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Abstract—Radio frequency fingerprinting (RFF) is a promising
solution for realizing secure and efficient device authentication.
The multipath channel overshadows and disrupts the RFF
extraction, which causes difficulties in training new models in
the presence of fading. Existing approaches attempt to deal with
this challenge by traversing channels through simulated channel
models. However, this solution requires a large amount of data
for training and it is difficult to guarantee that the training
covers all possible channels. To mitigate the multipath channel
effect on RFF with less training data, we propose a new method
in a multi-antenna system, named Relative-RFF (R-RFF), which
utilizes channel state information (CSI) feedback to counteract
the multipath channel. The RFF imperfection relation between
the different antenna chains of the device is proved to be retained
after the counteraction of the multipath channel. Numerical
results demonstrate that the proposed R-RFF can achieve an
identification accuracy of 95.9% for 30 UEs in Tapped Delay
Line channel with a signal-to-noise ratio of 20 dB.

Index Terms—Physical layer security, radio frequency finger-
print, device identification, multipath channels.

I. INTRODUCTION

With the unprecedented proliferation of wireless technolo-
gies, the number of wireless devices has dramatically in-
creased. While they have become indispensable for both daily
life and industrial production [1], wireless communications are
vulnerable to malicious attacks due to the broadcast nature of
radio signal propagations. Conventional authentication based
on digital cryptographic techniques [2] cannot defend against
spoofing and impersonating when a digital security scheme is
compromised [3]. Moreover, the rapid increase in the number
of devices brings tremendous pressure on the generation,
distribution, and management of the keys [4, 5]. Consequently,
a new and secure method of device authentication is urgently
needed, and it should be lightweight and tamper-proof.

Radio Frequency Fingerprint (RFF) is a physical layer so-
lution for secure device authentication [6]. Signal distortion or
deformation can occur as a result of manufacturing tolerances
and drift tolerances generated in the production of electronic
components and printed circuit boards. By taking advantage
of these hardware imperfections, the RFF of the device can
be extracted for authentication. The identity of the device can
be verified by its RFF before data exchange is performed,
which enhances the wireless communication system’s security.

However, multipath channels present a significant obstacle for
RFF in practical communications, which interferes RFF and
makes it challenging to extract features that can be utilized for
authentication from signals [7].

There are three primary categories of existing studies to
counteract the impact of multipath channels on RFF, summized
as follows.

• Channel independent feature: One strategy for com-
bating multipath channels is to find an RFF feature that
is resistant to channels. The phase relation between the
different antenna chains is considered a feature for device
authentication [8]. Nelder-Mead simplex channel estima-
tion for RF-DNA fingerprinting under rayleigh fading
conditions was studied, which proved to be superior to
waveform-based estimation approaches under increasing
fading paths [9]. The work in [10] designed channel
independent spectrogram for LoRa RFF.

• Channel elimination based on feedback: A pioneering
work of DeepRadioID proposed in [11] exploits channel
state information (CSI) feedback to address this issue.
They designed an FIR filter that dynamically adapts to
the multipath channel and enhances fingerprinting from
the feedback.

• Data augmentation: The data augmentation for channel-
resilient RFF relies on a large amount of channel data
[12], which results in 75% improvement in the former
case with a custom-generated dataset. Theoretically, the
more types of channels trained, the better the device
classification will be.

However, in the practical multi-antenna system, each an-
tenna has a unique RF imperfection for the transmitting chain
and the receiving chain. Multipath channels are cascaded with
RF imperfections, which leads to the fact that the upstream and
downstream channels are no longer reciprocal. In this case,
feedback CSI directly cannot perfectly eliminate the effects
of multipath channels. In other words, even if the CSI of
the multipath channel is obtained, we are unable to achieve
the absolute RFF. The insight of [13] is that although we are
unable to obtain the absolute RFF, the relative RFF we can
obtain, i.e. we can derive the imperfection relation between



the different antennas of a multi-antenna device. However,
obtaining the relative RFF alone is insufficient to successfully
authenticate a device, we also need to design a CSI feedback
mechanism to perfectly eliminate multipath channels. The
feedback mechanism employs relative RFF to perfectly elim-
inate multipath channels while safely transmitting the relative
RFF of the user equipment (UE) to the base station (BS).

To sum up, we propose a new scheme named Relative-
RFF (R-RFF), which aims to eliminate multipath channels
perfectly and establish RF defect relation between antennas to
authenticate devices. Our main contributions are summarized
as follows.

• We propose a new R-RFF scheme by exploiting CSI
feedback for device authentication in multipath channels.
With proper processing of the feedback and relative RFF,
the R-RFF scheme is proved to be robust to multipath
channels. At the receiving end, we demonstrate that the
multipath channel can be perfectly eliminated while the
R-RFF of the UE can be perfectly preserved.

• We propose a new relative RFF and give its extraction
process. In the authentication phase, we derive a method
to neutralize the RF imperfections of the BS and retain
the UE imperfections using the relative RFF.

• We simulate three channels with a different number of
paths in MATLAB using 5G NR PHY frames for 30
virtual UEs and different signal-to-noise ratio (SNR)
levels. Simulation results show that the proposed method
can achieve 95.9% recognition accuracy for 30 devices in
the Tapped Delay Line (TDL) channel in 3rd Generation
Partnership Project (3GPP) Technical Report (TR) 38.901
[14] with SNR of 20 dB.

The rest of the paper is organized as follows. Section II
describes the system model and the challenge. Section III
elaborates on the details of the proposed method and provides
the theoretical analysis of the proposed method. Section IV
presents the simulation results. Finally, Section V concludes
this paper.

II. SYSTEM MODEL

In this section, we present the RF characteristics consid-
ered in this paper and give a model of the signal under
the influence of these RF imperfections. In addition, we
theoretically analyze the challenge faced by traditional RFF
extraction: in practical communication systems, the channels
are often multipath, which disrupts the RFF. At the same time,
multipath channels coupled with RF imperfections result in
non-reciprocity of UL and DL channels, which brings the
challenge to channel elimination based on feedback.

We consider an orthogonal frequency division multiple
access (OFDMA) time division duplexing (TDD) system with
multi-antenna UEs. Assume that BS has M antennas, and each
of the K UEs has N antennas (M > N ). The legitimate
UE sends a pilot signal xU to the BS for authentication. The
system operates in the TDD mode and the channels of the
uplink and downlink are reciprocal.
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Fig. 1. Internal architecture of the multi-antenna device.

In the RF transmitting and receiving chains considered in
this paper, we focus on the analog gains due to hardware im-
perfections, including DC bias error, Sample Frequency Offset
(SFO), IQ imbalance, Carrier Frequency Offset (CFO), Carrier
Phase Offset (CPO) and power amplifier (PA) nonlinear. We
assume that the RF gains are determined by these factors.

A. Signal Model

Let HU ∈ CM×N , HD ∈ CN×M be the uplink (UL) and
downlink (DL) channels between BS and UE, respectively. In
the UL, the signal after the receiving chain yU from UE to
BS is given by

yU = HUxU + zU , (1)

where xU = [x1, x2, . . . , xN ]
T is the UL pilot signals

sent by the UE, xn represents the transmission signal of
the n-th transmit antenna. The pilot signal received by the
BS can be expressed as yU = [y1, y2, . . . , yM ]

T , and ym
is the signal after the m-th receiving chain of the BS.
zU = [z1, z2, . . . , zM ]

T is the additive white Gaussian noise
(AWGN). As shown in Fig. 1, the equivalent channel from
the UE to the BS can be modelled as HU = RBSH̃UTUE ,
where H̃U is the real uplink wireless channel between UE and
BS, RBS = diag(rBS,1, . . . , rBS,m) is the receiving chain
RF impairment gain of BS, TUE = diag(tUE,1, . . . , tUE,n)
is the transmitting chain RF impairment gain of UE. Similarly,
HD = RUEH̃DTBS . Due to the reciprocity of channels in
coherence time, the wireless channel H̃U = H̃T

D. This model
of RF chain was proposed and verified in [13].

B. The Challenge of Traditional RFF Extraction

In existing MIMO communication systems, the effect of the
channel on data transmission is generally eliminated by adding
a precoding matrix at the transmitter side. For example, the
UE sends a UL pilot signal and the BS can estimate the UL
channel. BS utilizes the obtained CSI to generate a precoding
matrix to eliminate the effect of the DL channel. However, due
to the hardware mismatch, the equivalent channels of the UL
and DL are not fully reciprocal. As a result, the CSI produced
by the traditional method of channel estimation by delivering
the UL pilot signal differs from the practical DL channel. The



disparity between the UL and DL channels increases with the
severity of the hardware mismatch.

When using ZF precoding for UL transmissions, the
achieved DL channel estimation result is given by ĤD, and
the precoding matrix is given by

WZF = (ĤT
D)H

[
ĤT

D(ĤT
D)H

]−1

= Ĥ∗
D

(
ĤT

DĤ∗
D

)−1

,

(2)

and assume that xU = WZF x̃U , where x̃U is the original
emitting symbol vector. Substituting WZF x̃U into (1) results
in

yU = HUWZF x̃U + zU . (3)

Equation (3) can be expanded as

yU = HUĤ
∗
D

(
ĤT

DĤ∗
D

)−1

x̃U + zU

= RBSH̃UTUE

[
TT

BSH̃
T
DRT

UE

]−1

x̃U + zU .

(4)

As can be seen from (4) that the precoding matrix cannot
eliminate the effects of the channel because RBSH̃UTUE ̸=
TT

BSH̃
T
DRT

UE . This is because different devices have different
RF imperfections, which results in hardware mismatches. The
UL and DL channels become non-reciprocal as a result.

Moreover, the RFF is coupled to the channel and is difficult
to extract. Hence a partial calibration scheme can be intro-
duced to eliminate redundant RF imperfections while retaining
the RF imperfections of the device to be authenticated.

III. MULTI-ANTENNA R-RFF BASED DEVICE
AUTHENTICATION IN MULTIPATH SCENARIOS

The problem presented in the previous section is that
using the traditional method to perfectly eliminate multipath
channels is difficult, due to the channel non-reciprocity caused
by the different RF chains. Inspired by [13], we propose a
Multi-Antenna R-RFF method utilizing the RF imperfection
relation between antenna chains to generate channel-robust
RFF. As shown in Fig. 2, our approach consists of the training
stage and the inference stage.

A. Training Stage

The training stage of the proposed scheme includes the
generation of UE’s and BS’s R-RFF, preprocess of BS, and
Support Vector Machine (SVM) training.

1) UE: We use the method in [13], where the reference
antenna and the rest of the antennas send pilot signals to
each other, to obtain the UE’s relation matrix. The process of
generating R-RFF from UE is shown in Algorithm 1. The UE
selects the first antenna as the reference antenna. The reference
antenna sends pilot signals to the remaining antennas, and
the remaining antennas send pilot signals to the reference
antenna during the coherence time. The UE estimates the
channel on the two received signals separately. To determine
the RF imperfection relation between the antennas, it divides
the results of the channel estimation of the reference antenna
and other antennas. The RF imperfection relation coefficient
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Fig. 2. System overview.

cUE,n→1 between the n-th antenna and the reference antenna
is given by

cUE,n→1 =
ĥUE,n→1

ĥUE,1→n

=
rUE,1tUE,n

rUE,ntUE,1
=

cUE,n

cUE,1
, (5)

where, ĥUE,n→1 represents the channel estimation result from
the n-st antenna chain of UE to the 1-th antenna chain of UE,
ĥUE,1→n represents the channel estimation result from the 1-
th antenna chain of UE to the n-st antenna chain of UE in
coherence time. The absolute imperfection of the reference
antenna is cUE,1 =

tUE,1

rUE,1
and the absolute imperfection of

the n-th antenna is cUE,n = cUE,1cUE,n→1. We normalize
the reference value of cUE,1 as c′UE,1 = 1 and CUE =

diag
(
c′UE,1, c

′
UE,2, . . . , c

′
UE,N

)
. As the training stage can be

done offline and in a secure environment, it is assumed each
UE can send its R-RFF to BS securely.

Algorithm 1 The generation of UE’s R-RFF
Input: The pilot signal sUE,1, . . . , sUE,N

Output: The R-RFF of UE, CUE

1: for each n ∈ [2, N ] do
2: 1-st antenna sends pilot signal sUE,1;
3: n-th antenna receives yUE,1→n;
4: UE estimates channel ĥUE,1→n = yUE,1→n (sUE,1)

†;
5: n-th antenna sends pilot signal sUE,n in the coherence

time;
6: 1-st antenna receives yUE,n→1;
7: UE estimates channel ĥUE,n→1 = yUE,n→1 (sUE,n)

†;
8: cUE,n→1 =

ĥUE,n→1

ĥUE,1→n
;

9: c′UE,n = cUE,n→1;
10: end for
11: c′UE,1 = 1;
12: CUE = diag

(
c′UE,1, c

′
UE,2, . . . , c

′
UE,N

)
;

13: return CUE ;

2) BS: Similarly, the R-RFF at the BS can be generated and
expressed as CBS = diag

(
c′BS,1, c

′
BS,2, . . . , c

′
BS,M

)
. After



normalizing the R-RFF, we save CBS into BS. Then we stitch
the real and imaginary parts of the main diagonal of N ×N
CUE into an array of 2N × 1 length. At this point, we have
completed the generation of the R-RFF for the training stage.

We employ SVM for the training of the generated R-RFF.
SVM is a kind of generalized linear classifier that can be
used for the classification of data. Its decision boundary is the
maximum margin hyperplane for learning samples. The core
idea of classification learning is to find a partition hyperplane
in the sample space based on the training set, and then classify
different types of samples. We put the preprocessed array into
the One-Against-One multiclass SVM model for training [15].

B. Inference Stage

The UE first sends a pilot signal to the BS, and BS
sends a pilot signal to UE during the coherence time. Then
the UE performs channel estimation and feeds the channel
estimation result back to the BS. Next, BS makes the most
of its own R-RFF and the obtained DL channel estimation
result to eliminate the multipath channel and extract the R-RFF
of the UE. The detailed CSI feedback and post-equalization
algorithm is summarized in Algorithm 2.

1) Post-Equalization: Our detailed theoretical derivation of
the post-equalization algorithm is as follows. We consider that
the BS and the UE have generated their own R-RFF CBS and
CUE individually. UE first sends the UL pilot signal SU ∈
CN×L to BS. BS obtains the UL received signal

YU = HUSU + ZU , (6)

where YU ∈ CM×L, ZU ∈ CM×L is AWGN, and L indicates
the length of the pilot signal. UE perform channel estimation
to obtain ĤU = YU (SU )

†.
During the coherence time, the BS sends the DL pilot signal

SD ∈ CM×L to the UE. Similarly, the DL channel estimation
can be expressed as ĤD = YD (SD)

†.
The UE feeds the DL channel estimation result ĤD to the

BS. After receiving ĤD, the BS transposes it and finds its
pseudo-inverse matrix to transform it into the post-equalization
matrix

W =
(
Ĥ∗

DĤT
D

)−1

Ĥ∗
D. (7)

The BS multiplies ĤU by its own R-RFF CBS and finally
by the post-equalization matrix W to obtain

HRSLT = WCBSĤU

=
(
Ĥ∗

DĤT
D

)−1

Ĥ∗
DCBSĤU ,

(8)

where, HRSLT represents the Result of the post-equalization.
Further expansion of ĤD and ĤU yields

HRSLT =

(
R∗

UEH̃
∗
DT∗

BS

(
RUEH̃DTBS

)T
)−1

(
R∗

UEH̃
∗
DT∗

BS

)
CBS

(
RBSH̃UTUE

)
=

(
TT

BSH̃
T
DRT

UE

)−1

CBS

(
RBSH̃UTUE

)
.

(9)

Since TBS and RBS are diagonal arrays, CBS can be
written in the form of the product of TBS and R−1

BS

CBS = diag
(
1, c′BS,2, . . . , c

′
BS,M

)
=

1

cBS,1
diag (cBS,1, cBS,2, . . . , cBS,M )

=
1

cBS,1
TBSR

−1
BS .

(10)

Substituting (10) into (9) yields

HRSLT =
1

cBS,1

(
TT

BSH̃
T
DRT

UE

)−1

TBSR
−1
BSRBSH̃UTUE .

(11)
Since TBS is a diagonal array, TT

BS = TBS . Meanwhile,
the UL and DL channels are reciprocal in the coherence time,
which means H̃T

D = H̃U . Therefore (11) can be written as

HRSLT =
1

cBS,1

(
TT

BSH̃
T
DRT

UE

)−1 (
TT

BSH̃
T
D

)
TUE

=
1

cBS,1

(
RT

UE

)−1
TUE .

(12)

Since RUE and TUE are diagonal arrays,(
RT

UE

)−1
TUE = TUER

−1
UE = cUE,1CUE . (13)

Substituting (13) into (12) yields

HRSLT =
cUE,1

cBS,1
CUE . (14)

The equation (14) is the feature obtained after reception
and post-equalization at the BS. We normalize the first value
of HRSLT , the value corresponding to the reference antenna,
to obtain the R-RFF CUE of the UE.

Algorithm 2 CSI Feedback and Post-Equalization
Input: CBS , SD, SU

Output: The R-RFF of UE, CUE

1: UE sends UL pilot signal SU ;
2: BS receives YU ;
3: BS estimates channel ĤU = YU (SU )

†;
4: BS sends DL pilot signal SD in the coherence time;
5: UE receives YD;
6: UE estimates channel ĤD = YD (SD)

†;
7: UE sends ĤD to BS;
8: W =

(
Ĥ∗

DĤT
D

)−1

Ĥ∗
D;

9: HRSLT = WCBSĤU ;
10: for each n ∈ [2, N ] do
11: CUE(n, n) = HRSLT (n, n)/HRSLT (1, 1);
12: end for
13: CUE(1, 1) = 1;
14: return CUE ;

According to (14), we have theoretically succeeded in elim-
inating the effects of the multipath channel. At the same time,
we eliminate the effects of the BS imperfections CBS , leaving
only the imperfections CUE of the UE for authentication.



2) SVM Inference: The BS puts the extracted R-RFF into
the trained SVM model for inference to determine the UE
identity. The predicted label will be compared with the label
of the device under test to evaluate the performance of the
R-RFF scheme.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of our pro-
posed R-RFF in terms of classification and multipath channel
resistance via Matlab simulations.

A. Simulation Setup

We use MATLAB 5G NR Toolbox to simulate 30 virtual
radios, where the UL employs Sounding Reference Signal
(SRS) and the DL employs CSI - Reference Signal (CSI-RS)
as the pilot signal. For each device, we collected 100 frames
for training in the training stage at 30 dB SNR and 900 frames
under the SNR from -10 dB to 30 dB in the inference stage.
One-Against-One multiclass SVM is used here to train and
test the data. In the benchmark, we feed the IQ data received
from the UE directly into the same SVM for classification
training and inference.

1) Transmitter: The BS is assumed to have 32 antennas and
the different UEs are assumed to have 2 or 4 antennas. Both
the antennas of BS and UEs are assumed to be fixed antennas
similar to [13]. We configure each RF chain of the BS and UEs
with different IQ imbalances and wideband PA nonlinearities.
The hardware chains of all antennas for the same device have
the same CFO and CPO, because different RF front-ends often
share the common oscillator in commercial transmitters. We
set the ranges of gain and phase imbalances as [-1 1] dB
and [-5 5] degrees, respectively [16]. We use the NXP Airfast
LDMOS Doherty PA provided in the MATLAB Commu-
nications Toolbox named Power Amplifier Characterization.
The generalized memory polynomial (GMP) model of PA
was used to import PA nonlinearities. We measured PA input
and output data to model the PA. The memory length and
the polynomial degree are both set to 5. Each parameter in
polynomial coefficients of the PA nonlinearity was varied
within ±5% of the measured values [17].

2) Channel: AWGN channel, 2-path channel, and Tapped
Delay Line (TDL) channel in 3GPP TR 38.901 [14] are
adopted for simulation. The 2-path channel has 2 delay paths,
whose delays are set to [0 30e-9] s, and the average path gains
are set to [-3 -5] dB. TDL-C channel is an NLOS channel
with 24 paths, which is specified in the 3GPP protocol. In the
simulation of the wideband multipath environment, the delay
spread is set to 10e-9 s, and the maximum Doppler shift is
set to 10 Hz. The carrier frequency fc is set to 3.072 GHz,
subcarrier spacing is set to 15 kHz, the bandwidth B is set to
15 MHz, and 948 subcarriers are implemented.

B. Simulation Results

As shown in Fig. 3, the recognition accuracy of the R-RFF
scheme under the TDL-C channel can reach 97.8% when the
number of UEs is less than twenty and the SNR is greater than

15 dB, and it can also maintain above 91.4% at 5 dB. As the
number of UEs increases, the recognition accuracy decreases.
When the number of UEs is 30, and SNR is above 10 dB,
the recognition accuracy of 30 UEs can be more than 93.9%,
proving that the proposed R-RFF method works well for the
classification of 30 or fewer UEs at four antennas.
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Fig. 3. Recognition accuracy of the different number of UEs when the number
of antennas is four.

Fig. 4 presents the recognition accuracy of UEs with differ-
ent numbers of antennas. It can be seen that the recognition
accuracy at four antennas is higher than that at two antennas
since the proposed R-RFF scheme relies on the imperfection
relation between the antenna chains of the devices. One of
the antennas of a two-antenna device is used as the reference
antenna, i.e. only the imperfection relation of one antenna can
be used as a feature for classification, leading to the poor
classification of the two-antenna device. But it also indicates
that this scheme which relies on the inter-antenna relation will
become more and more effective in the future as the number
of antennas of the UEs increases.
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The recognition accuracy of UEs with different numbers
of paths is given in Fig. 5. It can be seen that the accuracy
of the benchmark is 87.2% with the AWGN channel, 58.7%
with the 2-path channel, and 51.3% with the TDL-C channel
when the SNR is 25 dB. It illustrates the lack of robustness
of the Benchmark in multipath scenarios. In contrast, despite
the number of paths of channels, the proposed R-RFF method
yields an accuracy of 97.8% at 10 dB. Hence, the robustness
of the R-RFF method in multipath channels is verified in the
simulation.
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Fig. 5. Classification results on different methods when the number of
antennas is four.

V. CONCLUSION

This paper proposed an antenna relation based RFF ap-
proach to address the two bottleneck problems of RFF authen-
tication in the multi-antenna system, i.e., multipath channels
and imperfect channel reciprocity. By echoing the channels,
precoding can eliminate the ideal multipath channels. How-
ever, the imperfect channel reciprocity makes the elimination
of multipath channels unfeasible. To overcome this deficiency,
we proposed a new R-RFF scheme that utilizes CSI feedback
to counteract the multipath channel perfectly. By establishing
the RF imperfection relation between the antenna chains of
a multi-antenna device, we extracted a stable R-RFF, which
could eliminate the non-reciprocal part of the UL and DL
channels. Besides, it is derived that post-equalization of the
BS’s R-RFF could preserve the RFF of the device under test
while eliminating the non-reciprocal portion of the channels
during UE authentication. The simulation results showed that
the proposed R-RFF scheme can authenticate RFF effectively
in multipath propagation scenarios in a TDD multi-antenna
system.
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