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Abstract—Radio frequency fingerprint identification (RFFI)
is an emerging technique for the lightweight authentication of
wireless Internet of things (IoT) devices. RFFI exploits unique
hardware impairments as device identifiers, and deep learning
is widely deployed as the feature extractor and classifier for
RFFI. However, deep learning is vulnerable to adversarial
attacks, where adversarial examples are generated by adding
perturbation to clean data for causing the classifier to make
wrong predictions. Deep learning-based RFFI has been shown
to be vulnerable to such attacks, however, there is currently no
exploration of effective adversarial attacks against a diversity
of RFFI classifiers. In this paper, we report on investigations
into white-box attacks (non-targeted and targeted) using two
approaches, namely the fast gradient sign method (FGSM) and
projected gradient descent (PGD). A LoRa testbed was built
and real datasets were collected. These adversarial examples
have been experimentally demonstrated to be effective against
convolutional neural networks (CNNs), long short-term memory
(LSTM) networks, and gated recurrent units (GRU).

Index Terms—Adversarial Attack, Radio Frequency Finger-
print Identification, Deep Learning

I. INTRODUCTION

Internet of things (IoT) devices are deployed widely in
smart homes and cities, connected healthcare, and industry
4.0, etc. [1]. IoT networks may carry private, sensitive and/or
confidential information, and device authentication is the first
line of defence against spoofing attacks in an IoT network.
Conventional authentication methods rely on cryptographic
algorithms and software addresses such as media access
control (MAC) addresses. However, cryptographic algorithms
require a secure key distribution mechanism, which may not be
affordable or practical for low-cost IoT devices [2]. Software
addresses can be easily tampered with. Thus, there is a strong
need for a lightweight IoT authentication scheme [3].

Radio frequency fingerprint identification (RFFI) is an
emerging device authentication technique [4]. The transmitter
chain of a wireless device consists of numerous analogue
components such as mixers, oscillators, power amplifiers,
etc. These components deviate slightly from their nominal
specifications due to their inevitable manufacturing processes
variations, such as IQ imbalance, carrier frequency offset
(CFO), and PA non-linearity [4]. An RFFI system can ex-

tract and analyze the unique distortion induced by these
imperfections onto the emitted waveforms to identify different
devices [4]. The RFFI process is deployed at the receiver
and requires no modification to the IoT end nodes. Machine
learning based feature extractors have been used for RFFI
as they are communication protocols agnostic and require no
domain knowledge to train. Deep learning techniques [5]–[7],
such as convolutional neural networks (CNNs) [6], [8], long-
short term memory (LSTM) networks [8], gated recurrent units
(GRU) [7] networks, and transformer [9], are particularly good
at encoding discriminative data features in the latent space.

Despite their excellent classification performance [5]–[7],
deep neural networks are prone to adversarial attacks, also
known as evasion attacks [10]–[12]. It has been once and
again demonstrated that a well-trained deep learning network
can be deluded into incorrect prediction simply by adding
maliciously constructed small perturbations to its input. The
maliciously perturbed inputs, known as adversarial examples,
can be made very subtle and imperceptible to the user or
even automated inspection tools. A popularly cited example
is the addition of visually undetectable noise in the picture
of a panda to trick a deep neural network into misclassifying
it as a gibbon [10]. Adversarial examples have been widely
studied and have evolved rapidly in computer vision tasks but
they have recently been extended to the wireless domain, e.g.
the modulation classification attack reported in [13], [14].

To the best knowledge of the authors, there are only two
investigative studies [12], [15] of adversarial examples on
deep learning-based RFFI. In [12], the authors have examined
the effects of adversarial examples on CNNs, but not other
deep learning models used in RFFI. In [15], the evaluation of
adversarial examples on a deep learning model is restricted to
only I/Q samples. Deep learning models that are trained using
other forms of signal representation have not been evaluated.

This paper aims to investigate the vulnerability of deep
learning models in RFFI systems. Two attack methods were
investigated, namely fast gradient sign method (FGSM) [10]
and projected gradient descent (PGD) [11]. We built a long-
range (LoRa) testbed and collected real datasets. Three deep
learning models, namely CNN, LSTM, and GRU were built.
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Fig. 1: RFFI overview (a) Training stage. (b) Inference stage.

Our main contributions are listed as follows.
• Adversarial examples produced by FGSM or PGD can

severely degrade the identification performance. In a
CNN-based RFFI system, 92.7% and 94.6% of devices
were shown to be successfully misclassified by FGSM
and PGD attacks, respectively.

• We experimentally corroborated that low quality signals
are more vulnerable to evasion attacks. Under SNR =
50 dB, 42.2% of the devices in RFFI using GRU were
misclassified by PGD. When the SNR decreased to 20 dB,
91.3% of the devices were misclassified.

• We showed that a targeted attack by PGD is feasible.
Superimposing elaborately generated perturbations onto
the inputs can mislead the deep learning model to output
a specific label set by the adversary. In the experiment of
a targeted attack, up to 93.2% of packets are mistaken to
be transmitted from the wrong target device.

The rest of the paper is organized as follows. Section II
introduces the RFFI process. Adversarial examples for RFFI
are presented in Section III. Section IV introduces the design
details of the RFFI system and evaluates the effectiveness of
adversarial examples on different deep learning models in the
RFFI system. Section V concludes the paper.

II. RADIO FREQUENCY FINGERPRINT IDENTIFICATION

A deep learning-based RFFI system is illustrated in Fig. 1.
In the training stage, the deep learning model is trained with
RF signals transmitted from N known legitimate devices. In
the inference stage, the trained model is used to predict which
device has transmitted the signals it receives.

A. Training

1) Signal Processing: The received signals, denoted as r,
need to be processed according to RFFI requirements. The pre-
processing usually includes packet detection, synchronization,
normalization, CFO estimation and compensation. Detailed
algorithms can be found in [6].

The captured IQ samples are complex numbers, which
cannot be processed by most neural networks. They are
transformed to a specific signal representation x before being
sent into the neural network for training. The signal repre-
sentations used in previous work include FFT results [16],
spectrogram [17], error signal [18], etc.
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Fig. 2: Evasion attack on an RFFI system.

2) Training: A deep learning-based RFFI system needs
to be adequately trained before deployment. In the training
process, the parameters θ of the deep learning model f(·; θ)
are continuously updated with the following objective:

θ = argmin
θ

∑
(x,ltrue(x))

J(f(x; θ), ltrue(x)), (1)

where x is the input to the deep learning model and f(x; θ)
is its corresponding output. ltrue(x) denotes the ground truth
label of x. J(·) is the loss function.

B. Inference
The inference stage is illustrated in Fig. 1(b). The received

signal is processed by the same signal processing module as
in the training stage. The transformed signal is fed into the
trained deep learning model f(·; θ). The output f(x; θ) is
a probability vector over all the labels. The index k of the
element with the highest probability is selected as the predicted
device label lx of the input x. The inference process can be
mathematically expressed as

lx = argmax
k

(f(x; θ)). (2)

III. EVASION ATTACKS ON RFFI
A. Threat Model

An evasion attack in the form of adversarial examples is
mounted in the inference stage of RFFI. This paper consid-
ers white-box attacks, which assume an adversary has full
knowledge of the victim, including training data, deep learning
model, etc [19]. Therefore, the adversary employs the pro-
cessed signal x and model f(x; θ) to generate a perturbation
v. The adversarial example, x′, can be written as

x′ = x+ v, (3)

As shown in Fig. 2, adversarial examples are input to the
pre-trained deep learning model to fool the model into making
different predictions, given as

lx
′
= argmax

k
(f(x′; θ)). (4)

Evasion attacks can be categorized into non-targeted and
targeted attacks based on the adversary’s goal. In the non-
targeted attack, the aim is to make the prediction of the
adversarial example different from the original label, i.e.,

lx
′
̸= lx. (5)

The goal of the targeted attack is to have all adversarial
examples predicted to be the target label, i.e.,

lt == lx
′
, (6)

where lt is the target label set by the adversary. ‘==’ denotes
verifying whether the equation on the left equals the right one.



B. Metric
Perturbation to Signal Ratio (PSR) is the ratio of the power

of the perturbation, Pv to the power of the original signal, Px.
PSR can be expressed mathematically as:

PSR = 10 log10(
Pv

Px
). (7)

Success Rate (SR) is defined as the probability of success
for an adversarial attack. For the non-targeted attack, it can be
evaluated by:

SR =

∑N
i=1 ζ

(
lx

′
i ̸= lxi

)
N

, (8)

where N is the total number of test samples, ζ(·) is an
indicator function that returns one if its argument is true (attack
successfully) and zero otherwise. For targeted attacks with the
target label lt, SR can be evaluated by:

SR =

∑N
i=1 ζ

(
lx

′
i == lt

)
N

, (9)

C. Adversarial Examples Generation Methods
Among the white-box adversarial examples generation

methods, Fast Gradient Sign Method (FGSM) and its iterative
version, Projected Gradient Descend (PGD) method, are most
popular and are bases for other improved evasion attacks.

1) Fast Gradient Sign Method (FGSM): FGSM is a non-
iterative approach to produce perturbations that can reliably
cause a wide variety of deep neural networks to malfunction
with a single projected gradient step (one-step). It can be
designed as targeted and non-targeted attacks [10]. FGSM
generates perturbations by calculating the gradient of the loss
function relative to the neural network input. Only the gradient
sign is used by FGSM, not the whole gradient information.

Specifically, the adversarial examples for a non-targeted
attack are constructed by

x′ = x+ ε · sign (∇xJ(f(x; θ), l
x)) , (10)

and adversarial examples for targeted attacks are generated by

x′ = x− ε · sign
(
∇xJ(f(x; θ), l

t)
)
, (11)

where ∇x indicates the gradient of the model for an original
sample x with the label l, ε denotes a control parameter for
the amplitude of perturbation, sign(·) indicates the gradient
direction. sign(·) returns 1 (-1) if the value of the gradient
direction is greater (smaller) than 0.

2) Projected Gradient Descent (PGD): PGD is an itera-
tive method with random initialization to produce adversarial
examples. It iteratively applies FGSM and projects the per-
turbed sample back to the norm multiple times with step size
in the scale of the total perturbation bound. PGD is more
powerful than FGSM because it mitigates the underfitting
adversarial example due to the linear approximation of the
decision boundary around the data point. The procedure of
PGD is given in Algorithm 1, where ∥·∥p is the norm of the
perturbation (such as L2 and L∞). Clipx,α(·) denotes clipping
the argument to the range [x− α, x+ α].

Algorithm 1: PGD Algorithm
Input: signal x, label l or lt, loss function J(·), size

of the perturbation ε, the size on each iteration
step α, number of iteration I

Output: An adversarial example x′
I with

∥x′
I − x∥p ≤ ε

1 Initialize x′
0 = x, i = 1

2 for i in range I do
3 if Non-targeted attack then
4 x′

i =
Clipx,α

{
x′
i−1 + α · sign (∇xJ(f(x; θ), l

x))
}

5 else if Targeted attack then
6 x′

i =
Clipx,α

{
x′
i−1 − α · sign (∇xJ(f(x; θ), l

t))
}

7 return x′
I
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Fig. 3: Experimental devices. (a) Transmitter: LoRa. (b) Re-
ceiver: USRP.

IV. EXPERIMENTAL EVALUATION

A. Setup

1) Datasets: LoRa is used as a case study in this paper.
Eight preambles at the start of each LoRa packet are captured
for RFFI. The IQ samples are then converted into channel-
independent spectrograms, which are in the time-frequency
domain and robust to the channel variation. We refer interested
readers to [17] for detailed derivation.

As shown in Fig. 3(a), ten LoRa devices, consisting of
five LoPy4 and five Dragino SX1276 shields, are used. To
distinguish these ten devices, we label them as Device 1,
Device 2 ... Device 10, respectively. These devices are con-
figured with bandwidth B = 125 kHz and carrier frequency
fc = 868.1 MHz. The receiver end is a USRP N210 software-
defined radio (SDR) platform, as shown in Fig. 3(b), whose
sampling rate fs = 1 MHz. The Communications Toolbox
Support Package for USRP Radio of MATLAB R2021b is
used for accessing data from USRP. The packets are collected
in an office environment and the SNR is about 70 dB. The
datasets contain 1000 packets from each device. For each
device, 90% and 10% of the packets are used for training
and testing, respectively.

2) Models: We apply adversarial attacks to three popular
deep learning models, namely CNN, LSTM, and GRU, whose
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Fig. 4: Three deep learning network architectures: (a) CNN.
(b) LSTM network. (c) GRU network.

architectures are shown in Fig. 4.
• CNN (Fig. 4(a)): it consists of one convolutional layer

of 8 7 × 7 kernels, followed by one convolutional layer
of 16 7 × 7 kernels and one convolutional layer of 32
7 × 7 kernels, one 2D average pooling layer, and one
dense layer activated by the softmax function.

• LSTM (Fig. 4(b)): it consists of two 256-unit LSTM
layers, one global 1D average pooling layer, and one
softmax activated dense layer.

• GRU (Fig. 4(c)): it is similar to the LSTM (Fig. 4(b)),
but the LSTM layers are replaced by the GRU layers.

We use a prefix-suffix notation “A-B” to denote an adversar-
ial example generation method A mounted on a deep learning
model B. For example, “FGSM-CNN” refers to the attack
on a CNN-based RFFI system using the adversarial examples
generated by FGSM.

3) Training Configuration: The deep learning training was
carried out on a PC equipped with a GPU of NVIDIA GeForce
GTX 1660Ti. The neural networks are implemented with the
TensorFlow library. FGSM and PGD are implemented based
on CleverHans.v3.1.0 [20], which is a software library to
benchmark machine learning systems’ vulnerability to adver-
sarial examples. The standardized reference implementations
of attacks are provided in this library.

B. Comparison Between Clean Sample and Adversarial Ex-
ample

A channel-independent spectrogram of a clean sample,
its corresponding perturbation and adversarial example are
illustrated in Fig. 5.

• Fig. 5(a) is the channel-independent spectrogram of one
sample in the original datasets. We can observe eight
repeating upchirps from Fig. 5(a), and these upchirps
contain unique features of the device.

• Fig. 5(b) is the perturbation calculated by PGD based on
the spectrogram shown in Fig. 5(a).

• Fig. 5(c) is the corresponding adversarial example.

(a) (b) (c)

Fig. 5: (a) Channel independent spectrogram of clean sample,
x. (b) Perturbation calculated by PGD, v. (c) Adversarial
example, x′.

Visually we can barely distinguish the spectrogram of the
clean sample and adversarial example in Fig. 5. Therefore, an
objective metric is required to quantify the distortion of the
sample and the effectiveness of the attack. In the adversarial
example generation algorithms, the maximum perturbation of
the sample is controlled by ε ((10), (11) and Algorithm 1).
In this paper, we use PSR to assess the power of perturbation
signal, and then we measure the success rate SR of different
algorithms. PSR and SR enable an objective quantitative
evaluation of the effectiveness of using different adversarial
attack methods to spoof a wireless communication receiver.

C. Non-targeted Attacks With Different Perturbations

To demonstrate the effectiveness of different adversarial
examples, we compare them with additive white Gaussian
noise (AWGN) which is a common natural disturbance in
RFFI systems. We show the confusion matrices for different
perturbations and mounted FGSM and PGD on RFFI to
compare their variations in SR against PSR.

Fig. 6(a) shows the confusion matrix of the CNN-based
RFFI without attack and the classification accuracy reaches
98.4%. Fig. 6(b) shows the confusion matrix of non-targeted
attack produced by PGD when PSR = −35 dB and the overall
accuracy reduces to 1.4%. As it is a non-targeted attack, the
misclassification results are dispersed across all labels.

Fig. 7 shows the SR of non-targeted attacks when PSR
changes from −45 dB to −20 dB. Deep learning-based RFFI
systems suffer more severe misclassifications when PSR is
higher. Specifically, when the PSR is −40 dB, The SRs of
CNN-PGD RFFI and CNN-FGSM RFFI reach 94.6% and
92.7%, respectively. The SRs of all the adversarial attacks
continue to increase with increasing PSR. Also, the iterative
PGD is found to be more effective than the one-step FGSM.

Fig. 7 shows that the same power of AWGN, when in-
jected into the input signal, seldom has any impact on the
performance of these RFFI classifiers. Apparently, while RFFI
classifiers are robust against AWGN, they are vulnerable to
adversarial examples as evinced by their significantly com-
promised prediction accuracy under these attacks.

D. Non-targeted Attacks Under Different SNRs

The attacks in the previous sections assume good quality
datasets are acquired under a high SNR. However, in a real
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Fig. 6: Confusion matrix. (a) RFFI without adversarial attack.
(b) CNN-PGD with non-targeted attacks. PSR = −35 dB. (c)
CNN-PGD with targeted attacks. PSR = −30 dB. (d) CNN-
PGD with targeted attacks. PSR = −25 dB.
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RFFI system, AWGN will reduce the SNR. Its effect on the
quality of the datasets cannot be ignored. Taking AWGN into
consideration, x′ is expressed in (12).

x′ = x+ n+ v, (12)

where n is the AWGN.
The former results were obtained under SNR = 70 dB,

which means the quality of the datasets is high. In this section,
we emulate different SNRs by adding artificial AWGN into the
original clean datasets.

Fig. 8 presents the SRs of different models and adversarial
attack methods against SNRs. It can be observed that the
effectiveness of all evasion attacks decreases at different rates
with increasing SNR. Taking FGSM-GRU as an example, the
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Fig. 8: SR of non-targeted attacks at different SNRs. PSR =
−40 dB.

SR is about 87.7% when SNR = 32 dB but it reduces to
about 39.6% when SNR = 50 dB. The adversarial examples
are much more likely to succeed when the SNR is low,
regardless of the deep learning model. It implies that an active
adversary can monitor the received signal strength and channel
characteristics and seize a good opportunity to mount the
attack to increase the attack success rate.

E. Targeted Attacks

PGD is utilized to implement targeted attacks. We arbitrarily
select Device 7 as the target. Fig. 6(c) shows the confusion ma-
trix of PGD-CNN with the targeted attack at PSR = −30 dB,
where 36.1% of the devices are misclassified as Device 7.
When the PSR increases to −25 dB, 93.2% of the devices are
misclassified as Device 7, as shown in Fig. 6(d). A successful
targeted attack is hence demonstrated. The effectiveness of the
targeted attack can be further enhanced by higher PSR to cause
more devices to be misclassified as Device 7.

To investigate the performance of targeted attacks against
different targets, we set each class as the target one by one. The
results are shown in Fig. 9. Unlike a confusion matrix, each
matrix element in Fig. 9 represents the percentage of devices
identified as the selected target. For example, 80% packets
from Device 6 are identified as originating from Device 5 in
Fig. 9(a) when the selected target is Device 5. Apparently,
PGD can cause the victim model to misclassify most devices
as the selected target indiscriminately, which indicates the
effectiveness of PGD for targeted attacks on deep learning-
based RFFI.

V. CONCLUSION

In this paper, we presented white-box evasion attacks
on deep learning-based RFFI. Specifically, we studied non-
targeted and targeted attacks using two adversarial example
generation methods, namely FGSM and PGD. A LoRa-RFFI
testbed was built and real datasets were collected. The attacks
were applied to CNN, LSTM and GRU-based RFFI systems.
The results reveal that deep learning-based RFFI systems are
vulnerable to adversarial attacks. Compared with Gaussian
noise, the carefully crafted perturbation can completely cripple
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0.96 0.91 0.94 0.91 0.96 0.91 0.91 0.97 0.93 0.75

0.97 0.93 0.89 0.92 0.92 0.87 0.98 0.95 0.87 0.66

0.95 0.97 0.95 0.91 0.97 0.84 0.91 1 0.95 0.75

(c)

Fig. 9: Targeted attacks by PGD on (a) CNN, (b) LSTM, and (c) GRU-based RFFI, with PSR = −5 dB.

the RFFI. The iterative method PGD was demonstrated to be
more effective than the one-step method FGSM, regardless of
SNR. In short, the successes of both targeted and non-targeted
attacks signify a real threat to the use of modern RFFI for
physical layer security. In a white-box attack, the adversary
has all the knowledge of the victim and is able to calculate
the accurate gradient to result in a significant security problem.
In our future work, we will investigate more practical black-
box or grey-box attacks where the adversary has no knowledge
about the victim’s deep learning model. We will also develop
lightweight countermeasures against these successful evasion
attacks.
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