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Abstract—Radio frequency fingerprint (RFF) identification is
a potentially effective technique to address the authentication
security of Internet of Things (IoT) devices. Since the complex
working environment and limited resources of IoT devices, noise
is non-negligible in RFF identification of IoT devices. It is a
challenge to suppress the noise without damaging the RFF
information. In this paper, we propose a robust RFF identification
scheme, which consists of a frequency point selection (FPS) based
denoising algorithm, and a convolutional neural network (CNN)
classifier. The FPS algorithm performs denoising by filtering out
all the frequency components that are independent of the RFF.
The CNN is designed with a dynamically decreasing learning
rate to accelerate learning and obtain optimal identification per-
formance. Experiments were conducted with 54 ZigBee devices
to evaluate the performance of the proposed scheme under three
different RFF identification scenarios. The results show that the
FPS algorithm brings the highest accuracy improvement of about
25% when the training signal-to-noise ratio (SNR) is hybrid and
the test SNR is 0 dB.

Index Terms—Radio frequency fingerprint, denoise, ZigBee,
CNN

I. INTRODUCTION

HE number of Internet of Things (IoT) devices is in-

creasing exponentially in recent years, and their security
is receiving increasing attention [1]. IoT devices are mainly
connected via wireless. However, the broadcast nature of
wireless communication makes it possible for any malicious
user to access the network, which makes device authentication
a challenge. Traditional device authentication is usually based
on the cryptographic scheme, such as the preshared key and
MAC/P address. Cryptography involves key management,
which is challenging for most IoT devices because they are
low-cost, resource-limited, and remotely distributed. MAC/IP
address is at risk of being easily spoofed [2].Therefore, a
new lightweight and secure device authentication scheme is
urgently needed.

Radio frequency fingerprint (RFF) is a promising physical
layer security technique for device authentication. During
manufacturing, each device has unique hardware imperfections
due to the electronic component tolerances. As a result, the
signals emitted by a device carry corresponding hardware
characteristics. These characteristics are tiny and do not com-
promise normal communication operations; they are also hard
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to tamper with. Thus, they can be extracted to identify devices,
named RFF. The RFF-based device identification operations
are all performed at the receiver, which means the transmitter
has no additional computational or power overhead. It is
therefore particularly suitable for IoT devices.

RFF-based device identification consists of two phases,
i.e., training and identification [3]. In the training phase, the
authenticator extracts RFF features from the signal of each
legitimate device to form an RFF library, in which the RFF
features and the device identity correspond to each other. In
the identification phase, the authenticator receives signals from
unknown devices and extracts RFF features using the same
method as in the training phase. The device identity is then
inferred by comparison with the RFF library. However, in
practical communications, noise is inevitable and will interfere
with RFF feature extraction and recognition, which has been
experimentally demonstrated [4], [5].

The current research efforts on RFF noise suppression can
be divided into two categories: signal processing-based and
deep learning-based approaches. The signal processing-based
approach first denoises the received signal while retaining the
RFF information, and then performs RFF feature extraction
and identification. Xie et al. proposed a noise reduction
algorithm based on coherent integration, which mitigates
the impact of noise on RFFs by coherent integration of
multiple signals [6]. Xing et al. effectively improved the
RFF identification performance of the direct sequence spread
spectrum (DSSS) signal at a low signal-to-noise ratio (SNR)
by signal superposition [7]. The two works are both based
on the principle that RFF is signal-dependent and the noise
is random, hence, the noise can be reduced by the coherent
superposition of multiple identical symbols, which however
limits its applications. Shen et al. [8] investigated the multi-
packet-based RFF denoising method, which has a security
risk since it needs multiple transmissions to make decisions.
We need more general and secure approaches. Deep learning-
based methods attempt to automatically learn the invariant part
of the signal, i.e. RFF, from a large amount of noisy data. Wu
et al. proposed a convolutional neural network (CNN) with
dynamic shrinkage thresholding to improve device recognition
accuracy at low SNR [9]. Yu er al. designed a deep learning-
based Denoising Autoencoders to extract RFF features of
signals [10]. However, as the noise increases, the tiny RFFs



will be swamped, which leads to the network cannot learn a
stable RFF.

In order to address the above challenges, this paper proposed

a robust RFF identification scheme. Specifically, we designed
a signal processing-based RFF denoising algorithm, i.e. fre-
quency point selection (FPS) based denoising algorithm, which
performs noise suppression on the spectrum of the received
signal. The main contributions are summarized as follows:

« We propose an RFF denoising method by searching and
filtering noise frequency points in the signal spectrum
named the FPS algorithm. Here, RFF is modelled as a
filter that acts on the transmitted signal, which in theory
does not introduce new frequency components to the
transmitted signal. Therefore, the frequency component
of a signal with RFF should be a subset of the fre-
quency component of its standard signal. Thus, the FPS
algorithm first generates a standard signal and extracts
its all frequency components as RFF frequency points.
The amplitude of all non-RFF frequency points in the
received signal spectrum is then set to zero to obtain a
denoised signal. Although there is noise residue at the
RFF frequency points, the noise is effectively suppressed.
Then, CNN with two convolutional layers is designed for
RFF feature extraction and identification.

o We carried out extensive experimental evaluation with
12,238 packets collected from 54 ZigBee devices with
SNRs of about 30 dB. Then, multiple datasets with SNRs
ranging from 0 dB to 25 dB were created by manually
adding additive white Gaussian noise (AWGN). The
performance of the proposed RFF identification scheme
is evaluated in three RFF identification scenarios. First,
when the training SNR and the test SNR are equal, the
highest RFF identification accuracy reaches up to 98.82%
(SNR = 25 dB). In addition, the maximum performance
improvement brought by the FPS algorithm is 21.45%
(SNR = 0 dB). Second, when the SNR of the training set
is fixed and the test set was variable, the FPS algorithm
shows excellent noise robustness. Finally, when the train-
ing set has a hybrid SNR, FPS algorithm introduces an
average accuracy improvement of 13% (from 0 dB to 10
dB).

The remainder of this paper is organized as follows. Section

I introduces the structure of the IEEE 802.15.4 protocol.
Section III gives the details of the robust RFF identification
scheme. Section IV shows the experimental setup and perfor-
mance evaluation. Finally, Section V concludes this paper.

II. PRELIMINARY: IEEE 802.15.4 PROTOCOL

In this paper, the ZigBee device (CC2530), which imple-
ments IEEE 802.15.4 protocol in the physical layer (PHY),
is chosen as a case study to verify the proposed noise robust
RFF identification scheme.

The specific IEEE 802.15.4 frame format is shown in Fig. 1,
which contains three parts: the synchronization header (SHR),
the PHY header, and the PHY service data unit (PSDU). The
SHR consists of a preamble and a start frame delimiter (SFD).
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Fig. 1. Physical layer frame format of IEEE 802.14.5.
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Fig. 2. System architecture of robust RFF identification.

The preamble consists of four 0x00s and the SFD is fixed at
one byte OxA7. The PHY header defines the number of bytes
in the MAC protocol data unit (MPDU), which is set as Ox7F
in our experiment. In this paper, we have chosen the preamble
as the region of interest for device identification.

ITI. NOISE-ROBUST RFF IDENTIFICATION SCHEME

The authentication scenario studied in this paper is one in
which a receiver identifies multiple transmitters. Therefore,
the receiver’s RFF is the same in all signals and can be
neglected. As illustrated in Fig. 2, we propose a robust RFF
identification scheme that consists of signal preprocessing, the
FPS algorithm, and a CNN.

Consider that channel variation has less influence on the
RFF identification performance of narrow-band signals [11],
[12], and the channel is not the focus of our paper, the received
baseband signal from the ¢-th device under test (DUT) can be
modelled as

yi () = fi(x () +u(t),i=1,2,---, M, (1)

where x (t) denotes the transmitted signal, f; (x (t)) is the
signal after RFF distortion, in which the RFF of the transmitter
is collectively represented as f (-), u (t) is the noise, and M
is the number of legitimate DUTs.

A. Preprocessing

Before RFF identification, signal preprocessing is necessary,
including normalization and carrier frequency offset (CFO)
compensation.

1) Normalization: The power of the received signal is
related to the power of the transmitter and the transmission
distance. Moreover, the signal power variations will impair
the accuracy of RFF identification. It is therefore necessary
to normalize the signal to unit power, which is achieved by
dividing all signal samples by the root mean square (RMS) of
the amplitude signal.



Algorithm 1 FPS Algorithm

Input:
¥ (n), the noisy signal;
x(n), the standard signal;
v, the threshold.

Output:
Ui (n), The denoised signal.

1: Transform x(n) to the frequency domain by the discrete

Fourier transform (DFT)
X (k)=DFT(z(n)),k=1,2,--- ,N.

2: Set k=1;

3: while £k < N do

4:  if X (k) > ~ then

5: Set the denoising vector © (k) = 1;
6: else

7: Set the denoising vector © (k) = 0;
8: end if

92 k=k+1;

10: end while

—
—_

Transform ¥ (n) to the frequency domain by the DFT
Y: (k) =DFT(y; (n)),k=1,2,--- ,N.

Get the denoised signal spectrum Y; (k) =Y; (k) © (k);

: return The denoised signal by inverse discrete Fourier
transform (IDFT) g; (n) = ZDFT(Y; (k));

_ -
w»

2) CFO Compensation: Because an oscillator is subject
to temperature drift [13], the CFO is not extracted as an
RFF feature in this paper. Before the feature extraction, the
CFO compensation is performed, whose details can be found
in [11].

After preprocessing, the discrete form of the signal can be
expressed as

yi(n) = fi(x(n) +v' (n),n=12-- N, (2

where N is the number of samples. f/ () represents the RFF
without CFO, u’ (n) denotes the noise after preprocessing.

B. FPS Algorithm

In order to suppress noises, we propose the FPS algorithm
to perform signal denoising before the RFF feature extraction.
The detailed process is illustrated in the Algorithm 1.

As shown in line 1, the standard signal z(n) can be
transformed to the frequency domain by the DFT as

N
X(k)=DFT(x(n) =Y z(m)e /). @3
n=1
Then, the denoising vector is obtained by extracting the
frequency components in the X (k) whose amplitudes are
larger than the threshold +:

1 if | X (k)| >
O (k) = X (R)] =y @
0 if [X(RK) <7,
where || donates absolute operations, the threshold ~ is

an empirical value that can be determined using the RFF
identification performance of the validation set in the training.
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Fig. 3. Spectrum of the part signal at standard and 0 dB.

The frequency domain of signal y, (n) is expressed as

Y; (k) =DFT (y; (n))

N
=D (i () o () )e ) )
n;l - N -
=3 f (@ () e ) £ 3w () e ()
—F, (k) + U (k) -
k :1727 : 7N.

where F; (k) and U (k) represent the spectrum of signal
f!(z (n)) and noise, respectively.

In theory, the RFF function f/(-) hardly ever introduces
new frequency components into the signal x(n). Only the
non-linear hardware may introduce a few new frequency
components, which are almost negligible. Thus, the frequency
components in F; (k) are considered to be a subset of the
frequency components of the standard signal x (n). However,
the noise will introduce a large number of new frequency
components that are independent of the transmitted signal.
With part of the standard preamble signal as an example, Fig. 3
illustrates the spectrum of the standard signal and the signal
with 0 dB noise. As it shows, the frequency components of the
standard signal are concentrated in the low-frequency region.
In contrast, the 0 dB signal has a lot of spurious frequency
components in the high-frequency region. Therefore, noise can
be suppressed by filtering these noise frequency components
with the denoising vector O,

Yi (k) =Yi (k) © (k). (6)

Finally, the time domain signal after noise suppression can
be calculated by IDFT as

i (n) = %Zyi (k) e/ (%) (7)

n=1
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Fig. 4. The architecture of the proposed CNN.

C. CNN

CNN has attracted many research interests with the advan-
tages of eliminating manual feature selection and excellent
performance. CNN usually consists of convolutional layers,
pooling layers, as well as fully-connected layers. Convo-
lutional layers are equivalent to a feature extractor, using
convolutional kernels to extract features from the input signal.
The pooling layer implements data dimensionality reduction
and outputs higher-level features. Finally, the fully-connected
layer performs feature classification.

Referring to the classic neural network which works well
on the MNIST dataset in the computer vision area and the
work in [14], [15], we design a CNN model as shown in
Fig. 4. The CNN contains two convolutional layers with
rectified linear unit (ReLU) activation functions, containing
128 filters and 256 filters, respectively. Each convolutional
layer is followed by a max pooling layer ( size 5 x 1 and
10 x 2). Finally, two fully-connected layers are designed
with activation functions of ReLU and softmax individually.
The softmax function maps the output of the fully-connected
layer, z = (21,292, ,2M), to a probability list of predicted
categories, P = (P, Py, -+, Pps), where

P; Z?Iezj,z 1,2,--- | M. (8)
The category with the highest probability is selected as the
predicted label

PredictLabel = arg max P(37). )

In addition, the dropout function with parameter 0.5 be-
tween the two fully-connected layers and the L2 regulariza-
tion in the second fully-connected layer are set to improve
network generalization performance. Other parameters such
as optimizer, initial learning rate, the number of epochs, and
batch size were set to Adam, 0.0001, 200, and 64, respectively,
and the validation loss was monitored. Furthermore, we design
a dynamic decreasing learning rate. Once the validation loss
stops decreasing for 10 patients, the learning rate is divided
by 2, which can reduce the fluctuations of the loss function
in the later stages of training and makes it easier to approach
the local or global optimal solution.

In our experiments, the preamble data with the length NV
of 1280 samples were selected as the signal to be identified.

TABLE I
RFF IDENTIFICATION PERFORMANCE OF THE PROPOSED SCHEME AT
DIFFERENT THRESHOLD VALUES (TRAIN SNR = TEST SNR = 10 DB)

Threshold 0 1 2 3 4 5
84.80 | 86.19 | 87.00 | 86.88 | 86.68 | 85.90

Accuracy (%)

The specific parameters of the CNN were designed for this
particular input signal.

IV. EXPERIMENTAL EVALUATION

The receiver used in our experiments was an Ettus Research
N210 USRP software-defined radio (SDR) platform and the
devices under test were 54 TI CC2530 ZigBee devices. The
data collection was performed several times between 2016 and
2018 for a total of 12,238 frames of the signal were collected.
These signals were collected with an SNR of about 30 dB.
To verify the performance of the proposed scheme at different
SNR, AWGN with different power levels, {0, 2, 4, 6, 8, 10, 12,
15, 20, 25, 30} dB, was applied to each captured signal with
MATLAB. For each SNR, the ratio of the training, validation,
and test sets was 6:2:2. In addition, all the training and test of
our network models were running on TensorFlow 2.1.0 with
an NVIDIA GeForce GTX 1660 Ti GPU.

To fully evaluate the performance of our proposed scheme,
we involved three scenarios.

e Scenario I: The noise levels of the training and test data
were the same, i.e., with the same SNR.

e Scenario II: we evaluate the RFF identification perfor-
mance with the assumption that the training set SNR is
fixed while the test set SNR varies.

e Scenario III: the training set contains signals with hybrid
SNRs.

A. Scenario 1

Since some frequency components in a noisy signal contain
both RFF and noise, there is a trade-off between the RFF
loss and the SNR gain caused by filtering out this frequency
component. An amplitude threshold of the RFF frequency
component is set to do the optimization. Table 1 illustrates the
identification accuracy of the proposed scheme with different
thresholds v when the SNR is 10 dB. As can be seen from
Table I, the variation in RFF identification accuracy at different
thresholds is not significant. This indicates that the amount
of RFF information in the small-amplitude RFF frequency
component of the ZigBee signal is a small proportion of the
total RFF. In other words, the range of reasonable thresholds
is relatively large. However, in order to illustrate the best RFF
recognition performance, here we select the threshold (y = 2)
corresponding to the highest accuracy rate as the parameter
for all experiments in this paper.

Fig. 5 gives the identification accuracy of the CNN without
denoising (Benchmark), the CNN with FPS algorithm, and the
CNN with the smoothing-based denoising method in [16]. In
the low SNR range (0 dB to 8 dB), the accuracy improvement
brought by the FPS algorithm is significant, especially at O dB,
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Fig. 5. Performance comparsion.

with a maximum of over 20%. In the SNR range of 10 dB
to 15dB, The FPS algorithm also shows satisfactory denoising
capabilities, introducing an average accuracy improvement of
more than 4%. When the SNR is high (20 dB and 30 dB),
the results of the CNN with the FPS algorithm are basically
the same as the benchmark. The main reason is that the FPS
algorithm uses a non-zero amplitude threshold ~ to filter the
non-RFF frequency components, which can introduce RFF
information loss. Furthermore, the performance degradation
due to RFF losses and the performance gains that comes from
denoising in high SNR is offset.

In addition, we compared the FPS algorithm with the
smoothing-based denoising method in [16]. The results show
that the smoothing-based method can bring some performance
improvement when the SNR is low. However, its effectiveness
lags far behind that of the FPS algorithm. As the SNR
rises, the smoothing-based method even leads to performance
degradation. It is due to the summation operation in the
smoothing process, which blurs the RFF features.

B. Scenario 11

In the practical application of RFF, the environment in
which the device to be tested may be variable. Therefore, the
SNR of the received signal will fall in a wide range. When
each signal to be identified needs to be matched with a training
data set with the same noise level, the collection of training
data and the training of the network will require a significant
amount of work. Therefore, we consider the second scenario
of RFF identification, i.e., utilizing a training set with fixed
SNR to identify devices in different SNRs.

Here, we select 80% of the collected data and add different
levels of AWGN to it to develop 11 training sets (including
20% for validation). The remaining 20% data are used for
testing. 11 test sets with different SNRs are constructed by
adding noise. This approach avoids data leakage and ensures
the reasonableness of the test results. For each experiment, a
training set is selected to train an optimal model, and then it is

used to evaluate each test set. Table II gives the performance
comparison between the benchmark CNN (&) and the CNN
with the data after FPS algorithm ({¢) under scenario II.

Overall, £ outperforms & in all training/test SNR. This is
mainly attributed to the noise suppression ability of the FPS
algorithm. The FPS algorithm significantly narrows the noise
gap between training and testing, which means an obvious
improvement in RFF identification accuracy.

When the noise of the training set is between 0 dB and 6 dB,
the highest accuracy of £. is about 75%. In comparison, the
proposed scheme achieves an exciting performance of 92.52%.
In addition, the maximum improvement is over 26% (test SNR
= 30 dB, train SNR = 4 dB). when the SNR was above 8 dB
for both the training and test sets, all the identification results
of &5 exceed 85%, which shows a satisfactory performance
improvement compared to the baseline.

C. Scenario 111

In RFF identification, in order to train a network model
with good generalization performance, the training set it is
preferable to include a variety of SNR signals, which is called
Scenario III in this paper.

Fig. 5 compares the FPS algorithm performance in Sce-
nario III with the benchmark and that in Scenario I. It can be
seen that when the training set is hybrid SNR, the accuracy
of the FPS algorithm is greatly improved compared with the
benchmark, reaching an average of 13% (from 0 dB to 10
dB), especially at 0 dB, the improvement exceeds 24%. In
addition, the FPS algorithm in Scenario III shows satisfactory
performance improvements in all SNR ranges compared to
Scenario I. Those phenomena suggest that the training set with
hybrid SNR does have better RFF identification performance
than the training set with single SNR. However, only a single
CNN model is required in this scenario.

V. CONCLUSION

In this paper, a robust RFF identification scheme is in-
vestigated. First, we propose a denoising algorithm, named
FPS, to perform noise suppression while preserving RFF
features by noise frequency component filtering. Then, we
design a CNN for the particular ZigBee signal. Experiments
show that the proposed scheme has excellent RFF recognition
performance. In Scenario I, the maximum RFF identification
accuracy improvement comes from the FPS algorithm is
21.45% in O dB. Then, the FPS algorithm shows exciting noise
robustness in Scenario II. When the training set has a hybrid
SNR (Scenario III), the FPS algorithm introduces an average
accuracy improvement of 13% in the 0 dB to 10 dB interval.
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TABLE II
RFF IDENTIFICATION PERFORMANCE OF CNN (§.) AND CNN WITH FPS ALGORITHM (£ ) WHEN THE SNR OF THE TRAINING AND TEST ARE DIFFERENT

SNR of Train Set (dB)
Accuracy (%) 0 2 4 6 8 10
&e &f &e &y &e &f &e &r &e &r &e &f
0 3092 | 5237 | 41.50 | 52.57 | 40.16 | 52.78 | 39.99 | 5221 | 39.01 | 51.43 | 22.55 | 46.73
2 32,64 | 5249 | 4489 | 61.89 | 53.31 | 62.09 | 51.14 | 61.36 | 52.94 | 59.97 | 38.11 | 56.70
4 3370 | 56.25 | 50.00 | 66.63 | 57.11 | 69.73 | 60.74 | 68.26 | 62.21 | 68.34 | 56.78 | 64.83
6 34.07 | 55.76 | 52.17 | 68.59 | 65.36 | 75.69 | 66.99 | 76.63 | 72.63 | 77.04 | 6691 | 72.75
8 3538 | 55.60 | 52.86 | 70.92 | 65.60 | 80.39 | 72.88 | 80.64 | 7590 | 81.99 | 7545 | 79.41
10 | 3493 | 56.25 | 54.41 | 71.28 | 65.28 | 82.76 | 73.69 | 85.54 | 79.90 | 85.46 | 81.00 | 87.00
12 | 3542 | 56.58 | 53.76 | 72.10 | 65.11 | 84.27 | 73.45 | 88.11 | 82.56 | 88.44 | 83.66 | 88.03
15 | 35.50 | 56.17 | 5547 | 72779 | 64.83 | 86.32 | 74.63 | 90.11 | 84.76 | 91.54 | 85.87 | 90.93
20 | 36.36 | 56.21 | 5572 | 73.04 | 63.11 | 87.42 | 74.80 | 9220 | 87.38 | 94.16 | 87.05 | 94.08
25 | 3697 | 56.50 | 5531 | 7239 | 6242 | 88.03 | 7545 | 92.52 | 88.11 | 94.85 | 86.93 | 94.98
?g?sii 30 | 37.14 | 58.13 | 57.15 | 72.30 | 62.78 | 88.85 | 75.75 | 92.52 | 89.13 | 94.65 | 88.43 | 96.24
(dB) 12 15 20 25 30
0 21.12 | 4592 | 20.79 | 43.75 | 17.48 | 38.77 | 14.75 | 36.23 | 12.09 | 35.95
2 3440 | 53.88 | 36.19 | 53.23 | 29.82 | 4931 | 25.41 | 46.00 | 2496 | 4555
4 50.37 | 6442 | 50.61 | 63.52 | 42.28 | 59.44 | 43.46 | 56.66 | 41.87 | 57.76
6 63.36 | 7345 | 63.73 | 7247 | 54.45 | 69.53 | 56.90 | 66.42 | 55.72 | 65.89
8 74.18 | 79.09 | 72.79 | 79.53 | 65.32 | 76.96 | 68.75 | 75.74 | 65.03 | 74.35
10 | 80.84 | 87.05 | 81.17 | 85.46 | 74.84 | 84.48 | 75.82 | 82.39 | 74.80 | 82.03
12 | 85.58 | 89.67 | 85.70 | 90.77 | 82.43 | 89.01 | 83.82 | 88.56 | 83.09 | 88.52
15 | 88.89 | 91.87 | 90.60 | 94.85 | 90.77 | 94.44 | 92.24 | 9424 | 91.42 | 93.50
20 | 92.24 | 94.81 | 94.12 | 97.30 | 97.22 | 97.43 | 97.55 | 98.24 | 97.55 | 97.39
25 | 9293 | 9551 | 95.18 | 98.16 | 97.79 | 98.37 | 98.85 | 98.82 | 98.39 | 98.33
30 | 94.85 | 96.57 | 96.53 | 98.94 | 97.84 | 98.41 | 98.87 | 98.90 | 99.07 | 99.10
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