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Abstract 

Background: Brain functional network abnormalities are reported in posttraumatic stress 

disorder (PTSD). Most resting-state functional magnetic resonance imaging studies have 

assumed that the functional networks remain static during the scan. How these might 

change dynamically in PTSD remains unclear.  

Methods: Resting-state functional magnetic resonance imaging data were collected from 

71 treatment-naïve noncomorbid PTSD patients and 70 demographically-matched 

trauma-exposed non-PTSD (TENP) controls. Network switching rate was used to 

characterize dynamic changes of individual resting-state functional networks. Results 

were analyzed by comparing switching rates between PTSD and TENP, by correlation 

with individual PTSD symptom severity, and for diagnosis-by-sex interactions. 

Results: At the global level, PTSD patients showed significantly lower network 

switching rates than TENP. These were observed mainly in the default-mode, fronto-

parietal, and limbic networks at the subnetwork level, and in the frontal and temporal 

regions at the nodal level. These network switching rate alterations were correlated with 

PTSD symptom severity. There were no significant effects of sex.  

Conclusion: These disruptions of dynamic functional network stability, reflected by 

lower network switching rate in the resting state, are a feature of PTSD, and suggest that 

the default mode, fronto-parietal and limbic networks may play a critical role in the 

underlying neural mechanisms. 
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1. Introduction 

Posttraumatic stress disorder (PTSD) is a trauma-dependent disorder characterized by re-

experiencing, avoidance, hyperarousal, and negative cognitions and mood, and has major 

financial and public health impact [1]. PTSD is now conceptualized as a brain network 

dysfunction syndrome [2,3], manifesting as aberrant functional connectivity, especially in 

the default-mode network [4]. Individual brain network abnormalities are linked with 

clinical symptoms [5,6] and treatment response [7,8].  

    Although yielding insights into the biological underpinnings of PTSD, functional 

connectome studies have mainly focused on static (time-invariant) patterns of 

connectivity. However, the brain is a dynamic system whose connectivity changes with 

time [9,10]. These dynamic reconfigurations are essential for efficient information 

communication [11], cognitive flexibility [12], and rapid response to external 

environment [13]. Although recent PTSD studies have reported alterations of brain 

dynamics such as aberrant connectivity variability [14-16] and transitions between 

connectivity states [17-19], the topological features of dynamic brain networks are not 

yet clear. Investigating the temporally fluctuating patterns in brain network topology, in 

particular the properties of modular switching, should advance our understanding of how 

dynamic interactions of network components underpin clinical symptoms in PTSD. 

    Using resting-state functional MRI data (rs-fMRI), we employed a multilayer network 

model [20] to characterize the topological dynamics of the functional connectome in a 

relatively large sample of treatment-naive PTSD patients without psychiatric 

comorbidity, compared with trauma-exposed non-PTSD (TENP) controls, and to explore 

associations with symptom severity. Based on the reports of aberrant transitions between 
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connectivity states, we hypothesized that: i) PTSD patients would show significant 

alterations in brain connectome dynamics compared to TENP, e.g. in the default mode 

network; and ii) individual alterations would be associated with PTSD symptoms. 

Because females have increased risk of developing PTSD [21] and there are possible 

differential effects of sex on brain functional alterations [22,23], we (iii) also analyzed 

sex-by-diagnosis interactions. 

2. Materials and Methods 

2.1 Participants 

Individuals who survived the 8.0 magnitude earthquake in Sichuan in May 2008 were 

recruited between January and August 2009 and screened with the PTSD checklist-

Civilian Version (PCL) [24]. At follow-up visits 8-15 months after the earthquake, the 

diagnosis of PTSD was based on the Structured Clinical Interview for the DSM-IV 

Diagnosis (SCID) [25] and symptom severity was assessed using the Clinician-

Administered PTSD Scale (CAPS) [26]. Survivors scoring ≥ 35 on PCL and ≥ 50 on 

CAPS were included as PTSD if a diagnosis of PTSD was determined by SCID; those 

who scored < 35 on PCL without diagnosis of PTSD by SCID were considered TENP 

controls. Detailed inclusion and exclusion criteria are provided in the Supplementary 

Materials. Finally, 71 treatment-naive noncomorbid patients with PTSD and 70 

demographically-matched TENP controls were included. This recruitment strategy 

ensured that participants with and without PTSD had similar earthquake experiences and 

demographic characteristics. Notably, we have performed several other analyses on these 

participants (e.g. analyses on cortical thickness [27], white matter microstructure [28], 
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and structural and functional connectivity [6,29,30]), with the results reported in the cited 

papers. 

    This study was approved by the Medical Research Ethics Committee of West China 

Hospital, Sichuan University, and informed written consent was obtained from all 

participants before the study. 

2.2 Image acquisition 

All participants underwent resting-state functional 3.0 T MRI (Excite; GE Healthcare, 

Milwaukee, Wis) with an 8-channel phased-array head coil. Each functional run resulted 

in a total scanning time of 400 s. The sequence parameters were as follows: repetition 

time/echo time, 2000 ms/30 ms; flip angle, 90°; number of axial sections per volume, 30; 

section thickness, 5 mm; no section gap; matrix, 64 × 64; field of view, 240 × 240 mm2; 

and voxel size, 3.75 × 3.75 × 5. The participants were instructed to keep their eyes closed 

and not to think about anything in particular during the acquisition. All MR images were 

evaluated by an experienced neuroradiologist. 

2.3 Image processing 

SPM12 software (http://www.fil.ion.ucl.ac.uk/spm) was used to perform the pre-

processing of fMRI image data. The initial 10 time points were deleted to establish 

magnetic tissue stabilization. Slice timing correction was applied to correct for intra-

volume acquisition delay. The images were realigned to correct for head movement. 

Images were normalized using echo-planar imaging templates (voxel size [3×3×3]). 

Linear trends in time series were removed. Nuisance signals (including the Friston 24-

parameter head motion model, the white matter signal, and the cerebrospinal fluid signal) 

http://www.fil.ion.ucl.ac.uk/spm
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were regressed out. Finally, functional data were linearly detrended and temporally 

bandpass (0.01–0.1 Hz) filtered to eliminate effects of high-frequency noise and low-

frequency drift, and smoothed (Gaussian kernel with a full-width at half-maximum 

[FWHM] of 4 mm). The mean framewise-displacement (FD) was used to evaluate head 

motion during the scans, and did not differ between TENP and PTSD (0.118±0.081 vs. 

0.100±0.046 mm, P = 0.11).  

2.4 Multilayer brain network switching rates 

Constructing multilayer brain network: Multilayer network theory is a powerful way to 

represent and quantify multi-dimensional data studied from multiple perspectives [31,32]. 

Multilayer networks can be considered as a ‘network of networks’, including frequency-

varying networks [33,34], time-varying networks [35-37], networks for different tasks 

[38], and networks from different modalities [39]. In the current study, we applied a time-

varying multilayer network, in which each time-window corresponded to a layer in the 

multi-layer network. Nodes were defined by the Brainnetome 246 Atlas: this provides 

210 cortical and 36 subcortical nodes, and includes detailed anatomic structure and 

accurate functional connection information [40]. The mean time series of each region in 

the 246 atlas were extracted by averaging rs-fMRI signals of all voxels on each node 

coordinates. Dynamic functional connectivity was calculated using a sliding window 

method [10]: Hamming windows (window size = 50 × TR = 100 s, meeting the 1/f0 

wavelength criterion for minimum cutoff frequency 0.01 Hz [41-43]; window step = 1 × 

TR = 2 s) were applied to each participant’s preprocessed fMRI data to obtain a series of 

141 rs-fMRI signal windows. Pearson correlation coefficients were calculated between 

pairs of region signals in each window. This yields a dynamic network matrix (N × N × 
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W) for each subject, where N (= 246) is the number of atlas regions and W (= 141) is the 

number of sliding windows.  

Detecting time-varying modular structures: An iterative Louvain multilayer modularity 

algorithm was implemented to detect the time-varying modular structures of the brain 

network within each time window [20]. Briefly, this algorithm partitions the communities 

in a multilayer network by optimizing the multilayer modularity quality function Q, 

defined as: 

𝑄𝑚𝑢𝑙𝑡𝑖𝑙𝑎𝑦𝑒𝑟(𝛾, 𝜔) =
1

2𝜇
∑ [(𝐴𝑖𝑗𝑠−𝛾𝑠

𝑘𝑖𝑠𝑘𝑗𝑠

2𝑚𝑠
)𝛿(𝑠,𝛾)+𝛿(𝑖,𝑗)𝜔𝑗𝑠𝛾]𝛿(𝑀𝑖𝑠,𝑀𝑗𝛾)

𝑖𝑗𝑠𝛾

 

where i and j are node labels and s and r are layer labels. Specifically, μ denotes the total 

edge weight of the network, Aijs the connectivity strength between nodes i and j in layer s, 

𝑘𝑖𝑠 and 𝑘𝑗𝑠  the degree of nodes i and j in layer s (respectively), ms the total degree of layer 

s, and 
𝑘𝑖𝑠𝑘𝑗𝑠

2𝑚𝑠
 the probability expected by chance of a connection between node i and node j 

in layer s. 𝑀𝑖𝑠 and 𝑀𝑗𝛾 are the community assignments of node i in layer s, and node j in 

layer r respectively. The function δ(𝑥, 𝑦) = 1 if x = y, 0 otherwise. The variable 𝛾𝑠 is the 

topological resolution parameter in layer s, which determines the detected module size 

(larger 𝛾𝑠, smaller module). The temporal coupling parameter 𝜔𝑗𝑠𝛾 denotes the strength of 

inter-layer coupling for node j between layers r and s. This was calculated using an open-

source MATLAB-based code package (https://github.com/GenLouvain/GenLouvain) 

with the commonly-used default setting ω = γ = 1 [35,44]. As this multilayer modularity 

algorithm only allows positive matrix values, negative values in the connectivity matrices 

were set to zero in the sliding-window matrices [35]. Mean connectivity zeroed out did 

not differ significantly between TENP and PTSD (50.2±0.7% vs. 50.1±0.7% per subject, 

https://github.com/GenLouvain/GenLouvain
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P = 0.37). As the output, a 246 × 141 (i.e. N × W) module assignment matrix was 

obtained for each scan, representing the temporal alterations in module assignments for 

all 246 nodes. 

Calculating network switching rates: After obtaining the multilayer module assignment 

matrices, the switching rate for a node i (fi) was calculated as fi = ni/G , where ni is the 

number of times its module assignment changed between consecutive layers, and G is the 

maximum potential number of changes (here 141 - 1 = 140). The switching rate ranges 

between 0 and 1, a higher value indicating higher frequency of the node’s transition 

between different functional modules, and thus lower temporal stability. The calculations 

were performed using the Network Community Toolbox (http://commdetect.weebly.com) 

[36]. Switching rates for the global brain network were obtained by averaging all 246 

nodes. Further, to characterize the contribution of each functional network, 210 cortical 

nodes were taken to correspond to 7 different neural networks in the Yeo atlas (visual, 

somatomotor, dorsal and ventral attention, limbic, frontoparietal, and default mode 

network), and 36 subcortical nodes were classified as the subcortical nucleus network 

[45-48]. Switching rates for these 8 subnetworks were obtained by averaging the nodes 

belonging to each subnetwork. The overall flow-chart of analysis is shown in Figure 1. 

2.5 Statistical analyses 

Differences in demographic and clinical characteristics between PTSD and TENP were 

tested using two-sample t tests (continuous variables) or chi-square tests (categorical 

variables). Between-group differences of brain network switching rates were tested using 

two-sample t tests. PTSD diagnosis-by-sex interaction was analyzed using 2-way analysis 

of variance (ANOVA); if statistically significant interactions were observed, post hoc 

http://commdetect.weebly.com/
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contrasts assessed the simple main effects. Partial correlations were performed between 

CAPS score and the network switching rates which showed significant group differences, 

with age, sex, years of education, and mean FD as covariates. As all participants had 

experienced major life trauma, with PTSD determined by the persistence and severity of 

psychological symptoms, the two groups were pooled to evaluate the relationship 

between brain functional dynamics and PTSD symptom severity. Correlations between 

switching rate and symptom severity in each PTSD and TENP group were also analyzed 

(see  Supplementary Materials). All statistics were performed at the global, subnetwork, 

and nodal levels. False discovery rate (FDR) corrections were applied to control for type 

I errors across the 8 subnetworks and 246 nodes. Results were visualized by BrainNet 

Viewer (http://www.nitrc.org/projects/bnv). Estimates of static functional connectivity 

are given in the Supplementary Materials. 

2.6 Validation analyses 

We investigated whether our results were affected (i) by head motion, (ii) by smoothing 

kernel, and by network analysis strategies, specifically the choice of (iii) multilayer 

network model parameters (ω and γ) and (iv) sliding window parameters (window 

length). First, we combined a series of strategies to minimize the effects of head motion 

on our results, including removal of participants (n = 9) with excess gross head motion 

(>2 mm in translation or >2° in rotation), and regression of 24-parameter head motion 

profiles [49] for each participant before constructing individual functional network. We 

also performed statistical analysis on network switching rates with mean FD as a 

covariate. Second, the choice of 4mm FWHM smoothing kernel is popular [47,50,51], 

and so we selected this for our primary analysis; we also examined the results of 

http://www.nitrc.org/projects/bnv
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choosing a different FWHM smoothing kernel (6mm). Third, in addition to using ω = γ = 

1 in our main analysis, we repeated the analysis using ω = 0.5 and 0.75, and γ = 0.9 [50]. 

Fourth, we repeated our analyses using a window length of 30 × TR = 60 s.  

3. Results 

3.1 Demographic and clinical characteristics 

Individuals with PTSD had significantly higher CAPS and PCL scores than TENP (all P 

˂ 0.001). There were no significant group differences in age, sex, years of education, or 

time since trauma (all P > 0.05, Table 1). 

3.2 Group differences of switching at global, subnetwork, and nodal level 

At the global level, individuals with PTSD had significantly lower network switching 

rates than TENP (P = 0.002, Figure 2 and Table 2). At the subnetwork level, individuals 

with PTSD had significantly lower switching rates than TENP in the default mode (P = 

0.003), frontoparietal (P = 0.006), and limbic networks (P = 0.006, all FDR corrected) 

(Figure 2 and Table 2). There were no significant differences in visual, somatomotor, 

dorsal/ventral attention, or subcortical networks. At the nodal level, individuals with 

PTSD had significantly lower nodal switching rate than TENP in the left inferior frontal 

gyrus, left orbital gyrus, left inferior temporal gyrus, and right cingulate gyrus (all P < 

0.001, FDR corrected) (Figure 3 and Table 3). Figure S2 shows the individual module 

assignments of brain regions which differed between two groups at different network 

layers. Mediation analysis was used to evaluate the indirect effect of network switching 

rate in frontal areas on CAPS score via network switching rate in temporal areas; results 

are given in the  Supplementary Materials.  
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3.3 Interaction between groups and sex with respect to switching rate 

Two-way ANOVA revealed no significant diagnosis-by-sex interaction in global brain 

network switching rate (P = 0.101), subnetwork switching rate in the limbic (P = 0.160), 

fronto-parietal (P = 0.170) or default mode network (P = 0.164), or nodal switching rate 

in left inferior frontal gyrus (P = 0.394), left orbital gyrus (P = 0.221), left inferior 

temporal gyrus (P = 0.692), or right cingulate gyrus (P = 0.374). 

3.4 Correlations between switching rate and symptom severity 

Across the whole sample, there was a significant negative correlation between CAPS 

score and the global network switching rate (r = -0.226, P = 0.013), and the switching 

rates of the limbic network (r = -0.253, P = 0.005), left inferior frontal gyrus (r = -0.236, 

P = 0.010), left orbital gyrus (r = -0.335, P < 0.001), left inferior temporal gyrus (r = -

0.255, P = 0.005), and right cingulate gyrus (r = -0.326, P < 0.001) (Figure 4) (all 

survived FDR correction). Negative correlations falling short of conventional statistical 

significance were found between the CAPS scores and switching rates of frontoparietal (r 

= -0.177, P = 0.053), and default mode network (r = -0.183, P = 0.045).  

3.5 Validation 

To test the robustness of our main findings, we assessed the influence of several analysis 

strategies including: i) testing for head motion effects; ii) different choice of FWHM 

smooth kernel (6mm); iii) different temporal coupling (ω = 0.5 and 0.75) and topological 

resolution parameters (γ = 0.9); and iv) different sliding window length (60 s). The main 

results of switching rate were largely reproducible across analysis strategies (Table S1).  

4. Discussion 
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Using a multilayer brain network model, this study provides evidence of PTSD-related 

alterations in brain modular dynamics. Whereas studies so far have mainly reported 

alterations of static (time-invariant) functional connectivity [3], the connectome dynamics 

approach used here (quantifying temporal switching among functional modules) reflects 

the dynamic modular reconfigurations crucial to efficient information processing [12]. 

We found that individuals with PTSD, relative to TENP, had significantly lower 

switching rates of functional brain network modules at global, subnetwork, and nodal 

levels. These alterations occur primarily in the default mode, frontoparietal, and limbic 

networks as well as frontal and temporal regions, which are associated with individual 

symptom severity. There were no significant interactions between groups and sex. This 

evidence for altered macroscopic connectome dynamics may advance our knowledge of 

the biological mechanisms of PTSD beyond what is possible with the static approach. We 

briefly discuss some of the specific findings. 

    Brain functional networks are often constructed as a single network or static state with 

a modular architecture [52]. A static functional network necessarily reflects temporally 

averaged properties between regions, which cannot describe the full spontaneous activity 

of a brain which works dynamically across multiple time scales [53]. During dynamic 

processes, large-scale brain regions maintain temporary stable states in a highly modular 

form; these transition from one stable functional state to another with rapid and distinct 

transitions [54]. Studying dynamic functional connectivity in the resting state could shed 

light on task-related brain spatiotemporal organization, because maximal (or at least 

optimal) metastability facilitates task-related brain systems configuration [55], and 

dysfunctions among different functional systems may reflect core underlying affective 

Commented [GK1]: Check I've understood this right 
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and cognitive abnormalities [56]. To characterize dynamic modular patterns, a multilayer 

network analysis has been proposed, in which each brain region in one network layer is 

connected to itself in other layers, thus providing a temporal link between adjacent time 

points [20,31]. This method has good test-retest reliability [57]. In the current study, 

globally PTSD had significantly lower brain network switching rates than TENP. 

Reduced temporal variability of functional connectivity seems to be a common feature in 

psychiatric disorders [58,59], including PTSD [14], and this can plausibly be seen as 

reflecting or underpinning a compromised ability to adjust behaviors and thoughts 

dynamically to changing conditions (including internal body/mental states as well as 

external environmental influences) [14].  

    At the network level PTSD patients had lowered modular switching in the default-

mode network (strongly involved in emotional processing, self-referential mental activity 

and episodic memory retrieval [60,61]), the fronto-parietal network (implicated in 

attention control, planning and decision making [62]) and the limbic network (involved in 

social cognition and emotional regulation [63]). Impairments of all three networks and 

their functions have been documented in PTSD [2,3,30], where their common feature 

seems to be impaired emotional and cognitive processing. One interpretation is that 

PTSD patients tend to stay in that state [18], which reflects a more general hypothesis 

that the tendency to enter into, and inability to disengage from, a negative mood state is a 

feature of many psychiatric conditions [64]. Cognition deficits are a new focus in PTSD 

research; our lack of any cognitive evaluation should be addressed in future studies. 

    At the nodal level, PTSD patients had lower switching rate in the left inferior frontal 

gyrus, left orbital gyrus, left inferior temporal gyrus, and right cingulate gyrus. Inferior 
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frontal, orbital and cingulate gyrus have been implicated in emotion regulation and 

higher-order cognitive function [65-67]. Orbital frontal and cingulate dysfunction related 

to inappropriate emotional responses to trauma and behavioral responses to stimuli have 

been implicated in symptom formation in PTSD [67], and negatively correlated with 

hyperarousal [68]. Increase in frontal activation is associated with improvement in 

hyperarousal symptoms and psychological well-being in PTSD [69]. The inferior 

temporal gyrus is part of the ventral visual stream and subserves shape perception and 

recognition memory for patterns, faces and objects [70,71]. Increased flashback reports in 

PTSD patients have been correlated with reduced brain volume in the inferior temporal 

gyrus [72]. Additionally, our observation that the switching rate of the frontal and 

temporal areas were negatively related to CAPS measures of illness severity indicates 

that the lower the switching rate of frontal and temporal areas, the more severe the 

symptoms. Altogether, network switching rate changes in frontal and temporal areas are 

consistent findings in PTSD [73-75], and consistent with a disrupted capacity for 

emotional, cognitive and visual processing, which might be relevant to hyperarousal and 

persistent visual flashback experiences [75,76].  

    While switching rate showed no significant group-sex interaction, some previous 

neuroimaging studies of PTSD [22,23,77,78], although not all [79,80], have reported sex 

differences in brain alterations. The discrepancy may be explained by differences in study 

design, such as the control group used (non-traumatized healthy controls vs. trauma-

exposed normal controls), and type and duration of trauma, as well as technical factors of 

data acquisition and analysis.  
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    Our study has limitations. First, it was cross-sectional; how brain network dynamics 

after major life stress evolve and predict future PTSD conversion must be addressed in 

longitudinal studies. Second, studying participants exposed to the earthquake and free 

from psychiatric comorbidity increases sample homogeneity, but leaves open the 

question of whether our findings generalize to PTSD caused by other types of trauma and 

in patients with psychiatric comorbidities. Third, our research aimed to characterize brain 

network dynamics that distinguish stressed individuals who do and do not develop PTSD. 

Without a parallel group of non-traumatized individuals we cannot identify differences 

between these two groups and healthy controls, to identify how major life stress itself 

impacts brain network dynamics. Fourth, there was possible effect of degree of exposure 

to the earthquake, e.g. physical location at the time of the attacks on brain responses [81]. 

Full study of the different degree of exposure to the earthquake will require a stratified 

statistical analysis which is beyond the scope of the current study, although it is a focus 

of ongoing work. Additionally, some confounding factors, e.g. childhood trauma [82], 

cannot be excluded in our analysis. Recent research has also suggested that different 

amount of substances used may have different stress-related networks [83]; we did not 

include this in  our evaluation. Future studies should address these issues. Due to the 

exploratory nature, the likelihood of our study being directly useful in clinical settings is 

limited. 

    In conclusion, this study expands understanding of the neurobiology of PTSD by 

comparing treatment-naïve non-comorbid adult PTSD patients with similarly stressed 

TENP controls and analyzing topological dynamics of the functional connectome. The 

findings at global, subnetwork and nodal level, mainly involving the default-mode, 
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fronto-parietal and limbic networks as well as frontal and temporal regions, reveal PTSD 

as a disorder of disrupted network integration and impaired emotion processing, in which 

decreased switching rate at multiple levels is related to the clinical severity of PTSD 

beyond the acute stress effects. This study adds to the field of psychoradiology [84-86], 

an evolving subspecialty of radiology aimed to guiding diagnostic and therapeutic 

decision-making in neuropsychiatric disorders. 
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Tables 

Table 1. Demographic and clinical characteristics of participants a 

Variables TENP (n = 70) PTSD (n = 71) P  

Age (years) b 43.3±10.0 (20-65) 44.1±10.1 (19-67) 0.66 c 

Gender (male/female) 20/50 23/48 0.72 d 

Years of education b 6.7±3.2 (0-12) 6.9±3.1 (0-16) 0.74 c 

Time since trauma (months) b 11.9±2.6 (8-15) 11.4±2.3 (8-15) 0.26 c 

PTSD checklist  27.9±6.7 (18-45) 47.5±13.1 (21-80) <0.001 c 

CAPS 22.4±11.2 (3-48) 64.1±9.6 (51-95) <0.001 c 

a Data are presented as mean ± SD (minimum-maximum) unless noted. 

b Age, years of education and time since trauma defined relative to time of MRI scanning. 

c P obtained by two-sample two-tailed t test.  

d P calculated by two-tailed Chi-squared-test. 

Abbreviations: PTSD, posttraumatic stress disorder; TENP, trauma-exposed non-PTSD; CAPS, 

Clinician-administered PTSD scale. 
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Table 2. Network switching rate at global and subnetwork levels 

Network switching rate TENP (n=70) PTSD (n=71) P(T) 

Global 0.041±0.007 0.038±0.007 0.002 (3.232) 

Subnetwork    

  Visual network 0.040±0.011 0.037±0.010 0.083 (1.744) 

  Somatomotor network 0.039±0.011 0.035±0.011 0.034 (2.139) 

  Dorsal attention network  0.040±0.009 0.038±0.010 0.119 (1.568) 

  Ventral attention network 0.040±0.011 0.036±0.011 0.045 (2.025) 

  Limbic network 0.044±0.011 0.039±0.009 0.006 (2.807) 

  Frontoparietal network 0.044±0.010 0.039±0.009 0.006 (2.772) 

  Default mode network 0.042±0.010 0.037±0.009 0.003 (2.996) 

  Subcortical network 0.042±0.011 0.040±0.010 0.240 (1.181) 

Abbreviations: PTSD, posttraumatic stress disorder; TENP, trauma-exposed non-PTSD. 
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Table 3. Regions showing lower network switching rate in PTSD compared with TENP 

Label ID Regions  MNI (x, y, z) TENP PTSD P(T) value 

31 IFG_L −47, 32, 14 0.046±0.021 0.034±0.019 <0.001 (3.537) 

47 OrG_L −6, 52, −19 0.045±0.022 0.031±0.018 <0.001 (4.165) 

99 ITG_L −59, −42, −16 0.046±0.026 0.033±0.018 <0.001 (3.504) 

178 CG_R 5, 22, 12 0.045±0.025 0.032±0.019 <0.001 (3.503) 

Abbreviations: PTSD, posttraumatic stress disorder; TENP, trauma-exposed non-PTSD; 

IFG, inferior frontal gyrus; OrG, orbital gyrus; ITG, inferior temporal gyrus; CG, 

cingulate gyrus; MNI, Montreal Neurological Institute; L, left; R, right. Regions were 

defined according to Brainnetome 246 Atlas.  
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Figure legends 

Figure 1. Overview of analysis strategy. The images were preprocessed. The mean 

values in regions according to the Brainnetome 246 Atlas were extracted to build the 

dynamic functional matrix for each subject. An iterative ordinal Louvain algorithm was 

used to track dynamic network modulation over time. Finally, network switching rate was 

calculated and compared at the global, sub-network, and nodal level. Abbreviations: w, 

window width; s, window step. 

Figure 2. Difference in global and subnetwork-level switching rates between PTSD and 

TENP. Abbreviations: PTSD, posttraumatic stress disorder; TENP, trauma-exposed non-

PTSD. 

Figure 3. Difference in nodal-level switching rates between PTSD and TENP. The 

results were visualized using the BrainNet viewer (http://www.nitrc.org/projects/bnv). 

Abbreviations: PTSD, posttraumatic stress disorder; TENP, trauma-exposed non PTSD; 

L, left; R, right; IFG, inferior frontal gyrus; ITG, inferior temporal gyrus; OrG, orbital 

gyrus; CG, cingulate gyrus. Regions were defined according to Brainnetome 246 Atlas. 

Figure 4. Correlation between the global, subnetwork-level and nodal-level switching 

rate alterations and CAPS scores in the combined PTSD (red circles) and TENP (blue 

circles) groups. Abbreviations: PTSD, posttraumatic stress disorder; TENP, trauma-

exposed non PTSD; CAPS, Clinician-administered PTSD scale; L, left; R, right; IFG, 

inferior frontal gyrus; ITG, inferior temporal gyrus; OrG, orbital gyrus; CG, cingulate 

gyrus. Regions were defined according to Brainnetome 246 Atlas. 
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