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Gor Piliposyan
Investigation into Detection of Hardware Trojans on Printed Circuit Boards

Abstract

The modern semiconductor device manufacturing flow is becoming increasingly
vulnerable to malicious implants called Hardware Trojans (HT). With HTs becoming
stealthier a need for more accurate and efficient detection methods is becoming increasingly
crucial at both Integrated Circuit (IC) and Printed Circuit Board (PCB) levels. While
HT detection at an IC level has been widely studied, there is still very limited research
on detecting and preventing HTs implanted on PCBs. In recent years the rise of
outsourcing design and fabrication of electronics, including PCBs, to third parties has
dramatically increased the possibility of malicious alteration and consequently the security
risk for systems incorporating PCBs. Providing mechanical support for the electrical
interconnections between different components, PCBs are an important part of electronic
systems. Modern, complex and highly integrated designs may contain up to thirty layers,
with concealed micro-vias and embedded passive components. An adversary can aim
to modify the PCB design by tampering the copper interconnections or inserting extra
components in an internal layer of a multi-layer board. Similar to its IC counterpart, a
PCB HT can, among other things, cause system failure or leakage of private information.
The disruptive actions of a carefully designed HT attack can have catastrophic implications
and should therefore be taken seriously by industry, academia and the government.

This thesis gives an account of work carried out in three projects concerned with
HT detection on a PCB. In the first contribution a power analysis method is proposed
for detecting HT components, implanted on the surface or otherwise, consuming power
from the power distribution network. The assumption is that any HT device actively
tampering or eavesdropping on the signals in the PCB circuit will consume electrical power.
Harvesting this side-channel effect and observing the fluctuations of power consumption
on the PCB power distribution network enables evincing the HT. Using a purpose-built
PCB prototype, an experimental setup is developed for verification of the methodology.
The results confirm the ability to detect alien components on a PCB without interference
with its main functionality.

In the second contribution, the monitoring methodology is further developed by
applying machine learning (ML) techniques to detect stealthier HTs, consuming power
from I/O ports of legitimate ICs on the PCB. Two algorithms, One-Class Support Vector
Machine (SVM) and Local Outlier Factor (LOF), are implemented on the legitimate
power consumption data harvested experimentally from the PCB prototype. Simulation
results are validated through real-life measurements and experiments are carried out on
the prototype PCB. For validation of the ML classification models, one hundred categories
of HTs are modelled and inserted into the datasets. Simulation results show that using
the proposed methodology an HT can be detected with high prediction accuracy (F1-score
at 99% for a 15 mW HT). Further, the developed ML model is uploaded to the prototype
PCB for experimental validation. The results show consistency between simulations and
experiments, with an average discrepancy of ±5.9% observed between One-Class SVM
simulations and real-life experiments. The machine learning models developed for HT
detection are low-cost in terms of memory (around 27 KB).
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In the third contribution, an automated visual inspection methodology is proposed
for detecting HTs on the surface of a PCB. It is based on a combination of conventional
computer vision techniques and a dual tower Siamese Neural Network (SNN), modelled
in a three-stage pipeline. In the interest of making the proposed methodology broadly
applicable a particular emphasis is made on the imaging modality of choice, whereby a
regular digital optical camera is chosen. The dataset of PCB images is developed in a
controlled environment of a photographic tent. The novelty in this work is that, instead of
a generic production fault detection, the algorithm is optimised and trained specifically for
implanted HT component detection on a PCB, be it active or passive. The proposed HT
detection methodology is trained and tested with three groups of HTs, categorised based
on their surface area, ranging from 4 mm2 to 280 mm2 and above. The results show that
it is possible to reach effective detection accuracy of 95.1% for HTs as small as 4 mm2.
In case of HTs with surface area larger than 280 mm2 the detection accuracy is around
96.1%, while the average performance across all HT groups is 95.6%.
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Chapter 1

Introduction

1.1 Motivation

Printed Circuit Boards (PCBs) are core parts of electronic devices used across

a wide range of industries including consumer electronics (smartphones, computers

etc), medical devices, automotive components (navigation, control systems and sensors),

telecommunications equipment and military applications. In recent years companies often

outsource the production of PCBs in order to decrease manufacturing costs, reduce the

time-to-market, and mitigate market supply shortages. This production mode inherently

introduces security risks by granting third parties access to the manufacturing lifecycle,

thus giving rise to the possible introduction of malicious alterations or inclusions, such as

hardware Trojans (HT). The altered hardware can give an adversary unauthorised access

to the device and initiate retrieval or corruption of classified information. The destructive

activities of HTs can cause catastrophic consequences including paralysing major financial

or military systems, shortening operational lifetime of hardware or initiating complete

failure of the system [1].

A report on hardware Trojan attacks on PCBs was published by Bloomberg in 2018

[2]. The report described a formidable scale tampering attack on company-private server

infrastructures with a tiny malicious chip which, albeit carrying a small logic, tricked the

motherboards providing backdoor access when the server booted up. According to the

article, about thirty companies downstream the supply chain from Super Micro Computer

(SMC) company were heavily affected including Amazon, Apple as well as a few government

contractors. Although the SMC company swiftly denied any adversarial infiltration into

their products during the manufacturing process [3], it has been since demonstrated [4]

that such attacks are realistic and plausible. Possible security threats include tampering,
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Trojan insertion, cloning and other attacks which can cause malfunctions such as denial of

service, information leakage and backdoor access to adversaries. The Bloomberg article was

later analysed in [5] where the vulnerabilities in modern PCB supply chains and existing

viable countermeasures were discussed.

The attack described by Bloomberg in [2] is a typical Trojan attack when the

adversaries infiltrated into the system by malicious alterations and inclusions [6], [7],

[8]. Modern PCBs are complex structures with up to thirty layers, embedded passive

components and hidden vias [9]. All these provide the adversaries with better opportunities

to disguise an HT within a PCB, for example by tampering the design by changing

the interconnections or fitting alien components in one of internal layers of the board

[10], [11]. Board level Trojan attacks can occur during design, manufacturing and post-

manufacturing transportation stages. For example, these attacks can change the width and

spacing of PCB traces during the design stage, causing modifications in delay and cross-

talk parameters, leading to parametric failure of the system [10]. Traces can be altered

triggering overheating, critical delay failures or electromigratory failures in microscopic

wires. Further, the value of passive components or their functionality can be modified,

causing breakdown under specific operating conditions [12].

Ideally any malicious modification within an integrated circuit (IC) or PCB should be

detected during pre-silicon or pre-production and post-production verification and testing

stages. However, golden models are needed for pre-silicon verification, which is not always

available. In addition, modern sophisticated multi-module IC and PCB designs are not

always easy to verify. Verification at post-silicon stage can be done either by reverse

engineering, destructive depackaging [13] or by comparing the characteristics with a golden

model [14], [15], [16]. However, since the complexity of modern ICs and PCBs continues to

grow and the HTs become increasingly stealthier, with a wider range of possible attacks,

neither destructive verification nor traditional post-manufacturing logic testing are suitable

for assured HT detection. That is why research on developing methodologies for new and

effective countermeasures against HTs is crucial.

2
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1.2 Scope

Malicious HT attacks have been reported at higher levels of system abstraction such as

PCBs, which are becoming increasingly exposed and vulnerable to unwanted modifications

during design or fabrication in untrusted facilities [6], [7], [8]. An attacker can try to

modify the PCB design by tampering the interconnections or inserting extra components

in an internal layer of a multi-layer board [10].

While HT attacks on ICs have been investigated extensively since 2007, malicious

modifications to PCBs started attracting attention only in 2015 [10]. Much of the research

on detection and classification of HTs in PCBs has been carried out based on understanding

of IC-level HTs. However, there are key differences between IC and PCB level Trojans in

several aspects, which determine the requirement of new research approaches for finding

countermeasures against PCB level Trojans.

Firstly, post-manufacturing modification is normally not included in IC HT threat

models, but is common in PCB level Trojan attacks. There are many cases of real life

in-field attacks on PCBs, examples including malicious modifications to the PCBs in fuel

pump controllers [17] and nation-state spy inclusions [18].

The attack surface too is different between IC and PCB level HTs. PCB Trojans in

general communicate with functional blocks, whereas IC level HTs change the performance

of these blocks. For instance, PCB HTs aiming to target trusted platform modules (TPMs)

cause vulnerable communication protocols to bypass the root of trust of the TPM [19].

Whereas an IC HT would add logic in a TPM and, for example, reveal keys when triggered.

Lastly, countermeasures against PCB HTs are affected by the larger size of PCBs.

If, for example, optical-based countermeasures can effectively use cameras for PCBs,

imaging ICs would be more problematic requiring nanometer resolution and more advanced

equipment for failure analysis.

Many countermeasure methods developed against IC level Trojans can be used for

detecting and preventing PCB level HTs. However, even these methods need to be adapted

to be applied on PCBs [20]. For example, countermeasures based on side-channel analysis

and physically unclonable functions (PUFs) would require an adaptation to electrical
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parameters of PCBs, and design for security methods should consider diverse ICs and

specific discrete passive components [20]. Due to the differences between PCB and IC

Trojans the supply chain and post-manufacturing attacks can also be different, requiring

new approaches in board-level HT countermeasures [20].

The overall goal of the research in this thesis is to develop novel approaches for

PCB Trojan detection. Specifically, three PCB-level Trojan detection problems have been

targeted in three separate projects, constituting Chapters 3, 4 and 5 of this thesis. Each

project has a distinct aim and a proposed approach for reaching the solution. The first

two projects, in Chapters 3 and 4, should be viewed as two parts of a single larger system,

both using the same circuit architecture to perform power analysis for HT detection. The

first approach is based on a technique referred to as differential power monitoring, while

the second makes use of machine learning algorithms. The aim of the third project in

Chapter 5, on the other hand, is to detect HTs on the surface of the PCB using optical

digital images for automated visual inspection. The third approach has been developed by

combining conventional computer vision and deep learning techniques.

1.3 Contributions

1. Differential power monitoring method: The first contribution is a power

monitoring based method. The name of the method is derived from the fact that it is

seeking to detect the difference between expected and actual power consumption on the

PCB, targeting the PCB’s power distribution network (PDN) for monitoring. The idea

is that at all times the power consumption measured on the input of the PCB should

closely match the combined power consumption of the components installed on it, minus

any natural power loss induced by the parasitics on the PDN. In case of a notable change

between the two values, it can be assumed that there is an extra unlicensed component

operating on the board, i.e. a hardware Trojan. The method is experimentally confirmed to

be functioning, capable of detecting HT implants, while having no impact on the intended

operations on the PCB.

4



Chapter 1. Introduction

2. Machine learning based method: The second contribution reuses the monitoring

circuit architecture proposed in the first contribution to reduce the added overheads to

none, while significantly increasing the monitoring capabilities. The method applies ML

algorithms on the legitimate power consumption data (i.e. from HT clean PCB) collected

experimentally from the prototype PCB. This project targeted HT devices, which consume

power from a chosen legitimate IC on the PCB by connecting to one of its I/O ports.

Two ML algorithms, One-Class Support Vector Machine (SVM) and Local Outlier

Factor (LOF), have been used for the simulations. One-Class SVM has been selected to be

uploaded on the prototype PCB for further experimental validation. The final contribution

produced in this project is a single unified ML model, aware of correct power consumption

behaviour of all blocks of the PCB, capable of performing in-field real time monitoring.

The experiments confirm that both algorithms show a good performance, in some cases

reaching over 99% F1-score classification results. The model developed in this contribution

for the prototype PCB is light weight, consuming only 27 KB of memory and the run time

spatial complexity of One-Class SVM is in the order of O(n2).

3. Computer vision based method: The third contribution proposes a method for

inspecting PCBs through digital optical image. Shifting attention from power analysis

methods proposed in the first two contributions, the third project makes use of computer

vision techniques to locate malicious inclusions on the surface of the PCB. Introducing a

three stage algorithm pipeline, this project involves image processing techniques such as

applying a filter, pixel-wise subtraction of two images, as well as more advanced techniques

such as convolutions and deep neural networks. Tested on a range of different HT types

and sizes, this contribution introduces how a combination of separately existing techniques

can allow detection of unauthorised inclusions with over 95% accuracy.
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1.4 Thesis Outline

The thesis is organised as follows:

• Chapter 2: Provides background information on HTs. The vulnerabilities of

the PCB supply chain have been discussed with possible Trojan attacks. PCB

level Trojans and their functionality have also been presented with examples of

functional and parametric HTs. Further, board level Trojan taxonomy has been

presented and its importance in identifying Trojans according to their characteristics

discussed. This is followed by the description of publicly available Trojan benchmarks

of PCB HTs. The rest of Chapter 2 provides a literature review of research on

countermeasures of IC level Trojans followed by the review of countermeasures of

PCB level HTs. Research on HT detection and prevention is categorised based on

the presented taxonomy on countermeasures against HTs.

• Chapter 3: Proposes a PCB level HT detection method based on differential power

monitoring. Using a purpose-built PCB hardware prototype, an experimental setup

has been designed and fabricated to be tested on, for verification of the proposed

methodology. The results confirm the ability to detect alien components on the PCB

and provide directions for further research.

• Chapter 4: Introduces a machine learning (ML) based approach for run-time Trojan

detection on the PCB. Two ML methods have been applied to detect HTs operating

on power drawn from I/Os of legitimate chips on the PCB. The PCB prototype

developed for the first project has been reused to obtain real-life silicon data on

power consumption patterns on the PCB. The data has later been used to train two

ML algorithms: One-Class Support Vector Machine and Local Outlier Factor. For

validation of the ML classifiers, one hundred categories of HT devices have been

modelled and inserted into the validation and testing datasets. Further, the ML

model has been uploaded to the prototype PCB for hard-silicon validation of the

proposed methodology.

• Chapter 5: Develops an automated visual inspection methodology for detecting HTs
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on a PCB, using input data from a low-cost digital optical camera. It is based on

a combination of conventional computer vision techniques and a dual tower Siamese

Neural Network (SNN), designed in a three stage pipeline. Further, a dataset of PCB

images has been developed in a controlled environment of a photographic tent.

• Chapter 6: Summarises the main results of all projects outlined in this thesis and

outlines directions of future work.
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The work which constitutes this thesis is based on the following contributions that

have been published.
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(doi: 10.1109/TC.2022.3230877)
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Chapter 2

Printed Circuit Board Hardware Trojan

Preliminaries

2.1 Introduction

A hardware Trojan (HT) is a rogue piece of extra hardware or an alteration of the

existing PCB layout without adding extra components, secretly implemented by adversaries

for malevolent reasons such as information gathering, false signalling, hijacking control, etc.

Trojans can be inserted into an integrated circuit (IC) or a printed circuit board (PCB)

[21], [22] and give an attacker unauthorised access into the device and, for example, initiate

a leakage or corruption of important information [10]. In a business world, Trojans can

be designed with the intention of harming, or even destroying, the reputation of a rival

company [23].

PCB Trojan attacks can happen during design or manufacturing stages in an

untrusted design house or foundry. Adversaries try to design the Trojans to be as stealthy

as possible, in order to evade detection during post-manufacturing tests.

2.2 Printed Circuit Board Supply Chain Vulnerabilities

The rise of outsourcing of PCB design and fabrication process to third parties in

recent years has created various vulnerabilities and threats in the supply chain. The stages

in PCB production and supply chain and some of the existing vulnerabilities are shown in

Figure 2.1 [24], [20].

PCB design starts by defining its specifications and converting them into schematics

and board layouts, which are then exported and sent to foundries. In the PCB fabrication
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Figure 2.1: Vulnerabilities in IC and PCB supply chain and production phase.

stage, the board substrate is built by bonding several layers of conductive foil with epoxy.

This is followed by defining traces through chemical etching before connecting different

layers through drilling and plating vias. At the assembly stage the bare board is populated

with corresponding components and after passing through in-circuit tests and JTAG

boundary scans the assembled board is incorporated in a larger mechanical or electrical

system during the system integration stage. Then the completed final system is tested and

shipped.

The vulnerabilities can be exploited by adversaries at any point of the PCB supply

chain. Possible attacks on PCBs can be categorised as hardware Trojan insertion, piracy

and counterfeiting, and in-field alteration, shown in Figure 2.2. The attackers can change

both the width and spacing of board traces, modify the delay parameters and cause

parametric failures during manufacturing stage or in the field [10]. They can also modify

traces and create sources of delayed electromigratory failures in the future, which may

not be detected by parametric tests at the time of fabrication. Finally, the adversaries

can change the functionality of passive components and cause malfunction, shortened

operational lifetime or denial of service.

Pirated PCBs can be used to clone and overproduce PCBs, which will harm companies

that put significant investments in research and development. In addition, cloned PCBs,

having unlikely been rigorously tested, would be less reliable compared to their genuine

counterparts and could cause fatal problems if used in security-sensitive and critical

infrastructures. Further, with Trojan insertion adversaries can get a back-door access
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Figure 2.2: General overview of IC and PCB related malicious activities.

to carry out a stealthy attack with potential catastrophic consequences. Therefore, it is

crucial to authenticate PCBs before they are deployed for service [24].

2.3 Printed Circuit Board Level Hardware Trojans

In general, a Trojan has an optional activation mechanism referred to as a trigger

and an objective purpose referred to as payload [25]. A simplified diagram of an HT

is shown in Figure 2.3, where the trigger of the Trojan activates the payload causing a

failure by altering signal S to S0 [21]. The trigger monitors different signals and/or various

functions in the system. The payload connects to the output of the trigger and signal

S from the original circuit. When the trigger identifies a specified signal or activation

condition, the payload is activated to deliver the malicious action. The payload is mostly

inactive since the trigger is designed to activate under rare conditions in order for the HT

to remain undetected. Therefore most of the time during design and testing stages the

system operates as Trojan-free [25], making detection of the HT more difficult.

Figure 2.3: Generic block diagram structure of a hardware Trojan.
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Modern PCBs contain multiple microelectronic components including simple passive

devices (diodes, transistors, resistors, capacitors) and diverse ICs (microprocessors,

FPGAs, memories). An adversary can design a PCB level HT by implanting extra

components. These types of Trojans are referred to as functional. For example, a number

of extra NPN bipolar junction transistors (BJTs) can be introduced, which would operate

and look like existing legitimate NPN BJTs on the PCB. However, instead of supporting

the planned operation of the PCB they would rather have some adversarial effect.

PCB-level Trojan attacks could also be carried out without introducing additional

components, by only changing the structural and/or parametric properties of conductive

and non-conductive parts of the PCB layers. These types of Trojans are called parametric.

Trojan attacks involving intra-component or board level alterations would also be possible

in more complex scenarios, where a combination of several types of HTs could be introduced

to the circuit.

2.3.1 Functional Trojan

The general structure of a functional Trojan with a trigger and a payload, is shown in

Figure 2.4. The trigger receives one or several signals from existing PCB traces to develop

a rare-activation trigger condition [26], necessary for minimising the possibility of Trojan

activation during functional testing of the PCB. This can be achieved by incorporating a

large number of traces which rarely meet an activation condition or by building a trigger

circuit which needs more than one excitation to meet the activation condition.

Figure 2.4: Sample diagram of a PCB level triggerable functional hardware Trojan.

The payload of an HT is the malicious activity that the Trojan performs when it is

triggered. Trojans which are always on have only a payload circuitry, since there is no
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need for a triggering mechanism. These will not have an evident, significant effect on the

functionality of the PCB, since otherwise they would be obvious and easily detectable for

post-fabrication error tests. Various trigger and payload designs are possible within this

model.

Trigger Designs: Cleverly designed triggers for functional Trojans should be robust

against unintended activations. Triggers designed by cautious adversaries can utilise

combinations of PCB components such as resistors, capacitors, diodes and transistors.

These combinations can be divided into three distinct groups - Resistor-Transistor Logic

(RTL), Diode-Transistor Logic (DTL), and Transistor-Transistor Logic (TTL) [26]. Using

these groups, the same Boolean logic function can be implemented in many ways. For

instance, even the simple double input NAND function can be constructed in three circuits

as shown in Figure 2.5.

Figure 2.5: Schematic diagrams of a double-input logic NAND function with (a) resistor-
transistor logic, (b) diode-transistor logic and (c) transistor-transistor logic.

The sample Trojan shown in Figure 2.6 illustrates the general concept of how it can

modify a signal communicated between two microcontroller units (MCUs). Such Trojans

can be introduced by untrusted design houses with little hindrance.

One example of the triggering circuit can be a triple input logic AND gate

implemented in RTL, shown in Fig. 2.7. As such, the trigger function will only activate

when all three triggering input signals are in Boolean logic high state. Evidently even this

simple Trojan trigger design can be scaled up in the number of input signals, making it

challenging to detect given the sheer magnitude of possible combinations [26].

Another example of a triggering circuit consisting of resistors, a capacitor, a diode
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Figure 2.6: Triggerable Trojan implant modifying a signal going from microcontroller 2
to microcontroller 3 by rerouting the trace through its payload circuit.

Figure 2.7: Schematic diagram of a sample multi-input trigger circuit, activating
when all inputs are simultaneously in logic high state (3-input logic AND gate).

and an Op-Amp is shown in Figure 2.8 [27]. This is a more complex trigger design, which

activates if the included capacitor is charged up to a certain voltage. The reference voltage

is determined by the resistors in the Op-Amp feedback loop and the charging process takes

place only when the triggering input signal is high. If the capacitor voltage does not reach

the reference point before the input signal reverses to low, the diode blocks the capacitor

from discharging. Alternatively the diode can be removed opening a discharge path for the

capacitor, in which case the input signal will need to remain high for a minimum amount

of time before the capacitor reaches its reference voltage.

Example Payload Designs: The same RTL, DTL and TTL methods can be utilised to

implement the Trojan’s payload functionality. Logic gate XOR can be used as the payload

to invert the victim signal every time the trigger circuitry is activated. One such example

can be seen in Figure 2.9, implemented in RTL. Alternatively a 2:1 Multiplexer can be
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used for functional leakage or even a single transistor to cause a stuck-at-logic high or low

(Figure 2.10).

Figure 2.8: Schematic diagram of a trigger circuit using a capacitor and op-amp,
which will activate only after several repetitions of the triggering condition.

Figure 2.9: Schematic diagram of a sample payload function (2-input XOR)
which inverts the targeted victim signal upon activation.

2.3.2 Parametric Trojan

When the PCB has fewer layers and hiding additional components is harder, harm

can be done by changing the resistance, capacitance or inductance of the signal traces. For

instance, the resistance can be increased by thinning the copper signal trace in an internal

layer thus shortening the operational life of the copper trace due to heating.
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Figure 2.10: Schematic diagram of a single transistor payload circuit with a
stuck-at logic low effect.

Several possible trace modification techniques were proposed in [6] and [10]. One of

them was based on hijacking a signal state by changing drive strengths of different signals

that are connected to each other.

For example, in case of some debugging techniques such as JTAG the circuit

architecture requires linking the debugging pins to the pins of legitimate components on

the board. In the schematic illustration of a design shown in Figure 2.11a, a trace from

component 1 drives components 2 and 3. However the signal heading towards component 2

can also be controlled by component 3 by configuring the pin of component 3 as an output

with a stronger drive than the output of component 1. The strength of a trace drive can

be changed by altering its impedance, thickness and length, or integrating buffers (Fig.

2.11a) [6]. Another example is illustrated in Figure 2.11b. Although the driving power

of the hijacker is lower than that of the master component, being situated closer to the

victim element provides the hijacker a temporal window to generate a false signal before

the correct signal from the master can reach the victim component.

(a) (b)

Figure 2.11: Diagrams of two parametric Trojan models: (a) Trojan Component 3 hijacking
communication between Component 1 and Component 2, (b) Located closer to the victim,
the hijacker generates a fake signal, reaching the victim faster than the genuine signal.
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2.4 Taxonomy of PCB Trojans

Understanding different type of HTs and categorising them in a taxonomy is vital for

developing different countermeasures against Trojans. With HTs becoming more complex,

different taxonomies have been proposed for IC level Trojans since 2008 [28], [22]. The

most comprehensive taxonomy for IC HTs was proposed by Karri et al. [29]. However

existing taxonomies for IC-level Trojans are not suitable for PCB-level Trojans due to

existing differences between IC-level and PCB-level Trojans (section 2.6), in particular

differences in threat models, attack surfaces, and scale. For example, insertion of an HT

after manufacturing is not possible at the IC-level, whereas it is a realistic threat for PCBs

since malicious implants can be soldered on a PCB even after the fabrication stage [26].

The differences between PCB-level and IC-level Trojans determine not only the

existing HT attack models on the supply chain, but also directions for developing

countermeasures against PCB-level Trojans [20]. The first taxonomy for PCB-level HTs

was proposed by Ghosh et al. [10] where board-level Trojans were categorised as malicious

modifications or hidden components. More detailed and comprehensive taxonomy for PCB-

level HTs was presented by Hoque et al. [26] where the taxonomy for IC-level Trojans was

modified to accommodate the differences between IC-level and PCB-level HTs. Although

later a taxonomy constructed specifically for PCB hardware Trojans was suggested by

Harrison et al. [20], the taxonomy in Figure 2.12, based on a combination of the two,

provides a more accurate and encompassing representation of PCB-level Trojans, showing

classes of HTs, highlighted in yellow with dotted outlines, that are applicable only to PCBs.
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The first column in the taxonomy describes insertion phases in the PCB life

cycle when malicious modifications are possible to introduce. A hardware Trojan can

be implemented by modifying the PCB characteristics at specification and design stages,

for example changing temperature specification to deteriorate the design reliability.

Insertion of new elements or trace alteration are also feasible during the fabrication and

post fabrication steps [8]. IC-level HTs can be introduced by adding extra gates to the

design’s netlist or directly changing the photolithography masks. After fabrication an

adversary can also exploit electromagnetic radiation caused by unshielded wire connections

to cause leakage of classified information or inject faults in the system [30].

The level of abstraction provides an insight on the extent of control and flexibility

the adversary has. It includes different stages of the hardware IP development before

fabrication.

• The system level defines the design’s modules and their interconnections. At this level

adversaries are limited by the modules’ interfaces and interactions between them.

• At the development environment level an HT can be introduced into the modules by

exploiting computer-aided design (CAD) tools and scripting languages.

• The schematic level represents a list of gates/components with interconnections

between them. Here the adversary has enough information to apply a targeted attack

through an implanted Trojan block and manipulate the signals on the legitimate

interconnections.

• Access to layout level enables the adversary to fine-tune the HT in terms of the

temporal delay and additional power consumption it introduces to the original device.

In fact these are parameters, which can be regulated with very high precision.

Further, apart from newly added HTs in the circuit, HTs can also be introduced

through modifying the parameters of existing legitimate components in the circuit.

• Lastly, the physical level provides the adversary access to the exact placement, as

well as physical dimensions of all components on the device. It would be possible

to implant an HT in the unoccupied areas of the original device layout, without

impacting its initial characteristics [30].

The location characteristic describes where in a PCB an HT can be implanted. It

can be on the top or bottom of a PCB and be visible without disturbing other components.
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Trojans could be located on the surface of a PCB, but be hidden by a quality control sticker,

heat sink or another component. They can also be hidden between the layers of the PCB,

in the form of embedded extra components or modifications to routing and cause, for

example, a signal propagation degradation or cross-talk aggravation [10], [31].

On a PCB housing several chips, an HT can be implanted on chips’ interfaces to

modify communication.

HT Modification discusses the ways an HT is introduced into a PCB.

• A Trojan can be introduced by addition of an extra component on empty spaces or

test points of an original design. Traces can be added for transferring HT signals or

prompting crosstalk. Added test points can uncover sensitive signals that are hidden

in inner layers. The Trojan described by Robertson et al. [2] is an example of an HT

introduced by addition.

• A Trojan attack can be arranged by removing components in order to change or

jeopardise system’s functionality. For example, by removing one of the existing

capacitors soldered to the output pins of a switch mode power supply the system

voltage can be destabilised at the times of peak current demand.

• Tampered component group is about maliciously modified components in the supply

chain, which are later unknowingly used by trusted entities down the production line.

For example, if a certain microcontroller is tampered by an adversary and presented

in the market as an original trusted component, a trusted PCB manufacturing facility

can purchase that microcontroller and use in its production line, thus unintentionally

introducing a compromised component to the otherwise trusted product.

• Tampered PCB is about modifying the original design or replacing a legitimate

component. For example, the PCB substrate or routing layers can be modified by

an attacker. An example of this type of HT attack is introduced by Robertson et

al. [2], describing how the crosstalk phenomena can be exasperated by changing the

routing path of a PCB trace. Similarly, [12] discusses how electromigration induced

failures can be introduced by tampering the physical dimensions of a trace, e.g.

thinning a copper wire. Another example is camouflaging an active HT component

as a passive component, which replicates the task of a passive component with added

malicious functionality. Likewise, legitimate ICs could be knowingly replaced by
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Trojan counterparts, e.g. an IC carrying a small logic could be replaced with a

similar looking, but more powerful Trojan microcontroller [12]. Such Trojans have

the capability to add or change the existing system functionality.

Activation mechanism category describes the mechanisms by which an HT payload

is activated.

• Always active Trojans continuously deliver their payload during the operation of the

system. Examples of this type of HT include replacement of a passive component

in a PCB by another passive component with skewed parameters or modification in

the routing of an otherwise shielded trace, for example, so that information on the

signal carrying trace can be leaked through electromagnetic radiation.

• Triggered category HTs are divided into functional and parametric types which are

described in section 2.3. Triggerable HTs need to meet some predefined activation

condition before they initiate delivering their payload. Anything from internal

sequential counters or external data streams entering the system, to variation in the

power supply voltage, and even environmental temperature can serve as an activation

trigger.

– Internal triggers can be activated when encountering specific electrical

conditions or system states, such as interrupt signals and long periods of high-

frequency switching [32].

– External trigger activation can occur as a response to a signal or system state

caused by external intervention. The trigger of the HT can be programmed

to activate in case of a specific input sequence to the device from one of the

legitimate input ports (e.g. signal sent from a neighbouring device). The

activation command can also be delivered directly from the adversary through

wireless communication channels, one of the physical input ports or even through

active manipulation of the levels of supply voltage to the device. Another more

rudimentary yet applicable example of an external trigger can be a system of

mechanical relays activated manually with an external magnet [20].

– Environmental trigger activation is due to conditions which are independent of

the original function of a system. These could be time, temperature, aging or

the presence of radiation. For instance, thinning PCB traces at the surface
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layer from heating due to a long period of operation can be used to trigger early

system failure [12].

– Physical modification can also serve as triggering mechanisms. One such

example is a case where a metal trace has been reduced in width, below the

permissible threshold given by the design specifications. This will result in

overheating of the trace, which in turn can result in trace failure under heavy

workload, thus triggering, for example, a denial-of-service Trojan.

Payload effects range from modifying the functionality , for example, by adding

an extra component in the circuit to manipulate signals going from one IC to another,

degrading the performance or deteriorating the reliability of the PCB by modifying its

physical parameters, up to complete failure of hardware operations, i.e. denial of service

[30].

The integration of a Trojan characterises how a Trojan affects signals and

components in a PCB. The aim of a snooping HT is extracting information i.e. reading

signals without modifying them [33]. A Trojan can also override signals to affect the

operation of the system. Not all signals are subject to be overridden, only open-

collector/open-drain signals or signals driven by medium impedance can be successfully

overridden [34]. Interposer Trojan attacks break one signal into two making it possible to

control the signal without creating a conflict [19]. Another possibility in this category are

Trojans that can participate in communications with legitimate components and extract

data [35] or, for example, gain control by imitating an administrator [32]. An HT can be

inserted as a replacement for a legitimate element [36] or affect existing parameters such

as trace impedance, electromagnetic properties, heat dissipation etc. [12]. The last type

of HT under this category can inject faults by making other parts function outside their

legitimate role [37].

2.4.1 PCB Taxonomy and Countermeasures Against Trojans

The taxonomy built in Figure 2.12 can help identify Trojans according to their

characteristics. In particular, PCB Trojan countermeasures will depend on the

modification induced by the Trojan. Side-channels will be differently affected by the

addition, removal or tampering of components in a PCB. Addition of an active component
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will cause increased power consumption, while tampering may not change it noticeably.

Types of modifications will significantly affect both impedance and signal reflections. For

optical countermeasures different algorithms may be required to fight against added,

removed, and modified components. For example, obfuscation-based countermeasures

could prevent adding a component on a PCB, but an attacker may replace a system’s

FLASH memory by an HT chip without breaking obfuscation [20].

While an HT’s location categorisation may be less important for side-channel based

countermeasures, they may play a key role for multi-modal imaging based detection.

Different imaging methods are needed for detecting HTs located in different places on a

PCB. For example, optical cameras cannot detect modifications to the inner-layer routing,

but they can help effectively verify IC serial numbers. Trigger and payload types are

important for functional testing and other countermeasures which are most efficient for

already activated Trojans.

Integration characteristics are also important for determining countermeasures

against Trojans since they highlight weaknesses in PCB security that allow Trojan attacks.

For example, snooping would be possible through an insecure channel, a vulnerability which

could be avoided during the hardware design phase. The HT integration characteristics can

help detect the impact of a Trojan on the parameters of a PCB. Functional countermeasures

also can be influenced by integration characteristics. For example, a Trojan that takes part

in communication protocols between components could be detected by policy engines [20].

A comprehensive taxonomy is not only important for developing countermeasures

against HTs, but it can also help to create benchmarks which would be helpful for

evaluating effectiveness of countermeasure techniques for different classes of Trojans [24].

2.4.2 Hardware Trojan Benchmarks

Without publicly available test benchmarks it would be difficult to verify the

effectiveness, strengths and weaknesses of different HT detection techniques. A benchmark

for IC Trojans was developed by Salmani et al. [38] and published in the Trust-Hub in 2013

[39]. There are currently 96 HT-infected benchmark circuits in Trust-Hub, which has been

widely recognised for evaluating the effectiveness of IC HT detection approaches. Trusted

benchmarks with 24 types of PCB Trojans have been developed only recently [20] and
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added into Trust-Hub in 2021 [38]. These are shown in Table 2.1 presenting PCB Trojan

types with the respective number of affected samples, which partly cover some categories

of the Trojan taxonomy presented in Figure 2.12. For instance, the table shows that 16

Trojans are inserted on the surface of a PCB, 4 are covered, 2 are located in inner routing.

Under the payload effect category 9 HTs leak information to outside of a PCB, 16 modify

the circuit functionality, 2 cause a denial of service when activated and 1 HT degrades the

PCB performance.

Table 2.1: PCB Trojan Types with the Number of Samples in the Trust-Hub Benchmark

This publicly available Trojan benchmark has only limited examples for each class of

Trojan and, therefore, represents a small part of possible designs that adversaries could

implement. In best case scenario the available data will be enough to train a machine

learning model, which can detect similar HTs in real life with a reasonable accuracy.

However, the model will probably suffer from lack of sufficient generalisation, i.e. the

model will struggle to classify the types of HTs it has not encountered in the dataset

during the supervised learning model training phase.

In addition, machine learning based Trojan detection methods become increasingly

effective and require a large number of training data, whereas a few available examples

in the Trojan benchmark suite may not allow to create a reliable trained model able to

capture malicious modifications.

To address the above-mentioned shortcomings Hoque et al. [26] developed a tool for

automatic PCB benchmarking. Different models of PCB level Trojan designs have been

developed and a custom pool of Trojans of different complexity generated. Using a Trojan

insertion tool these Trojans were automatically inserted into various PCBs to generate a

large number of HT infected PCB designs i.e. Trojan benchmarks. Taking the netlist
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representation of a sample PCB design as an input the tool applies KiCAD PCB design

software [40] to generate the netlist containing a Trojan. The process can be repeated to

generate as many Trojans as required. As an example, the tool generated 150 PCB Trojan

benchmarks if provided with the netlist of five different triggers and three payloads.

Since this benchmark is based only on KiCAD.NET format netlists for generating

PCB layouts with or without HTs, it is restricted in use in terms of, for example, assessment

in the schematic level of abstraction for the exact same design. In addition, Trojans

introduced in these benchmarks are made up of separate components such as resistors,

and capacitors, to imitate the operation of the logic gate. This excludes a situation where

adversaries can use off-the-shelf small package chips, such as widely available integrated

circuits, to carry out more sophisticated attacks.

A more systematic framework for classifying and identifying more advanced board-

level HT attacks and a comprehensive benchmarking method for such attacks is developed

by Zhu et al. [41]. The authors have suggested practical benchmarking rules and a workflow

of generating PCB attack benchmarks. Here, the attack scenarios have been divided into

well defined cases whereby three stages of PCB lifecycle have been discussed with five

general types of malicious alterations. Additionally, four PCB-specific design rules have

been considered in order to accurately model the attack scenarios for the PCB level of

abstraction.
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2.5 Integrated Circuit Trojan Countermeasures

The problem of hardware Trojans appeared as an important research area for

hardware security in the late 2000’s, after a large number of cases were reported on HT

attacks inside integrated circuits (ICs). These attacks occurred in all stages of the IC

production cycle and the attack models were different depending on which stage of the

design or manufacturing flow they occurred.

The first comprehensive analysis of hardware Trojan attacks, defence strategies

and countermeasures was presented by Bhunia et al. [37]. The authors also suggested

taxonomies for Trojan types and countermeasures against Trojans. In this section the

research on countermeasures against IC Trojans is reviewed, categorised in four broad

groups. Three are under conventional countermeasures: Trojan detection, Design for

security, Runtime monitoring (Fig 2.13) and one is under Machine Learning approaches

(section 2.5.2, page 31). The detection approaches, as the name implies, aim to detect HTs

in a circuit. Design for security approaches aim to prevent or hinder inclusion of HTs at

design phase. Research on runtime monitoring focuses on identifying HTs and effects on

the IC from their activation [42].

Figure 2.13: Countermeasures against hardware Trojans.
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2.5.1 Conventional Countermeasures

2.5.1.1 Trojan Detection

HT detection is the most commonly applied countermeasure against Trojans.

Detection methods authenticate the design and manufactured ICs without additional

circuitry and can be applied both in the design stage and after the manufacturing stage

(post-silicon) [25]. Post-silicon detection methods can be destructive or nondestructive.

Destructive. Destructive techniques normally use reverse engineering (RE) to visually

verify an IC against its golden model. Although these methods give the highest assurance

against malicious implants, they are too costly, could take a long time to conduct and

destroy the IC during the process, while providing useful information only for a small

batch of IC samples. Therefore destructive methods are not practical for HT detection at

large scale [37].

Non-destructive. Non-destructive methods try to verify fabricated ICs received from

an untrusted foundry via side-channel analysis or logic testing.

Side-channel based approaches: There has been a dramatic increase in the number

of publications since the original paper by Agrawal et al. in 2007 [43], where the first

side-channel based approach was proposed for detecting the presence of HT circuitry in

an IC. Side-channel analysis methods are based on measuring circuit parameters including

supply or transient current and path delay, and detecting any changes which could occur

due to malicious modifications. These methods are particularly effective for detecting HTs

with larger footprint on the particular side-channel and developing test vectors, but can

be less effective for detecting HTs with a smaller effect on the side-channel. In addition

side-channel analysis can be sensitive to noise and requires a golden model as a comparison

baseline.

In the first side-channel based approach [43] transient current parameters were used

for effectively detecting both small and large HTs. Aarestad et al. [44] proposed an HT

detection method based on the analysis of steady-state current measurements in an IC.

The novelty is that this analysis is carried out simultaneously from multiple places on the
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surface of the chip. Experimental results proved the effectiveness of the multiple supply

port technique for detecting HTs as small as those consuming 8 µA current consumption.

Another side-channel based approach was presented by Rad et.al [45] where the detection

of HTs was based on sensitivity analysis of power supply transient signal under different

inauspicious conditions. This study was followed by a new HT detection approach for gate-

level characterization that applied thermal conditioning to determine the scaling factors

of all the gates using linear programming [46]. A new gate-level characterization based

investigation was carried out by Koushanfar et al. [47] where HTs were effectively detected

with low process overhead. In another research [48] a scalable method for HT detection

was proposed again using gate-level characterization, this time based on segmentation of a

large circuit into smaller sub-circuits. Leakage power profiles created for each sub-circuit

increased the effectiveness of an HT detection since any modification caused by an HT

would affect the total power leakage.

A new technique for IC authentication, Physical Unclonable Functions (PUF), is

developed to extract unique signatures from an IC based on physical characteristics such

as signal propagation delay [49]. Many PUF designs, most being circuit-delay-based, have

been used to demonstrate the possibility of use in IC authentication. A delay-based PUF for

HT detection was proposed by Li and Lach [50], where a sweeping-clock-delay measurement

technique was applied for selected register-to-register path delay measurements. An HT

was detected when one of path delays was extended above the threshold defined by the

process variation’s level.

An interesting method for effectively detecting small HTs was proposed by Xiao et

al. [51] where a clock sweeping technique was combined with transition and path delay

patterns for generating delay signatures. By analysing the transmission power differences

between amplitude signals and the frequency a method was developed by Jin and Makris

[52] for detecting HTs which aim to leak information from wireless cryptographic ICs. A

multiple-parameter side-channel analysis using dynamic current and maximum operating

frequency was also carried out by Narasimhan et al. [53] where the effectiveness of HT

detection was improved by using a sensitivity technique.

Logic testing. Logic or functional testing methodologies develop test patterns for

activating HTs. They evaluate the behavior of internal nodes and initial outputs of the
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circuit based on a set of input vectors. If the deviation in the evaluated parameter is

suspicious, the design is considered Trojan inserted. Logic tests can therefore be performed

at any stage of IC design and were developed to overcome the shortcomings of side-channel

analysis methods.

Shortly after the first side-channel based research [43] the first research was carried

out on developing an HT detection approach based on logic testing [54]. The first research

was followed by different logic testing based methods. An approach for finding isolated

sections and weakly correlated signals in the netlist for identifying HT triggers is suggested

by Cakır and Malik [55]. Oya et al. [56] carried out comparison of Trojans to determine

frequently used architectural patterns in HT design. A score-based classification is then

implemented to detect HTs in trusted netlists. Also, a golden model can be generated to

perform a formal verification in the case when a trusted specification is available. However

HT detection becomes very challenging if the trusted specification is not available.

Research papers [57] and [58] test generation strategies are presented for optimization

of the number of test vectors needed for an HT activation. A new HT detection technique is

proposed by Zhang et al. [59] which targets the design stage and is based on the detection

of HT trigger inputs. This approach involves a tracer and a checker, where the tracer

identifies the trigger signals with inactivated entries and the checker analyzes the signals

to determine ones that are associated with HTs.

Logic testing and side-channel analysis were the first countermeasures against HTs.

Logic testing is only effective for an active HT, an HT with a known design and for

identifying suspicious nodes in the circuit. Side-channel analysis is capable of detecting even

inactive HTs, but in this case a golden model is required. This approach also has problems

in dealing with process variation masking effects which makes the detection of small HTs

challenging. Both side-channel analysis and logic testing methods have advantages and

disadvantages, but a combined implementation of the two approaches can provide higher

effectiveness for detecting different HTs implanted in more sophisticated ICs [53].

2.5.1.2 Design for Security

In addition to detection methods, other design-level strategies have been developed

to prevent a Trojan insertion at hardware design stage or facilitate test time or run-time
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HT detection. These methods can be collectively named design for security. The first

publications for HT prevention based on design for security appeared in 2012 [58], [60].

Prevent insertion. Preventative methods can in turn be classified into four broad

classes: layout-filler, insertion of dummy circuit, obfuscation, and split manufacturing.

Layout-filler methods are applied to fill the empty gaps in an IC with filler cells

thus preventing the inclusion of malicious components. A layout-filler technique for HT

prevention in the layout phase was introduced by Xiao et al. [61] where functional filler

cells were used to fill the unused spaces in an IC. If the presence of HTs changed any

of the filler cells, a self-testing procedure generated a digital signature. This method

detected different instances of an HT insertion without requiring a golden model and

showed negligibly small power, area, and time overhead. Another layout-filler technique

for field-programmable gate arrays (FPGA) was suggested by Khaleghi et al. [62]. The

proposed approach significantly reduced the possibility of a Trojan attack since there was

no free configurable resource for HT inclusion, without performance and power overhead.

An HT can also be inserted into an IC through rare nodes with low transition

probability. To prevent the inclusion of such Trojans, dummy circuit insertion approaches

were developed, where dummy scan flip-flops were used to reduce the rare nodes and

prevent the insertion of an HT [63]. Dummy flip-flops and analysis of the transition

generation time for facilitation of an HT detection also was carried out [58].

The obfuscation method changes the transition mode and makes it difficult to

understand the IC design. Obfuscation is considered best-possible if the design after

obfuscation leaks no more information than other designs for the same action. This

approach makes the insertion of a meaningful malicious component into an IC more

difficult.

A theoretical investigation of obfuscation was first carried out by Barak et al. [64]

where a black-box obfuscation was proposed, which required that the obfuscated IC

performed the same function as the original IC, and leaked no information other than

its black-box (input– output) functionality. This definition of obfuscation, however, is

not always realistic to achieve. Later a new definition of a best possible obfuscation

was suggested by Goldwasser et al. [65] where the second requirement was lightened.
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The obfuscated IC was required to leak no more information than any IC with the same

functionality. A new PUF construction method for extracting the unique power-up state

for each IC was proposed by Xue et al. [66]. Through the proposed obfuscation method,

which uses PUF based unique key sequences, it is possible to control the IC’s operation

modes and functionalities, as well as remotely disable the chip when an HT is detected. The

functional obfuscation prevents the attacker from recognising both the real functionalities

of the ICs and the real rare events in the internal nodes, making it hard for the attacker

to insert more sophisticated HTs.

In general obfuscation approaches can be classified into combinatorial and sequential

logic obfuscation. The first is to obfuscate IC designs by randomly inserting additional

key-gates [67], [68]. This does not necessarily guarantee that wrong keys will corrupt the

outputs. To circumvent this problem Rajendran et al. [69] proposed a fault analysis-based

encryption approach which was able to ensure that wrong keys would corrupt the outputs

and thus maximise the uncertainty for an adversary. The second logic obfuscation technique

is sequential, when new states and transformations are added to the finite state machine

[70], [71]. Authors in [72] showed that the best possible obfuscation for a sequential circuit

can be achieved by pursuing consecutive four steps: re-timing, re-synthesis, sweep, and

conditional stuttering. If the correct key is applied, the obfuscated IC design will function

correctly.

Split manufacturing concept is in splitting the circuit into two different parts with one

part including the transistors and some of routing wires, and the second part containing

the rest of routing wires. The two parts are manufactured in different foundries, one in an

untrusted third-party foundry and the other part is fabricated by a trusted foundry [73].

This method hides the main functionality of the IC design, thus hindering the attacker

from copying the design or modifying it by inserting HTs [74]. A few approaches have

been proposed in recent years to prove the feasibility of split manufacturing [75], [76], [77].

Facilitate detection. HT detection facilitation approaches are applied to assist in

detection of the location, category and triggers of HTs. This is achieved by combining

functional testing, side-channel analysis and runtime monitoring. Various such approaches

have been proposed in [78], [79] and [80].
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2.5.1.3 Runtime Monitoring

The techniques developed for HT detection and prevention have been complemented

by runtime monitoring methods, which try to ensure the circuit stops functioning and

security mechanisms are triggered in the case of any suspicious action in the circuit.

Runtime monitoring has been comprehensively discussed and classified into three

categories: configurable security monitors, variant-based parallel execution, and hardware-

software approach [23]. Within configurable security monitor techniques the authors of

research [81] proposed a runtime monitoring approach for detecting HTs, which could

leak classified information. In 2009 a first runtime detection method based on variant

based parallel execution was developed by McIntyre et al. [82]. This approach is based on

simultaneous execution of functionally equivalent variants obtained by different algorithm

variations and comparison of the results. The process dynamically achieves the detection

of an HT with a high level of confidence. This work was followed by the first research

based on hardware-software approach [83]. Runtime monitoring can also be carried out by

exploiting analog sensors, which can detect deviations in power or thermal profiles caused

by Trojan activation [84]. It is now accepted that a complete solution to combat HT

attacks can be reached by combining HT detection, prevention and runtime monitoring

[23].

Research on HT countermeasures has been reviewed in several articles. These include

comprehensive reviews, where the complex HT threat models and feasible countermeasures

in certain areas of HT attacks are illustrated [23], [85]. Reviews for an HT detection in

intellectual property (IP) cores and fabricated stage, and a survey on an HT threat and

defense have also been carried out [86], [87]. Later, different HT detection techniques, as

well as the complexity and limitations of those techniques were analysed [88], [42].

2.5.2 Machine Learning Approaches

Machine learning (ML) techniques have the potential to contribute to the development

of countermeasures for various HT attacks [89], [90]. The first ML classification model

was introduced by Jin et al. [91] in 2012, when an artificial neural network classifier

was developed for detecting HTs. Since then, IC HT detection ML methods have been
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widely implemented, improving the detection capabilities in a number of aspects including

reverse engineering [92], side-channel analysis [93], [94], real-time detection and for gate-

level netlist detection [95]. A comprehensive survey of the latest research and developments

of ML-based approaches for HT detection and prevention on an IC level is carried out

by Huang et al. [96], who have demonstrated that the number of research publications

and achievements in IC HT detection using ML techniques have been growing rapidly

since 2014. Several other surveys including [92], [90] and [42] discussed and analyzed ML

techniques applied for HT detection, classification and prevention.

The machine learning HT countermeasure approaches can be categorised in five broad

sections: Reverse Engineering Improvement, Real-Time Detection, Golden Model Free,

Gate-Level Netlists Detection and Classification (Fig. 2.14). Albeit, at this level of detail

there may be some overlap between the named groups.

Figure 2.14: Machine Learning countermeasures against hardware Trojans.

Reverse engineering improvement. Reverse Engineering (RE) techniques have been

introduced for inspecting the production of ICs. They consist of several steps which make

RE time consuming, costly, and prone to errors. Reverse engineering improvement (REI)
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aims to improve the reverse engineering during the imaging phase and the execution time

and minimise the errors during RE. This approach was first introduced in 2014 [97], when

One-Class Support Vector Machine classifier was applied based on RE images received

from the imaging phase. By eliminating two RE steps the authors significantly reduced

the overhead without a need for golden models.

The same authors later proposed K-means clustering based REI approach for

identifying a Trojan free IC and three types of malicious modifications: one component

duplicated, one component removed, and the width of one gate doubled. This approach

demonstrated high accuracy for HT detection without requiring golden models, but was

too sensitive to noise [98]. Another novel reverse engineering improvement approach for

HT classification and detection during fabrication stage was proposed by Abdurrahman et

al. [99]. Three types of malicious modifications were introduced to reflect Trojan insertion,

deletion and parametric modification. The changes were accurately detected and classified,

however the performance deteriorated with increased noise level.

Real-time detection. These techniques are able to prevent an HT attack by detecting

it, disabling or bypassing the damaged IC and securing its normal operation. Real-time

anomaly detection was first proposed in 2016 by Kulkarni et al. [100]. Three different

attacks, (traffic diversion, route looping, and core address spoofing attacks) were detected

by using ML techniques. A novel real-time detection approach was also suggested by

Kulkarni et al. [101], [102]. The authors compared four ML algorithms and proposed an

online learning framework for detecting HT attacks at the design or fabrication stage. A

novel neural network design and a feature extractor training was applied by Faezi et al

[103] for run-time HT detection without requiring a golden model.

Golden model free. Golden models, which are essential in most side-channel based

approaches for creating a reference model for expected side-channel values, are time-

consuming to create and not always available [103]. Golden model free methodologies

try to detect and classify Trojan affected ICs without requiring a golden model. This

approach was first suggested in 2016 by Jap et al. [104] and was based on One-Class

Support Vector Classifier and side-channel leakage measures. The results from simulation

showed that the method could differentiate HT free and infected gates without requiring a
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golden model and held a high HT detection accuracy and low complexity even under high

level of noise. Another HT detection novel method was based on two-class classification

[105]. With high accuracy and recall rate, it could detect known and various unknown

HTs at the fabrication stage without the need of a golden IC.

A golden model free method was also suggested by Lodhi et al. [106]. In this research

the power profile of a microcontroller’s instruction set was extracted and used to train four

ML algorithms. This then was applied for runtime HT detection. In another work [107] an

unsupervised ML clustering algorithm was applied to separate genuine logic gates from HT

circuits, based on two characteristics in gate-level netlists: controllability and observability.

The proposed technique was able to fully recover the inserted HT and isolate its trigger

and payload circuits without using a golden model or HT activation test patterns.

Recently an ML based chip-free HT detection method was implemented for detection

of command-activated HTs [108]. In the proposed algorithms the authors apply three

novelty and outlier detection methods (One-Class Support Vector Machine (SVM), Local

Outlier Factor (LOF), and Isolation Forest) as distinguishers and tested the effect of each

distinguisher in five different scenarios. The approach could first determine the parsing

path of the hardware then find all the executable commands. By comparing the executable

commands with the official command-list the method could find unregistered executable

commands and an HT activated by these commands.

Gate-level netlist detection. ML based gate-level netlist detection methods analyse

gate-level netlists features to detect anomalies in the behaviour of infected ICs. This

method was first proposed in 2016 by Hasegawa et al. [109]. This novel static method

applied an SVM algorithm and used gate-level netlist features at the design phase to

identify most of the HT infected nets. Hasegawa et al [110] then applied another ML

approach based on a random forest algorithm for HT feature extraction. In 2017 Inoue

et al. [111] again applied an SVM classifier for gate-level netlist features and could detect

only a subset of HTs, whereas the ML model suggested by Hasegawa et al [112], trained

on a set of HT affected and HT free set and a new set of boundary nets, could identify

most of the HT nets.

34



Chapter 2. Printed Circuit Board Hardware Trojan Preliminaries

Classification approaches. These approaches classify infected and uninfected ICs

based on an HT’s different features such as dominant attributes and side-channel

measurements. In the first publication [91] a general architecture for HT detection

was presented based on on-chip measurement and one-class classifiers. The proposed

method classified the trusted and untrusted regions and executed a post-deployment trust

evaluation. An SVM algorithm and frequency domain features were used for a new HT

detection technique [113], where the power consumption waveform data was converted from

time into frequency domain through discrete Fourier transform.

In another research [114], the proposed hardware Trojan detection method is based

on an extreme learning machine (ELM) neural network. Dynamic power consumption

features were used to train the classifier. The experimental verification showed that this

method could identify HT infected ICs with high accuracy. Lodhi et al. [115] suggested

a self-learning framework based on timing features such as the delay and carried out a

comparison between three ML methods, decision tree (DT), Bayesian Classifier and K-

Nearest Neighbours (KNN), applied during the testing phase. The results showed that

amongst the three algorithms the DT model detected HTs with the highest accuracy.

Another set of ML algorithms, DT, KNN and SVM, for HT classification were applied by

Noor et al [116], and it was shown that the DT and KNN learning models could correctly

predict about 83% of the test data.
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2.6 Printed Circuit Board Trojan Countermeasures

While considerable research has been carried out on the classification and detection

of HTs inside integrated circuits, board level Trojans have been much less investigated.

Although many HT detection methods developed for ICs can also be adapted to be applied

for PCB HT detection, the differences between IC and PCB level Trojans require new

countermeasure approaches to combat HTs at the PCB level.

Manufacturing test too can be useful for detecting various simple attacks and defects

including errors made in component selection, temperature activated malicious inclusions,

material or lamination defects, and out-of-tolerance functional changes. For example, a

significant unauthorised change in a passive component’s (e.g. resistor) rated value can

have an effect of a ticking time-bomb in the circuit, by triggering a slow chain reaction of

circuit degradation [12]. Although manufacturing tests may not be effective against well

hidden (latent) defects and rare activation HTs, they have certain advantages that are

worth discussing.

2.6.1 Manufacturing Test

In the past years several PCB assurance approaches have been developed [117], [118]

which can be categorised as bare-board testing, JTAG boundary scan, functional testing,

in-circuit testing, and automated visual inspection [5].

Bare-board testing checks traces and the board substrate for continuity and impurities

that could affect electrical or thermal characteristics in the manufactured PCB [119]. Bare-

board tests are conducted before a PCB is populated and cannot detect Trojan inclusions

and other malicious modifications.

JTAG boundary scan, functional testing and in-circuit testing are assembly tests that

check that PCB components are correctly located and soldered and operate as expected

[120]. JTAG boundary scan and functional testing are not highly effective for HT detection

because comprehensive functional testing is not viable and HTs designed to activate under

rare conditions are unlikely to be triggered by test patterns [23], [121].

In-circuit testing (ICT) uses electrical probes to carry out an electrical testing and
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can detect faulty solder joints, missing parts, open connections, etc. However ICT is not

feasible for dense, multi-layered PCBs and can be costly due to the need for developing

several test setups for different boards [5]. Besides, ICT does not test the functionality

of the PCB and cannot be effective for detecting connection faults and HTs which do not

affect the tested nodes [122].

Automated visual inspection: Especially important are automated quality

assurance (AQA) methods which, being non-destructive, could detect a wide range of

HTs on a PCB with minimal human involvement [5]. One of these methods is automated

visual inspection for PCB verification and authentication (Chapter 5). This method is

about testing on assembly lines and replacing human oversight, thus reducing the risk

of unauthorised modifications during assembly. This approach can be used in different

stages of the PCB life cycle and can be categorised based on the imaging modality and

image analysis techniques used for PCB AQA [122]. Several automated visual inspection

methodologies have been suggested including canonical image processing methods for

detecting trace and via level defects [123], convolutional neural network for detecting similar

defects [124], automated detection for component placement by directly comparing golden

and test PCBs [125], [126] and text detection on the PCB for verification purposes [127],

[128]. The most significant advantage of automated visual inspection is its ability to detect

a wide range of malicious implants, especially if the golden models are available. However,

this testing approach is not applicable for functional verification.

Thus, the existing PCB assurance methods have advantages and limitations.

Although manufacturing tests may be able to detect Trojans which have payloads that

remind defects, in general they are not equipped to detect sophisticated and stealthy

modifications introduced by adversaries. With hardware attacks becoming increasingly

sophisticated there is an urgent need for new detection methods. Automated visual

inspection is very promising, because, apart from the advantages listed above, it can be

applied to detect defects and hardware attacks in many stages of the manufacturing process.

In what follows the board level Trojan countermeasures are discussed following a

similar division as for IC Trojans (Fig. 2.13) and as suggested for PCB HTs by Bhunia et

al. [23]: detection, design for security and runtime monitoring.
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2.6.2 Printed Circuit Board Trojan Detection

Due to the differences between PCB and IC Trojans, the supply chain and post-

manufacturing attacks also can be different, requiring new approaches in board-level HT

countermeasures [20]. Various examples of board level Trojans have already been presented

[10] and new attack vectors considered and detection methods proposed [12].

HT attacks on PCB level were first explored in [10], where the authors demonstrated

a high frequency PCB design where an adversary altered both the inter-trace spacing and

the individual trace dimensions in internal board layers. This type of HT attack could also

be detected by an X -ray inspection of the board after production. Existing research on

PCB security is mostly concerned with detection of counterfeit PCBs [7], [129] and in-field

tampering [8].

It is worth mentioning that some methods, such as short delay defect, anti-reverse

engineering and transition error testing, developed for IC HT detection can also be used

at a higher level of abstraction [130], [131]. Analogous to ICs, PCBs also have side-

channel fingerprints, which can be disrupted by a malevolent modification of the substrate

or routing. Several static or runtime techniques have been proposed for detecting and

measuring these modifications on PCBs. Without experimental validation Ghosh et al.

[10] proposed multi-parameter side channel analysis for verifying security-sensitive nets

against a simulated performance.

Previously unexplored board level HT attacks and potential solutions have been

discussed by McGuire et al. [12]. Here examples of PCB modifications and an in-depth

analysis of a malicious attack, that cannot be detected via existing methodologies, have

been presented. It was suggested to use the resonant frequency of PCB traces and observe

the change in the thickness of traces introduced by a malicious attack. Hamlet et al. [132]

considered the possibility of using different PCB routing patterns and passive components

to generate a PUF response. They also indicated several ways of collecting and processing

the PUF response both in static and runtime environments.
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2.6.3 Design for Security

Design for security approaches aim to prevent Trojan insertion by removing HT attack

surfaces or making it impossible for attackers to understand a design. One of these methods

is anti-reverse engineering which tries to protect the intellectual property (IP) of PCB

designers and can act as a preventative measure against PCB HTs.

Quadir et al. [133] presented a survey of anti-reverse engineering techniques and

suggested that the possibility of PCB reverse engineering, probing and tampering attacks

can be reduced by simply adding routing layers, routing sensitive signals in internal layers

and hiding the inter-chip connections on the PCB. Similar suggestion that security-sensitive

signals routed in inner PCB layers could prevent a tampering and probing attack was made

by McGuire et al. [12].

More advanced obfuscation was proposed by Ghosh et al. [10]. They suggested to add

extra traces, vias, and components that could send dummy signals and mislead attackers

from recognising the obfuscated ICs. Meanwhile, a secured JTAG protocol would block

adversaries from illegally accessing a PCB’s internal design information by using the test

infrastructure.

A novel obfuscation approach was developed in articles [134] and [135], where the

authors used a permutation network to obscure inter-component connections. The aim

was to protect hardware against cloning, reverse engineering and unauthorised functioning.

The approach was proven to be secure against brute-force attacks, but not against attacks

that were guided by clues such as dedicated IC pin functions [136].

2.6.4 Runtime Monitoring

Similar to the IC Trojans case, runtime monitoring ensures the security of PCBs

in the field by watching side channels and detecting divergences from expected behavior.

This can be done, for example, by monitoring deviations in passive characteristics of traces

which change when PCBs undergo probing, tapping, or alteration during an HT attack.

In runtime monitoring Paley et al. [8] suggested to measure the deviation in resistance

caused by an addition of a drop of solder and monitor the deviation in real time to find out

if the PCB has been tampered. Similar approach based on conducting online capacitance
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measurement in a circuit was suggested by Nishizawa et al. [137].

PCB ring oscillator PUFs were used by Guo et al. [138] to detect deviations in

impedance caused by tampering or probing. The main idea was that the presence of

a malicious inclusion would increase the trace impedance, thus increasing the frequency

of the ring oscillator PUFs. Tampering would be detected if the frequency of the ring

oscillator lay outside the expected margins.

To prevent counterfeiting PCBs similar ring oscillator PUF-based concurrent IC and

PCB authentication was proposed by Zhang et al. [139] and Wang et al. [140]. The

authors used the fact that the impedance of the PCB’s power network shows an increase

at the resonant frequency. First, a ring oscillator array was inserted into an IC. Then, the

counterfeit PCB was detected by checking if the period of the ring oscillator matches that of

the legitimate PCBs in the resonant and non-resonant states. The proposed authorization

approach was implemented on legitimate and counterfeit field programmable gate array

(FPGA) development boards, and over 90% counterfeit PCBs were detected by a two-class

SVM classifier [139].

A novel runtime PCB HT detection method based on power analysis is demonstrated

in [141]. Power consumption of individual legitimate components on a PCB and the total

power consumed by the PCB were measured. These two measurements were compared and

discrepancies larger than a certain tolerance were considered as evidence of HT activity.

This is further discussed in Chapter 3.

2.7 Research Objectives

Literature review shows that despite the considerable research carried out on HT

detection and prevention on ICs, the same problem lies largely unaddressed on PCBs.

In January 2019, when the work on this PhD research commenced, even a quick search

for research articles on the topic of HTs implanted on PCBs would reveal that there was

a big gap in research on this topic. Despite the alarming reports of HT attacks in the

course of or succeeding manufacturing of PCBs [2], there were only a handful of papers,

most of which only discussed the importance of the problem, provided taxonomy of HT
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varieties and suggested possible research directions [121], [123], [142]. Given the relative

ease of access to PCB circuitry for the adversaries, compared to that of ICs, the hardware

security research focus in this dissertation has been narrowed down to HT detection on

PCBs.

The following research objectives are set to achieve:

• Objective 1: To detect a hardware Trojan on the printed circuit board in real-

time, through policing of power consumption side-channel characteristic on the PCB,

affected by the presence of an active hardware Trojan component.

The first research objective is met in Chapter 3. However this leaves an open ended

question: What happens if the adversary designs the HT to operate on power not

directly drawn from the PDN, but rather through one of the ICs on board, legally

present there? What if the HT is linked to an I/O port, latched to the IC for power like

a parasite? The short answer is, the HT will be invisible to the proposed methodology

remaining undetected. The second objective is set to solve this problem.

• Objective 2: To develop a novel approach using machine learning for monitoring

power consumption of all the blocks present on the PCB. Instead of a more basic

approach of putting upper and lower thresholds on the possible power consumption

of every IC, here the methodology is taking advantage of the existing correlations

between power consumption behavioral patterns of all ICs on the board as a whole.

The second research objective is met in Chapter 4. Thus, Chapter 3 and Chapter 4

together cover the whole circuitry of the PCB, leaving no blind spots for an adversary

to install an active HT undetected.

• Objective 3: To propose a novel visual inspection pipeline for detecting malicious

inclusions, regardless of their power consumption status, i.e. both active and passive

components, as well as ultra-low power components are detected. Use optical digital

images as the imaging modality of choice.

The third research objective is met in Chapter 5 by establishing a low-cost and fast

PCB automated visual inspection technique for detecting hardware Trojans.
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2.8 Concluding Remarks

In this chapter, the definition of an HT attack, vulnerabilities of the existing PCB

supply chain and possible board-level security attacks have been discussed. Depending on

which physical characteristics of a PCB are tampered, HTs are classified into functional and

parametric and examples of each type of Trojans have been discussed. A comprehensive

taxonomy has been developed. The relevance of the taxonomy for developing HT detection

and prevention techniques has been explained. A detailed taxonomy is also important for

creating benchmarks crucial for evaluating effectiveness of countermeasure techniques for

different classes of Trojans. Finally, existing publicly available HT benchmarks, which can

be used for PCB HT countermeasures evaluation, have also been discussed.

An extensive overview of existing research on IC and PCB HT detection techniques

has also been carried out. The research on countermeasures against Trojans is categorised

in three broad groups: HT Detection, Design for security and Runtime monitoring and

detailed review for each group of research was presented. Since machine learning techniques

have big potential as countermeasures for addressing HT attacks, advances made in a

number of directions (e.g. reverse engineering, side-channel analysis, real-time detection,

gate-level netlist detection) using machine learning were also highlighted.

The last section of this chapter summarises research objectives of the dissertation

which have been addressed in Chapter 3, Chapter 4 and Chapter 5, respectively.
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Chapter 3

Hardware Trojan Detection on a PCB

Through Differential Power Monitoring

3.1 Introduction

In this chapter, a power analysis method is proposed for detecting HT components

implanted on PCBs. An experimental setup, using a hardware prototype, is built and

tested for verification of the methodology. The results confirm the ability to detect alien

components on a PCB and provide directions for further research. The performance

degradation of the original PCB due to the implementation of the proposed approach

is negligible. The area overhead of the proposed method is small, related to the original

PCB design, and consists of Sub Power Monitors of individual ICs on the PCB and Main

Power Monitor for the overall power measurement of the PCB. To the best of our knowledge

this research is the first work to develop a PCB HT detection methodology using power

analysis.

The chapter is organised as follows: the description of the attacker model in section

3.2 is followed by the proposed approach in section 3.3. Then section 3.4 is devoted to

the proposed methodology. Further, section 3.5 describes the experimental setup with the

results discussed in section 3.6. Finally, the chapter is concluded in section 3.7.

3.2 Attacker Model

An HT implanted on the PCB can have different power sources, including: (a) a

built in energy harvester/battery, (b) the mains supply, (c) the power distribution network

(PDN) of the PCB and (d) an I/O pin of a legitimate chip. In case (a), a visual inspection
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of the board can lead to detection of the HT, since an energy harvester or a battery

are typically large in size and hard to conceal. In order to connect to the mains power

supply, the HT should have external vias which are visible, hence case (b) can also be

detected through image processing and comparison with a golden model [143]. Of these

cases, (c) and (d) are the stealthiest, since the HT can be fully operational, while all the

modifications to the original design can be hidden in the internal PCB layers. In these

cases an HT can escape detection through visual inspection, and research for alternative

approaches is necessary.

In this attacker model, it is assumed that the adversary can use any HT irrespective

of its payload and trigger, as long as the malicious device consumes additional power. It is

also assumed that the power to the PCB power distribution network goes only through the

dedicated Main Power Monitor (MPM). Further, the IC and PCB design houses, as well

as the firmware and intellectual properties used to design the ICs are trusted. The threat

rises from outsourcing PCB production to overseas facilities, as well as from the possibility

of interception while the device is in transit from the manufacturer to the consumer.

It is possible for the adversary to swap a trusted IC on the PCB with an HT infected

and counterfeit (recycled, remarked) ICs, but this attack case is out of the scope of this

work. However, as mentioned in the introduction, there is a considerable amount of existing

research aimed at design, detection and prevention of IC HTs and counterfeits, which can

be utilised to tackle the threat of swapping ICs.

3.3 Our Approach

In this chapter, a Differential Power Monitoring (DPM) approach is proposed to detect

hardware Trojans on the PCB powered from the PDN. To the best of our knowledge, this

is the first work on PCB HT detection using power monitoring. The approach is applied

during in-field operation, as a run-time monitoring technique. Additionally, previous works

can be used as complementary techniques (e.g. encrypting-decrypting communication

between legitimate ICs [142]). Hardware Trojans are detected by measuring dynamic

power due to HT circuit switching and static power due to HT leakage current. Continuous
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measurement of power consumption provides information on the PCB’s internal activities

and HT activation. It is assumed that the PCBs are not defective, therefore the source of

any diversion from the expected power consumption patterns is assumed an HT.

The main characteristics of the proposed approach are:

1. Independent of the type of Trojan: Any HT that consumes power higher than

the pre-programmed detection threshold will be detected.

2. In-field, online monitoring: This approach constantly monitors fluctuations in

the power consumption of the PCB. It allows for in-field measurements and online

monitoring.

3. High accuracy: False positive rate (FPR) can be reduced to virtually zero,

depending on desired detection threshold.

4. No interruption or performance overheads to the original performance

of the circuit under monitoring: The approach continuously monitors the PCB

without interrupting the performance or affecting its throughput.

A similar approach for IC HT detection has been applied by Zhang et al. [144] with

the aim of HT detection prior to in-field use of the device. A current sensing resistor and

an oscilloscope have been used to manually compute power consumption and detect the

HT inside an FPGA. In our research, a PCB integrated run-time HT detection framework

has been implemented, where every legitimate IC has a dedicated built-in or externally

added power sensor computing the IC’s power consumption.

Current integration method for detecting HTs inside ICs has also been suggested

by Wang et al. [145]. Here the current consumption has been computed with a local

sensor inside an IC. Using the current integration method, the data has subsequently been

processed to detect HT induced anomalies. In our method, the difference between the

readings from a global power consumption sensor and the sum of local power consumption

sensors has been computed. This allows detection of hardware Trojans implanted on the

PDN, located between the power source of the PCB and the legitimate ICs.

The approach proposed in this chapter has been validated with experimental

measurements. The results show that HT detection can be achieved with a low FPR while

keeping the performance degradation at a negligible level and the area overhead minimal.

Note that the end-users are required to carry out similar analysis based on their golden
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(a) (b)

Figure 3.1: (a) Silicon die inside the package, (b) Sub Power
Monitor and the die integrated into one package.

Figure 3.2: Block structure of a PCB with the proposed
Differential Power Monitoring system and a hardware Trojan.

model and specific software workload scenarios. Similar to the case studies discussed in

section 3.6, detection thresholds can be decided using the guidelines provided later in this

chapter.

3.4 Proposed Methodology

Regardless of the payload, trigger and the amplitude of the damage caused, one

common feature of additional components introduced to a circuit is an increase in power

consumption. The proposed DPM method is designed to detect extra power usage on the

board. For a DPM to be feasible, the individual chips on the PCB should be equipped

with power consumption sensors, henceforth referred to as Sub Power Monitors (SPMs)

(Figure 3.1). The monitoring circuit consists of a main power monitor (MPM) device on

the main power rail, and SPMs integrated with individual chips on the PCB (Figure 3.2).

The MPM includes a power sensor and a microcontroller for the noise dampening and data
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(a) (b)

Figure 3.3: Abstraction of the (a) effective resistance of the original circuit,
and (b) PCB with an added hardware Trojan.

communication logic. The dampening logic takes the moving average of the readings from

power sensors, while the communication logic acts as the device user interface.

As illustrated in Figure 3.3a, the resistance of the original circuit on the PCB is

formed by a parallel connection of multiple legitimate ICs. It can be summed up under

one effective resistance (ROrig). An HT device can be modelled as a resistive load (RHT )

added in parallel to ROrig (Figure 3.3b). When the HT is non-operational, it consumes

little power and the value of its effective resistance is high. However, when the HT is

triggered, its power consumption increases and this can be modelled by decreasing the

value of RHT .

In the case of an ideal power distribution network (PDN), it can be assumed that its

power dissipation (PPDN ) on parasitic resistance is zero. If every component on the PCB

has an integrated SPM, the mismatch (∆P ) between the reading from the MPM (PMPM )

and the sum of the readings from SPMs (
∑n

i=1(PSPM )i) should be zero:


PMPM =

n∑
i=1

(PSPM )i + PPDN

PPDN = 0,

, (3.1)

hence

∆P = PMPM −
n∑

i=1

(PSPM )i = 0. (3.2)

However, real PDNs will naturally consume some power due to their non-zero parasitic

resistance (PPDN ̸= 0). In addition, to account for the background noise, an extra term δ
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should be introduced into Eq. (3.2) and ∆P will be given as follows

∆P = PPDN + δ. (3.3)

Furthermore, since every device has its dynamic and static power consumption,

adding an HT component to the circuit will increase ∆P . The final sought after variable

is

∆PHTinf = PMPM −
n∑

i=1

(PSPM )i = ∆P + PDyn
HT + PStat

HT , (3.4)

where ∆PHTinf is the mismatch between the total power consumption (PMPM ) and the

sum of power consumptions by individual chips (
∑n

i=1(PSPM )i) on an HT infected PCB.

The HT’s dynamic and static power consumptions are represented by PDyn
HT and PStat

HT .

It is possible to detect a triggered HT through continuous monitoring, if, for a given

PCB layout, the maximum value of the power distribution network’s parasitic power

consumption max(PPDN ) (e.g. due to resistive, capacitive and inductive components)

is empirically known. Once the HT triggering mechanism is activated, the internal states

of the HT chip will switch to deliver the malicious payload. This inevitably introduces a

sharp increase in the power consumption of the extra component represented as dynamic

power consumption PDyn
HT in Eq. (3.4). In turn, the spike in PDyn

HT translates into a spike

in ∆PHTinf values (Figure 3.4).

Figure 3.4: Change in ∆PHTinf when the HT is triggered.

In order to detect the HT based on increased ∆PHTinf values, a new parameter is

introduced - detection threshold (Figure 3.4, Figure 3.5). The choice of the detection

threshold for a particular PCB is based on a number of parameters including maximum
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acceptable False Positive Rate and minimum detectable power consumption of the

hardware Trojan. Note that the detection threshold defines the highest value of ∆PHTinf ,

above which anything is flagged as an active HT on the board. Its value is pre-programmed

in the MPM block, taking into account the factors mentioned above.

In addition, along with the rise in the value of PMPM , another characteristic feature

of a triggered HT is the drop in
∑n

i=1(PSPM )i which can be described by the following

expression:

∆
n∑

i=1

(PSPM )i =
n∑

i=1

(PSPM )i −

[
n∑

i=1

(PSPM )i

]
Triggered

=
Vin

2

ROrig

[(
ROrig

RPDN +ROrig

)2

−
(

Rnew

RPDN +Rnew

)2
]
, (3.5)

where Rnew = ROrigRHT /(ROrig +RHT ) and Vin is the input voltage. The power drop in

Eq. (3.5), whose behaviour is schematically shown in Figure 3.5, is due to the increased

voltage drop on the PDN, after the hardware Trojan has been triggered.

Figure 3.5: Change in power consumption pattern when a hardware Trojan is triggered.

The dependence of the drop in the combined SPM power consumption on RHT is

shown in Figure 3.6 for three values of RPDN . In this work, we have primarily focused

on the spikes in ∆PHTinf values, which take into account both the effect of the drop in∑n
i=1(PSPM )i and the rise in PMPM , since ∆PHTinf is the difference between them.

In order to reduce the background noise δ in Eq. (3.3), filtering by the moving average

of every recorded ∆PHTinf with its previous N − 1 values is applied, where N (averaging

level) is the number of averaged points. The resulting values are stored in a complementary
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Figure 3.6: The effect of RHT on the drop in the registered combined Sub
Power Monitor power consumption

∑n
i=1(PSPM )i.

∆P
(N)
HTinf variable defined as

∆P
(N)
HTinf =

∑N
i=1(PHTinf )i

N
.

Detectability trade-off between the HT activation time and power consumption should be

considered since a higher averaging level N will result in a loss of accuracy in detecting

short duration HT payloads, but will allow for detection of low-power HTs. The application

specific optimal value for the averaging level N can be estimated from the following

inequality

tHT ≥ N
1

ν
, (3.6)

where tHT is minimum detectable HT activation time given as a technical requirement,

and ν is the recording frequency of the monitoring system.

This technique successfully dampens the distortions introduced by the noise δ, as

well as anomalies introduced through sensor error, which would otherwise be interpreted

as peaks induced by an active HT (section 3.6).
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Detection Range Analysis

The detection threshold Pthr can be calculated using the following formula


Pthr = α

|δmax|
N

+ PPDN

PSensRes ≤ Pthr ≤ PHT ,

(3.7)

where N is the averaging level, PPDN is the parasitic power consumption of the power

distribution network, PSensRes is the power sensor resolution, and PHT is the minimum

value of the HT power consumption that we aim to detect. The coefficient α (α ∈ (0, 1])

can be determined experimentally on the given setup, once the value of the desired FPR has

been chosen. For example, if it is required to have FPR = 0%, then α = 1. As for δmax, it

represents the maximum value of the background noise δ, which can be approximated by a

normal distribution with zero mean. It should be noted that the threshold is determined as

a function of the amplitude of noise, the averaging level, and the power sensor resolution.

If n is the number of independent DPM outputs fi (i = 1, ..., n), each of which has

HT detection probability p, then fi can be described as a Bernoulli distribution [146] with

fi =


0 HT not detected ∆PHTinf < Pthr

1 HT detected ∆PHTinf ≥ Pthr,

(3.8)

where ∆PHTinf is defined in Eq. (3.4). It follows from (3.8) that the HT is detected when

∆PHTinf reaches the HT detection threshold Eq. (3.7). If there is an active HT on a PCB,

the maximum likelihood estimator for detection probability p for Bernoulli distribution

Eq. (3.8) can be calculated as follows [146]

p =

n∑
i=1

fi

n
. (3.9)

The detection probability Eq. (3.9) is proportional to the observed DPM outputs

resulted in detection of the HT. It can be seen from (3.8) that this probability can be

increased by decreasing Pthr, i.e. the detection probability is a function of the same

parameters as Pthr.

51



Chapter 3. HT Detection on a PCB Through Differential Power Monitoring

3.5 Experimental Setup - Prototype PCB

The original, hardware Trojan free, circuit consists of four 16 MHz ATmega328P

microcontrollers which have been programmed and wired up into four blocks:

authentication (Auth. 1, Auth. 2 ), processing, and memory (Figure 3.7, Figure 3.8).

Additionally, an Inter-Integrated Circuit (I2C) communication line multiplexer, a keyboard

and two displays have been integrated into the setup.

Figure 3.7: Diagram view of the PCB prototype.

The general function of the system is secret data transmission from the memory block

to one of the two integrated displays. Next, three different HT devices (cases 1-3) have been

introduced into the original circuit with the malicious purpose of data leakage. Finally,

the proposed run-time Differential Power Monitoring circuit has been implemented on the

setup.

3.5.1 The Original Circuit

The function of the original circuit (Figure 3.8, shown by an orange border) is to store

and display data from the built-in memory block, after a log-in procedure. A keyboard and

a display, linked to the authentication block, are leveraged to facilitate the log-in process.

Upon a successful log-in event, an enable signal is generated by the authentication block.

This signal is fed into the processing block. The enable signal triggers the processing
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Figure 3.8: Real life photograph of the PCB prototype.

block to fetch the secret data from the memory block. The processing block uses Inter-

Integrated Circuit (I2C) communication protocol to request from the memory block. In

turn, the memory block requests the data from a built in memory device through Serial

Peripheral Interface (SPI). Once the secret data is passed to the processing block, it is

presented on a second display. The communication with both displays is executed through

I2C protocol. After a pre-set time, the system automatically clears the displays and logs

out, getting ready for a new log-in cycle.

3.5.2 The Hardware Trojan Device

3.5.2.1 Hardware Trojan Case 1

In this attack scenario the HT has three components: a 16 MHz ATmega328P

microcontroller, an NRF24L01 System-on-Chip 2.4 GHz radio frequency transceiver and

a 5 V to 3.3 V logic level shifter (shown in Figure 3.7 and Figure 3.8 with a red border).

The device has five I/O pins: two power input and three data wires for timing the attack

and eavesdropping on the interconnections on the original circuit. Two of the data wires

are tapped to the SPI interconnections in the memory block. One of these wires carries
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a trigger signal, which turns the HT into an active transmitter, while the second wire

is used to read the secret data. Additionally, a third wire is linked to the enable signal

from the authentication block. By default, the HT is set to sleeping mode to minimise

the power consumption to stay undetected, and it only wakes up on a log-in event. To

further increase its stealthiness, it is programmed to leak data after a certain number of

log-in events. When the HT has reached the data leakage iteration, it powers on the radio-

transmitter, which is otherwise turned off in order to reduce power consumption and avoid

detection. Finally, the data is leaked out, and the HT device is sent back to sleep.

3.5.2.2 Hardware Trojan Case 2

To reduce the power consumption, we now consider an HT device with a 16 MHz

ATmega328P microcontroller unit. The HT has two states: 1) a state of active payload

delivery after triggering, and 2) an idle state. The power consumption of the device in

state 1 is around 5 mW − 10 mW , whereas in state 2 it is under 300 µW (Power-Down

mode). In case 2, the payload of the HT is assumed to be arbitrary. The condition-based

activation trigger for the HT can be either the enabling signal from the PCB circuit similar

to case 1, or an internal watchdog timer. The HT’s pin connections are also executed in a

similar way to case 1.

3.5.2.3 Hardware Trojan Case 3

The always-on HT discussed in case 3 is similar to the one in case 2. A major

difference, however, is in the operating pattern. As opposed to case 2, here the HT does not

have a triggering condition and is directly set to the only available active state after power

up of the PCB. The power consumption of the device is in the range of 5 mW − 10 mW .

In case 3 the payload of the HT is assumed to be arbitrary. The pin connections of the

HT, except for the trigger signal pin, are executed in a similar way to that in case 1.

3.5.3 The Power Monitoring Circuit

There are two blocks to the power monitoring circuit: (a) a Main Power Monitor

(MPM), and (b) five Sub Power Monitors (SPM) (Figure 3.2, Figure 3.7, Figure 3.8

marked in green borders). Inside the MPM, along with the power sensor, an ATmega328P
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Figure 3.9: Flow chart of Differential Power Monitoring logic steps.

microcontroller has been used to conduct the on-board data processing and to deliver

the dampening and communication functions. The microcontroller is linked to all power

sensors via a multiplexer for communication using the I2C protocol. As illustrated in

Figure 3.9, after the initial power up (step I), the microcontroller in MPM sets up all the

power sensors on the PCB (step II). Next, in step III the MPM requests and receives power

readings from all the sensors at a given time. Note that within one iteration the time-span

between any two SPM readings is negligible. Then, in step IV it processes the obtained

power readings. Finally, it follows from Eq. (3.8) that if the difference is larger than

the pre-set detection threshold, an HT detection alarm is raised and the microcontroller

begins the next iteration (step V). These steps are described in more detail in the form of

the pseudo-code Algorithm 1. Power consumption measurements are taken with INA219

high-side current and power monitor chips. These chips have a built in 12 bit ADC and

provide readings with a resolution of 1 mW .

3.6 Experimental Results

The performed experiments support the theory described in section 3.4. As a proof

of concept, the hardware prototype has been tested against three different HT attacks

for detection capability assessment. Additionally, an HT detectability analysis has been

carried out by dampening the noise level and finding the corresponding lowest threshold

with 0% False Positive Rate (FPR). An experiment has also been set up to address
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Algorithm 1 Main Power Monitor data flow.

▷ Step I
1: Pthr := DetectionThreshold ▷ Set Detection Threshold
2: N := AveragingLevel ▷ Set Averaging level
3: ∆PMovAvg[∆P,N ] := 0 ▷ Initialise moving average
4: Initiate power sensors. ▷ Step II
5: while 1 do

▷ Storing data from sensors | Step III
6: PMPM := sensor[0].GetPower
7: for i = 1, 5 do
8: PsumSPM+ = sensor[i].GetPower
9: end for

▷ Find new ∆P | Step IV
10: ∆Pnew := PMPM − PsumSPM

▷ Update the moving average with new ∆P
11: ∆PMovAvg[∆P,N ] := ∆PMovAvg[∆Pnew, N ]
12: if ∆PMovAvg[∆P,N ] > Pthr then ▷ StepV
13: Hardware Trojan detected.
14: end if
15: end while

varying and complex workload situations, which can induce an abrupt change in the power

consumption of the legitimate board-level components. The purpose of this experiment is

to validate the detectability of an HT on the PCB in a scenario, where the legitimate ICs

are running with varying workloads.

3.6.1 Proof of Concept and Averaging-Threshold Tradeoff

Data obtained from the experiments confirm the capability of the proposed DPM

method to detect the presence of an HT on the PCB. The power values in Figures 3.10-

3.12 and Figures 3.14-3.16, all functions of time, have been recorded with frequency ν of

the monitoring setup and presented as time series, e.g.

{∆P (t), t =
n

ν
, ν = 100 Hz, n = 1, 2, 3, ...}. (3.10)

All experiments in this subsection have been carried out at room temperature (20◦C).

HT Case 1: As illustrated in Figure 3.10, there is a clear spike in ∆PHTinf value, when

an HT is triggered. If the value of this spike is larger than the pre-defined detection
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Figure 3.10: Spike in ∆PHTinf when HT is triggered, and drop in∑n
i=1(PSPM )i alongside the rise of PMPM (HT case 1).

threshold, the HT will be detected. Note that as the detection threshold is lowered, lower

power HTs become detectable. Two different detection thresholds are illustrated in Figure

3.11. Here, level A provides a better HT detection resolution than level B, since it is

capable of detecting lower ∆PHTinf spikes. However, by lowering the detection threshold

from B to A, the False Positive Rate increases due to the noise on ∆PHTinf values.

Figure 3.11: Change in ∆PHTinf and ∆P
(20)
HTinf during HT triggering (HT case 1).

Post-processing of the results of the measurements shows that applying a moving

average filter greatly reduces the impact of noise on the raw ∆PHTinf values (Eq. (3.4))

as illustrated in Figure 3.11 and Figure 3.12. As can be seen in both figures, the ∆P
(20)
HTinf

values produce a smoother signal with the averaging parameter set at N = 20.

One downside to this averaging technique is the risk of losing data on HT short-

time scale activation, since the data may be smoothed in the same way as an anomalous

peak. This issue can be addressed by introducing a higher frequency monitoring system,
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Figure 3.12: Raw ∆PHTinf (top graph), and ∆P
(20)
HTinf (bottom graph) with

an averaging of 20 (HT case 1).

which is fast enough to record data several times while the HT is active. Ideally the

monitoring system will sample the power readings of the PCB at least N times while

the Trojan is active, where N is the number of data points used to calculate the moving

average. The optimal value of N can be achieved through experimental means. On the

other hand, the use of an averaging function creates a less noisy signal. As it can be seen

in Figure 3.11 the individual values of a noisy signal (black line) can be notably deviated

from their average shown by the red line. By taking the moving average, these deviations

are mostly alleviated. This allows us to detect an HT device drawing a lower amount

of power. In addition, the moving average filtering provides significant improvements to

the False Positive Rate (FPR) and the same values of FPR are reached at notably lower

detection thresholds (Figure 3.13). For example, with the experimental setup under test,

over thirty-fold reduction of detection threshold has been recorded for an FPR of zero

percent, when the raw ∆PHTinf (63 mW ) values are compared to their moving averages

∆P
(50)
HTinf (1.9 mW ) (Table 3.1). As shown in Table 3.1, the minimum detection threshold

for 0% FPR consistently drops along with the increase of the averaging level.

Table 3.1: Detection thresholds for FPR ≈ 0%

Time series ∆PHTinf ∆P
(5)
HTinf ∆P

(20)
HTinf ∆P

(50)
HTinf

Threshold 63 mW 20 mW 3.5 mW 1.9 mW
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Figure 3.13: False Positive Rate for 5 levels of averaging of ∆PHTinf (HT case 1).

HT Case 2: In this case, described in section 3.5, a conditionally activated HT has

been used for the attack. The results show that with a prior knowledge of the appropriate

detection threshold (4 mW ) the hardware Trojan is easily detectable. As illustrated in

Figure 3.14, the power consumption of the activated HT (red line) fluctuates between

6 mW and 9 mW . It can also be seen by the green line that the ∆P (20) values from

Eq. (3.10) fluctuate around 2 mW . The experiment has been repeated on a batch of 5

PCBs and the worst-case scenario PCB with the highest value of detection threshold for

FPR ≈ 0% has been chosen for illustration.

Figure 3.14: Detection of a triggered hardware Trojan with ∆P
(20)
HTinf (HT case 2).

HT Case 3: In this case, an always-on HT has been used for the attack. The HT turns

on when the PCB is powered on. As can be seen in Figure 3.15, the moving average of the

HT’s power consumption (red line) was around 7.5 mW . Shown in green is the baseline
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Figure 3.15: Detection of an always-on hardware Trojan with ∆P
(75)
HTinf (HT case 3).

PDN power consumption based on characterisation of a batch of HT free PCBs. It can be

seen that by using a predefined detection threshold of 1 mW it is possible to detect the HT

with near 0% FPR. It should be noted that if the HT activation time is very long, as in

the always-on case, the averaging level can be set to a high number (e.g. N = 1000) which

will filter the noise down to the order of tens of µ-Watts. Hence, the HT power detection

threshold Eq. (3.7) can be lowered to the same order.

Note that the proposed method uses different moving average filters to detect HTs

with different characteristics (e.g. power consumption, active time). Depending on the

targeted HT characteristics, one or more moving average filters may be deployed for optimal

HT detection.

Variable Workload of Legitimate ICs: More complex situations with variable

workloads of legitimate on-board components have been considered in this experiment.

The Differential Power Monitoring method is used to detect the HT which has been

programmed to switch on and off with a given time period and a consequent switch in

power consumption from 7 mW to less than 300 µW . As can be seen from Fig. 3.16, four

legitimate ICs (PSPM1-PSPM4) change their power consumption at different times. This

change is also clearly visible in the overall PCB power consumption (PMPM ). The results

show that the power consumption of the HT (∆PHTinf ) has been detected. As expected,

it has repeatedly exceeded the predefined detection threshold despite the changes in the

power consumption of the legitimate ICs.
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Figure 3.16: Detection of a hardware Trojan under variable workload of
legitimate components (HT case 2).

3.6.2 Possible Attacks and Countermeasures

To further improve the proposed methodology it is crucial to understand how it can

be circumvented. Two possible scenarios of an HT attack can be considered.

In the first scenario the adversary targets one of the legitimate IC and SPM module

pairs. The communication wires between this victim SPM and the MPM module, as well

as the power source wires of the legitimate IC are cut. Next, an HT with its dedicated fake

SPM module is added under the same address name. Finally, both the HT and legitimate

IC power are sourced through the fake SPM and it is connected to the MPM module. Now,

whenever the MPM tries to read the victim SPM, it will actually address the fake SPM.

This way the HT power consumption is added to the overall SPM measurements and is

thus not detected. This attack can be counteracted by introducing existing HT prevention

methods. For example, using cryptography [142] for the communication between the MPM

and SPM modules can prevent the attack described above.

In the second scenario the HT is not powered from the power distribution network.

An example of such an attack, where the HT is powered from an I/O pin of a legitimate

IC, is mentioned in section 3.2. In this case the extra power consumption of the HT

will be attributed to the legitimate IC and not contribute to ∆PHTinf . Thus the HT

will be invisible for the proposed monitoring system. Developing an algorithm based on

characterisation of a batch of a given PCB design will help detect deviations from the

expected power consumption pattern for each legitimate IC. Such deviations will indicate
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the presence of an HT device on the PCB. This approach will also address the first attack

scenario discussed above.

3.7 Concluding Remarks

This work is the first to develop a methodology on detecting hardware Trojan (HT)

components on a Printed Circuit Board (PCB) using power monitoring. The methodology

proposed here is independent of the HT’s trigger and payload functions. The presented

results show that the proposed Differential Power Monitoring (DPM) method, based on

power consumption, can detect HT devices implanted on the PCB, with a false positive

rate (FPR) that can become zero by selecting appropriate detection threshold (Table 3.1).

The Differential Power Monitoring technique provides additional protection for end

users without affecting the throughput of the PCB. It can be employed in conjunction

with other PCB HT countermeasures without cross-disruption. Key variables in the DPM

technique that can be improved upon are sensor frequency, resolution and accuracy, and

the averaging level for ∆PHTinf . The proposed methodology can be further improved by

using more sophisticated sensors, communication protocols and carrying out theoretical

underpinning.

Thus, the objectives set out in section 2.7 concerning the first contribution have been

met in this chapter. In the following chapter, the proposed monitoring method is further

developed, using machine learning algorithms to detect HTs powered from I/O ports of

legitimate chips on the PCB. Two ML algorithms, One-Class Support Vector Machine

(SVM) and Local Outlier Factor (LOF), have been applied on the power consumption

data harvested experimentally from a purpose built PCB prototype.
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PCB Hardware Trojan Run-time

Detection Through Machine Learning

In this chapter two machine learning (ML) methods have been applied to detect HTs

running on power from I/Os of legitimate chips on a PCB. A PCB prototype has been

fabricated to obtain real-life data, which was used to train two ML algorithms: One-Class

Support Vector Machine and Local Outlier Factor. For validation of the ML classifiers,

one hundred categories of HT devices have been modelled and inserted into the validation

and testing datasets. Simulation results show that using the proposed methodology an HT

device can be detected with high prediction accuracy (F1-score above 99.7% for a 50 mW

HT). Further, the ML model has been uploaded to the prototype PCB for hard-silicon

validation of the methodology. To the best of our knowledge, this is the first work on

real-time detection of PCB HTs, which are powered from the I/O pins of legitimate ICs.

Experimental results show that the performance of the ML model on a real-life prototype

is consistent with that of the simulations.

4.1 Introduction

In the last few years several PCB assurance approaches have been developed which

can be categorised as in-circuit testing, functional testing, JTAG boundary scan, bare-

board testing and visual inspection [147]. With hardware attacks becoming stealthier,

finding more advanced detection methods has now become crucial. Particularly important

are automated quality assurance (AQA) methods, which being non-destructive can detect a

wide range of HTs on a PCB with minimal human involvement [147]. One of these methods

is automated visual inspection (AVI) for PCB verification and authentication. This method
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is about testing on assembly lines during manufacturing, replacing human oversight, thus

preventing unauthorised modifications during assembly. This PCB AQA approach can be

used in different stages of the manufacturing cycle and can be categorised by the imaging

modalities of choice and image analysis techniques [122]. Several AVI have been suggested

including canonical image processing methods for detecting trace and via level defects [123],

convolutional neural network for detecting known defects [124], automated detection for

component misplacement by directly comparing golden and test PCBs [125], [126] and text

detection on the PCB for verification purposes [127], [128]. Although AVI has so far been

the most commonly used method for PCB assurance it has limitations such as absence of

run-time monitoring option and demand for significant subject-matter expert involvement

[148], [149].

Conventional PCB quality assurance techniques have not been inherently designed for

detecting deliberate malicious alterations. Advancements in state-of-the-art technology,

possibly used by adversaries creating stealthier HTs, introduces further strain on legacy

AQA techniques. Novel machine learning (ML) based techniques, on the other hand,

provide a fresh perspective on effective countermeasures for detecting HTs on PCBs

[147], [150]. For instance, the methodology proposed in [141] detects both, always active

and triggerable HTs on the PCB. Using a distributed power sensing architecture, it

is experimentally demonstrated that the proposed method can detect HTs with power

consumption as low as 7.5 mW , powered from the power distribution network, similar

to Trojan A in Figure 4.1. However, this monitoring system would be oblivious to any

Figure 4.1: PCB diagram with proposed power monitoring circuit, Trojan A powered from
the power distribution network and Trojan B powered from I/O port of a legitimate chip.
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HT that is powered from the input/output (I/O) pins of the legitimate integrated circuits

(ICs), similar to Trojan B in Figure 4.1. The main novelty in this chapter is using ML

algorithms implemented on the monitoring block, combined with a similar monitoring

circuit architecture (Figure 4.1) as proposed in [141], to detect HTs powered from the I/Os

of legitimate ICs on the PCB. Using ML to inspect power consumption for HT detection,

as proposed in current work, is readily scalable, easy to deploy on a given PCB design and

much less intrusive than other approaches such as impedance anomaly detection, requiring

no extra actions taken by the ICs on the existing circuitry.

The proposed monitoring setup should be designed and manufactured alongside the

original PCB circuitry. The ML model training should be done on data from a complete

simulation model or, preferably, group of prototype PCB devices, prior to large scale

manufacturing. To ensure the integrity of the HT-clean power consumption training data,

the batch of prototype PCBs can be subjected to reverse-engineering testing or expert

visual inspection. Both methods are used to test the golden PCBs for HT presence, but

have their own shortcomings in volume manufacturing.

Prior Work

Machine learning techniques have a huge potential for addressing countermeasures

for various HT attacks [89], [90]. Such methods have already been widely applied for IC

HT detection (section 2.5.2 ), improving the detection capabilities in a number of aspects

including reverse engineering [92], side-channel analysis [93], [94], real-time detection and

for HT detection on gate-level netlists [95]. A comprehensive survey of the latest research

and developments of ML-based approaches for HT detection and prevention on an IC

level is carried out in [96], where it has been demonstrated that the number of research

publications and achievements in IC HT detection using ML techniques have been growing

rapidly since 2014. This shows that ML is a promising tool for guaranteeing security of

hardware.

HT vulnerabilities for PCBs are not too different to those at the IC level. Hence the

ML methods applied for countermeasures against HTs at the IC level can be useful in HT

detection and prevention at PCB level. While ML algorithms have proved to be highly

promising in overcoming IC HT threats, ML based techniques for higher levels of system
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abstraction such as PCBs have not been well studied. That said, some research has very

recently become available. Pearce et al. [151] have proposed an HT detection methodology

utilising multiple side-channel performances, including power consumption, temperature

and electromagnetic field as well as communication and CPU activity patterns. In their

approach they use defender controlled operating environments to have multiple views on

the performance of the PCB, hence a higher chance to detect the presence of an HT.

Another promising approach is taken in [152], [153], [154] and [155], where the key HT

detecting factor is the alteration to the expected impedance value of either the power

distribution network (PDN) or the metal connections between the legitimate ICs. In case

of a sufficiently high resolution this approach is capable of detecting minor alterations to

the circuit.

The rest of the chapter is organised as follows: The attacker model and the proposed

approach are described in section 4.2. In section 4.3 theoretical background is provided

on two ML algorithms used in this work. Section 4.4 explains the proposed methodology,

while section 4.5 describes the experimental setup, including the prototype PCB. Section

4.6 discusses simulation results. Further, real-life experimental results are given in section

4.7. Discussion around the proposed methodology is provided in section 4.8. Finally, the

chapter is concluded in section 4.9.

4.2 Attacker Model and Our Approach

When added to the original PCB circuitry, an HT device can draw power from

sources such as the mains supply, a built in battery, capacitor or energy harvester, the

power distribution network or an I/O pin (or trace) of a legitimate IC. A thoughtful

adversary would try to conceal the modifications in the internal layers of the PCB to

avoid detection. If the HT is powered from the mains supply, it would need external

vias and traces for linkage. Similarly, a battery, a capacitor or energy harvester would

be too large to be concealed in the internal layers. In both of these cases an automated

visual inspection can be sufficient to detect any external modifications on the device, thus

ultimately leading to the detection of the HT. On the other hand, a carefully designed HT

66



Chapter 4. PCB HT Run-time Detection Through Machine Learning

can completely escape detection from visual means of inspection, if it is powered from the

power distribution network or an I/O trace of a legitimate IC. The first of these cases has

already been addressed in [141], where the suggested differential power monitoring method

demonstrated sufficiently high accuracy in detecting an HT which consumes power from the

power distribution network. This work addresses this problem by proposing a methodology

for detecting such HTs using machine learning.

The main characteristics of the proposed approach are:

1) Trojan payload invariant: The proposed methodology is independent from the

types of payload and trigger mechanisms of the HT device, assuming it consumes power.

2) Real-time monitoring: Continuous monitoring of the power consumption

patterns on the PCB in real-time, searching for anomalies.

3) High prediction quality: Classification F1-score can reach over 99.5%,

depending on the HT parameters (e.g. power consumption, active time).

4)No interference with the performance of the original circuit: The approach

is completely detached from the computational provisions of the circuit under inspection,

continuously running its algorithms without degrading the performance or affecting the

throughput of the PCB.

4.2.1 Assumptions

It is assumed that the adversary can use any HT regardless of its payload and trigger,

as long as the activation of the HT alters the power consumption of the original circuitry.

It is also assumed that the IC and PCB design houses, as well as the firmware and

intellectual properties for designing the ICs are trusted. The only possible threat comes

from outsourcing PCB production to untrusted facilities, or during the transfer of the

product from the manufacturer to the consumer.

There is also a possibility of adversaries swapping a trusted IC on the PCB with an

HT infected IC. This attack scenario is out of the scope of this work since it is concerned

with the research of IC level HTs, which discusses modifications of ICs during their design

and production phases. The alternative case assuming the adversary has arranged their

separate and unpoliced illegal IC production is unlikely given the prohibitive financial

constraints on organising silicon chip production and limited access to original IC design
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and layout information. Thus, it can be assumed that the ICs on the PCB are trusted and

HT-clean.

4.2.2 Our Approach

The main function of the proposed approach is to differentiate between two groups of

power consumption data, HT-clean and HT-contaminated, incoming during run-time. The

HT-clean data group belongs to the case, where no HT has been implanted on the PCB

and the device is functioning as expected. This case includes all the tasks and modes that

the device is expected to operate in with their respective power consumption patterns. Any

deviation from the expected power performance is deemed to be a fault or an HT attack,

and the corresponding data-point belongs to the HT-contaminated group. This second

group, where all the HT-contaminated data-points reside, is harder to model since it must

include all the possible HT attack scenarios. To tackle this problem, one class classification

machine learning algorithms are used in this work for anomaly detection. The algorithms

should be able to separate clean and contaminated data-points, having previously seen only

the group with clean data-points. Such algorithms are commonly referred to as anomaly

detection algorithms.

4.2.3 Blind Zone

Next, the definition of the term blind zone is given here. To simplify the problem

at hand, let us consider a case with a single IC on the PCB. Let us further assume that

this IC has two work modes: idle and operating. In that case it would be safe to assume

that its power consumption probability density function would look like the green line in

Figure 4.2a, with two distinct peaks, one for every work mode. When a Trojan device is

added on the PCB, which consumes power from an I/O pin of the legitimate IC Figure

4.2b, the resulting new probability density function will be skewed to the right by the

mean power consumption value of the HT. This new distribution is drawn in red in Figure

4.2a. Intersection of the regions under green and red functions are where it is not possible

to confidently separate HT-clean and HT-contaminated cases. In these regions, referred

to as blind zones, the HT-contaminated datapoints overlap with HT-clean datapoints.

This effect primarily happens for two reasons. First, when the HT’s power consumption
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(a) Power consumption probability density functions

(b) Legitimate IC and an implanted Trojan schematic

Figure 4.2: Illustration of a single IC and single Trojan.

PHT is so small that it almost does not affect the legitimate power consumption curve,

making it very hard to detect. In Figure 4.2a it will mean that the two tall peaks and

the two short peaks overlap. This is an inherent shortcoming of any side-channel analysis

methodology, when the footprint on the side-channel is too small to detect. Second case is

when the HT’s power consumption is exactly large enough to skew the HT-contaminated

(red) power consumption curve to the right, so that it overlaps with the second legitimate

green peak. In Figure 4.2a it will mean that the taller red peak will overlap with the

shorter green peak.

4.3 Anomaly Detection Classifiers

4.3.1 Anomaly Detection: Novelties and Outliers

Anomaly detection algorithms are divided into two machine learning method

subgroups: novelty detection and outlier detection. While in novelty detection the training
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data does not contain anomalies, which can only appear in new observations in the

prediction stage, in outlier detection the training data does contain some anomalies. In the

outlier detection method the algorithm finds the regions where the training data is mostly

congregated, ignoring the observations which have deviated from the majority data. For

the HT detection problem on PCB set out in this research novelty detection approach is

most appropriate.

Two relevant ML algorithms for power consumption novelty detection are one-class

classifiers based on One-Class Support Vector Machine (SVM) and Local Outlier Factor

(LOF) implemented in Scikit-learn library [156]. One-Class SVM and LOF have different

underlying mechanisms to produce the prediction, but both are suitable for supervised

learning with only one of the classes initially present in the training dataset, i.e. HT

clean PCB power consumption data. This is an important characteristic, since it would be

unrealistic to assume the possibility of two class classification by modelling all possible HT

attack scenarios the adversaries can come up with. Given the non-linear nature of the task

assigned to the ML models in this project, i.e. one-class classification, radial basis function

(RBF) kernel has been used with One-Class SVM algorithm, making its decision boundary

very flexible to variations in the dataset. In other words, the radial basis function allows

the ML model to closely replicate the correct power consumption pattern locations in a

multi-dimensional space with high precision, where the number of dimensions are equal to

the number of ICs being monitored.

4.3.2 One-Class Support Vector Machine

If the conventional SVM method separates different classes existing within a given

dataset [157], One-Class SVM [158] minimises the radius of a hypersphere that encloses

the training data consisting of only one class. This is achieved through a suitable kernel

function, which maps feature vectors onto a higher dimensional feature space. The method

defines an origin and finds a hyperplane, which separates the origin and the mapped feature

space with a maximum margin. Thus, unlike multi-class SVM, where the maximum margin

between different classes is learned, in One-Class SVM the boundary of the training data,

i.e. Trojan free data, is learned. The decision function f(x) assigns 1 in the region of the

training points (HT-clean points), and -1 everywhere else (HT-contaminated points).
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To introduce One-Class SVM we consider the training data consisting of n

observations

Ω = {xi, i = 1, 2, 3, ..., n}, n ∈ N

where xi is the ith observation (data-point) and it is assumed that Ω is mapped into a

higher-dimensional feature space Ψ through a feature mapping Φ

Φ : Ω → Ψ. (4.1)

The mapping (4.1) is assumed such that the images of dot products (xi · xj) ∈ Ω in the

new feature space (Φ(xi) · Φ(xj)) ∈ Ψ can be calculated via a kernel function [159]

k(xi,xj) = (Φ(xi) · Φ(xj)). (4.2)

To find a hyperplane in the new feature space which separates the data and the origin

with a maximum margin the following minimising problem is formulated

min
w∈Ψ, ξ∈Rn, ρ∈R

1

2
∥w∥+ 1

νn

∑
i

ξi − ρ, (4.3)

with the following constraints

(w · Φ(xi)) ≥ ρ− ξi, ξi ≥ 0, i = 1, 2, ..., n. (4.4)

In the quadratic programming problem Eqs.(4.3)-(4.4), which is called the primary

problem, w and ρ are the parameters needed to be found, where w is the normal vector to

the separating hyperplane, ρ is the margin between the mapped data and the origin, ξi are

slack variables penalising the misclassifications. The regularization parameter ν ∈ (0, 1] is

a user-defined parameter, which shows the fraction of outliers that should be allowed and

n is the number of training points.

If the data in the input space is not linearly separable, which is often the case in

one-class data, the so-called kernel trick is employed, which maps the inseparable initial

data onto a separable data in the higher dimensional kernel space. This can be done by
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writing the primary problem in the following equivalent form, called the dual problem [160]

min
α∈Rn

1

2

∑
i,j

αiαjk(xi,xj), 0 ≤ αi ≤
1

νn
,
∑
i

αi = 1, (4.5)

where the kernel k(xi,xj) is defined by the dot product Eq. (4.2), indices i and j range

over 1, ..., n. The dual problem Eq. (4.5) does not require computation of the explicit map

Φ in the objective function. It is sufficient to define the kernel instead. One of the most

efficient kernels Eq. (4.2) for the dual problem Eq. (4.5), which will be used further is the

radial basis function (RBF)

k(x,xi) = e−γ∥x−xi∥2 , (4.6)

where γ is the bandwidth parameter.

Further, the inequality constraints Eq. (4.4) in the primal formulation Eq. (4.3)

(which are as many as the number of samples) are simplified to an equality and bound

constraint in the dual problem Eq. (4.5). The algorithm finds the optimal values of αi and

only the solutions {xi} with αi > 0, called support vectors, are taken in the final decision

function.

After the minimization problem Eq. (4.5) is solved the required value of ρ can be

found from the following formula

ρ =
∑
i

αik(xi,xj), (4.7)

where xj is any support vector. The new incoming data can be classified using the following

decision function:

f(x) = sgn

(∑
i

αik(xi,x)− ρ

)
, (4.8)

where xi are the support vectors. The decision function is assigned 1 for data predicted as

HT-clean, and -1 for HT-contaminated data.

4.3.3 Local Outlier Factor

Another classic anomaly detection method is Local Outlier Factor (LOF) [161]. The

method estimates the local density of a given sample and the deflection from the density
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of its neighbours. The local density is estimated by measuring distances of k nearest

neighbours. Then samples are identified with considerably lower density and qualified as

outliers.

The LOF approach is based on the concept of k-distance, ∥x − x(k)∥, which is the

distance of a point x from its kth nearest neighbours, and k-neighbours, Nk(x), which are

points in and on the circle of the radius k-distance.

Reachability distance (RD) from x to x′ is

RDk(x,x
′) = max(∥x− x(k)∥, ∥x− x′∥), (4.9)

where xk is the kth nearest neighbour of x and x′ ∈ Nk(x). RD is used to define another

key concept, the local reachability density (LRD) of x :

LRDk(x) =
1

1

∥Nk(x)∥
∑

x′∈Nk(x)

RDk(x,x
′)
. (4.10)

It follows from Eq. (4.10) that greater LRD (i.e. neighbours far from the point x)

corresponds to lower density of points around a particular point. The algorithm uses

the definition of the local outlier factor (LOF) of x, which is the ratio of the average LRD

of the k-neighbours to the LRD of x:

LOFk(x) =

1

∥Nk(x)∥
∑

x′∈Nk(x)

LRDk(x
′)

LRDk(x)
. (4.11)

The aim of the LOF method is to determine an outlier by calculating the local outlier

factor Eq. (4.11) for each data-point in the dataset [162]. Larger values of the LOF

correspond to fewer data-points around the object. If for any point the LOF is less than

1, the density of the point is higher compared to that of its neighbours indicating that the

point is HT-clean. If the LOF is greater than 1, then the point has less density compared

to the density of its neighbours. In this case the point is possibly an HT-contaminated

outlier.
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4.3.4 Algorithm Complexities

The complexity of an algorithm is estimated by its time complexity, which assesses

how long the algorithm takes to execute the task, and its spatial complexity, which assesses

the amount of memory needed for the operation of the algorithm.

If an algorithm does not depend on the number of data N it processes then the

algorithm is considered to have constant complexity which is denoted by O(1). If the

algorithm dependents on N , then the complexity is dependant on line code in the algorithm

and can be estimated as O(n), O(n2), O(log n) etc.

4.3.4.1 Complexity of One-Class Support Vector Machine

4.3.4.1.1 Time Complexity: There are two complexities to assess: training-time and

run-time. Minimum training time complexity for SVM is estimated as O(n2), where n is

the number of training data-points. The training process returns nSV support vectors,

which is later used for classification.

For a kernelised SVM with an RBF kernel Eq. (4.6), nSV kernel computations are

needed to classify a new point x in (4.8). Assuming for each support vector xi the kernel

Eq. (4.6) can be computed with O(d) time complexity, where d is the dimension of the

support vectors, the overall run-time complexity of the classifier with an RBF kernel is

O(nSV × d) for a single data-point under query. Although tuning of the γ parameter can

have an impact on run-time as well since its computation has a quadratic complexity,

One-Class SVM achieves good performance without significant tuning [163].

4.3.4.1.2 Spatial Complexity: The classification ready model, needs to know the

coordinates of the support vectors, therefore all nSV support vectors should be stored

in memory. The dimensionality of the support vectors d matches that of the data for

classification. Therefore the memory complexity for online prediction will be O(nSV × d).

For a very large dataset, the training time for SVM with non linear kernel classifiers

can be quite high. The complexity can be reduced by using a linear kernel K(x, z) = x · z.

In this case the decision function is f(x) = w · x+ b, where w =

m∑
l=1

αlylxl and classifying

requires only O(n) operations and O(n) memory. However, linear kernel SVMs generally

74



Chapter 4. PCB HT Run-time Detection Through Machine Learning

have poorer classification performance [164].

The time and space complexities for models with an RBF kernel can also be

significantly reduced by a number of approximation algorithms. Tsang et al. developed

an approximation algorithm for SVM training that has O(n) time complexity and space

complexity independent of n [165]. This is achieved by showing that the soft-margin one

and two-class SVMs can be considered as minimum enclosing ball (MEB) problems and

treated by an efficient approximate MEB algorithm. In particular, solving the soft-margin

One-Class SVM problem is essentially the same as fitting the MEB with outliers. Results

show that using the RBF kernel on a set of intrusion detection data containing about five

million training patterns takes only 1.4 seconds on a 3.2 GHz Pentium–4 PC [165].

The training time complexity of SVM can also be improved by employing the second-

order polynomial approximation of the RBF kernel [166]. The classification performance

can be close to that obtained with the exact RBF kernel, with complexity O(d, (d+ 3)/2)

which can be a significant improvement if the number of dimensions d is low compared to

the number of support vectors in a model. Proper investigation is normally needed of the

trade-off between performance and classification.

4.3.4.2 Complexity of Local Outlier Factor

Nearest-neighbour-based algorithms such as LOF have quadratic computational

complexity since they have to calculate the distances of all data-points. Thus training

time complexity of LOF algorithm is O(n2). Run-time and space complexities of LOF are

estimated as O(nd).

4.4 Proposed Methodology

Every electronic device, when performing a certain group of tasks, executes a unique

set of commands in a predefined order. When an IC device (microcontroller, FPGA, ASIC)

executes a specific command, the internals of the IC switch through a number of states.

For every low-level command, a certain number of transistor switches occur in a strictly

defined pattern. On the macro scale, this creates a specific power consumption pattern for
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the IC for every high-level command [106]. Since a PCB is composed of a group of ICs

performing their tasks, the same is true for a PCB. The proposed methodology identifies

the underlying power consumption pattern for the device under test and feeds the data

to a machine learning (ML) algorithm to learn the decision boundary1 or some other

classification criteria.

Every IC on the PCB has its specific set of tasks required for the PCB to operate

as a whole. The exact ICs and their tasks can vary depending on the device and its

use case. The device can have many different operational modes. Given the sensitivity

of the proposed technique to the IC activities during run-time, the models have to be

calibrated to predefined tasks of the PCB. For the proposed methodology to work the

device should not be reprogrammable, changing the predesigned tasks. In other words,

it is assumed that either through theoretical estimations or empiric means it is possible

to collect an inclusive power consumption data from the golden model PCB, reflecting all

of its legitimate operations. However, if it is not possible to build an inclusive dataset

of PCB power consumption for all operational modes, e.g. due to their multitude, then

further investigation will be required to adapt the existing data with further assumptions,

to train the machine learning model.

As proposed in [141], every component on the PCB should be fitted with a dedicated

power sensor, if they already don’t have it built in. On every iteration, these sensors

report their readings back to the monitoring block (MB) on the PCB, where all the

processing is carried out. New datapoints are parsed through the ML model to get binary

predictions of either 1 or -1 for HT-clean and HT-contaminated scenarios respectively. The

proposed methodology is summarised in Figure 4.3, organised into three main stages: data

acquisition and preprocessing, model training, and run-time monitoring.

In the data acquisition and preprocessing stage, first the power consumption

data was collected from the PCB prototype (i.e. golden model). This is an HT clean

dataset, part of which is later contaminated by adding HT power consumption values to

some of the datapoints. To do the contamination process, the HT’s parameters, such

as power consumption values and the length of activation time, as well as the randomly

1The decision boundary is a closed shape in N-dimensional space, which determines the outcome of the
classification prediction.
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Figure 4.3: Process flow from data collection to real-time hardware Trojan
monitoring on a PCB.

chosen locations in the dataset are chosen for every HT insertion instance. In this stage,

HT-contaminated data has been added to the dataset using 100 distinct HT categories,

later presented on page 86. Next, all the appropriate feature engineering is applied

to the dataset, after which the HT-contaminated points are separated from HT-clean

points, dropping all the duplicate points in the process. These points are organised into

training, validation and testing datasets. While validation and testing datasets receive

equal proportions of clean and contaminated points, the training dataset receives only

HT-clean points. In order to improve the training process and the results, a technique is

applied (see section 4.5.2) to remove redundant core points, greatly reducing the size of

the training dataset, while making sure to retain all the edge points, which carry most of

the boundary information required to train a good model. In such manner, K pairs of
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training and validation datasets are created in the interest of arranging a K -fold validation

like process while training the model in the next stage.

In the model training stage of the flow, first an appropriate ML algorithm is

chosen to train on the data. The algorithm chosen in Figure 4.3 for demonstration is One-

Class SVM. In this stage, the One-Class SVM model hyperparameters are tuned to the

most optimal values for highest model accuracy. In the process of training the algorithm,

K -fold validation like process has been arranged using the K pairs of training-validation

datasets developed in the previous stage. This is done to increase confidence in adequate

generalisation of the output model, rather than fitting it to the exact dataset applied

during training. The resulting model is then tested on the test dataset, to confirm that it

generalises well on previously unseen data, otherwise further hyperparameter optimisation

is carried out.

Finally, in the run-time monitoring stage, the model is uploaded to the

monitoring block (MB) on the PCB prototype to perform real-time monitoring of the

device. When the PCB is turned on, the MB iteratively receives power readings from

all linked power sensors. These readings are arranged into a single new datapoint in the

form of a vector, which is then parsed through the One-Class SVM model to be monitored

for an HT presence. If the new datapoint lies within the model’s decision boundary, it is

clean, otherwise it is classified as HT-contaminated and an HT is detected. This last step

is performed iteratively for a continuous online monitoring of the PCB.

4.4.1 Notations

4.4.1.1 Data Point-Vector

On every iteration, the incoming data is stored in the MB. To organise the collected

data in an orderly manner, it is grouped in [1×N ] dimensional data point-vectors:

X = {x1, x2, x3, ..., xN}. (4.12)

Since each vector component corresponds to a reading from one of the N power sensors

(Figure 4.4), where every power sensor monitors an individual IC, the dimension N of

vector X depends on the number of such sensors on the PCB.
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Figure 4.4: The proposed monitoring architecture and Trojan on an I/O of the N th IC.

4.4.1.2 Classification Prediction

In the HT detection (classification) problem there are two possible labels. For HT-

contaminated data-points, the label is assigned -1, while for HT-clean data-points the label

is assigned 1. The label can be actual (y) or predicted (ŷ). The actual label y carries

the ground truth information and is considered correct. The predicted label ŷ, on the

other hand, is the label given by the trained ML model in the prediction process and can

potentially be erroneous. In supervised classification problem, the quality of the trained

ML model is measured by the parity of the actual label y and predicted label ŷ, with the

best case being a complete match between the two.

4.4.1.3 Classification Metric

Precision and Recall rates are defined by the following formulae:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, (4.13)

where TP , FP , and FN are the numbers of true positive, false positive and false negative

predictions respectively.

Depending on the end use case of a particular ML model, priority may be given to

either high Precision or high Recall rate. In this work Precision and Recall have been

treated with equal weights and the ML model has been optimised for the highest balanced

F1-score. F1-score is an imbalanced-dataset aware classification metric and the closer it

is to 100% the fewer misclassifications there are. The balanced F1-score can be calculated
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using the following formula:

F1-score = 2 · Precision ·Recall

Precision+Recall
(4.14)

4.4.1.4 Hardware Trojan Power Consumption

Depending on the chosen model, power consumption of the Trojan, denoted by

PHT (Figure 4.4), can be modelled using different probability density functions (uniform,

normal, etc.), with their respective parameters. In this work, the HT power consumption

has been modelled using a number of Gaussian normal probability density functions

fi(PHT ) =
1√
2πσi

exp

[
−(PHT − P̄HTi)

2

2σ2
i

]
, i ∈ N (4.15)

where P̄HTi is the mean and σi is the standard deviation of the ith HT. However, it should

be noted that there is no strong motivation for using this particular distribution for the

HT’s power consumption model. Choosing an alternative distribution, e.g. uniform, is not

expected to have a significant impact on the results of proposed methodology.

4.4.1.5 Hardware Trojan Active Time

The HT active time span is denoted by THT . On every iteration the MB generates

a data point-vector. The vector contains power consumption information gathered from

all the power sensors, one of which can potentially bear an HT-contaminated IC. In order

to measure the active time span of the HT, a sufficiently general time evaluation metric is

necessary since the probing frequency of the monitoring setup will vary depending on the

characteristics of different real-life PCB devices (e.g. working frequencies, number of ICs).

Such an evaluation metric can be the number of consecutively recorded HT-contaminated

data point-vectors i.e. HT-points. In other words, one HT-point is the time required for a

single power consumption data point-vector to be registered by the MB, while the HT has

been operating and consuming power. The relation of the HT active time to real time can

be expressed via the number of HT-points using the time unit defined as

Unit HT-point = α1
Nsensors

ωMB
+ α2, (4.16)
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Figure 4.5: Printed circuit board prototype.

where coefficient α1 depends on the operational speed of the communication protocol,

Nsensors is the number of sensors, ωMB is the operating frequency of the monitoring block

and α2 depends on the characteristics of the PCB such as the layout and the length of

data wires (e.g. lN ) between power sensors and the monitoring block (Figure 4.4).

4.5 Data Collection and Hardware Trojan Modelling

Prototype PCB in Figure 4.5 has been developed for real-life power consumption data

collection. Subsequently, 100 categories of HT devices have been modelled and injected

into the data for validation and testing of the trained ML model. Although it is possible

that more than one IC can be infected with an HT at the same time, only single HT

scenarios have been considered in this work.

4.5.1 The Prototype Device

4.5.1.1 The Original Circuit

The function of the original circuit (Figure 4.5, marked by orange border) is to

store and display data from the built-in memory block, after a log-in occurrence. On
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Figure 4.6: Monitoring block run-time power monitoring and Trojan prediction steps.

the prototype PCB there are five IC devices under power monitoring. A keyboard and a

display, linked to an authentication block, are used to facilitate the log-in process. Upon a

successful log-in event, an enable signal is generated by the authentication block. This

signal is fed into a processing block. The enable signal triggers the processing block

to fetch the secret data from a memory block. Here, the processing block uses Inter-

Integrated Circuit (I2C) communication protocol to request from the memory block. In

turn, the memory block requests the data from a built in memory device through Serial

Peripheral Interface (SPI). Once this secret information is passed to the processing block,

it is presented on a second display. The communication with both displays is executed

through I2C protocol. Before long, the system automatically logs out, preparing for a new

log-in cycle. While performing their tasks the power consumption of the legal ICs vary

between ∼ 10 mW and ∼ 50 mW .

4.5.1.2 The Monitoring Circuit

There are two main blocks in the power monitoring circuitry: (a) a monitoring

block, and (b) five power sensors (one for every IC) (Figure 4.4, Figure 4.5). Inside the

monitoring block an ATmega328P microcontroller has been used to perform the on-board

data collection, processing and prediction tasks and to deliver the external communication

functions. The microcontroller is linked to all power sensors via a multiplexer for

communication using the I2C protocol.

The action flow inside the monitoring block is illustrated in Figure 4.6. After the

previously trained machine learning model has been uploaded onto the monitoring block

(step I), the monitoring block sets up all the power sensors on the PCB (step II). Next,

in step III the monitoring block receives power readings from all the sensors and stores
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the data in a [1 × N ] dimensional row vector. Then, in step IV any processing of the

new point is performed (e.g. computation of moving averages). The resulting data point-

vector is parsed through the ML model in step V. Finally, if the resulting prediction is

ŷ = −1, suggesting an HT-contaminated case, an HT intrusion alarm is raised, otherwise

the microcontroller loops back to step III and begins the next iteration. Note that within

one iteration the time-span between power readings from any two power sensors is assumed

significantly smaller compared to the HT active time. Power sensing is executed through

INA219 high-side current and power monitor chips. These chips have a built in 12 bit

ADC and provide readings with 1 mW resolution.

4.5.2 Data Collection and Feature Extraction

An important aspect of this research is that the data used to train, validate and test

the machine learning models is collected from a real-life device, rather than being computer

generated. To collect the data, the monitoring block on the prototype PCB device has been

fitted with a micro-SD memory card to store the power consumption data when there is

no HT device mounted on the PCB. Every power consumption data-point is generated as

an N dimensional [1 × N ] row-vector Xi. It is stored in rows and columns, where every

row corresponds to one iteration of data collection and every column corresponds to a

specific IC (Table 4.1). During the data collection stage over 3 × 106 data point-vectors

were recorded, which accounted for all the working modes of the PCB device. These

data-points are distributed in several clusters in RN , their layout depending on the power

consumption patterns of the actual PCB device under investigation. In this work, the

number of these clusters has been 16. The vast majority of the data-points are scattered

in the near vicinity of the centre of the cluster they belong. These points can be referred

to as core points. The points that are closer to the peripheries of the clusters, referred to

as edge points, are far lower in number and hence there is a high likelihood that a random

selection of a fraction of all the points for model training purposes will miss most, if not

all, of the actual edge points. This unfair selection will result in a skewed and consequently

wrong power consumption pattern illusion in the training dataset. Given the finite number

of points in validation and testing datasets, the simulation outcome might be reasonable.

However since the training dataset will not be fully representative of the actual power
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consumption distribution pattern, ultimately the performance of the classification models

in a real-life continuous run-time experiment will suffer, resulting in a significant drop of

classification F1-score.

Table 4.1: Insertion of n-point Trojan occurrence on IC3.

Index IC1 ... IC3 ... ICN y

X0 x
(0)
1 ... x

(0)
3 ... x

(0)
N 1

. . . . . . ... . . . ... . . . ...

Xi x
(i)
1 ... x

(i)
3 ... x

(i)
N 1

Xi+1 x
(i+1)
1 ... x

(i+1)
3 +PHT1 ... x

(i+1)
N -1

Xi+2 x
(i+2)
1 ... x

(i+2)
3 +PHT2 ... x

(i+2)
N -1

. . . . . . ... . . . ... . . . ...

Xi+n x
(i+n)
1 ... x

(i+n)
3 +PHTn ... x

(i+n)
N -1

Xi+n+1 x
(i+n+1)
1 ... x

(i+n+1)
3 ... x

(i+n+1)
N 1

. . . . . . ... . . . ... . . . ...

To solve this problem, an algorithm called Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) has been employed to identify and isolate edge and

noise points. The noise points have later been removed, while, more importantly, all the

edge points have been included in the training dataset, along with randomly selected core

points to fill in the core of the clusters. Thus, the training dataset consists of all the edge

points, some of the core and almost none of the noise points (stage ”Data acquisition,

preprocessing” in Fig 4.3). This technique helps speed up the model training process by

allowing for smaller training datasets, as well as making the process more effective at finding

a better boundary between expected HT-clean and deviant HT-contaminated data-points

(Figure 4.7a).

4.5.3 Hardware Trojan Modelling and Insertion

The insertion of hardware Trojans on the PCB is demonstrated by imitating the effects

it would have caused, i.e. increased power consumption due to its operations. The HT

model has been developed to replicate an extra triggerable component on the PCB, powered
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(a) Unmodified readings from IC1 and IC2 (b) Averaged readings from IC1 and IC2

Figure 4.7: Two dimensional cross sections of the four dimensional dataset and the One-
Class SVM decision boundary.

from the I/O pins of a legitimate IC (Fig 4.2b). The HT free data has been superimposed

with the modelled HT’s power consumption at random locations, thus effectively replicating

a realistic model of an implanted triggerable HT. In this model the power consumption of

an active HT, PHT , follows a Gaussian normal probability density function (4.15) and hence

the HT model has three parameters, HT’s mean power consumption P̄HT , the standard

deviation σ and the active time span THT . The model generates THT number of HT device

power consumption values, which are normally distributed around P̄HT with a standard

deviation set to σ. Note that the duration of the HT’s active time is measured in HT-points

(subsection 4.4.1.5).

The HT with a triggering mechanism has a state of active payload delivery after being

triggered (state 1) and an idle state (state 2). The power consumption of the Trojan device

in the first state is normally distributed around P̄HT , with a standard deviation of σ. In

state 2, the power consumption is assumed to be ∼ 0 mW , i.e. too low to be detected by

the sensors, mimicking HT’s power down or idle modes. Note that the proposed method

is invariant of the payload of the HT, as long as it consumes extra power. An abstraction

of a simulated HT’s power consumption data group for a single activation occurrence can
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be presented as follows

PHT = {PHT1, PHT2, PHT3, ..., PHTn}, (4.17)

where n is the number of HT-points THT .

Several generated HT data groups similar to Eq. (4.17) have been randomly added

to the validation and test datasets in such a way that the ratio of the HT-contaminated

vectors to HT-clean vectors is 1:1 (i.e. 50% HT-clean and 50% HT-contaminated). While

adding the HTs, a random choice has been made of both the columns (i.e. ICs on the PCB)

and the rows (i.e. HT activation points in time), while assuring that no overlapping of rows

takes place. Table 4.1 illustrates how the HT-clean data-frame is modified to become an

HT-contaminated data-frame. In this particular example an n-point long HT occurrence

has been added in column IC3, after instance Xi point in time, i.e. an HT activation

occurrence on IC number 3 at time i+1. In Table 4.1, it can be seen how the power

consumption of the HT device (in red) is added to that of the legitimate IC. In this work,

100 categories of Trojan devices have been modelled and injected into the original HT-clean

data collected from the prototype PCB. Table 4.2 provides ranges for the HT’s mean power

consumption P̄HT ∈ {[5 : 50], step = 5 mW} and active-time HT-points THT ∈ {[10 : 100],

step = 10 point} (described in section 4.4). The hundred HT categories were generated

by taking combinations of the provided parameter values, while the standard deviation is

σ = 1 for all.

Table 4.2: Parameters chosen for HT models.

HT Categories

Mean power, P̄HT Active time, THT

5 mW to 50 mW 10 point to 100 point

step size 5 mW step size 10 point

4.5.4 Feature Engineering

In an effort to reduce the noise in the sensor readings and improve classification

outcomes, feature engineering has been applied. For every column in the dataset, a new

column has been appended, which was populated with the moving averages of the original

values. This way, using the moving average, the power reading row-vectors Xi (Table 4.1)
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are filtered by taking the column-wise average with their respective previous M −1 values,

Xi =
1

M

M−1∑
j=0

Xi−j , for ∀ i ∈ N s.t. i ≥ M, (4.18)

where M is the number of averaged points. The optimal value for parameter M can be

estimated empirically. In this work M has been set to 5. After applying feature engineering

the dataset matrix with N columns becomes one with 2N columns, changing the dimension

of every data point-vector from [1×N ] to [1× 2N ].

4.6 Model Training and Simulation Results

In order to create reliable models, supervised ML algorithms should use sufficiently

large datasets, which effectively capture the underlying data distribution patterns. These

trained models are later utilised for either regression or classification problems [167]. The

end-to-end process consists of several steps. Generally, the first step would be initial data

manipulation including data cleaning and feature selection where the relevant information-

bearing features are extracted from the raw data. Next, feature engineering may be applied

where the data is manipulated in some way, which increases its predictive power. The

resulting sample data is divided into training, validation and test datasets and stored

for later procedures. The second step is selecting and executing the appropriate ML

algorithms to obtain the end models, fitted on the training dataset and optimised on the

validation dataset. Here, among other procedures, grid-search optimisation of algorithm

hyperparameters is carried out in conjunction with K-fold validation to determine the best

model. In the final evaluation stage, the performance of this model is assessed on the test

dataset. The optimal model is chosen, which will be used to make run-time predictions for

new data on the PCB.

In the problem set out in this work the training data consists of only one class, the

HT-clean class. Having collected all the necessary data, two machine learning classification

algorithms have been trained: One-Class Support Vector Machine and Local Outlier

Factor. Although the training parameters vary for the algorithms, the task at hand is the

same for both of them - find the best possible decision function, which will maximise the
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number of correctly predicted HT-clean and HT-contaminated data-points, while avoiding

any unnecessary overfitting to the training data. This way the model should be able

to best predict if a new incoming data-point belongs to the HT-clean class or has a

significant deviation and so can be safely classified as an anomaly. All the anomaly points

are considered as HT-contaminated.

As an example consider a PCB with only two ICs and their respective power sensors.

This sets the dimensions of the data point-vector at N = 2. Then, with the feature

engineering applied, the final dimension of the data point-vector becomes 2 ·N = 4. Such

data point-vectors reside in a four dimensional space, therefore the decision boundary is

a four dimensional surface. For visualisation purposes two double-feature cross sections of

the four dimensional shape are shown in Figure 4.7. The two feature axes in Figure 4.7a

represent power consumption readings received from the two power sensors on IC1 and

IC2. The axes in Figure 4.7b, on the other hand, are the feature engineering generated

moving averages of the same power readings. Shown in white dots are the HT-clean data

point-vectors, while the red crosses represent the HT-contaminated data point-vectors.

The golden bands illustrated in the diagrams are the 2 dimensional cross sections of the

determined 4 dimensional decision boundary (a hypersphere in the kernel space). Any new

point enclosed by the golden band will be classified as an HT-clean vector, while the ones

outside will be classified as HT-contaminated vectors. The HT-to-IC power consumption

ratio has been considered under variability of the power consumption points of legal ICs.

The more compact the power consumption clusters of legal ICs are (Figure 4.7a), the lower-

power HTs will become detectable since they will not be concealed within the boundaries

of legal power consumption. Shown in Figure 4.7a, notice how some of the HT affected

red points remain within the bold yellow decision boundaries because of the width of the

respective cluster.

One-Class SVM algorithm has been chosen to determine the decision boundary in

Figure 4.7. Once the best model has been trained the decision function is uploaded onto

the monitoring block on the prototype device to perform run-time monitoring of the PCB.

Pseudo-code for the online monitoring steps is provided in Algorithm 2.
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Algorithm 2 One-Class SVM run-time monitoring.

1: Input: M, N, SVM(x) → Decision function
2: Initialise: k = 0
3: loop k = k + 1
4: for i=1,2,3,..., N do ▷ Collect sensor data
5: X[k][i] = Sensor(i)

6: end for
7: for j=1,2,3,..., N do ▷ Feature engineering

8: X[k][N + j] =
X[k][j] + ...+X[k −M ][j]

M
9: end for

10: ŷ = SVM(X[k]) ▷ Make prediction
11: return ŷ
12: end loop

4.6.1 One-Class Support Vector Machine

Parameter Selection

The bandwidth parameter γ in Eq. (4.6) and the regularization parameter ν in (4.3)

and (4.5) are the main parameters in One-Class SVM and play key roles in the quality of

the resulting model [168]. Smaller ν values leave fewer training samples on the origin side

of the hyperplane. If ν approaches to 0, the upper bounds on the Lagrange multipliers αi

tend to infinity in Eq. (4.5). The penalty term
∑

ξi in the objective function Eq. (4.3)

vanishes, which means that the hyperplane found in the feature space separates almost

all the training data from the origin. If ν approaches to 1, the algorithm leaves more

data-points on the origin side of the hyperplane, when ν = 1 almost all the data-points are

classified as anomalies.

Training

To reduce the degree of uncertainty in the results, ten-fold validation has been carried

out, while running a greedy grid-search over the hyperparameters ν and γ. The moving

average hyperparameter M has been set to five during the feature engineering stage. Next,

the resulting One-Class SVM model has been tested on the test set to check if it generalises

well on previously unseen data. While the training dataset contains HT-clean class only,

the validation and test datasets are composed of 50% HT-clean and 50% HT-contaminated

points, including all 100 HT categories from Table 4.2 on page 86.
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Figure 4.8: One-Class SVM classification F1-score contour map.

Results

The contour map shown in Figure 4.8 illustrates F1-score dependency of One-Class

SVM regularization hyperparameter ν and kernel bandwidth γ. It can be seen in the

figure that F1-score of the trained One-Class SVM model peaks in the lower-left-corner of

the (ν, γ) plane. In fact a greedy grid-search for the best hyperparameters has returned

{ν = 0.0015, γ = 0.016}. Using this ν − γ pair the ML model reaches prediction F1-scores

0.993, 0.968 and 0.968 on training, validation and testing datasets respectively.

The classification results per HT category are shown in Figure 4.9. It can be seen

that, indeed, HTs with lower power consumption are harder to detect. Comparing HT

categories, when P̄HT ≥ 40mW the F1-score reaches above 99%, while when P̄HT = 5mW

the detection rates peak at F1-score = 82.6%. Trojan activation times, on the other hand,

do not seem to have such a dramatic impact on detectability as HT power consumption

does. It can also be seen that there is a drop in F1-scores around P̄HT = 30 mW . This

is a direct result of the blind zone effect described in Figure 4.2a, when the HT’s added

power consumption shifts the red curve to the right by exactly the amount necessary to

overlay the left red peak with the right green peak. The graph presented in Figure 4.10

helps visualise the simulation results, while also showing the Precision and Recall rates

and the average of all F1-scores for THT = 10 time points.
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Figure 4.9: One-Class SVM classification results for all Trojans.

Figure 4.10: One-Class SVM classification results for all Trojan power
consumption values (THT = 10).

4.6.2 Local Outlier Factor

This algorithm, defined in Eq. (4.11), takes its name after the anomaly score of

each sample. This is a measure of the local deviation of density of a single data-point in

comparison with that of its neighbours. The locality aspect plays a role in that the anomaly

score depends on the degree of isolation of the given data-point with respect to its own

neighbourhood. The distance from k-nearest neighbours Eq. (4.9) is used to estimate the

local density. A comparison of the local density of a sample and the local densities of its

neighbours can reveal the HT-contaminated points, which would have much lower density.
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Parameter Selection

The main hyperparameters in LOF that control the quality of the classification model

are the number of neighbours k and the contamination factor c. The parameter k is

used to calculate the value of k-distance, required for the LOF model to operate. The

contamination factor c is the ratio of the number of deviant (anomalous) points in the

data and that of the normally expected (HT-clean) points. The parameter c is used to

control the precision of training. It is worth noting that, if k is set larger than the number

of available points in the dataset, all the available points will be used in the calculation.

Training

Similar to the previous algorithm, LOF too has been trained using 10-fold validation

with the same datasets as used with One-Class SVM. Here too, the 100 HT parameter

combinations have been chosen from Table 4.2 on page 86. The moving average

hyperparameter M again has been set to five during feature engineering. The model

has been optimised for the highest F1-score by running a greedy grid-search over the

hyperparameters k and c.

Results

The classification results for LOF are shown in Figure 4.11. Comparing values from

the first columns of Figure 4.9 and Figure 4.11, it can be seen that in the lower spectrum

of HT’s power consumption LOF algorithm outperforms One-Class SVM on average by

8.5% when P̄HT = 5 mW . On the other hand, for P̄HT ≥ 5 mW One-Class SVM proves to

be a more robust algorithm for HT detection, eventually reaching F1-scores above 99.7%

for P̄HT = 50 mW , while LOF reached its maximum at 97.1%. Regarding HT active time

length, as before THT has a more subtle effect on the detectability. That being said, when

P̄HT = 5 mW , F1-score for THT = 100 is 3.1% higher than that for THT = 10. In Figure

4.11 it can also be seen that for LOF too the blind zone effect results in a drop in F1-scores

around P̄HT = 30 mW . The graph in Figure 4.12 (THT = 10) clearly shows this drop in

F1-scores when 20 mW ≤ P̄HT ≤ 40 mW , while also providing values of the Precision,

Recall and average of all F1-scores.
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Figure 4.11: LOF classification results for all Trojans.

Figure 4.12: LOF classification results for all Trojan power consumption values
(THT = 10).

4.7 Experimental Results

To verify the effectiveness of the proposed methodology and validate the simulation

results, several experiments have been performed on the PCB prototype shown in Figure

4.5, using One-Class SVM as the classification algorithm. The reason why One-Class SVM

is chosen for the experiment is that it generally outperformed LOF during the simulations.

To further justify the choice, One-Class SVM is an eager-learner algorithm, requiring less

computational load at prediction phase. In contrast, LOF is a lazy-learner [169] and
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Figure 4.13: Schematic diagram of the deployed HT.

defers the majority of computation to prediction phase. To be feasible for production, an

on-board real-time monitoring ML model should have small footprint on computing and

memory resources.

First, the trained One-Class SVM model has been transferred to the monitoring block

on the prototype PCB. That includes coding the decision function (4.8) and uploading

coordinates of all the support vectors xi, the αi coefficients for every support vector, as

well as the free term ρ in the decision function. Next, a triggerable HT device has been

added to the PCB using a bipolar junction transistor (BJT) and a range of resistors with

varying resistances (Figure 4.13). The trigger sequences have been recorded in sync with

the power consumption data on the PCB for later model evaluation analysis. The HT

resistance values have been carefully chosen so that their power consumptions PHT lie

within the ranges 5 mW–10 mW , 10 mW–15 mW or 15 mW–20 mW . The duration of

HT’s active times THT are one of {20, 50, 100}. Shown in Figure 4.14 are the prediction

F1-scores for all nine combinations of PHT and THT . The figure compares One-Class SVM

results from the experiment with those from One-Class SVM and LOF from simulations.

Figure 4.14: Comparison of experiments and simulations.
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Memory usage

Given that the dataset has dimensionality of 10, using 16 bit unsigned integer

encoding, a One-Class SVM model with 1258 support vectors will require memory capacity

of about 27 KB. To show the memory capacity requirement calculation consider for

example a model with 500 support vectors (500 × 10 integers), 500 support vector

coefficients (500 integers) and a single free term ρ will need to store in memory a total of

about 10 KBs of parameters.

Memory =
(500 · 10 + 500 + 1) · 16

8
≈ 10 KB (4.19)

4.8 Discussion

The detectability of HTs can be affected by issues overlooked in this work. Comparing

Figure 4.10 and Figure 4.12, it can be seen that the two algorithms have different behaviours

at the two ends of the considered power consumption spectrum. While One-Class SVM

algorithm has better performance at the upper end of the spectrum (F1-score = 0.997 at 50

mW ), LOF algorithm shows superior results at the lower end (F1-score = 0.88 at 5 mW ).

For both algorithms, however, the HT’s mean power consumption of 5 mW (standard

deviation = 1 mW ) is the region where the performance begins to decay. One reason for

such drop in performance is that the resolution of the power sensors used in this research

is at 1 mW, which is 20% of the HT power consumption. Improving the resolution of the

sensors on the prototype will reduce the noise-to-signal ratio, improving data quality and

thus the results.

In contrast to the prototype used in this study, PCBs may have a larger setup with

more ICs on board. Hence, a discussion of possible effects on the proposed methodology

is due. From the methodology standpoint, performance degradation is expected to

happen for two main reasons, including slower data collection iterations according to

Eq. (4.16) given the increased number of power sensors, and slower computation due

to higher data dimensionality. However, this can be alleviated by deploying a more

powerful microcontroller in the monitoring block. From the ML algorithm standpoint,
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a phenomenon commonly referred to as the curse of dimensionality could take effect when

increasing the number of dimensions in data, i.e. the number of ICs on the PCB. ML

algorithms based on distance measures tend to fail when the number of dimensions in the

data is very high. In the Euclidean space, this happens due to noise-induced reduction of

the ratio between distances of datapoints belonging to different classes and points from

the same class, i.e. numerically all points appear closer in the high dimensional space.

This effect results in a declined performance in algorithms such as One-Class SVM. Note,

it typically takes place after several hundred dimensions, which should be plenty for the

PCB application scenario. Furthermore, this problem could in principle be mitigated with

dimensionality reduction techniques, e.g. Principal Component Analysis.

In some cases, a single PCB can have several power distribution networks (PDNs) with

different electrical characteristics. Such instances should not affect the conclusion drawn

from this work. This is because the power sensors are measuring the power consumption

on the end nodes of the PDNs, regardless of the specific characteristics such as voltage

value. From the methodology’s standpoint these could be regarded as separate entities.

The model does not require awareness of the PDN layout of the PCB and, therefore, it

can be trained for such scenarios.

Ultimately, given the wide spectrum of possible Trojan attacks, a comprehensive

solution should comprise of a combination of methodologies targeting a subgroup of all

possible Trojans. In this chapter, the group of active Trojan implant ICs has been

addressed, which consume a reasonable amount of power on the PCB. The group of ultra-

low power passive Trojans, e.g. resistors and capacitors, should be addressed by other

techniques such as visual inspection. For example, in a recently published paper [170] a

visual inspection technique has been proposed using optical images to highlight the sections

on PCB with a high likelihood of harbouring a surface mount Trojan component.
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4.9 Concluding Remarks

In this chapter a combination of power analysis with machine learning (ML)

algorithms has been implemented with the purpose of detecting hardware Trojan (HT)

components on a Printed Circuit Board (PCB). The monitoring circuit architecture

proposed by Piliposyan et al. [141] is further developed with the introduction of ML

methods to detect stealthier HTs powered from legitimate chips on a PCB.

Two ML algorithms have been applied to the power consumption data collected from

a purpose built PCB prototype (Figure 4.5). Later this dataset has been injected with one

hundred categories of HTs from Table 4.2 with power consumptions between 5 mW and

50mW . The resulting dataset has been divided into three datasets (training, validation and

testing) to train One-Class Support Vector Machine (SVM) and Local Outlier Factor (LOF)

one class classification algorithms. Simulations for both algorithms returned classification

results reaching F1-scores above 99.5% and 97% for One-Class SVM and LOF respectively,

given the HT’s mean power consumption is P̄HT ≥ 45 mW . The analyses also showed that

the length of HT active time THT , as defined in section 4.4, does not have significant impact

on detectability.

Further, the One-Class SVM model has been uploaded to the monitoring block of

the PCB. The simulation results have been validated through real-life experiments carried

out on the prototype PCB. Comparison between simulation and experimental results has

been presented for nine hardware Trojan categories, their power consumption ranging from

5 mW to 20 mW . Further, the One-Class SVM model is low-cost and requires only 27 KB

memory to operate.

The objectives set out in section 2.7 concerning the second contribution have been

met in this chapter. Chapter 3 and Chapter 4 together have covered the whole circuitry of

the PCB, leaving no blind spots for an adversary to install an active HT undetected. The

next chapter proposes a different approach, visual inspection, which unlike power analysis

does not require the addition of monitoring circuitry. An automated visual inspection

method, based on a combination of conventional computer vision techniques and a deep

neural network, aims to detect HTs implanted on the surface of a PCB.
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Computer Vision for Hardware Trojan

Detection on a PCB

With advances in technology hardware Trojan (HT) attacks on printed circuit boards

(PCB) are becoming more sophisticated and the need for more effective HT detection

methods is becoming crucial. Automated visual inspection (AVI) is one of the most

promising solutions in detecting malicious implants on a PCB. It is non-destructive,

effective in testing PCBs on an industrial scale, demands minimum human involvement,

and can potentially identify malicious inclusions and modifications on PCBs at all stages

of production and thereafter. In recent years, machine learning algorithms in particular

in image recognition, localization, segmentation, and other areas, have been successfully

applied, significantly improving the effectiveness of AVI methodologies.

In this chapter, an AVI methodology is proposed for detecting HTs on a PCB,

using input data from a low-cost digital optical camera. It is based on a combination

of conventional computer vision techniques and a dual tower Siamese Neural Network

(SNN), modelled in a three stage pipeline. Further, a dataset of PCB images has been

developed in a controlled environment of a photographic tent.

5.1 Introduction

Several printed circuit board (PCB) assurance techniques have already been suggested

and evaluated over the past years. These include in-circuit testing, functional testing, Joint

Test Action Group (JTAG) boundary scanning and bare-board testing. Each of these

assurance methods have advantages and limitations, i.e. situations where they can be less

effective [5]. With advances in technology, Trojan attacks become more sophisticated and
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Figure 5.1: Overview of automated visual inspection process.

so there is a growing demand for more effective Trojan detection methods. Ideally, the

most effective solution would require minimal human involvement, be non-destructive and

be able to detect as many types of malicious modifications, inclusions and defects on a

PCB as possible.

Automated visual inspection (AVI) has the potential to satisfy all these expectations.

It requires minimum human involvement and can quickly test a large number of PCBs.

Unlike the above mentioned PCB assurance methods which can be used either when a

board is fully populated or unpopulated, AVI can potentially identify malicious inclusions,

modifications and defects on PCBs at all stages of production and even after sale. It

has many advantages over manual visual inspection which is slower, more expensive, less

effective and subject to human error [171], [172].

Automated visual inspection can be implemented in three steps, image acquisition,

image analysis and authentication (Figure 5.1) [5]. Image acquisition can be done using

several imaging modalities [173], which can be categorised into three groups - surface,

subsurface and volumetric. Depending on the requirements, multi-modal imaging approach

may also be applied to detect, for example, malicious modifications between PCB layers

or active components disguised as passive.

Collected images then need to be analysed for possible defects or malicious inclusions

and modifications. Image analysis involves processing, feature extraction and classification

stages. First the acquired images are processed to improve the quality, for example, by

removing noise, altering illumination and enhancing contrast. The next stage is feature
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extraction when key characteristics such as shape, color and texture of the pursued objects

are captured. This is followed by classification and grouping of similar style components

such as metal traces, vias, integrated circuits (IC), capacitors, transistors or resistors

[122]. Classification traditionally was conducted by using template and feature matching

methods to compare patterns and features between two images. With advances in deep

learning methods, feature extraction and classification can be performed simultaneously

using deep learning algorithms [5]. Text recognition is also used in classification for

identification of markings such as serial numbers, which can be used, for example, for

detection of counterfeit components by comparing the component’s serial number with the

manufacturer’s original equipment serial number.

The final stage of automated visual inspection (AVI) is authentication where data is

stored as a Computer Aided Design (CAD) file for comparing images of a fabricated PCB

with the image of a golden PCB model [122].

Although AVI has been the most commonly used method for PCB assurance

since 1960s [174] it had several limitations such as limited-area inspection, hard-coded

specifications, and significant amount of subject matter expert involvement [148], [149].

Advances in deep learning in recent years, in particular image recognition, localization

and segmentation, have been successfully applied to AVI to overcome these limitations.

Several AVI methods have been suggested, including canonical image processing method

for detection, classification and localisation of several specific types of defects on a PCB

[123], convolutional neural network for detecting six types of defects [124], automated

detection for component placement by directly comparing golden and test PCBs [125],

[126] and text detection on the PCB for verification purposes [127], [128].

All the suggested approaches designed for PCB defect detection do not distinguish

between irregularities that are due to manufacturing defects and malicious hardware

Trojan (HT) inclusions, which are adversarial modifications for compromising sensitive

information or causing denial of service. In the Big Hack [2], for example, an alien

component implanted on a PCB was an HT which was visually disguised as one of the

legitimate components, albeit being marginally larger in size. The HT was designed to

provide administrative access to the network for an outside attacker. Development of AVI

approaches for monitoring the location, size, and appearance of PCB components, focusing
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in particular on HT detection, is very important [122]. This chapter addresses that problem

by proposing a novel optical AVI algorithm for HT detection on a PCB.

5.2 Previous Work

In recent years AVI has been applied using several methods including image matching,

feature extraction, and deep learning. Each of these approaches demonstrated effective

performances in various defect detection tasks such as component, trace and via defect

detection, and component classification.

Image matching methods have been mostly applied for detecting missing, displaced

or replaced components [126], [175], [176], [177]. In particular, by using background

subtraction 90% accuracy can be achieved on detecting the absence of capacitors and

resistors [176]. By matching wavelet-transformed images, component inspection in

electronic assembly lines is suggested by Cho et al. [177] with 86% accuracy. Feature

extraction has also been adopted to classify component defects [125]. While image matching

checks the whole PCB, feature extraction is applied only on regions where illegitimate

components are expected to be present.

Feature extraction and deep learning methods have proven to be efficient for

component classification [178], [179]. Youn et al. showed that an automatic surface mount

device classification method can extract color and edge information from color images of

PCB parts [180]. A neural network was used to classify chip-type packages and 97.6%

average classification accuracy was achieved after adding additional edge information.

Using a convolution neural network, some authors proposed a component classification

method [181], [182]. Based on component images obtained from a PCB, the method

suggested by Lim et al. [181] separated components from their backgrounds and classified

them, achieving 90.8% accuracy. By training IC images collected online, IC components

were identified with 92.3% accuracy in another research [182].

Previous works have looked into AVI for quality assurance, however HTs pose a

separate challenge. The novelty in this work is that, instead of production fault detection,

the algorithm has been optimised and trained specifically for implanted HT component
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detection on a PCB. The proposed HT detection methodology has been trained and tested

with three groups of HTs, categorised based on their surface area. The results show that

it is possible to reach effective detection accuracy of 95.1% for HTs as small as 4 mm2.

In case of HTs with surface area larger than 280 mm2 the detection accuracy is around

96.1%, while the average performance across all HT groups is 95.6%. These results can be

further improved if higher resolution images are used.

The rest of the chapter is organised as follows: the proposed methodology is presented

in section 5.3. Section 5.4 describes the experimental setup used for carrying out the

research. Section 5.5 breaks down the proposed pipeline into three main stages and provides

a motivational case study example. Discussion on results is carried out in section 5.6.

Finally, the chapter is summarised in section 5.7.

5.3 Proposed Methodology

The goal of this work is to develop a low-cost and fast PCB visual inspection tool. This

is achieved by avoiding expensive and slow imaging modalities such as X-rays or high end

microscopes. Instead, the approach adopted in this chapter is detecting HT contaminated

PCBs by using a simple digital optical camera. This fundamental characteristic of the

proposed method allows to develop an AVI tool with marginal time and resource overheads,

inspecting all PCBs passing through a conveyor belt setup on production lines.

The proposed methodology pipeline includes conventional computer vision techniques

such as image alignment, blurring filters and background image subtraction and is

comprised of the following key stages:

• Image alignment through homography matrix

• Application of Gaussian blurring filter

• Background image subtraction

• Suspicious region identification

• Cropping suspicious regions as image pairs

• Siamese Neural Network similarity estimation

• Confirmed dissimilar region marking on PCB
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• Labelling the PCB on HT presence status.

5.3.1 Image Alignment through Homography Matrix

To align two images first a matrix, called the homography matrix, should be

estimated. Then all pixel coordinates of one of the images should be multiplied by the

homography matrix:


x′

y′

1

 ∼ H


x

y

1

 ∼


h11 h12 h13

h21 h22 h23

h31 h32 h33



x

y

1

 , (5.1)

x′ =
h11x+ h12y + h13
h31x+ h32y + h33

, y′ =
h21x+ h22y + h23
h31x+ h32y + h33

, (5.2)

where H is the estimated homography matrix, and (x′, y′) are the updated coordinate

estimates of the pixel previously in location (x, y). It should be noted that this technique

only works for images of two-dimensional flat surfaces. In the scope of this work, the

aforementioned two-dimensional flat surface would be the PCB. Although a populated

PCB has surface mount objects, e.g. capacitors, which protrude from the surface, in

the scale of the whole PCB these are small deviations and can be disregarded. On the

other hand, in the case of larger protrusions, such as a large heat-sink, the accuracy of

the estimated homography matrix may suffer, hence this factor should be kept in mind

and, where possible, the methodology should be applied prior to installation of such large

components.

5.3.2 Application of Gaussian Blurring Filter

Following image alignment phase a blurring filter kernel is applied to both images.

The visual effect of a blurring filter application is shown in Figure 5.2. This is done to

smooth out minor misalignments on the edges of objects (e.g. wires, chips). The main idea

behind this step is that if if there is an extra HT component of the PCB, then applying a

soft blurring filter will not have an effect strong enough to lose the information about the

presence of the HT. On the other hand, it could be the case that the differences between
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the two images are only due to a slight misalignment, because of the marginal errors in

the estimation of homography matrix. In this case, applying a blurring filter will remove

these differences, leaving only the major differences, if they exist. In this work the kernel

grid of the burring filter has been populated with a two-dimensional Gaussian distribution

function G(x, y), a.k.a. Gaussian blur filter:

G(x, y) =
1

2πσ2
e−

(x2 + y2)

2σ2
, (5.3)

where σx = σy = σ is the standard deviation on both axes.

(a) Original photograph. (b) Adjusted photograph

Figure 5.2: Photographs of a sample printed circuit board, before and after
application of a blurring filter.

5.3.3 Background Image Subtraction, Suspicious Region Identification

and Cropping as Image Pairs

Finally, image background subtraction and thresholding operations are demonstrated

in Figure 5.3. In the process of background subtraction, the blurred image of the golden

model (GM) PCB is subtracted from the blurred image of the PCB Under Inspection

(PUI). The subtraction is a pixel-wise action, performed on pixels with same coordinates

in the images. The result is a grayscale image referred to as the difference mask. The

regions where pixel values of the two images did not match will be highlighted. The bigger

the difference, the brighter white they will show on the difference mask, while similar

looking regions will be marked in black. Since there is an inherent margin of error due

to reasons such as change in lighting conditions (e.g. angle of incidence, brightness, color

tone) when capturing images or the noise in camera sensors, to some degree even similar
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looking regions on the PCB will be highlighted in white on the difference mask. That

is why a threshold is applied on the pixel values in the difference mask to filter out the

unwanted effects of noise. The final result is the thresholded difference mask with well

defined contours. The resulting individual contours are regarded as suspicious regions and

cropped out as separate images for later processing.

Figure 5.3: Image subtraction and pixel value binary thresholding.

5.3.4 Siamese Neural Network Similarity Estimation

The proposed methodology also includes deep learning architectures such as

convolutional neural network and feed-forward fully connected neural network. These are

merged into a specific architecture called Siamese Neural Network (SNN) [183], [184]. The

SNN has a particular type of neural network architecture (Figure 5.4) where some weights

are shared between two towers of convolutional neural networks. Each tower produces an

embedding vector of its respective input image. Given a dataset of pairs of inputs, the

network is trained to maximise the distance between the embeddings of the inputs coming

from different classes, while minimizing the distance between embeddings coming from

inputs of the same class. This process is referred to as supervised similarity learning.

In the scope of this work the input images to the twin towers of the SNN are the pairs

of suspicious region images cropped out from the GM PCB and the PUI. The images are

first separately processed by the convolutional neural network. Although in Figure 5.4 the

diagram shows two convolutional neural networks, these have the exact same parameters,

so essentially they can be treated a single network, receiving two inputs, one at a time,

and generating an embedding for each one of them. Later these embeddings are subtracted

and processed to acquire the similarity score.
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Figure 5.4: Siamese Neural Network architecture overview.

5.3.5 Controlled Environment for Capturing Photographs

In order to obtain a good quality dataset and minimise the ambient optical impact,

the PCBs have been placed in a photographic tent with a built-in diffused light source

(Figure 5.5a). This way, when capturing the photographs, all PCBs have similar initial

environmental conditions, independent from many external factors such as daylight,

shifting shadows, color variations due to reflections from the surroundings [185]. On the

one hand it could be argued that outside the laboratory’s controlled environment the

ambient lighting conditions could vary. On the other hand, it can also be assumed that

implementing a photographic tent-like structure in a fabrication facility production line can

be achieved with little extra effort. The motivation for using a photographic tent to begin

with is to boost the algorithm performance by removing unnecessary complications (e.g.

changing light source color or angle of incidence). This is a low-effort, but high-impact

improvement to the input data. Further, while producing the images the camera has been

mounted on a static stand and a remote controlled shutter has been used to produce stable

images.

5.4 Experimental Setup

5.4.1 Capturing Photographs

To build the PCB image dataset a 52cm×52cm×52cm FOSITAN photographic tent

with an opening on the top and a built-in intensity-adjustable white LED light has been

used. The intensity of the light source at the surface level of the PCB has been kept at
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(a) Photographic tent used for creating
the dataset of PCB images.

(b) Digital light meter used for
controlling the light intensity.

Figure 5.5: Equipment used in creating the dataset of printed circuit board images.

5380 Lux, with the measurements being taken by an AP-8801C digital light meter (Figure

5.5b). Further, to minimise artifacts in the image, for example due to reflective surfaces

on the PCB, several layers of light diffusing cloth sheets have been applied between the

light source and the PCB, which is a standard practice for controlling image quality. Using

this environment 101 images of a PCB have been captured of which 1 has been used as

the golden model PCB and the other 100 were later used as source images for creating a

much larger dataset of HT infected PCBs. Regarding the digital camera used to produce

the images, a 12 Mp camera with a 1 cm sensor size and 1.4 µm pixel pitch has been

utilised. The camera has a 26 mm equivalent focal length and f /1.8 aperture lens. The

objective of this research is to develop a high quality automated visual inspection (AVI)

algorithm which can work with moderate quality input images acquired through low cost

digital optical camera modules.

5.4.2 Preprocessing Photographs

Before two images can be compared with each other to detect differences, they have

to be aligned. This is a crucial step in the proposed AVI pipeline. During image alignment

process one image is warped to match the second. This effect is achieved by multiplying

the coordinates of every pixel in the image by the homography matrix H as shown in Eq.

(5.1) on page 103. It is important to note that homography can only be applied to objects

on a 2D plane such as a PCB. In this research, OpenCV library has been used to compute

the homography matrix and perform image alignment [186].
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In order to perform homography, first the same points of the object (e.g. PCB) in

both images need to be located. The minimum required number of such point pairs to be

able to perform homography is four. Increasing the number of such pairs will result in a

more robust homography estimation and, hence, improved alignment of images. To acquire

such point pairs in an automated manner, first several key-points on both images need to

be located. Then these key-points should be matched into pairs. For example, it can

be achieved with brute force matching by searching for the minimum euclidean distance

between every couple of descriptor vectors belonging to a particular pair of key-points.

Points referred to as key-points are typically distinctive corners, edges or sharp curves of

the objects (e.g. PCB) present in the image. They are defined by (x, y) coordinates, size

and orientation. Their respective descriptors, on the other hand, are unique markers of the

key-points, independent from the orientation of the object in the image. The descriptors

are vectors calculated internally by OpenCV [186] and help in search for matching key-point

pairs from two different images of the same item.

At a later stage, another algorithm called Random Sample Consensus (RANSAC) is

used to discard the key-point pairs with a high likelihood of being outliers. Such points

can have a significant negative impact on the quality of the homography matrix. RANSAC

is an iterative algorithm which validates a mathematical model built using a dataset with

outliers [187]. The algorithm assumes that the dataset is a combination of both inliers

and outliers. Inliers can be identified by a model with a special set of parameter values,

whereas outliers do not fit the model in any condition. The iteration process repeats a

fixed number of times and each time produces either a model which is rejected due to very

few points being part of the consensus set, or produces a refined model together with a

corresponding updated consensus set. The refined model is accepted only if the size of the

updated consensus set is larger then that of the previous model.

5.4.3 Inserting Hardware Trojans

Three groups of HTs have been used in this research. They have been binned into

groups of small, medium and large, based on their surface area (Table 5.1).

The HTs have been added into the dataset with the help of Flip library on GitHub

developed by LinkedAI [188]. The library is used for synthetic data generation on new
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Table 5.1: Groups of hardware Trojans.

Group name Small Medium Large

Surface area in mm2 4 to 9 15 to 50 280+

Surface area in pixels2 700 to 1500 2500 to 9000 50000+

2D images from a batch of objects and backgrounds. In the scope of this research, the

background image is an HT free PCB Under Inspection (PUI), while the objects are the

HTs. The idea is to take a random background image and a random object and place the

object in a random location with a random integer multiple of 90◦ rotations. On top of that,

the Flip library provides many of the conventional image augmentation functionalities,

e.g. resize or colour shift the objects. Using Flip library and the 100 source images

captured earlier as backgrounds, 7,500 images of PCBs with inserted HT devices have

been generated, i.e. 2,500 images per HT group.

5.5 Hardware Trojan Detection Pipeline

The proposed HT detection pipeline consists of three main stages shown in Figure 5.6. In

the first stage the images of the golden model (GM) and a PCB under inspection (PUI)

are compared to identify the suspicious regions on the PUI, where an HT could be present,

but in this stage there is no definitive prediction whether that is the case. Instead, the

information on these regions is passed forward to the next stage as a list of bounding boxes.

In the second stage of the pipeline the algorithm uses the bounding boxes to crop out

these sections as a set of smaller images. This step is repeated for both the GM and the

PUI to create pairs of images of every suspicious region.
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A more detailed illustration of the second stage of the pipeline is provided in Figure

5.7. As it can be seen in Figure 5.7, there are three steps involved in the second stage of the

pipeline. First all suspicious regions are cropped out as new individual images. This step

is repeated for the GM and PUI to create a pair of images per suspicious region. Next,

since these new smaller image pairs will be of varying shapes and sizes dictated by the

bounding boxes determined in the previous stage of the pipeline, they are all normalised to

a predetermined shape, which in this case is 28×28 pixels. Finally, the already normalised

images of the suspicious regions are converted to grayscale, in preparation for the next

stage of the pipeline.

Figure 5.7: Cropping and normalisation of suspicious regions.

The resulting image pairs of the suspicious regions are passed on to the final third

stage of the pipeline in Figure 5.6 - the Siamese Neural Network (SNN). Normalisation of

the input image sizes is necessary for the SNN to function, since it can only work with a

specific input shape, predefined by the network architecture at the time of model training.

Next, converting the input images to grayscale is done to reduce the size of the neural

network, by reducing the number of required trainable parameters. After receiving all

normalised image pairs of the suspicious regions, the SNN individually processes every

pair, outputting a similarity score for each pair.

In this work, the Keras framework [189] has been used for implementing the SNN.

The network is trained to differentiate between the HT contaminated and HT clean image

pairs. In case of the HT clean image pair class the two cropped images from GM and

PUI should be very similar. The reason why such regions have been suggested by the

previous stage of the pipeline is that although the image alignment algorithms have a good

performance, they are not perfect and in some cases a slight misalignment gets interpreted
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as a physical difference on the PCB. This is where the SNN excels at differentiating between

a misalignment and actual HT presence. Finally a threshold is applied to the similarity

scores followed by a logic AND function to check if at least one HT is present on the PUI.

5.5.1 Case Study

To explain the proposed methodology, a simplified case study can be considered,

where 1000 PUIs are available, 500 out of which have an HT on board (Figure 5.8). The

first stage of the proposed pipeline in Figure 5.6, the suspicious region identification stage,

is optimised to mark in suspicious regions as many of the 500 HTs as possible, even though

in the process the algorithm may also wrongly suggest a large number of misidentified

suspicious regions. For example, the algorithm may miss 10 HTs on HT infected PUIs,

correctly mark 490 HT containing regions and further suggest 260 misidentified regions

on the PUIs, which do not contain an HT. These 750 suspicious region coordinates are

cropped from the their respective PUIs, as well as the golden model (GM). They are later

normalised as described in Figure 5.7 and passed to the SNN in the last stage of the

pipeline in Figure 5.6. The SNN individually compares all 750 image pairs to assess their

similarity. For example, the SNN may have 95% accuracy, detecting 465 out of 490 HTs.

In such a scenario, 490 out of 500 HTs were detected by the first stage (98% detectability)

and 465 out of those 490 HTs were detected in the final stage (95% accuracy) resulting in

an overall 93% effective accuracy.
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5.6 Experimental Results

Since the proposed methodology is organised in a multistage setup (Figure 5.9), it

is possible to retrieve meaningful outputs from the intermediate stages. In fact, this is a

crucial step in the overall optimisation process. In this work the methodology has been

optimised for two independent consecutive results, i.e. image thresholding and siamese

neural network.

5.6.1 Image Thresholding

The stage of suspicious region identification through image thresholding has

undergone a constrained optimisation problem, whereby the HT detection rate, i.e.

detectability, has been maximised, such that the ratio of misidentified suspicious regions to

the total number of predicted suspicious regions does not exceed 95%. Here detectability

is defined by the ratio of all HTs which were included in at least one of the suggested

suspicious regions. The suspicious region is defined as misidentified if it does not overlap

with an HT or if the intersection over union (IOU) is below 10%. In other words, this

algorithm has been optimised to find as many HT containing regions as possible, while

keeping the rate of wrongly suggested suspicious regions in a reasonable range. This

constraint on the optimisation has been introduced to avoid the trivial case of having the

algorithm mark all of the PCB surface as suspicious. The optimisation was accomplished

by calibrating the pixel value cutoff threshold for image binary thresholding (Figure 5.10)

using the 1 GM and 7,500 PUI images with their ground truth masks of HT locations. The

results for HT detectability, alongside with the respective rate of misidentified proposed

suspicious regions, are presented in Table 5.2, subject to varying cutoff thresholds. The

cells satisfying the constraint of keeping the rate of misidentified suspicious regions below

95% have been highlighted with a light green background. The reason why the algorithm

can afford to output so many misidentified suspicious regions is that the SNN in the last

stage of the pipeline (Figure 5.9) can discard them with high accuracy. The goal here is

to mark as many HT containing regions as possible.
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Table 5.2: Hardware Trojan detectability in top-left blue and rate of misidentified
suspicious regions in bottom-right red.

(a) Source img. (b) thr. = 150 (c) thr. = 100

Figure 5.10: Given a grayscale source image (a), computed binary thresholding images
with high (b) and low (c) threshold values.

5.6.2 Siamese Neural Network

A Siamese Neural Network with around 872 × 103 trainable parameters has been

trained to discern between the images of the same patches on two PCBs harbouring an HT

component, while being able to recognise similar patches which are only slightly misaligned

or misshaped (Figure 5.11). The root cause of having such misaligned patches is the

estimation of the homography matrix H in Eq. (5.1) on page 103. The reason for having

misshaped patterns could be, among other things, variations in the PCB production process

as well as defects such as misaligned elements.

Information about the datasets used to train, validate and test the SNN model and

their respective resulting prediction accuracies are shown in Table 5.3. The datasets are

comprised of pairs of images, where each pair represents one of the suspicious regions.

Inside every pair the first image is cropped from the suspicious region on the PCBs under

inspection, while the second is the matching region on the golden model PCB. These

images are of the exact same regions on both PCBs, cropped out based on coordinates

116



Chapter 5. Computer Vision for Hardware Trojan Detection on a PCB

(a) Golden model
PCB

(b) PCB under
inspection

(c) Golden model
PCB

(d) PCB under
inspection

Figure 5.11: Cropped suspicious regions. Image pair (a) and (b) are only misaligned, pair
(c) and (d) harbour a Trojan component.

Table 5.3: Siamese Neural Network prediction accuracy.

Dataset name Train Validation Test

Dataset size 18000 6000 6000

Prediction accuracy (small HT ) 98.8% 96.5% 95.5%

Prediction accuracy (medium HT ) 98.4% 97.6% 95.9%

Prediction accuracy (large HT ) 98.7% 98.5% 96.1%

from a single bounding box and later normalised as shown in Figure 5.7. In total about

30K such image pairs have been collected and split into training, validation and testing

datasets with a 60%− 20%− 20% ratio. The performance of SNN has been analysed per

HT group (Table 5.3). The classification accuracies on testing dataset range from 95.5%

to 96.1%, as expected, performing best on large HTs.

5.6.3 Effective Accuracy

Since the proposed methodology has two consecutive, distinct and independent

outputs with their respective accuracy scores, the effective accuracy of the methodology

as a whole is the multiplication of the two. In other words, HT detection accuracy of the

SNN applies only to the HTs which had previously been detected by the previous stage of

the pipeline. For example, in case of medium size HTs the suspicious region identification

with image thresholding stage resulted in HT detectability rate of 99.7% and the SNN had

classification accuracy of 95.9%. The resulting effective accuracy of the methodology for

medium size HTs is (99.7% × 95.9%) = 95.6%. The effective accuracies for all groups of
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Table 5.4: Effective prediction accuracy.

HT size group Small Medium Large All

Image thresholding (at 35) 99.6% 99.7% 100% 99.8%

Siamese Neural Network 95.5% 95.9% 96.1% 95.8%

Effective accuracy 95.1% 95.6% 96.1% 95.6%

HTs are presented in Table 5.4. As expected, the algorithm performance improves up to

96.1% as the HTs get larger, with the overall HT implanted PCB detection accuracy being

around 95.6%.

5.7 Concluding Remarks

This chapter proposes a methodology for detecting hardware Trojan (HT) components

on a printed circuit board (PCB) through automated visual inspection. It is assumed that

an image of a trusted golden model (GM) of the PCB is available with which comparisons

are made. The proposed technique provides an accurate and fast tool to detect HT

inclusions on PCBs using a low-cost imaging modality - optical digital camera. To keep

the operating conditions stable and avoid the negative impacts from variations in ambient

lighting, a photographic tent (Figure 5.5a) with internal diffused light source has been used

to develop a PCB image dataset containing 7, 500 plus 1 images including the GM.

The proposed methodology is a pipeline of three sub-stages (Figure 5.6). Initially,

the first stage proposes suspicious regions on the PCB Under Inspection (PUI), where

a potential HT could be located. In the second stage, these regions are cropped out as

pairs of images from both the GM and PUI. In total 30,000 such pairs of images are

preprocessed (Figure 5.7) preparing them for the final stage. In the final stage, a Siamese

Neural Network (SNN) takes each of these 30,000 image pairs as two separate inputs and

outputs a similarity estimation. The results show that the proposed automated visual

inspection pipeline, combining conventional computer vision techniques and deep learning,

can detect HT devices with surface area from 4 mm2 to 280 mm2 implanted on a PCB

with an effective accuracy of 95.6% (Table 5.4). Thus, the objectives set out in section 2.7

concerning the third contribution have been met in this chapter.
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Conclusions

The continuous integration of increasingly more electronic devices into various

aspects of modern society has undoubtedly been beneficial in the most part. Technology

has led to historically highest labour productivity and quality of life. However, these

trends of widespread technology adoption have also led to ever higher demands on the

market, putting original equipment manufacturers and design houses under pressure to

cut time to market and devise alternative strategies to meet the demand. Outsourcing

the production to other companies is now a common industry practice. Unfortunately,

outsourcing to untrusted fabrication facilities creates hardware security risks, threatening

with unanticipated negative consequences, particularly in safety critical applications. One

of the most prominent types of hardware security threats are hardware Trojans (HTs). The

research in this thesis has investigated methodologies directed at detection of HT implants

on a Printed Circuit Board (PCB). The objective of the thesis was to address the lack of

PCB level HT detection methods by proposing and experimentally validating two power

analysis based and one computer vision based techniques, which are summarised in the

next section followed by the proposed future work.

6.1 Thesis Contributions

The overall goal of this thesis has been to develop methods for board level hardware

Trojan detection. This goal is achieved through three main projects. The first two projects

are based on anomaly detection through power analysis of the PCB components, while the

third project uses computer vision and deep learning to detect extra HT components added

on the surface of the PCB. The proposed methodologies are directed towards detecting

added HT components on the PCB, such as a rogue microcontroller, and are independent
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of the specific trigger and payload functionality of the Trojan.

The objective of the first project was to detect HTs on the PCB, which draw power

from the power distribution network. In Chapter 3, a novel methodology is proposed on

detecting HT components on a PCB using power monitoring. The experimental results

show that the proposed Differential Power Monitoring (DPM) method can detect Trojans

implanted on the PCB with low false positive rate provided an appropriate detection

threshold. The differential power monitoring technique provides additional protection for

end users without affecting the throughput of the PCB.

In the second project the monitoring circuit architecture proposed in Chapter 3 is

reused, adding extra features with the introduction of ML methods. The objective in

Chapter 4 was to detect stealthier HTs powered from the input/output ports of legitimate

chips on a PCB. Such HTs can circumvent the HT detection methodology proposed in

Chapter 3, hence the requirement for this second project.

Two ML algorithms have been applied on the power consumption data collected from

a purpose built PCB prototype. This dataset has been injected with one hundred categories

of HTs. One-Class Support Vector Machine (SVM) and Local Outlier Factor (LOF) one

class classification algorithms have been used to train machine learning models capable of

detecting anomalies in the power consumption patterns across the PCB. Simulations for

both algorithms returned classification results reaching F1-scores above 99.5% and 97%

for One-Class SVM and LOF respectively, given the HT’s mean power consumption is

P̄HT ≥ 45 mW .

The simulation results have been validated through real-life experiments carried out

on the prototype PCB. Comparison between simulation and experimental results has been

presented for nine hardware Trojan categories, their power consumption ranging from

5 mW to 20 mW . Further, the One-Class SVM model is low-cost and requires only

27 KB memory to operate.

The objective of the third project in Chapter 5, was to propose a methodology for

detecting HT components on a PCB through automated visual inspection (AVI). It is

assumed that an image of a trusted golden model (GM) of the PCB is available with which

comparisons are made. The proposed technique provides an accurate and fast tool to

detect HT inclusions on PCBs using a low-cost imaging modality - optical digital camera.
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The proposed methodology is a pipeline of three sub-stages. The first stage proposes

suspicious regions on the PCB Under Inspection (PUI), wherever there is an increased

possibility of a potential HT being located. In the second stage, these regions are cropped

out as pairs of images from both the GM and PUI. To train the deep learning model a total

of 30,000 such pairs of images are preprocessed, preparing them for the final stage. In the

final stage, a Siamese Neural Network (SNN) is trained on each of these 30,000 image pairs

as two separate inputs to output a similarity estimation for every pair. The results show

that the proposed automated visual inspection pipeline, combining conventional computer

vision techniques and deep learning, can detect HT devices with surface area from 4 mm2

to 280 mm2 implanted on a PCB with an effective accuracy of 95.6%.

In conclusion, this thesis provides a novel contribution to the subject of PCB level HT

detection. The research outcomes of this thesis have met the main objectives laid out in the

introduction, that is to contribute in developing board level HT detection methodologies.

6.2 Limitations

Detectability of HTs can be affected by issues that were overlooked or were beyond

the scope of this work. The following bullet points reflect on such research gaps.

• The detectability of HTs is also affected by issues such as the RLC characteristics of

wires on the PCB or PCB workload-dependent drift in parasitic power consumption

of the power distribution network (PDN). For example, the capacitive and inductive

components on the PDN can frequently induce sharp rises to parameter PPDN

in Chapter 3, section 3.4, ultimately having an adverse effect on the false

positive rate and accuracy of the methodology. Even in the unrealistic noise-free

environment, using state-of-the-art power sensors, these effects will provide a window

of opportunity for the adversary to implant an HT with a small side-channel footprint

and evade detection. Therefore, RLC effects on the proposed methodologies should

be analysed, alongside with a deeper investigation into their theoretical underpinning

and novel techniques should be developed to solve the problem. One such possible

solution to this problem is proposed in section 6.3.
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• Using a faster communication protocol to communicate data between the power

sensors and the main monitoring computational block on the PCB should improve

the results presented in work. It would allow the methodologies presented in Chapter

3 and Chapter 4 to operate at a higher frequency, pushing down the range of minimum

detectable HT activation time. For example, in Chapter 3 the operating frequency

of the monitoring setup on the prototype PCB was around ν = 100 Hz. This set the

threshold of minimum detectable HT activation period at about 10 ms. The power

sensors used in the prototype were limited to a relatively slow Inter-Integrated Circuit

(I2C) (up to 2.56 Mbps High-speed mode) communication protocol. Furthermore,

the resolution of power sensors used in this work is limited to 1 mW . It is clear that

even lower power HTs can be detected by changing the monitoring equipment and

introducing more accurate sensors with better resolution. For example, using INA226

digital power sensors with a resolution of 10 µW (ADC 16 bits) will decrease the lower

limit of detection threshold up to 100 times, compared to the setup in current PCB

prototype.

• In Chapter 4, it was assumed that an inclusive power consumption dataset from the

golden model PCB, reflecting all of its legitimate operational modes, is available to

use for training the ML model. However, it could often prove to be the case, that it is

not possible to build such an inclusive dataset due to the multitude of the legitimate

operation combinations on the PCB. In this case, novel approaches would be required

to either synthetically adapt the existing data with further assumptions or find a new

way to train the machine learning model. Either way, further investigation is required

to address this scenario.

6.3 Future Work

Despite all the existing scientific contributions, be it within this thesis or otherwise,

research on hardware Trojan detection is still in its infancy and significant novel academic

research is still necessary. To address this, some possible future research directions are

provided in the following bullet points. In general, the target of future research should be
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a more robust and reliable family of methodologies. These should accommodate various

techniques under a single umbrella approach, simultaneously combating many different

subgroups of HTs. These future improved methodologies should also resolve problems

related to issues such as process, voltage or temperature variation. In this manner, being

closer to fundamentally solving hardware security problems related to Trojan implants,

the research will become more attractive for industrial exploitation, crossing the chasm

between being a pure research topic and a real-life benefit. In addition, future research

should also be directed at developing the necessary research infrastructure, such as related

software tools and open source datasets aimed at assisting the wider research community,

facilitating further developments in the field. Possible directions of future research include

the following:

• The capacitive and inductive characteristics of the power distribution network (PDN)

can have a significant impact on its parasitic power consumption in the form of sharp

rises. The methodology proposed in Chapter 3 should be equipped to differentiate

such acceptable peaks on the ∆PHTinf (Eq. (3.4)) time series from actual HT peaks.

In that regard, a 1-dimensional convolutional neural network (CNN) can be trained

on the ∆PHTinf time series data from the golden model PCB, to learn the shapes of

these RLC induced peaks and identify anomalous peaks introduced by the HT’s power

consumption. Such 1-D CNN can become part of the existing proposed methodology

and tackle the problem of RLC effects.

• Improving the sensors used for harvesting information about the state of the PCB.

Using more sophisticated sensors should improve the results reached in Chapter 3 and

Chapter 4. Sensor parameters such as resolution, operating frequency and accuracy

set a limitation on minimum detectable HT specifications. This relatively simple

improvement should push the boundaries of HT detectability suggested in this work.

For example, using INA226 digital power sensors with a resolution of 10 µW (ADC

16 bits) will decrease the threshold of minimum detectable HT power consumption

around 100 times compared to the setup used on the prototype discussed in this

work. Improving resolution of the sensors will also help reduce the noise-to-signal

ratio, improving data quality and thus the results in Chapters 3 and 4.

• Variabilities such as voltage, process and temperature variation or aging of silicon
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devices are another set of factors, which can have a negative impact on the

performance metrics of the proposed methodology. Thus, incorporating these

phenomena in future assessments is important. While voltage and temperature

variations can become part of the current model in Chapter 4 as two more feature

columns in the dataset, addressing process variation and aging may require a broader

approach. For example, process variation can be addressed by collecting data from a

wider range of PCB prototypes. Aging, on the other hand, can in theory be addressed

by developing a number of models, which will all be uploaded on the device. Then,

the primary active model, performing the monitoring, can be consecutively updated

by one of these models based on the state of PCB aging [190], to reflect the new state

of the PCB’s power consumption.

• The surface area of the smallest HT used in the analyses in Chapter 5 was 4 mm2.

Developing the results reached in Chapter 5, detection of ultra-small HT components,

with surface areas smaller than the ones used in this research, should be analysed in

a future work.
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