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Abstract. The paper presents a series of analysis based on the recent NASA-Langley
Uncertainty Quantification Challenge 2019 aimed towards calibrating an Uncertainty Model
through a black-box model. In this research, 4 alternative Uncertainty Models are being
proposed to investigate the following factors which contribute to the lowest degree of uncertainty
over the aleatory and epistemic uncertain model parameters: 1) the choice of distribution
of the aleatory model parameters; 2) the choice of the stochastic distance metric within the
likelihood function to model the data variability; and 3) the choice of data type used within
the likelihood function for the Bayesian model updating approach. To model the distribution
of the aleatory model parameters, 2 distribution functions are considered: Beta vs Staircase
Density Function. To quantify the variability of the input data used for model calibration, 2
types of stochastic distances are considered: Wasserstein’s distance vs Bhattacharyya’s distance.
For the input data used for model calibration, 2 data types are considered: Time-domain vs
Frequency domain. Based on the results, it was found that the Uncertainty Model incorporating
the Beta distribution to model the aleatory model parameters, the Bhattacharyya’s distance as
the stochastic metric, and the time-based data as the input data, yielded P-box estimates of
the aleatory distribution and probabilistic estimates of the epistemic model parameters with
the lowest degree of uncertainty.

1. Introduction
1.1. Problem description
The research work presented in the paper is based on the recent NASA-Langley Uncertainty
Quantification Challenge 2019. The challenge problem is set in the context of a dynamical
black-box subsystem that is modelled by a black-box model ŷ = yfun(a, e, t). Here, a is
a 5-component vector of aleatory model parameters, e is a 4-component vector of epistemic
model parameters, and t is the time parameter. The model parameters a are characterised by a
joint distribution fa defined within the domain of [0, 2]5, while e are defined within a bounded
set in the form of E ⊆ [0, 2]4. Thus, an Uncertainty Model (UM) for the subsystem can be
obtained from the black-box model and it can be fully described by ⟨fa, E⟩. The challenge



is to calibrate the UM under limited data in the form of a set of 100 response signal output
provided for time t ∈ [0, 5] s. Each signal output is represented as a discrete time history:
yl(t) = [yl(0), yl(dt), . . . , yl(5000 · dt)]; where l = 1, . . . , 100, and dt = 0.001 s. As such, the
calibration data is denoted as D1 = {yl(t)}l=1,...,100. Further details to the task and challenge
are found in [1].

1.2. Research objectives
In [2], 2 different UM set-ups are proposed and calibrated using Bayesian model updating: UM1

y0

and UM2
y0. For UM1

y0, a Beta distribution is used to model fa, D1 is processed via Fast Fourier
Transformation (FFT) into the frequency domain and used for calibration, and the stochastic
distance metric used for the likelihood function is the Wasserstein’s distance [3]. For UM2

y0,
the Staircase Density Function (SDF) is used to model fa [4], D1 is used directly in the time-
domain for calibration, and the stochastic distance metric used for the likelihood function is
the Bhattacharyya’s distance [5]. Details to the signal processing approaches into the respective
domains are found in [2]. Investigations concluded that UM2

y0 yielded more precise estimates
to the P-box [6] characterising the uncertainty over fa as well as the bounds for the individual
components of e. However, it is not addressed as to what is/are the factor(s) contributing to
UM2

y0 having less uncertainty compared to UM1
y0. Hence, the paper seeks to analyse whether

such observation is due to either of the following: 1) the choice of distribution model for fa; 2)
The choice of stochastic distance metric used in the likelihood function; and/or 3) the choice of
the data type used to calibrate the UM.

2. Bayesian Model Updating
Bayesian model updating is a probabilistic model updating approach incorporating Bayes’
inference [7]:

P (θ|D,M) =
P (D|θ,M) · P (θ|M)

P (D|M)
(1)

whereby θ represents the vector of inferred parameter(s), D represents the vector of observed
data, M represents the model that is being considered for updating, P (θ|M) represents the
prior, P (D|θ,M) represents the likelihood function, P (θ|D,M) represents the posterior, and
P (D|M) is the normalising constant to ensure that the posterior distribution integrates to 1.
Details to the above terms can be found in [2].

In general, P (θ|D,M) is not normalised due to the complexity in computing P (D|M).
To sample from the un-normalised P (θ|D,M), the recently-developed Transitional Ensemble
Markov Chain Monte Carlo (TEMCMC) sampler is implemented to which details are found in
[8].

2.1. Approximate Bayesian Computation
Due to the availability of a large data-set in D1, the implementation of an actual Bayesian
computation using a full likelihood function can be a computationally-expensive procedure [5].
To reduce such cost, Approximate Bayesian Computation (ABC) is adopted to which details
are provided in [9]. This involves the use of an approximate likelihood function defined as [10]:

P (D|θ,M) ∝ exp

(
−d

ε

)2

(2)

where d is the stochastic distance metric which quantifies the difference between the observed
data D and the model output ŷ, while ε is the width factor of the approximate likelihood
function. The choice of values for ε given each d is defined in [2].



Section 1.2 highlights the 2 different stochastic distance metric implemented: 1) the
Wasserstein’s distance dW ; and 2) the Bhattacaryya’s distance dB. The Wasserstein’s distance
is mathematically defined as [3]:

dW =

∫ ∞

−∞
|FD(x)− Fŷ(x)| · dx (3)

whereby FD(x) and Fŷ(x) are the respective Empirical Cumulative Distribution Functions
(ECDFs) of the data and the stochastic model output of ŷ, while x is the data variable. From
Eq. (3), it is seen that dW quantifies the enclosed area between both ECDFs. The smaller dW is,
the higher the degree of similarity between the ECDFs of the data and the stochastic prediction
by ŷ [11]. The Bhattacharyya’s distance is mathematically defined as [5]:

dB = −log

[∫ ∞

−∞

√
pD(x) · pŷ(x) · dx

]
(4)

whereby pD(x) and pŷ(x) are the respective Probability Mass Functions (PMFs) of the data
and the stochastic model output of ŷ.

3. Methodology
3.1. Signal processing methods
To utilise the data D1 in the time domain, some form of dimension-reduction procedure needs to
be implemented given that there is a high number of dimensions on the data (i.e. 5001×100 data-
points). This makes it computationally expensive to evaluate the likelihood function P (D|θ,M).
Thus, this section presents the approaches towards reducing the data-size required for calibration
in the: 1) Frequency domain; and 2) Time domain.

In the frequency domain, the dimension-reduction procedure is implemented through the
following steps [2]:

1) Perform the FFT procedure on the data D1 to obtain the amplitude term Al
q and phase

angle term ϕl
q [2]. The resulting frequency spectra for Al

q and ϕl
q are presented in Figure 1;
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Figure 1: Illustration of the frequency spectra obtained from D1 via FFT.



2) Neglect the spectra of Al
q and ϕl

q for frequencies ω > 5.80 Hz given that the frequency

spectra for Al
q do not show any further perturbations beyond which;

3) Consider only the 30 values of ω between 0 Hz and 5.80 Hz are considered for both Al
q

and ϕl
q at which the stochastic distance metric d can be computed between the respective

distributions of the frequency spectra and model output at each value of ω.

In the time domain, the dimension-reduction procedure is implemented through the following
steps [12]:

1) Divide the data set D1 into
⌈
Nt
Lw

⌉
distinct intervals; where ⌈•⌉ is the ceil operator, Lw = 50

is the window length, and Nt = 5001 is the length of each signal data;

2) The Root Mean Squared (RMS) values of each interval R =

[
R1, . . . , R⌈

Nt
Lw

⌉] is computed

from which, the sample set of the RMS values RD ∈ R100×
⌈

Nt
Lw

⌉
is generated where:

RD =

[
R1

D, . . . ,R

⌈
Nt
Lw

⌉
D

]
, with Rν

D = [R1,ν , . . . , R100,ν ]
T

for ν = 1, . . . ,
⌈
Nt
Lw

⌉
while Rŷ ∈ RNsim×

⌈
Nt
Lw

⌉
where Nsim = 100 the number of model

evaluations by ŷ per given set of model inputs {a, e};
3) Evaluate the stochastic distance metric d between Rν

D and Rν
ŷ for all ν;

4) Obtain the corresponding RMS values of d and use it as the distance metric dRMS .

3.2. Uncertainty model set-up
In this work, 4 new UMs are constructed to be calibrated which are defined respectively as
UM I

y0, UM II
y0 , UM III

y0 , and UM IV
y0 . Details to their respective configurations are summarised

in Table 1. Here, UM2
y0 serves as the control from which the calibration results will serve as

reference to those obtained by the 4 new UMs.

Table 1: Summary of the configurations to the respective UMs.

UM fa Stochastic distance metric Data type

UM1
y0 Beta Wasserstein’s distance Frequency domain

UM2
y0 (Control) SDF Bhattachryya’s distance Time domain

UM I
y0 SDF Wasserstein’s distance Frequency domain

UM II
y0 Beta Bhattachryya’s distance Frequency domain

UM III
y0 Beta Wasserstein’s distance Time domain

UM IV
y0 Beta Bhattachryya’s distance Time domain

3.3. Bayesian inference set-up
In calibrating the UM, 2 assumptions are made: 1) the marginal distributions for all aia (for
ia = 1, . . . , 5) are independent between components; and 2) the marginals all belong to the
same distribution class. For each choice of distribution model for fa, it introduces additional



parameters to be inferred on top of the 4 epistemic model parameters eie (for ie = 1, . . . , 4).
Details to the distribution parameters to be inferred are summarised in Table 2. Hence, this
brings a total of 14 parameters to be inferred in the case of fa being the Beta distribution, and
24 parameters to be inferred in the case of fa being the SDF.

Due to the lack of information apriori, each inferred parameter is assigned a Uniform prior.
The prior bounds for each epistemic model parameter eie is defined as [0, 2], while those of the
inferred distribution parameters for fa are listed in Table 2. Given each choice of d, the likelihood
function P (D|θ,M) used is the approximate Gaussian function defined in Eq. (2). From the
resulting posterior P (θ|D,M), due to the significant computational costs in performing the
Bayesian model updating via ABC, N = 500 samples are obtained via the TEMCMC sampler.

Table 2: Uniform prior bounds of the distribution parameters for the corresponding fa.

fa Prior distribution Parameter description

Beta αia ∼ U [0, 100] Shape parameter 1
βia ∼ U [0, 100] Shape parameter 2

SDF µia ∼ U [0, 2] Distribution mean of aia
(m2)ia ∼ U [0, 1] 2nd central moment of aia
(m3)ia ∼ U [− 4

3
√
3
, 4
3
√
3
] 3rd central moment of aia

(m4)ia ∼ U [0, 43 ] 4th central moment of aia

4. Results and Discussions
An alpha-cut at 0.50 level of confidence is performed on the posterior of the distribution
parameters while that at 0.025 level of confidence is performed on the posterior of the epistemic
model parameters e1 to e4.

The resulting inferred bounds for each eie along with the volume of the epistemic hyper-
rectangle VE are presented in Table 3. From the table, it can be seen that the interval obtained
by UM IV

y0 for each component of e, along with the corresponding VE , are the smallest. This is

followed closely by that of UM III
y0 . Such result is supported by Figure 2 where it is observed that

the histograms corresponding to e1 to e4 have generally the least width in the case of UM IV
y0

and that the UM has yielded estimates on the epistemic model parameters with a significantly
higher degree of precision compared to UM2

y0.
From the results of the interval of the distribution parameters after taking the alpha-cut, a

P-box is constructed for the aleatory model parameters a1 to a5 [11, 13]. The resulting P-boxes
for each aia , given UM I

y0 to UM IV
y0 , are presented in Figure 3 and the area enclosed by the

P-boxes for each aia is computed for each UM and presented in Table 4. From the table, it can
be seen that this area is generally the smallest across the components of a for UM IV

y0 . This

is supported by Figure 3 where it can be seen that the P-boxes obtained by UM IV
y0 are the

narrowest compared to the other UMs. This indicates that UM IV
y0 reflects the lowest degree of

uncertainty over the true marginal distributions of fa.
Finally, to verify the model calibration results for each UM, N = 500 samples are generated

uniformly and independently from the hyper-rectangle defined by the intervals of the distribution
parameters and the epistemic model parameters after accounting for their corresponding alpha-
cuts. From there, each realization of samples from this hyper-rectangle will serve as inputs to
fa, and subsequently y(a, e, t), to generate 100 realizations of model output ŷ for t ∈ [0, 5] s.



Table 3: Inferred bounds of each component of e given the respective UM set-up.

UM e1 e2 e3 e4 VE

UM1
y0 [0.2307, 1.4567] [0.3155, 1.4810] [0.0411, 1.4123] [0.0641, 1.9417] 3.6772

UM2
y0 (Control) [0.4351, 0.7082] [0.5583, 1.0000] [0.0721, 0.5511] [0.6066, 1.6893] 0.0626

UM I
y0 [0.0149, 1.6714] [0.1245, 1.2491] [0.1441, 1.9873] [0.0083, 1.5558] 5.3139

UM II
y0 [0.2054, 1.6552] [0.3158, 1.3241] [0.0204, 0.8553] [0.0247, 1.7999] 1.2855

UM III
y0 [0.4024, 0.6671] [0.6191, 1.2870] [0.0161, 0.6122] [0.1487, 1.9641] 0.1914

UM IV
y0 [0.4864, 0.6336] [0.7415, 0.9850] [0.1746, 0.4911] [0.1511, 0.5023] 0.0040

Table 4: Area enclosed by the P-box of each component of a given the respective UM set-up.

UM a1 a2 a3 a4 a5

UM1
y0 0.6849 1.2786 0.4638 0.8690 0.7655

UM2
y0 (Control) 0.3200 0.2946 0.1783 1.2531 0.7159

UM I
y0 0.5902 1.0410 0.4886 0.8699 0.5617

UM II
y0 1.0101 1.1212 0.7176 0.8109 0.7250

UM III
y0 0.5789 0.8208 0.3011 1.0734 0.8568

UM IV
y0 0.2217 0.2023 0.1501 0.4416 0.1614

In total, 50000 realizations of ŷ are obtained within the domain of t from which the bounds are
obtained.

The resulting model output bounds of ŷ obtained for each UM are presented in Figure 4
while the area enclosed by these bounds for each UM are computed and presented in Table 5.
From the table, it can be seen that UM IV

y0 yields the smallest area of the region enclosed by the
model output bounds of ŷ. This is supported by Figure 4 where it is observed that the output
bounds obtained by UM IV

y0 is the only one which is narrower than that obtained by UM2
y0. This

is consistent with expectations given that UM IV
y0 yields the lowest uncertainty over the P-box

estimates for fa and the intervals of e1 to e4. The corresponding uncertainty over the model
prediction of y(t) would also be the least as a result.

Table 5: Area enclosed by the model output bounds of ŷ given the respective UM set-up.

UM UM1
y0 UM2

y0 UM I
y0 UM II

y0 UM III
y0 UM IV

y0

Area 0.4117 0.4114 0.4452 0.4210 0.3710 0.3518

5. Conclusion
A significant decrease in the uncertainty of the results in e is suggested by UM III

y0 compared to

UM1
y0 as seen in Table 3 which implies that the type of data used for the calibration plays a



(a) UM I
y0 (blue) vs UM2

y0 (green). (b) UM II
y0 (blue) vs UM2

y0 (green).

(c) UM III
y0 (blue) vs UM2

y0 (green). (d) UM IV
y0 (blue) vs UM2

y0 (green).

Figure 2: The resulting histograms of e1 to e4 obtained by UM I
y0 to UM IV

y0 relative to UM2
y0.
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(a) UM I
y0 (blue) vs UM2

y0 (green).
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(b) UM II
y0 (blue) vs UM2

y0 (green).
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(c) UM III
y0 (blue) vs UM2

y0 (green).
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(d) UM IV
y0 (blue) vs UM2

y0 (green).

Figure 3: The P-boxes for a1 to a5 obtained by UM I
y0 to UM IV

y0 relative to UM2
y0.

significant role in this aspect. This is expected as there are more data points contained in the
time domain data compared to that in the frequency domain. The improvement in the precision
of the estimates by UM IV

y0 from UM III
y0 is due to the choice in the stochastic distance metric

used which shows that the Bhattacharyya’s distance is a better metric than the Wasserstein’s
distance in this context. Such improvement, however, is not as significant compared to that due



(a) UM I
y0 (blue) vs UM2

y0 (green). (b) UM II
y0 (blue) vs UM2

y0 (green).

(c) UM III
y0 (blue) vs UM2

y0 (green). (d) UM IV
y0 (blue) vs UM2

y0 (green).

Figure 4: The resulting model output bounds obtained by UM I
y0 to UM IV

y0 relative to UM2
y0.

The red curves are the signal output D1.

to the use of the data in the time domain instead of the frequency domain. The choice of fa
is of the least relative significance as there is little improvement in the interval estimates for
each component of e and the P-box estimates of fa. In fact, the degree of uncertainty in the
estimates yielded by UM I

y0 is the lowest among the 4 new UMs presented in the paper and the
interval estimates on the components of e.

Hence, in order of descending significance on the uncertainty of the Uncertainty Model
estimates is: 1) Data type; 2) Stochastic distance metric; and 3) the choice of fa.

For the benefit of the readers, the MATLAB codes to the study presented in the paper are
available via: https://github.com/Adolphus8/Transitional Ensemble MCMC.git
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