting agents whose social structure has a certain
“coherence” property and whose members interact through a two person
“innovation acceptance” game.

In [13], Young defined a parameter of networks of agents, modelled as
graphs, that describes their “coherence” as well as their vulnerability to
outsiders’ views against the innovation to be diffused. A group of agents
S (i.e. nodes in a given graph G with no isolated vertices) is close-knit if
the following condition is true for every S′ ⊆ S, S′ 6= ∅, given appropriate
values for r (see discussion below):

min
S′⊆S

d(S′, S)∑
i∈S′ di

≥ r (1)

where d(S′, S) is the internal connections of S′ i.e. the number of links
{i, j} where i ∈ S′ and j ∈ S while di is the total number of links
that agent i possesses (i.e. its degree in the graph). It is obvious from
Inequality (1) that for every subset of a close-Knit group S, the ratio
of internal degree to the total degree is at least r. Intuitively, to have a
large such ratio in a group of agents we need, relatively, many internal
connections and few external connections.

Given a positive integer k and a real number 0 ≤ r ≤ 1/2, we call a
graph G(r, k)-close-knit if every agent belongs to a group S of cardinality



at most k which is r-close-knit as defined by Inequality (1). Finally, a
class of graphs is close-knit if for every 0 ≤ r ≤ 1/2 there exists an
integer k, possibly depending on r, such that every graph in the class is
(r, k)-close-knit.

Moreover, the agents of the population are involved in playing a two
person game on a regular basis in which pairs of interacting agents com-
pete for a payoff against the other (non zero-sum game). According to
the game, each time two agents interact they, independently, choose to
either adopt or not adopt the innovation, based on the payoffs they can
receive from their choices. The game is assumed to have a risk dominant
Nash equilibrium in which both players adopt the innovation (see [13] for
the details).

Based on these two elements, Young proved that for classes of close-
knit agent graphs all community members will eventually adopt the inno-
vation, i.e. the risk dominant Nash equilibrium of the game, in a number
of interactions (“time”) which is bounded and independent from the size
of the community. In other words, if all the subsets of the community
members have strong pairwise links and, at the same time, are weakly
connected to outsiders (who may even be negative towards adopting the
innovation), then a group of initiators will manage, in the end, to convince
all population members to adopt the innovation.

3 Sierpinski triangle based group formations

In this section we describe a class of graphs based on the Sierpinski Tri-
angle fractal and prove that it forms a close-knit graph family.

Definition 1 (Sierpinski Triangle gasket of level l). Given an inte-
ger l, l ≥ 1, we define the Sierpinski Triangle gasket of level l or, simply,
Sierpinski Triangle of level l as follows: for l = 1 the Sierpinski Triangle
is an equilateral triangle while for l > 1, the Sierpinski Triangle of level l
is composed of three copies of a Sierpinski Triangle of level l−1 connected
at their corners.

In Figure 1 we see a few of the first Sierpinski Triangles, for l = 1, 2, 3, 4, 5, 6
and 7. Based on the Sierpinski Triangles, we can define a corresponding
family of graphs, called Sierpinski Graphs.

Definition 2 (Sierpinski graphs). The Sierpinski Graph of level l, l ≥
1, denoted by Sl is formed as follows: if l = 1 then the Sierpinski Graph
of level 1 is formed if we replace the three vertices and the edges of the



 

Fig. 1. Sierpinski Triangles, for l = 1, 2, 3, 4, 5, 6 and 7 respectively.

Sierpinski Triangle of level 1 with graph vertices and edges otherwise, for
l > 1, the Sierpinski Graph of level 1 is formed by three copies of the
Sierpinkski Graph of level l−1 by identifying their vertices corresponding
to the corners of the corresponding Sierpinski Triangle of level l − 1.

In Figure 2, we see the Sierpinski Graphs S1, S2 and S3. In particular,

 

Fig. 2. The Sierpinski Graphs S1, S2 and S3.

in Figure 3 we see how the Sierpinski graph of level 4, S4, is composed
of three copies of the Sierpinski Graph of level 3, S3, which is shown in a
dashed enclosure. It is not hard to see that the following properties hold

 

 

 

 

 

 

 

Fig. 3. The Sierpinski Graph of level 4.

for Sl:



– For every value of l > 1, all vertices of Sl have degree 4 except three
vertices (the “corner” ones) which have degree 2.

– The number of vertices of Sl is nl = 3
2(3l−1 + 1).

– The number of edges of Sl is ml = 3l.

The degree and connectivity properties helps satisfy Inequality (1). In-
tuitively, having too many nodes with large degrees, exposes a group of
agents to much external interference. This affects negatively the close-knit
property. We prove the following:

Theorem 1. The family of Sierpinski Graphs is close-knit.

Proof. Let Sl = (V,E) be a Sierepinski Graph of level l, l ≥ 1. Let S be a
subset of its set of vertices V , such that |S| = k and S′ a nonempty subset
of S. Each of the vertices in S and S′ have degree either 2 or 4. Let, also,
i, 0 ≤ i ≤ 3 be the number of vertices of degree 2 in S′. We compute the
numerator and denominator of the fraction in Inequality (1).

If by α, 0 ≤ α ≤ 1, we denote the fraction of edges between vertices
in S′ and vertices in S − S′, then with respect to the numerator of the
fraction in Inequality (1), we have

d(S′, S) = α[4(k − i) + 2i] + (1− α)
4(k − i) + 2i

2
(2)

= α[4(k − i) + 2i] + (1− α) [2(k − i) + i]. (3)

since edges between vertices in S′ should be counted only once for the
calculation of d(S′, S) in (3). As for the denominator in Inequality (1),
we have ∑

i∈S′
di = 4(k − i) + 2i. (4)

From (3) and (4) we have

d(S′, S)∑
i∈S′ di

=
α[4(k − i) + 2i] + (1− α) [2(k − i) + i]

4(k − i) + 2i
. (5)

After some straightforward manipulations, (5) reduces to 1+α
2 .

Therefore, Inequality (1) holds for any r and k. We conclude, that Sl,
for l ≥ 1, i.e. the Sierpinski Graphs, form a close-knit family of graphs. �

4 Existence of highly organized structures in networks of
interacting agents

In this section, we investigate the conditions upon which highly organized
structures can appear in networks of interacting agents. These structures



may represent any organized community of individuals with a common
aim or shared beliefs. These conditions, loosely speaking, rely on the
structures possessing certain recognizable regularity properties that can
be used to succintly describe them. These regularity and succinctness con-
ditions model the “organized structure” notion. For concreteness, we will
fix our organized, regular, structures to belong in the class of Sierpin-
ski Graphs which, in addition, have the property of being close-knit (see
Section 3).

More specifically, we will study the problem of the existence of Sier-
pinski Graphs, as subgraphs, in sufficiently large graphs, which can model
evolving interacting agents, social networks and societies. In this section
we deploy techniques from Kolmogorov Complexity and Ramsey Theory.
In what follows, we briefly state the main definitions and some useful
results from Kolmogorov Complexity and Ramsey Theory. We, then, ap-
ply both theories in order to investigate conditions that enable or hinder
the emergence of organized substructures in evolving structures which are
modelled as graphs.

4.1 Kolmogorov Complexity

In informal terms (see [8, 10, 3]) the Kolmogorov Complexity of a (binary)
string x is the length of the shortest algorithmic description of x. In other
words, the Kolmogorov Complexity, denoted by C(x), of a finite string x is
the length of the shortest program (or Turing machine in general) encoding
as a binary sequence of bits, which produces x as output, without taking
any input. Similarly, the conditional Kolmogorov Complexity of x given y,
denoted by C(x|y), is the length of the shortest program which produces
x as output given y as input. It can be shown that C(x) is, in some sense,
universal in that it does not depend on the choice of the programming
language or Turing machine model, up to fixed additive constant, which
depends on this choice but not on x.

In this paper, our focus is on graphs. We can deploy the notion and
properties of Kolmogorov Complexity by encoding graphs with strings as
follows (see, e.g., [9]):

Definition 3. Each labelled graph G = (V,E) on n nodes V = {1, 2, . . . , n}
can be represented (up to automorphism) by a binary string E(G) of length(
n
2

)
. We simply assume a fixed ordering of the

(
n
2

)
possible edges in an

n-node graph, e.g. lexicographically, and let the ith bit in the string indi-
cate presence (1) or absence (0) of the ith edge. Conversely, each binary
string of length

(
n
2

)
encodes an n-node graph. Hence we can identify each

such graph with its binary string representation.



Definition 4. A labelled graph G on n nodes has randomness deficiency
at most δ(n), and is called δ(n)-random, if it satisfies

C(E(G)|n) ≥
(
n

2

)
− δ(n). (6)

Also, the following holds (see, e.g., [9]):

Lemma 1. A fraction of at least 1−1/2δ(n) of all labelled graphs G on n
nodes is δ(n)-random. In particular, for δ(n) = logn, a fraction of (1− 1

n)
of all graphs on n vertices is log n-random.

Definition 5. Let G = (V,E) be a labelled graph on n nodes. Consider
a labelled graph H on k nodes {1, 2, . . . , k}. Each subset of k nodes of
G induces a subgraph Gk of G. The subgraph Gk is an ordered labelled
occurrence of H when we obtain H by relabelling the nodes i1 < i2 <
· · · < ik of Gk as 1, 2, . . . , k.

4.2 Ramsey Theory

We first provide the definition of the r-colouring of a set in Ramsey The-
ory.

Definition 6. (r-colouring) Let S be a set and r ∈ Z+. An r-colouring
of S is a function f : S → {1, 2, . . . , r}.

As discussed in the introduction, Ramsey Theory is concerned with
questions involving the appearance of certain patterns in sufficiently large
graphs. For instance, Ramsey Theory started with the following question:
given a graph H, determine the Ramsey number r(H), which is defined
as the smallest natural number n such that any two-colouring of E(Kn)
contains a monochromatic copy of H. In [5] the following is proved:

Theorem 2. There exists a constant c such that any graph H on k ver-
tices with maximum degree ∆ satisfies

r(H) ≤ k 2c∆ log∆.

In this paper, we are interested in the Induced Ramsey Number of a given
graph H, which is defined as follows:

Definition 7. (Induced Ramsey numbers) A graph H is an induced sub-
graph of a graph H if V (H) ⊂ V (G) and two vertices of H are adjacent if
and only if they are adjacent in G. The induced Ramsey number rind(H)
is defined as the minimum integer for which there is a graph G on rind(H)
vertices such that every two-colouring of the edges of G contains an in-
duced monochromatic copy of H.



Note that an induced monochromatic copy of H is, also, an induced copy
of H as an induced subgraph, in the ordinary graph-theoretical sense,
regardless of the colour of the edges of G.

There is a number of results that provide upper bounds on induced
Ramsey numbers for sparse graphs. For instance, Beck in [1] focused
on the case when H is a tree. Also, Haxell, Kohayakawa, and  Luczak [7]
showed that the cycle of length k has induced Ramsey number linear in k.
Moreover,  Luczak and Rödl [11] proved that the induced Ramsey number
of a graph with bounded maximum degree is at most polynomial in the
number of its vertices, settling a conjecture of Trotter. More precisely,
they proved the following:

Theorem 3. For every integer d, there is a constant cd such that every
graph H on k vertices and maximum degree at most d satisfies rind(H) ≤
kcd.

The proof provides an upper bound on cd that is a tower of 2’s of height
proportional to d2. Since a Sierpinski Graph has maximum degree equal
to 4, then an immediate corollary from Theorem 3, applied for d = 4, is
the following:

Corollary 1. Let H = Sl be a labelled Sierpinski Graph of level l with nl
vertices. Then rind(Sl) ≤ ncdl , where cd is a positive constant, independent
from nl and, thus, from l.

4.3 The emergence of organized subgraphs in evolving graphs

Although random graphs (see e.g. [2]) are a powerful tool for proving limit
properties, i.e. properties that hold in the limit as the graph size grows
asymptotically, its main limitation is that it does not say anything about
specific, finite, graph instances, for a fixed size n. Kolmogorov complexity
theory, on the other hand, focuses on the study of specific, finite, objects
(graphs in our case). Based on this theory, we can prove the following:

Theorem 4. Let Sl be a labelled Sierpinski Graph on nl vertices. Let G
be a labelled incompressible graph on n vertices that contains Sl as an

induced subgraph. Then n ≥ 2
nl−1

2 .

Proof. Let G to be a labelled incompressible graph with n vertices whose
encoding E(G) as a binary string (see Definition 3) has length l(E(G)).
Since G is incompressible, it holds

C(E(G)|n, P ) ≥ n(n− 1)

2
(7)



where P is a program that can reconstruct E(G) from the value n and
an alternative encoding E′(G) as described below.

Since G contains, from our assumption, Sl as an induced subgraph,
we can describe G by forming an alternative encoding E′(G) constructed
from E(G) as follows:

1. We add to the encoding E(G) the description of the Sierpinski Graph
subgraph of G. In order to describe such a graph of nl vertices in
the graph G of n vertices, we need log

(
n
nl

)
bits to denote the sub-

set of the nl vertices and log nl! bits to denote the specific ordering
i1i2 . . . inl−1inl

that provides the structure of a Sierpinski Graph, as
we see it in the example graph of Figure 2, i.e. we form the Sierpinski
Graph on nl vertices and label them from top to bottom and from
left to right (e.g. see Figure 2 for an indication of the “top” and the
“bottom” of a Sierpinski Graph). In total, to describe this Sierpin-
ski Graph subgraph, we need at most log

(
n
nl

)
+ log nl! bits and, since(

n
nl

)
≤ nn

l
nl!

, we need, at most

log
nnl
nl!

+ log nl! = nl log n (8)

bits.
2. We delete, from E(G), all the bits that encode the edges of the Sier-

pinski Graph subgraph, saving nl(nl−1)
2 bits.

Now, it is easy to provide an algorithm P that, given E′(G), constructs
the Sierpinski Graph subgraph on nl vertices given as input the num-
ber n of vertices of the graph, the value of nl and the specific ordering
i1i2 . . . inl−1inl

, of the vertices of the Sierpinski Graph.
The length of the new encoding is, at most

l(E′(G)) = l(E(G)) + nl log n− nl(nl − 1)

2
. (9)

Given the value of n, the program P can reconstruct E(G) from E′(G).
Thus

C(E(T )|n, P ) ≤ l(E′(T )). (10)

Since G is incompressible, it must hold l(E′(G)) ≥ l(E(G)). From (9),
this can, only, hold if

nl log n ≥ nl(nl − 1)

2
⇔ n ≥ 2

nl−1

2 (11)

which is the required. �



Theorem 4 states that no incompressible graph with fewer than 2
nl−1

2

vertices can contain Sl as an induced subgraph. Consequently, an incom-
pressible graph cannot contain Sl as a monochromatic induced subgraph
either, in any two colouring of its edges. Thus, from Corollary 1 and
Theorem 4, we have the following:

Theorem 5. No incompressible graph on rind(Sl) vertices can contain Sl
as an induced subgraph except, possibly, for a finite set of values for l.

Proof. Let G be an incompressible graph on n vertices that contains Sl
as an induced subgraph. Since rind(Sl) ≤ ncdl from Corollary 1, it follows

that n ≤ ncdl . Also, the bound n ≥ 2
nl−1

2 holds from Theorem 4. Thus,
it follows that n ≤ ncdl can only hold for a finite set of values for nl,
whose cardinality depends on the constant cd, since the growth rate of n
is exponential in nl while the growth rate of the bound ncdl for rind(Sl) is
polynomial in nl. �

Moreover, based on Lemma 1, we obtain the following stronger, than
Theorem 5, result:

Theorem 6. Almost all graphs on rind(Sl) vertices (a fraction of (1 −
1

rind(Sl)
) of them) are such that no two-colouring of their edges contains

an induced monochromatic copy of Sl, as l grows.

Proof. Following the same line of proof as in Theorem 4, we now start
with a labelled graph G such that

C(E(G)|n, P ) ≥ n(n− 1)

2
− log n. (12)

These graphs form a fraction of at least (1− 1
n) of all labelled graphs on

n vertices, according to Lemma 1. For n = rind(Sl) these graphs form a
ratio of at least (1− 1

rind(Sl)
) of all graphs with rind(Sl) vertices. What is

stated below, applies to all of these graphs which, as l tends to infinity,
including almost all possible graphs on rind(Sl) vertices.

The rest of the proof follows closely the proof of Theorem 4, setting
n = rind(Sl), but now the following inequality must be satisfied instead
of Inequality (11):

nl log n+log n ≥ nl(nl − 1)

2
⇔ n ≥ 2

nl(nl−1)

2(nl+1) ⇔ rind(Sl) ≥ 2
nl(nl−1)

2(nl+1) . (13)

However, since rind(Sl) ≤ ncdl for some constant cd depending only on
the maximum degree d of the graph vertices, according to Theorem 3,



Inequality (13) would require ncdl ≥ 2
nl(nl−1)

2(nl+1) , which cannot hold from
some value of l onwards. �

Definition 8 (Size Constructible Graphs). Let F be a family of
graphs. We call F size constructible if each of the graphs in F can be
uniquely constructed by an algorithm PF which takes as inputs the graph’s
size, i.e. the number of vertices of the graph, and, possibly, a permutation
that gives some ordering information about the vertices.

A direct consequence of Definition 8 is that the family of Sierpinski
Graphs is size constructible. This is due to the fact that a Sierpinski
Graph Sl with nl vertices can be described with only information nl and
the permutation that denotes the ordering of its vertices which the recon-
struction algorithm P that we described in the proof of Theorem 4 uses
in order to reconstruct the graph.

Then, Theorem 4 can be generalized as follows:

Theorem 7. Let F be a family of size constructible graph. Let Let G be
a labelled incompressible graph on n vertices that contains as an induced

subgraph a graph in F with k vertices. Then n ≥ 2
k−1
2 if PF requires

information about the ordering of the vertices and n ≥ k2
k
2

(
1
e
√
2
− o(1)

)
if PF does not require this information.

Proof. If the algorithm PF needs, except from k, also the ordering of the
vertices, then a graph in F can be described using k log n + log k! bits,
as in the case of Sierpinski Graphs in Theorem 4, thus the proof of this
theorem also applies to the case of F .

If PF does not need the ordering information, then instead of needing
the number of bits given in Equation (8) in the proof of Theorem 4, we
need, at most

log
n

k!
= k log n− log k!. (14)

bits since the ordering information, i.e. log k! bits, is not required.
Thus, the following inequality must hold for an incompressible graph

G, as in Inequality (11) for the Sierpinski Graphs in the proof of Theo-
rem 4):

k log n− log k! ≥ k(k − 1)

2
. (15)

Using Stirling’s approximation k! ≈ (ke )k
√

2πk and solving for n, Inequal-
ity (15) leads to

n ≥ k2
k
2

(
1

e
√

2
− o(1)

)



which is the required. �

In our context, i.e. the emergence of an organized, close-knit, commu-
nity in the form of a Sierpinski Graph, the results above have certain
ineresting consequences. First of all, Theorem 4 and Theorem 7 (the gen-
eralization of Theorem 4) show that the existence or purposeful formation
of orgagnized structures, such as the Sierpinski Graphs, in incompressible,
i.e. random-like, networks of interacting agents requires the networks to
be exponentially large with respect to the size of the organized structure.
Smaller interconnection networks, i.e. polynomially large in the size of
Sierpinski Graph, almost certainly do not contain such organized struc-
tures.

5 Induced Ramsey numbers for incompressible graphs

In this section we investigate Ramsey Numbers in the context of Kol-
mogorov random graphs. More specifically, we prove bounds on the size
of Kolmogorov Random graphs so as to contain a Sierpinski Graph (or
other size constructible graph) as a subgraph.

Definition 9. (Induced Ramsey numbers for incompressible graphs) The

induced Ramsey number for incompressible graphs, r
INC,δ(n)
ind (H), is defined

as the minimum integer for which there is a Kolmogorov Random graph

G with randomness deficiency at least δ(n) on r
INC,δ(n)
ind (H) vertices such

that every 2-colouring of E(G) contains an induced monochromatic copy
of H.

Theorem 8. Let H be a size constructible graph on k vertices and of
maximum degree at most d, whose description needs vertex ordering in-
formation (a similar result holds for size constructible graphs that do not

require such information). Let n1 = 2
k−1
2 − 1 and n2 = rind(H). Then

for δ(n) ≥ n1n2 +
(
n2

2

)
, it holds that (i) r

INC,δ(n)
ind (H) exists, and (ii)

r
INC,δ(n)
ind (H) < 2

k−1
2 + rind(H).

Proof. Let G1 be any incompressible graph on n1 = 2
k−1
2 − 1 vertices,

so that (according to Theorem 7) it does not contain H as an induced
subgraph. Since G1 is incompressible, it holds C(E(G1)) ≥

(
n1

2

)
.

Let, also, G2 be any graph on n2 = rind(H) ≤ kcd vertices such that
for every two-colouring of its edges it contains an induced monochromatic
copy of H (the existence of such a graph is guaranteed by Theorem 3).



Let n = n1 +n2. We focus on the graphs G with n vertices which, simply,
consist of one copy of G1 and one copy of G2, that is, two subgraphs
isomorphic to G1 and G2. There are no additional edges except those in
these two subgraphs.

Obviously, every two-colouring of E(G) contains an induced monochro-

matic copy of H, since G2 does. This proves that r
INC,δ(n)
ind (H) exists for

Kolmogorov random, i.e. incompressible, graphs (at least for the defi-
ciency function δ(n) which will be defined below).

Also, G has n = n1 + n2 = 2
k−1
2 − 1 + rind(H) vertices. We will show

that for appropriate randomness deficiency function δ(n) = δ(n1, n2) the
following holds, i.e. G is δ(n1, n2)-incompressible:

C(E(G)) ≥
(
n1 + n2

2

)
− δ(n1, n2)

with δ(n1, n2) ≥
(
n2
2

)
+ n1n2. (16)

Assume, towards a contradiction, that C(E(G)) <
(
n1+n2

2

)
− δ(n1, n2)

for a randomness deficiency function δ(n1, n2) that obeys the inequality
in (16). Then the following holds:

C(E(G)) <

(
n1 + n2

2

)
− δ(n1, n2) ≤(

n1 + n2
2

)
−
[(
n2
2

)
+ n1n2

]
=

(
n1
2

)
. (17)

We will describe an algorithm that can reconstruct G1 from a descrip-
tion of G of C(E(G)) <

(
n1

2

)
bits contradicting our assumption that

C(E(G1)) ≥
(
n1

2

)
, i.e. that G1 is incompressible.

Let us assume that we have a description of G of C(E(G)) <
(
n1

2

)
bits.

Then we can reconstruct G1 as follows. We first reconstruct G using its
description of C(E(G)) bits. We, then, compute its connected components
using, e.g., a Depth First Search (DFS) algorithm (see [14]). Let these
components be Gi1 , Gi2 , . . . , Gis . One of these components must be the
graph G2. The union of the rest of the components should be the graph
G1. However, it is possible that only one component exists, beyond G2,
if G1 is a connected graph. Our next step is to identify G2. If we succeed
in this task, then we have identified G1: it is the graph that is composed
of vertices and edges of G which do not belong in G2.

In order to identify G2 we work on the components Gi1 , Gi2 , . . . , Gis ,
one at a time. We should be cautious here, since G2 may not be a con-
nected graph and, thus, we need to locate all its components. The crucial



observation is that G2 cannot contain a component such that no two-
colouring of its edges contains an induced monochromatic copy of H.
Otherwise, we could dispense with this component and have a smaller
graph satisfy the definition of rind(H), contradicting its minimality re-
quirement.

Let Gil be the currently examined component. We produce all possi-
ble edge 2-colourings of this component and for each of them we check
whether G2 contains a monochromatic copy of H. Observe that this can
be true only for G2 components since all other components belong to G1,

which is an incompressible graph with less than 2
k−1
2 vertices and thus,

according to Theorem 4, its edge 2-colourings (and, consequently, its com-
ponents’ 2-colourings) cannot contain a monochromatic copy of H. Thus,
having identified G2 we can reconstruct G1 as the subgraph of G contain-
ing the rest of the components. In this way, we have managed to recon-
struct G1 using less than

(
n1

2

)
bits, which is a contradiction. Consequently,

C(E(G)) ≥
(
n1+n2

2

)
− δ(n1, n2), that is G is δ(n1, n2)-incompressible.

In conclusion, G is a graph of n = n1 +n2 which, for δ(n) ≥ δ(n1, n2),
is δ(n)-incompressible and all the 2-colourings of its edges contain an

induced monochromatic copy of H. Thus, it follows that r
INC,δ(n)
ind (H) ≤

n = 2
k−1
2 −1+rind(H) or, in simpler form, r

INC,δ(n)
ind (H) < 2

k−1
2 +rind(H).

�

From Theorems 4 and 8, the following is derived:

Corollary 2. For every graph H on k vertices and maximum degree at

most d, it holds that 2
k−1
2 ≤ rINC,δ(n)

ind (H) < 2
k−1
2 + rind(H).

Note that, since n = n1 + n2, the canonical representation of G has
|E(G)| =

(
n1+n2

2

)
bits while we set δ(n) = δ(n1, n2) = n1n2 +

(
n2

2

)
. Thus,

considering k as a varying parameter, δ(n) is in the order of
√
|E(G)|.

We could not prove Theorem 8 for deficiency functions δ(n) smaller than
this, e.g. δ(n) = log |E(G)|. However, we believe that this is not possible
since when a graph contains some regularity, in our case the Sierpinski
Graph Sl on nl vertices, its complexity drops since the regularity can be
deployed in reducing the size of its description.

6 Conclusions and directions for further research

Society is a complex human creation composed of multifaceted autonomous,
interacting, agents and their interrelationships. It is a common theme



in numerous research works that out of evolving (even randomly) inter-
actions and relationships important phenomena and patterns emerge in
complex networks of agents. Such results rely on well established mathe-
matical and physical theories about models of interacting agents, such as
Random Graph theory and Complex Network theory.

In this paper we considered two well established mathematical theo-
retical frameworks targeting the concept of complexity of finite objects,
the society and its interacting agents in our case: Kolmogorov Complexity
and Ramsey Theory. Both of these theories, each from another perspec-
tive, study the conditions upon which certain substructures appear (or
do not appear) in large, evolving, structures such as societal networks
of interacting agents, also deriving estimates on how large the structures
should become in order to contain such regularities. We applied elements
of these theories in order to study the appearance of regular structures
or patterns, in evolving societies, that have certain desirable properties.
One of these properties, which was among our targets, is close-knittedness
or, in other words, the property that describes structures of communicat-
ing agents whose members interact closely with each other and defend,
strongly, their group’s coherence and views against the containing, larger,
structure.

More specifically, with Theorem 5 we proved that the Sierpinski Graph,
as a highly organized structure, cannot emerge in evolving graphs (soci-
eties) unless they reach a sufficient size, exponential in the size of the
organized structure. With Theorem 8 and Corollary 2 we gave bounds on
the size the graphs (societies) that contains with certainty any organized
structure of bounded degree (i.e. relationships) among its vertices (i.e.
society members).

We hope that our work will contribute to the further exploitation of
the rich mathematical theories of complex structures and their long-term
evolutionary properties. In this way, we feel we can strengthen the efforts
towards the study of Social Sciences with methodologies stemming from
exact sciences and formal systems.
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